1
|
Wu RH, Xie WJ, Dai SZ, Chen MH, Tan GH, Huang FY. 3'-epi-12β-hydroxyfroside induces autophagic degradation of ABCG2 to overcome drug resistance in lung cancer cells. Biomed Pharmacother 2025; 187:118085. [PMID: 40273691 DOI: 10.1016/j.biopha.2025.118085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
AIMS ABCG2 contributes to multidrug resistance by transporting chemicals across cell membranes. 3'-epi-12β-hydroxyfroside (HyFS) is known for its anticancer properties as an autophagy inducer. This study investigates whether HyFS can overcome drug resistance by promoting autophagy-mediated ABCG2 degradation. METHODS Two non-drug-resistant lung cancer cell lines, H460 and A549, along with their drug-resistant sublines, H460/MX20 and A549/MX10, were used as experimental models. Immunoblotting, immunofluorescence, and flow cytometry were used to assess the expression of ABCG2 and autophagy-related molecules. Flow cytometry was also used for quantitative analysis of ABCG2 efflux and cell death. Cell viability was assessed using the MTT assay. Additionally, murine models of H460/MX20 and A549/MX10 were established to evaluate the efficacy of various combination therapies and ABCG2 expression. RESULTS The efficacy of HyFS treatment depends on dosage and duration, which influence autophagy flux in treated cells. Inhibition of autophagy restores ABCG2 expression, causing intracellular accumulation of ABCG2 substrates and promoting their efflux. HyFS treatment sensitizes mitoxantrone-resistant H460/MX20 and A549/MX10 cells to mitoxantrone, enhancing mitoxantrone-induced reduction in cell viability and triggering cell apoptosis. Inhibiting autophagy mitigates these effects. In addition, HyFS treatment reduces mitoxantrone resistance mediated by ABCG2 and hinders tumor progression. Moreover, the combination of mitoxantrone with HyFS shows promising synergistic antitumor effects in both MX-sensitive and MX-resistant murine tumor models without inducing any obvious side effects. SIGNIFICANCE These findings highlight the potential of HyFS in overcoming drug resistance through autophagy-dependent degradation of ABCG2, suggesting its promise as a therapeutic approach against ABCG2-mediated drug resistance in lung cancer cells.
Collapse
Affiliation(s)
- Ri-Hong Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Wei-Jing Xie
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ming-Hui Chen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
2
|
Yuan Y, Yu J, Li M, Zhou T, Deng Z, Yin C, Shi X, Tang D, Liu Y, Li Y. Paxilline derived from an endophytic fungus of Baphicacanthus cusia alleviates hepatocellular carcinoma through autophagy-mediated apoptosis. Sci Rep 2025; 15:18464. [PMID: 40425675 PMCID: PMC12117046 DOI: 10.1038/s41598-025-03044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy for which no effective drugs are available. Paxilline is derived from an endophytic fungus of the leaves of Baphicacanthus cusia (Nees) Bremek. In a previous study, we found that paxilline inhibited the proliferation of HepG2 cells; however, its mechanism remains unclear. In this study, ESI+ and NMR were used to characterize the paxilline structure. Network pharmacology analysis was performed with databases and software to obtain the core targets and signaling pathways associated with the anti-HCC effects of paxilline. Molecular docking was performed to validate the preliminary affinity of paxilline for the core targets. For further in vitro experiments, a CCK8 assay was performed to detect cell viability, a wound healing assay was performed to detect cell migration, an Annexin V-FITC assay was performed to detect the cell cycle and apoptosis rate in HepG2 cells, RT-qPCR analysis was performed to detect the expression of cell cycle-related genes and autophagy-related genes, Immunofluorescence staining was performed to detect the expression of LC3B, and Western blotting was performed to detect the expression of apoptosis-related proteins and autophagy-related proteins. As a result, we obtained a white powder, which was identified as paxilline. Network analysis and molecular docking results revealed that apoptosis-related and autophagy-relatted protein were key targets (mTOR and PI3K) for paxilline anti-HCC. Further examination revealed that paxilline promoted HepG2 cell apoptosis, inhibited HepG2 cell migration, and arrested HepG2 cell in the S phage. RT-qPCR analysis revealed that paxilline markedly downregulated the mRNA expression of Cyclin D1, CDK4, LC3B, mTOR, Parkin, and PINK1. Immunofluorescence staining demonstrated a significant upregulation of LC3B protein expression following paxilline treatment. Further validation by Western blotting showed that paxilline significantly increased the expression of LC3B II/I, bax, cleaved-PARP, and cleaved-caspase 3, while significantly decreased the expression of bcl-2. Additionally, a significant promotion of cellular apoptosis and expression of apoptotic proteins when treatment with chloroquine (CQ)/rapamycin (Rapa). Meanwhile, when combined with paxilline, it was found that paxilline may have a synergistic effects with Rapa, jointly promoting cellular apoptosis and the expression of proapoptotic proteins. In conclusion, these findings reveled paxilline alleviates HCC through autophagy-mediated apoptosis.
Collapse
Affiliation(s)
- Yin Yuan
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Xishuangbanna Dai Autonomous Prefecture, 666100, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Xishuangbanna Dai Autonomous Prefecture, 666100, China
| | - Jing Yu
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Xishuangbanna Dai Autonomous Prefecture, 666100, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Xishuangbanna Dai Autonomous Prefecture, 666100, China
| | - Meng Li
- College of Pharmacy, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Tian Zhou
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Xishuangbanna Jianlong Pharmaceutical Co., Ltd., Xishuangbanna Dai Autonomous Prefecture, 666100, China
| | - Zhaoyou Deng
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Xishuangbanna Dai Autonomous Prefecture, 666100, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Xishuangbanna Dai Autonomous Prefecture, 666100, China
| | - Cuiyun Yin
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Xishuangbanna Dai Autonomous Prefecture, 666100, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Xishuangbanna Dai Autonomous Prefecture, 666100, China
| | - Xuanchao Shi
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Xishuangbanna Dai Autonomous Prefecture, 666100, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Xishuangbanna Dai Autonomous Prefecture, 666100, China
| | - Deying Tang
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Xishuangbanna Dai Autonomous Prefecture, 666100, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Xishuangbanna Dai Autonomous Prefecture, 666100, China
| | - Yiran Liu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yihang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Xishuangbanna Dai Autonomous Prefecture, 666100, China.
- Yunnan Key Laboratory of Southern Medicine Utilization, Xishuangbanna Dai Autonomous Prefecture, 666100, China.
| |
Collapse
|
3
|
Tian Y, Yang Y, He L, Yu X, Zhou H, Wang J. Exploring the tumor microenvironment of breast cancer to develop a prognostic model and predict immunotherapy responses. Sci Rep 2025; 15:12569. [PMID: 40221624 PMCID: PMC11993623 DOI: 10.1038/s41598-025-97784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Breast cancer is the most prevalent malignancy in women and exhibits significant heterogeneity. The tumor microenvironment (TME) plays a critical role in tumorigenesis, progression, and response to therapy. However, its impact on the prognosis and immunotherapy responses is incompletely understood. Using public databases, we conducted a comprehensive investigation of transcriptome and single-cell sequencing data. After performing immune infiltration analysis, we conducted consensus clustering, weighted gene co-expression network analysis (WGCNA), Cox regression, and least absolute shrinkage and selection operator (Lasso) regression to identify independent prognostic genes in breast cancer. Subsequently, we developed a prognostic model for patients with breast cancer. Tumor Immune Dysfunction and Exclusion (TIDE) values were used to assess patient's responsiveness to breast cancer. Based on single-cell RNA-sequencing data, we identified various cell types through cluster analysis and investigated the expression of prognostic model genes in each cell type. The drug sensitivity of targeted therapeutic agents for breast cancer treatment was analyzed in different cell types. We identified 12 independent prognostic genes associated with breast cancer and used these genes to construct a prognostic model. The prognostic model accurately discriminated between patients classified as high- and low-risk, providing precise prognostic predictions for individual patients. Additionally, our model exhibited a robust capacity to predict the immunotherapeutic response in breast cancer patients. Our investigation revealed a notable association between the proportion of endothelial cells (ECs) and patient prognosis in breast cancer. A prognostic model for breast cancer was formulated that showed close associations between prognosis and response to immunotherapy. For patients predicted by our model to not respond effectively to immunotherapeutic agents, it may be considered to combine immunotherapeutic agents with targeted therapeutic agents identified through our drug sensitivity analysis, which could potentially enhance treatment efficacy.
Collapse
Affiliation(s)
- Ye Tian
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei He
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocheng Yu
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhou
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Wang
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Taskaeva I, Shatruk A, Ivanov I, Bgatova N. The effects of autophagy-modifying drugs chloroquine and lithium on the skin melanoma microenvironment. Tissue Cell 2025; 93:102753. [PMID: 39864206 DOI: 10.1016/j.tice.2025.102753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Skin melanoma is a highly metastatic cancer with an increasing global incidence. Despite advancements in immunotherapy, new treatment strategies based on tumor biology are essential for improving outcomes and developing novel therapies. Autophagy plays a critical role in melanoma cell metabolism and affects the tumor microenvironment (TME). This study aims to evaluate the impact of autophagy-modifying drugs on extracellular matrix (ECM) remodeling and changes in the TME cytokine profile. METHODS Immunohistochemical analysis was performed using paraffin-embedded tumor samples of B16-bearing C57BL/6 mice to assess the effects of autophagy-modifying drugs, lithium or chloroquine, on the matrix degradation proteins, their main substrates, lysyl oxidase and collagen fibril formation-associated proteins. The cytokine profile of the tumor was defined to estimate the effect of autophagy-modifying drugs on the TME. RESULTS Chloroquine and lithium administration caused a decrease in the expression of matrix metalloproteinases, and chloroquine contributed to the accumulation of collagen type I. Moreover, chloroquine dramatically decreased LOX levels. Decorin expression levels were reduced in tumors of mice treated with chloroquine or lithium. Significant changes in the cytokine profile were detected after chloroquine treatment, with increased expression of IL1, IL4, IL6, M-CSF, TGFβ2 and TNF-α genes observed in the tumors. CONCLUSION Autophagy-modifying drugs affect the TME, in particular, chloroquine promotes ECM remodeling, accumulation of collagen type I deposits and probably the formation of abnormal collagen fibril structures. In addition, chloroquine-treated mice showed high expression of pro-tumorigenic cytokines and growth factors, such as IL1, IL4, IL6, M-CSF, TGFβ2 and TNF-α in the TME.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 6 Arbuzov St., Novosibirsk 630117, Russia.
| | - Anastasia Shatruk
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 6 Arbuzov St., Novosibirsk 630117, Russia
| | - Igor Ivanov
- Laboratory of Drug Metabolism and Pharmacokinetics, Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, 2 Timakov St., Novosibirsk 630060, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 6 Arbuzov St., Novosibirsk 630117, Russia
| |
Collapse
|
5
|
Zhang G, Chen Y, Huang X, Liang T. Cancer immunotherapeutic challenges from autophagy-immune checkpoint reciprocal regulation. Trends Cancer 2025; 11:169-184. [PMID: 39706727 DOI: 10.1016/j.trecan.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024]
Abstract
Multiple strategies have been clinically employed as combination partners to enhance the therapeutic efficacy of immune checkpoint inhibitors (ICIs). Although these combinations have demonstrated improved effectiveness in some instances, each presents its own limitations. Autophagy-targeting therapy offers several advantages when combined with ICIs, including enhanced tumor immunogenicity, reduced side effects, and broader applicability to diverse patient populations. However, emerging evidence reveals complex reciprocal regulation between autophagy and immune checkpoints which may complicate combination treatments targeting these two systems. This review focuses on the reciprocal interplay between autophagy and immune checkpoints, and provides valuable guidelines for the determination and adjustment of therapeutic regimens in the future.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
6
|
Yang R, Fu D, Liao A. The role of complement in tumor immune tolerance and drug resistance: a double-edged sword. Front Immunol 2025; 16:1529184. [PMID: 39958348 PMCID: PMC11825488 DOI: 10.3389/fimmu.2025.1529184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
The domain of cancer treatment has persistently been confronted with significant challenges, including those associated with recurrence and drug resistance. The complement system, which serves as the foundation of the innate immune system, exhibits intricate and nuanced dual characteristics in the evolution of tumors. On the one hand, the complement system has the capacity to directly inhibit cancer cell proliferation via specific pathways, thereby exerting a beneficial anti-tumor effect. Conversely, the complement system can also facilitate the establishment of an immune escape barrier for cancer cells through non-complement-mediated mechanisms, thereby protecting them from eradication. Concurrently, the complement system can also be implicated in the emergence of drug resistance through a multitude of complex mechanisms, directly or indirectly reducing the efficacy of therapeutic interventions and facilitating the progression of cancer. This paper analyses the role of the complement system in tumors and reviews recent research advances in the mechanisms of tumor immune tolerance and drug resistance.
Collapse
Affiliation(s)
- Ronghui Yang
- Department of Blood Transfusion, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Di Fu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Practice, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Liu J, Zhang Q, He L, Hu H, Wang Y, Xie P. Pan-Cancer Analysis Identifies YKT6 as a Prognostic and Immunotherapy Biomarker, with an Emphasis on Cervical Cancer. Onco Targets Ther 2025; 18:107-127. [PMID: 39867862 PMCID: PMC11766309 DOI: 10.2147/ott.s491310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Background Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is crucial for autophagy, making YKT6, a key modulator of cell membrane fusion, a potential target for cancer therapy. However, its oncogenic role across different cancers remains unclear. This study was to investigate the prognostic value and potential immunological functions of YKT6, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Methods Multiple bioinformatics databases, including The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx) databases, were used to investigate the correlation of the YKT6 expression pattern with the pathological stage and survival rate across cancers. Furthermore, ImmuCellAI, the UCSC Xena platform, and the ESTIMATE algorithm were subsequently utilized to explore the potential relationship between YKT6 expression, the tumor microenvironment, and tumor immune infiltration. Profiling of YKT6 gene mutation and amplification, methylation, and copy number alteration (CNA) was performed on the basis of the TCGA database. Moreover, q-PCR, TMA staining, and siRNA assays were used to validate the cancer-promoting role of YKT6 in CESCs. Results Our results reveal that YKT6 is a potential prognostic and cancer immunity biomarker. Elevated YKT6 expression is correlated with poor overall survival (OS) and disease-free survival (DFS). Distinct gene mutation, methylation, and CNA patterns for YKT6 were found in certain types of cancers. The correlation of YKT6 expression with tumor-infiltrating immune cells was verified by analyzing the StromalScore, ESTIMATEScore, ImmuneScore, and tumor purity. In vitro analysis confirmed that YKT6 was highly expressed in advanced-grade CESCs and that the knockdown of YKT6 inhibited the proliferation of cervical cancer cells. Conclusion The SNARE protein YKT6 serves as a biomarker and candidate oncogene with actionable mutations. Moreover, YKT6 has the potential to be a prognostic indicator in CESCs. Targeting YKT6 could enhance autophagy regulation and improve therapeutic strategies for personalized cancer treatment.
Collapse
Affiliation(s)
- Jiamin Liu
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Qiang Zhang
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Ling He
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Huangyu Hu
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yixuan Wang
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Ping Xie
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
8
|
Saulle I, Limanaqi F, Garziano M, Murno ML, Artusa V, Strizzi S, Giovarelli M, Schulte C, Aiello J, Clerici M, Vanetti C, Biasin M. Impact of endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) on neutrophil cellular functions. Front Cell Dev Biol 2025; 12:1506216. [PMID: 39839670 PMCID: PMC11747162 DOI: 10.3389/fcell.2024.1506216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) modulate a plethora of physiological processes for the maintenance of homeostasis in different cellular subsets at both intra and extracellular level. Materials and methods In this frame, the extracellular supplementation of recombinant human (rh) ERAP1 and ERAP2 (300 ng/ml) was used to mimic the effect of stressor-induced secretion of ERAPs on neutrophils isolated from 5 healthy subjects. In these cells following 3 h or 24 h rhERAP stimulation by Western Blot, RT-qPCR, Elisa, Confocal microscopy, transwell migration assay, Oxygraphy and Flow Cytometry we assessed: i) rhERAP internalization; ii) activation; iii) migration; iv) oxygen consumption rate; v) reactive oxygen species (ROS) accumulation; granule release; vi) phagocytosis; and vii) autophagy. Results We observed that following stimulation rhERAPs: i) were internalized by neutrophils; ii) triggered their activation as witnessed by increased percentage of MAC-1+CD66b+ expressing neutrophils, cytokine expression/release (IL-1β, IL-8, CCL2, TNFα, IFNγ, MIP-1β) and granule enzyme secretion (myeloperoxidase, Elastase); iii) increased neutrophil migration capacity; iv) increased autophagy and phagocytosis activity; v) reduced ROS accumulation and did not influence oxygen consumption rate. Conclusion Our study provides novel insights into the biological role of ERAPs, and indicates that extracellular ERAPs, contribute to shaping neutrophil homeostasis by promoting survival and tolerance in response to stress-related inflammation. This information could contribute to a better understanding of the biological bases governing immune responses, and to designing ERAP-based therapeutic protocols to control neutrophil-associated human diseases.
Collapse
Affiliation(s)
- Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Fiona Limanaqi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Micaela Garziano
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Maria Luisa Murno
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Valentina Artusa
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Sergio Strizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Matteo Giovarelli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Carsten Schulte
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Jacopo Aiello
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Claudia Vanetti
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Cheng HY, Su GL, Wu YX, Chen G, Yu ZL. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. J Pharm Anal 2024; 14:100920. [PMID: 39104866 PMCID: PMC11298875 DOI: 10.1016/j.jpha.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 08/07/2024] Open
Abstract
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug efflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EV-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.
Collapse
Affiliation(s)
- Hao-Yang Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Xuan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
10
|
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis 2024; 15:312. [PMID: 38697964 PMCID: PMC11066075 DOI: 10.1038/s41419-024-06698-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| |
Collapse
|
11
|
Wang Y, Pattarayan D, Huang H, Zhao Y, Li S, Wang Y, Zhang M, Li S, Yang D. Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer. Nat Commun 2024; 15:3178. [PMID: 38609378 PMCID: PMC11015024 DOI: 10.1038/s41467-024-47433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Chemo-immunotherapy combinations have been regarded as one of the most practical ways to improve immunotherapy response in cancer patients. In this study, we integrate the transcriptomics data from anti-PD-1-treated tumors and compound-treated cancer cell lines to systematically screen for chemo-immunotherapy synergisms in silico. Through analyzing anti-PD-1 induced expression changes in patient tumors, we develop a shift ability score to measure if a chemotherapy or a small molecule inhibitor treatment can shift anti-PD-1 resistance in tumor cells. By applying shift ability analysis to 41,321 compounds and 16,853 shRNA treated cancer cell lines transcriptomic data, we characterize the landscape of chemo-immunotherapy synergism and experimentally validated a mitochondrial RNA-dependent mechanism for drug-induced immune activation in tumor. Our study represents an effort to mechanistically characterize chemo-immunotherapy synergism and will facilitate future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhamotharan Pattarayan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yueshan Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
12
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
13
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
14
|
Zhang Z, Song B, Wei H, Liu Y, Zhang W, Yang Y, Sun B. NDRG1 overcomes resistance to immunotherapy of pancreatic ductal adenocarcinoma through inhibiting ATG9A-dependent degradation of MHC-1. Drug Resist Updat 2024; 73:101040. [PMID: 38228036 DOI: 10.1016/j.drup.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is resistant to immune checkpoint blockade (ICB) therapies. Emerging evidence suggests that NDRG1 may be an important target for the development of new therapies for PDAC. Herein, we investigated the novel roles of NDRG1 and Combretastatin A-4 (CA-4) in the treatment of PDAC ICB resistance. METHODS Enrichment of MHC class I was detected by RNA sequence and verified by RT-qPCR and immunoblotting in NDRG1-knockdown human pancreatic cancer cell lines. The protein degradation mode was found by stimulation with various inhibitors, and the autophagy degradation pathway was found by immunoprecipitation and immunolocalization. The roles of NDRG1 and MHC-I in immunotherapy were investigated by orthotopic solid tumors, histology, immunohistochemistry, multiplex immunofluorescence staining and flow cytometry. RESULTS Here, we identified a previously undescribed role of NDRG1 in activating major histocompatibility complex class 1 (MHC-1) expression in pancreatic ductal adenocarcinoma (PDAC) cells through lysosomal-autophagy-dependent degradation. In mouse models of PDAC, either tumor cell overexpression or pharmacologic activation of NDRG1 leads to MHC-1 upregulation in tumor cells, which in turn promotes the infiltration and activity of CD8 + T cells, enhances anti-tumor immunity, and overcomes resistance to ICB therapy. Moreover, combination therapy of CA-4 and ICB overcomes the drug resistance of pancreatic cancer to ICB therapy. In PDAC patients, NDRG1 expression correlates with high MHC-1 expression and better survival. CONCLUSION Our results reveal NDRG1 in PDAC cancer cells as a tumor suppressor and suggest that pharmaceutically targeting NDRG1 is a promising way to overcome pancreatic cancer resistance to immunotherapy and provides a potential therapeutic strategy for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Bojiao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yuhong Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
15
|
Tang L, Zhang H, Zhou F, Wei Q, Du M, Wu J, Li C, Luo W, Zhou J, Wang X, Chen Z, Zhang Y, Huang Z, Wu Z, Wen Y, Jiang H, Liao D, Kou H, Xiong W, Mei H, Hu Y. Targeting autophagy overcomes cancer-intrinsic resistance to CAR-T immunotherapy in B-cell malignancies. Cancer Commun (Lond) 2024; 44:408-432. [PMID: 38407943 PMCID: PMC10958674 DOI: 10.1002/cac2.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR-T) therapy has substantially revolutionized the clinical outcomes of patients with hematologic malignancies, but the cancer-intrinsic mechanisms underlying resistance to CAR-T cells remain yet to be fully understood. This study aims to explore the molecular determinants of cancer cell sensitivity to CAR-T cell-mediated killing and to provide a better understanding of the underlying mechanisms and potential modulation to improve clinical efficacy. METHODS The human whole-genome CRISPR/Cas9-based knockout screening was conducted to identify key genes that enable cancer cells to evade CD19 CAR-T-cell-mediated killing. The in vitro cytotoxicity assays and evaluation of tumor tissue and bone marrow specimens were further conducted to confirm the role of the key genes in cancer cell susceptibility to CAR-T cells. In addition, the specific mechanisms influencing CAR-T cell-mediated cancer clearance were elucidated in mouse and cellular models. RESULTS The CRISPR/Cas9-based knockout screening showed that the enrichment of autophagy-related genes (ATG3, BECN1, and RB1CC1) provided protection of cancer cells from CD19 CAR-T cell-mediated cytotoxicity. These findings were further validated by in vitro cytotoxicity assays in cells with genetic and pharmacological inhibition of autophagy. Notably, higher expression of the three autophagy-related proteins in tumor samples was correlated with poorer responsiveness and worse survival in patients with relapsed/refractory B-cell lymphoma after CD19 CAR-T therapy. Bulk RNA sequencing analysis of bone marrow samples from B-cell leukemia patients also suggested the clinical relevance of autophagy to the therapeutic response and relapse after CD19 CAR-T cell therapy. Pharmacological inhibition of autophagy and knockout of RB1CC1 could dramatically sensitize tumor cells to CD19 CAR-T cell-mediated killing in mouse models of both B-cell leukemia and lymphoma. Moreover, our study revealed that cancer-intrinsic autophagy mediates evasion of CAR-T cells via the TNF-α-TNFR1 axis-mediated apoptosis and STAT1/IRF1-induced chemokine signaling activation. CONCLUSIONS These findings confirm that autophagy signaling in B-cell malignancies is essential for the effective cytotoxic function of CAR-T cells and thereby pave the way for the development of autophagy-targeting strategies to improve the clinical efficacy of CAR-T cell immunotherapy.
Collapse
|
16
|
Kandathil SA, Akhondi A, Kadletz-Wanke L, Heiduschka G, Engedal N, Brkic FF. The dual role of autophagy in HPV-positive head and neck squamous cell carcinoma: a systematic review. J Cancer Res Clin Oncol 2024; 150:56. [PMID: 38291202 PMCID: PMC10827959 DOI: 10.1007/s00432-023-05514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Human papilloma virus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) displays distinct epidemiological, clinical, and molecular characteristics compared to the negative counterpart. Alterations in autophagy play an important role in cancer, and emerging evidence indicates an interplay of autophagy in HNSCC carcinogenesis and tumor promotion. However, the influence of HPV infection on autophagy in HNSCC has received less attention and has not been previously reviewed. Therefore, we here aimed to systematically review the role of autophagy explicitly in HPV+ HNSCC. METHODS Studies accessible in PubMed, Embase, Scopus, and Web of Science investigating HNSCC, highlighting the molecular biological differences between HPV- and HPV+ HNSCC and its influences on autophagy in HNSCC were analyzed according to the PRISMA statement. A total of 10 articles were identified, included, and summarized. RESULTS The HPV16 E7 oncoprotein was reported to be involved in the degradation of AMBRA1 and STING, and to enhance chemotherapy-induced cell death via lethal mitophagy in HNSCC cells. Autophagy-associated gene signatures correlated with HPV-subtype and overall survival. Additionally, immunohistochemical (IHC) analyses indicate that high LC3B expression correlates with poor overall survival in oropharyngeal HNSCC patients. CONCLUSION HPV may dampen general bulk autophagic flux via degradation of AMBRA1 but may promote selective autophagic degradation of STING and mitochondria. Interpretations of correlations between autophagy-associated gene expressions or IHC analyses of autophagy-related (ATG) proteins in paraffin embedded tissue with clinicopathological features without biological validation need to be taken with caution.
Collapse
Affiliation(s)
- Sam Augustine Kandathil
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Arian Akhondi
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Nikolai Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Faris F Brkic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
17
|
Fan Z, Liu Y, Li C, Jiang Y, Wang N, Wang M, Li C, Diao Y, Qiu W, Zhu X, Wang G, Cai S, Yang T, Lv G. T proliferating cells derived autophagy signature associated with prognosis and immunotherapy resistance in a pan-cancer analysis. iScience 2024; 27:108701. [PMID: 38222108 PMCID: PMC10784705 DOI: 10.1016/j.isci.2023.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
Despite autophagy modulating tumor immunity in the tumor microenvironment (TME), the immunotherapeutic efficacy and potential mechanism of autophagy signature was not explicit. We manually curated an autophagy gene set and defined a pan-cancer autophagy signature by comparing malignant tissues and normal tissues in The Cancer Genome Atlas (TCGA) cohort. The pan-cancer autophagy signature was derived from T proliferating cells as demonstrated in multiple single-cell RNA sequencing (scRNA-seq) datasets. The pan-cancer autophagy signature could influence the cell-cell interactions in the TME and predict the responsiveness of immune checkpoint inhibitors (ICIs) in the metastatic renal cell carcinoma, non-small cell lung cancer, bladder cancer, and melanoma cohorts. Metabolism inactivation accompanied with dysregulation of autophagy was investigated with transcriptomic and proteomic data. The immunotherapeutic predictive role and mechanism regulation of the autophagy signature was validated in an in-house cohort. Our study provides valuable insights into the mechanisms of ICI resistance.
Collapse
Affiliation(s)
- Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Jilin, China
| | - Yutao Liu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Nanya Wang
- Phase I Clinical Trial Unit, First Hospital of Jilin University, Jilin, China
| | - Mingda Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Yongkang Diao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Jilin, China
| | - Xin Zhu
- Burning Rock Biotech, Guangdong, China
| | | | | | - Tian Yang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Jilin, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Jilin, China
| |
Collapse
|
18
|
Liang J, Qiao X, Qiu L, Xu H, Xiang H, Ding H, Chen Y. Engineering Versatile Nanomedicines for Ultrasonic Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305392. [PMID: 38041509 PMCID: PMC10797440 DOI: 10.1002/advs.202305392] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 12/03/2023]
Abstract
Due to the specific advantages of ultrasound (US) in therapeutic disease treatments, the unique therapeutic US technology has emerged. In addition to featuring a low-invasive targeted cancer-cell killing effect, the therapeutic US technology has been demonstrated to modulate the tumor immune landscape, amplify the therapeutic effect of other antitumor therapies, and induce immunosensitization of tumors to immunotherapy, shedding new light on the cancer treatment. Tremendous advances in nanotechnology are also expected to bring unprecedented benefits to enhancing the antitumor efficiency and immunological effects of therapeutic US, as well as therapeutic US-derived bimodal and multimodal synergistic therapies. This comprehensive review summarizes the immunological effects induced by different therapeutic US technologies, including ultrasound-mediated micro-/nanobubble destruction (UTMD/UTND), sonodynamic therapy (SDT), and focused ultrasound (FUS), as well as the main underlying mechanisms involved. It is also discussed that the recent research progress of engineering intelligent nanoplatform in improving the antitumor efficiency of therapeutic US technologies. Finally, focusing on clinical translation, the key issues and challenges currently faced are summarized, and the prospects for promoting the clinical translation of these emerging nanomaterials and ultrasonic immunotherapy in the future are proposed.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| |
Collapse
|
19
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
20
|
Yang Y, Zhu Y, Wang K, Miao Y, Zhang Y, Gao J, Qin H, Zhang Y. Activation of autophagy by in situ Zn 2+ chelation reaction for enhanced tumor chemoimmunotherapy. Bioact Mater 2023; 29:116-131. [PMID: 37456582 PMCID: PMC10345225 DOI: 10.1016/j.bioactmat.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Chemotherapy can induce a robust T cell antitumor immune response by triggering immunogenic cell death (ICD), a process in which tumor cells convert from nonimmunogenic to immunogenic forms. However, the antitumor immune response of ICD remains limited due to the low immunogenicity of tumor cells and the immunosuppressive tumor microenvironment. Although autophagy is involved in activating tumor immunity, the synergistic role of autophagy in ICD remains elusive and challenging. Herein, we report an autophagy amplification strategy using an ion-chelation reaction to augment chemoimmunotherapy in cancer treatments based on zinc ion (Zn2+)-doped, disulfiram (DSF)-loaded mesoporous silica nanoparticles (DSF@Zn-DMSNs). Upon pH-sensitive biodegradation of DSF@Zn-DMSNs, Zn2+ and DSF are coreleased in the mildly acidic tumor microenvironment, leading to the formation of toxic Zn2+ chelate through an in situ chelation reaction. Consequently, this chelate not only significantly stimulates cellular apoptosis and generates damage-associated molecular patterns (DAMPs) but also activates autophagy, which mediates the amplified release of DAMPs to enhance ICD. In vivo results demonstrated that DSF@Zn-DMSNs exhibit strong therapeutic efficacy via in situ ion chelation and possess the ability to activate autophagy, thus enhancing immunotherapy by promoting the infiltration of T cells. This study provides a smart in situ chelation strategy with tumor microenvironment-responsive autophagy amplification to achieve high tumor chemoimmunotherapy efficacy and biosafety.
Collapse
Affiliation(s)
- Yang Yang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yefei Zhu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yunqiu Miao
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, PR China
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
21
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Zhang L, Li Z, Zhang M, Zou H, Bai Y, Liu Y, Lv J, Lv L, Liu P, Deng Z, Liu C. Advances in the molecular mechanism and targeted therapy of radioactive-iodine refractory differentiated thyroid cancer. Med Oncol 2023; 40:258. [PMID: 37524925 DOI: 10.1007/s12032-023-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
Most patients with differentiated thyroid cancer have a good prognosis after radioactive iodine-131 treatment, but there are still a small number of patients who are not sensitive to radioiodine treatment and may subsequently show disease progression. Therefore, radioactive-iodine refractory differentiated thyroid cancer treated with radioiodine usually shows reduced radioiodine uptake. Thus, when sodium iodine symporter expression, basolateral membrane localization and recycling degradation are abnormal, radioactive-iodine refractory differentiated thyroid cancer may occur. In recent years, with the deepening of research into the pathogenesis of this disease, an increasing number of molecules have become or are expected to become therapeutic targets. The application of corresponding inhibitors or combined treatment regimens for different molecular targets may be effective for patients with advanced radioactive-iodine refractory differentiated thyroid cancer. Currently, some targeted drugs that can improve the progression-free survival of patients with radioactive-iodine refractory differentiated thyroid cancer, such as sorafenib and lenvatinib, have been approved by the FDA for the treatment of radioactive-iodine refractory differentiated thyroid cancer. However, due to the adverse reactions and drug resistance caused by some targeted drugs, their application is limited. In response to targeted drug resistance and high rates of adverse reactions, research into new treatment combinations is being carried out; in addition to kinase inhibitor therapy, gene therapy and rutin-assisted iodine-131 therapy for radioactive-iodine refractory thyroid cancer have also made some progress. Thus, this article mainly focuses on sodium iodide symporter changes leading to the main molecular mechanisms in radioactive-iodine refractory differentiated thyroid cancer, some targeted drug resistance mechanisms and promising new treatments.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhi Li
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Meng Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Huangren Zou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yuke Bai
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yanlin Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Juan Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Ling Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Pengjie Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China.
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| |
Collapse
|
23
|
Tan H, Liu J, Huang J, Li Y, Xie Q, Dong Y, Mi Z, Ma X, Rong P. Ketoglutaric acid can reprogram the immunophenotype of triple-negative breast cancer after radiotherapy and improve the therapeutic effect of anti-PD-L1. J Transl Med 2023; 21:462. [PMID: 37438720 DOI: 10.1186/s12967-023-04312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Great progress has been made in applying immunotherapy to the clinical treatment of tumors. However, many patients with triple-negative breast cancer (TNBC) cannot benefit from immunotherapy due to the immune desert type of TNBC, which is unresponsive to immunotherapy. DMKG, a cell-permeable derivative of α-KG, has shown potential to address this issue. METHOD We investigated the effects of combining DMKG with radioimmunotherapy on TNBC. We assessed the ability of DMKG to promote tumor cell apoptosis and immunogenic death induced by radiotherapy (RT), as well as its impact on autophagy reduction, antigen and inflammatory factor release, DC cell activation, and infiltration of immune cells in the tumor area. RESULT Our findings indicated that DMKG significantly promoted tumor cell apoptosis and immunogenic death induced by RT. DMKG also significantly reduced autophagy in tumor cells, resulting in increased release of antigens and inflammatory factors, thereby activating DC cells. Furthermore, DMKG promoted infiltration of CD8 + T cells in the tumor area and reduced the composition of T-regulatory cells after RT, reshaping the tumor immune microenvironment. Both DMKG and RT increased the expression of PD-L1 at immune checkpoints. When combined with anti-PD-L1 drugs (α-PD-L1), they significantly inhibited tumor growth without causing obvious side effects during treatment. CONCLUSION Our study underscores the potential of pairing DMKG with radioimmunotherapy as an effective strategy for treating TNBC by promoting apoptosis, immunogenic death, and remodeling the tumor immune microenvironment. This combination therapy could offer a promising therapeutic avenue for TNBC patients unresponsive to conventional immunotherapy.
Collapse
Affiliation(s)
- Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jing Huang
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yanan Li
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiongxuan Xie
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yuqian Dong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ze Mi
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
24
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:1130. [PMID: 37189748 PMCID: PMC10135912 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease's origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a "double-edged sword" in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| |
Collapse
|
25
|
Zhou X, Fu C, Chen X. The role of ubiquitin pathway-mediated regulation of immune checkpoints in cancer immunotherapy. Cancer 2023; 129:1649-1661. [PMID: 36857206 DOI: 10.1002/cncr.34729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
With the continuous cognition of the relationship between tumor cells and tumor immune microenvironment, immunotherapy based on the immune checkpoint blockade has achieved great breakthroughs, led to improved clinical outcomes, and prolonged survival for cancer patients in recent years. Nevertheless, the de novo or acquired resistance to immunotherapy has greatly counteracted the efficacy, leading to a 20%-40% overall response rate. Thus, further in-depth understanding of the regulation of the tumor microenvironment and antitumor immunity is urgently warranted. Ubiquitination-mediated protein degradation plays vital roles in protein stabilization, activation, and dynamics as well as in cellular homeostasis modulation. The dysregulated ubiquitination and deubiquitination are closely related to the changes in physiological and pathological processes, which subsequently result in a variety of diseases including cancer. In this review, the authors first summarize the current knowledge about the involvement of the ubiquitin-proteasome system in tumor development with the ubiquitin conjugation-regulated stability of p53, phosphatase and tensin homolog, and Myc protein as examples, then dissect the potential implications of ubiquitination-mediated immune checkpoints degradation in tumor microenvironment and immune responses, and finally discuss the effects of therapeutically targeting the ubiquitin-proteasome pathway on immunotherapy, with the goal of providing deep insights into the exploitation of more precise and effective combinational therapy against cancer.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Chengxiao Fu
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xisha Chen
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
27
|
Zou Y, Ye F, Kong Y, Hu X, Deng X, Xie J, Song C, Ou X, Wu S, Wu L, Xie Y, Tian W, Tang Y, Wong C, Chen Z, Xie X, Tang H. The Single-Cell Landscape of Intratumoral Heterogeneity and The Immunosuppressive Microenvironment in Liver and Brain Metastases of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203699. [PMID: 36529697 PMCID: PMC9929130 DOI: 10.1002/advs.202203699] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/11/2022] [Indexed: 05/07/2023]
Abstract
Distant metastasis remains the major cause of morbidity for breast cancer. Individuals with liver or brain metastasis have an extremely poor prognosis and low response rates to anti-PD-1/L1 immune checkpoint therapy compared to those with metastasis at other sites. Therefore, it is urgent to investigate the underlying mechanism of anti-PD-1/L1 resistance and develop more effective immunotherapy strategies for these patients. Using single-cell RNA sequencing, a high-resolution map of the entire tumor ecosystem based on 44 473 cells from breast cancer liver and brain metastases is depicted. Identified by canonical markers and confirmed by multiplex immunofluorescent staining, the metastatic ecosystem features remarkable reprogramming of immunosuppressive cells such as FOXP3+ regulatory T cells, LAMP3+ tolerogenic dendritic cells, CCL18+ M2-like macrophages, RGS5+ cancer-associated fibroblasts, and LGALS1+ microglial cells. In addition, PD-1 and PD-L1/2 are barely expressed in CD8+ T cells and cancer/immune/stromal cells, respectively. Interactions of the immune checkpoint molecules LAG3-LGALS3 and TIGIT-NECTIN2 between CD8+ T cells and cancer/immune/stromal cells are found to play dominant roles in the immune escape. In summary, this study dissects the intratumoral heterogeneity and immunosuppressive microenvironment in liver and brain metastases of breast cancer for the first time, providing insights into the most appropriate immunotherapy strategies for these patients.
Collapse
Affiliation(s)
- Yutian Zou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Feng Ye
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yanan Kong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Xiaoqian Hu
- School of Biomedical SciencesFaculty of MedicineThe University of Hong Kong21 Sassoon RoadHong Kong999077China
| | - Xinpei Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Jindong Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Cailu Song
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Xueqi Ou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Song Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Linyu Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yi Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Wenwen Tian
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yuhui Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Chau‐Wei Wong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNYUSA
| | - Xinhua Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Hailin Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| |
Collapse
|
28
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023; 10:rbad004. [PMID: 36817975 PMCID: PMC9926950 DOI: 10.1093/rb/rbad004] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
Affiliation(s)
- Qiaolin Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
29
|
Chen J, Li X, Yan S, Li J, Zhou Y, Wu M, Ding J, Yang J, Yuan Y, Zhu Y, Wu W. An autophagy-related long non-coding RNA prognostic model and related immune research for female breast cancer. Front Oncol 2022; 12:929240. [PMID: 36591508 PMCID: PMC9798206 DOI: 10.3389/fonc.2022.929240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Breast cancer (BRCA) is the most common malignancy among women worldwide. It was widely accepted that autophagy and the tumor immune microenvironment play an important role in the biological process of BRCA. Long non-coding RNAs (lncRNAs), as vital regulatory molecules, are involved in the occurrence and development of BRCA. The aim of this study was to assess the prognosis of BRCA by constructing an autophagy-related lncRNA (ARlncRNA) prognostic model and to provide individualized guidance for the treatment of BRCA. Methods The clinical data and transcriptome data of patients with BRCA were acquired from the Cancer Genome Atlas database (TCGA), and autophagy-related genes were obtained from the human autophagy database (HADb). ARlncRNAs were identified by conducting co‑expression analysis. Univariate and multivariate Cox regression analysis were performed to construct an ARlncRNA prognostic model. The prognostic model was evaluated by Kaplan-Meier survival analysis, plotting risk curve, Independent prognostic analysis, clinical correlation analysis and plotting ROC curves. Finally, the tumor immune microenvironment of the prognostic model was studied. Results 10 ARlncRNAs(AC090912.1, LINC01871, AL358472.3, AL122010.1, SEMA3B-AS1, BAIAP2-DT, MAPT-AS1, DNAH10OS, AC015819.1, AC090198.1) were included in the model. Kaplan-Meier survival analysis of the prognostic model showed that the overall survival(OS) of the low-risk group was significantly better than that of the high-risk group (p< 0.001). Multivariate Cox regression analyses suggested that the prognostic model was an independent prognostic factor for BRCA (HR = 1.788, CI = 1.534-2.084, p < 0.001). ROCs of 1-, 3- and 5-year survival revealed that the AUC values of the prognostic model were all > 0.7, with values of 0.779, 0.746, and 0.731, respectively. In addition, Gene Set Enrichment Analysis (GSEA) suggested that several tumor-related pathways were enriched in the high-risk group, while several immune‑related pathways were enriched in the low-risk group. Patients in the low-risk group had higher immune scores and their immune cells and immune pathways were more active. Patients in the low-risk group had higher PD-1 and CTLA-4 levels and received more benefits from immune checkpoint inhibitors (ICIs) therapy. Discussion The ARlncRNA prognostic model showed good performance in predicting the prognosis of patients with BRCA and is of great significance to guide the individualized treatment of these patients.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Xinrong Li
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Shuixin Yan
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Jiadi Li
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Yuxin Zhou
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Minhua Wu
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Jinhua Ding
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Jiahui Yang
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yijie Yuan
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ye Zhu
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weizhu Wu
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,*Correspondence: Weizhu Wu,
| |
Collapse
|
30
|
Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V, Sureda A, Lorzadeh S, da Silva Rosa SC, Grabarek BO, Staszkiewicz R, Los MJ, Nabavi SF, Nabavi SM, Mehrbod P, Klionsky DJ, Ghavami S. New Visions on Natural Products and Cancer Therapy: Autophagy and Related Regulatory Pathways. Cancers (Basel) 2022; 14:5839. [PMID: 36497321 PMCID: PMC9738256 DOI: 10.3390/cancers14235839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Maryam Zarghooni
- Department of Laboratory Medicine & Pathobiology, University of Toronto Alumna, Toronto, ON M5S 3J3, Canada
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition, Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C. da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Beniamin Oscar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Marek J. Los
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyed Fazel Nabavi
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite 62760-000, Brazil
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030 San Salvatore Telesino, Italy
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
31
|
Exosomes Derived from Yak Follicular Fluid Increase 2-Hydroxyestradiol Secretion by Activating Autophagy in Cumulus Cells. Animals (Basel) 2022; 12:ani12223174. [PMID: 36428401 PMCID: PMC9686841 DOI: 10.3390/ani12223174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes in the follicular fluid can carry and transfer regulatory molecules to recipient cells, thus influencing their biological functions. However, the specific effects of yak follicular fluid exosomes on 2-hydroxyestrodiol (2-OHE2) secretion remain unknown. Here, we investigated whether yak follicular fluid exosomes can increase 2-OHE2 secretion through the activation of autophagy in cumulus cells (YCCs). In vitro cultured YCCs were treated with yak follicular fluid exosomes for 6, 12, and 24 h. The effects of yak follicular fluid exosomes on autophagy and 2-OHE2 secretion were evaluated through real-time quantitative fluorescence PCR (RT-qPCR), Western blotting (WB), transfected with RFP-GFP-LC3, immunohistochemistry, and ELISA. To further investigate whether 2-OHE2 secretion was related to autophagy, YCCs were administered with yak follicular fluid exosomes, 3-methyladenine (3-MA), and rapamycin (RAPA). The results revealed that treatment with yak follicular fluid exosomes activated autophagy in YCCs and increased 2-OHE2 secretion. Conversely, the inhibition of autophagy with 3-MA blocked these effects, suggesting that autophagy has an important role in 2-OHE2 secretion in YCCs. Treatment of YCCs with rapamycin showed similar results with yak follicular fluid exosomes as there was an increase in 2-OHE2 secretion due to the activation of autophagy in the treated cumulus cells. Our results demonstrate that autophagy is enhanced by yak follicular fluid exosomes, and this is associated with an increase in 2-OHE2 secretion in YCCs.
Collapse
|
32
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
33
|
Jin Z, Sun X, Wang Y, Zhou C, Yang H, Zhou S. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front Immunol 2022; 13:1018903. [PMID: 36300110 PMCID: PMC9589261 DOI: 10.3389/fimmu.2022.1018903] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have revolutionized the treatment of patients with advanced and metastatic tumors resistant to traditional therapies. However, the immunosuppressed tumor microenvironment (TME) results in a weak response to immunotherapy. Therefore, to realize the full potential of immunotherapy and obstacle barriers, it is essential to explore how to convert cold TME to hot TME. Autophagy is a crucial cellular process that preserves cellular stability in the cellular components of the TME, contributing to the characterization of the immunosuppressive TME. Targeted autophagy ignites immunosuppressive TME by influencing antigen release, antigen presentation, antigen recognition, and immune cell trafficking, thereby enhancing the effectiveness of cancer immunotherapy and overcoming resistance to immunotherapy. In this review, we summarize the characteristics and components of TME, explore the mechanisms and functions of autophagy in the characterization and regulation of TME, and discuss autophagy-based therapies as adjuvant enhancers of immunotherapy to improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Zhicheng Jin
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xuefeng Sun
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yaoyao Wang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chao Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- Department of Radiation Oncology, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| |
Collapse
|
34
|
Han J, Tian Y, Wang M, Li Y, Yin J, Qu W, Yan C, Ding R, Guan Y, Wang Q. Proteomics unite traditional toxicological assessment methods to evaluate the toxicity of iron oxide nanoparticles. Front Pharmacol 2022; 13:1011065. [PMID: 36172182 PMCID: PMC9512491 DOI: 10.3389/fphar.2022.1011065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) are the first generation of nanomaterials approved by the Food and Drug Administration for use as imaging agents and for the treatment of iron deficiency in chronic kidney disease. However, several IONPs-based imaging agents have been withdrawn because of toxic effects and the poor understanding of the underlying mechanisms. This study aimed to evaluate IONPs toxicity and to elucidate the underlying mechanism after intravenous administration in rats. Seven-week-old rats were intravenously administered IONPs at doses of 0, 10, 30, and 90 mg/kg body weight for 14 consecutive days. Toxicity and molecular perturbations were evaluated using traditional toxicological assessment methods and proteomics approaches, respectively. The administration of 90 mg/kg IONPs induced mild toxic effects, including abnormal clinical signs, lower body weight gain, changes in serum biochemical and hematological parameters, and increased organ coefficients in the spleen, liver, heart, and kidneys. Toxicokinetics, tissue distribution, histopathological, and transmission electron microscopy analyses revealed that the spleen was the primary organ for IONPs elimination from the systemic circulation and that the macrophage lysosomes were the main organelles of IONPs accumulation after intravenous administration. We identified 197 upregulated and 75 downregulated proteins in the spleen following IONPs administration by proteomics. Mechanically, the AKT/mTOR/TFEB signaling pathway facilitated autophagy and lysosomal activation in splenic macrophages. This is the first study to elucidate the mechanism of IONPs toxicity by combining proteomics with traditional methods for toxicity assessment.
Collapse
|
35
|
Li J, Cai W, Yu J, Zhou S, Li X, He Z, Ouyang D, Liu H, Wang Y. Autophagy inhibition recovers deficient ICD-based cancer immunotherapy. Biomaterials 2022; 287:121651. [PMID: 35777331 DOI: 10.1016/j.biomaterials.2022.121651] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/07/2022]
Abstract
ICD effect is usually accompanied with robust autophagy that can depredate immune-associated antigens in tumors, thereby weakening the immune response against tumor growth. To circumvent this dilemma, we combined an ICD inducer (Shikonin, SHK) with an autophagy inhibitor (hydroxychloroquine, HCQ) for colon cancer immunotherapy. Notably, HCQ boosted SHK-induced antigen exposure in colon cancer in vitro and in vivo. However, autophagy inhibition caused loss of ATP, which compromised antitumor immune response. Therefore, a compensatory strategy was employed by introducing ATP as a remote loading gradient of the liposome to encapsulate HCQ (LipHCQa). LipHCQa achieved an excellent antitumor efficiency without dampening the immune response. Furthermore, a systematic determination of the optimal dosage of combined LipSHK and LipHCQa suggested that autophagy inhibiting at an appropriate dosage level was beneficial for maximizing ICD-based antitumor immunity. This study proved that autophagy inhibitors can recover the deficient ICD-based antitumor immune response and present potential clinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinbo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Wenxu Cai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Jiang Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Shuang Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Xianlu Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
36
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
38
|
Cai Z, Qian B, Pang J, Tan ZB, Zhao K, Lei T. Celastrol Induces Apoptosis and Autophagy via the AKT/mTOR Signaling Pathway in the Pituitary ACTH-secreting Adenoma Cells. Curr Med Sci 2022; 42:387-396. [PMID: 35419676 DOI: 10.1007/s11596-022-2568-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Pituitary adrenocorticotropic hormone (ACTH)-secreting adenoma is a relatively intractable endocrine adenoma that can cause a range of severe metabolic disorders and pathological changes involving multiple systems. Previous studies have shown that celastrol has antitumor effects on a variety of tumor cells via the AKT/mTOR signaling. However, whether celastrol has pronounced antitumor effects on pituitary ACTH-secreting adenoma is unclear. This study aimed to identify a new effective therapeutic drug for pituitary ACTH-secreting adenoma. METHODS Mouse pituitary ACTH-secreting adenoma cells (AtT20 cells) were used as an experimental model in vitro and to establish a xenograft tumor model in mice. Cells and animals were administered doses of celastrol at various levels. The effects of celastrol on cell viability, migration, apoptosis and autophagy were then examined. Finally, the potential involvement of AKT/mTOR signaling in celastrol's mechanism was assessed. RESULTS Celastrol inhibited the proliferation and migration of pituitary adenoma cells in a time- and concentration-dependent manner. It blocked AtT20 cells in the G0/G1 phase, and induced apoptosis and autophagy by downregulating the AKT/mTOR signaling pathway. Similar results were obtained in mice. CONCLUSION Celastrol exerts potent antitumor effects on ACTH-secreting adenoma by downregulating the AKT/mTOR signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Zhi Cai
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Qian
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211100, China
| | - Jing Pang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Zhou-Bin Tan
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Zhao
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
39
|
Lai HY, Wu LC, Kong PH, Tsai HH, Chen YT, Cheng YT, Luo HL, Li CF. High Level of Aristolochic Acid Detected With a Unique Genomic Landscape Predicts Early UTUC Onset After Renal Transplantation in Taiwan. Front Oncol 2022; 11:828314. [PMID: 35071023 PMCID: PMC8770835 DOI: 10.3389/fonc.2021.828314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The unusual high dialysis prevalence and upper urinary tract urothelial carcinoma (UTUC) incidence in Taiwan may attribute to aristolochic acid (AA), which is nephrotoxic and carcinogenic, exposure. AA can cause a unique mutagenic pattern showing A:T to T:A transversions (mutational Signature 22) analyzed by whole exome sequencing (WES). However, a fast and cost-effective tool is still lacking for clinical practice. To address this issue, we developed an efficient and quantitative platform for the quantitation of AA and tried to link AA detection with clinical outcomes and decipher the genomic landscape of UTUC in Taiwan. PATIENTS AND METHODS We recruited 61 patients with de novo onset of UTUC after kidney transplantation who underwent radical nephroureterectomy. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform was developed for the quantitation of AA. Pearson's chi-square test, Kaplan-Meier method, and Cox proportional hazard model were utilized to assess the correlations among AA detection, clinicopathological characteristics, and clinical outcomes. Seven tumors and seven paired normal tissues were sequenced using WES (approximately 800x sequencing depth) and analyzed by bioinformatic tool. RESULTS We found that high level of 7-(deoxyadenosin-N6-yl)aristolactam I (dA-AL-I) detected in paired normal tissues was significantly correlated with fast UTUC initiation times after renal transplantation (p = 0.035) and with no use of sirolimus (p = 0.046). Using WES analysis, we further observed that all tumor samples were featured by Signature 22 mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC)-associated gene mutations, p53 mutations, no fibroblast growth factor receptor 3 (FGFR3) mutation, and high tumor mutation burden (TMB). Especially, mammalian target of rapamycin (mTOR) activation predominated in dA-AL-I-detected samples compared with those without dA-AL-I detection and might be associated with UTUC initiation through cell proliferation and suppression of UTUC progression via autophagy inhibition. CONCLUSION Accordingly, dA-AL-I detection can provide more direct evidence to AA exposure and serve as a more specific predictive and prognostic biomarker for patients with de novo onset of UTUC after kidney transplantation.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Li-Ching Wu
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Po-Hsin Kong
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsin-Hwa Tsai
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Yen-Ta Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuan-Tso Cheng
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Chen H, Hu Z, Sang M, Ni S, Lin Y, Wu C, Mu Y, Liu K, Wu S, Li N, Xu G. Identification of an Autophagy-Related lncRNA Prognostic Signature and Related Tumor Immunity Research in Lung Adenocarcinoma. Front Genet 2021; 12:767694. [PMID: 34956321 PMCID: PMC8692741 DOI: 10.3389/fgene.2021.767694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Autophagy is closely associated with the tumor immune microenvironment (TIME) and prognosis of patients with lung adenocarcinoma (LUAD). In the present study, we established a signature on the basis of long noncoding RNAs (lncRNAs) related to autophagy (ARlncRNAs) to investigate the TIME and survival of patients with LUAD. We selected ARlncRNAs associated with prognosis to construct a model and divided each sample into different groups on the basis of risk score. The ARlncRNA signature could be recognized as an independent prognostic factor for patients with LUAD, and patients in the low-risk group had a greater survival advantage. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis suggested that several immune functions and pathways were enriched in different groups. A high-risk score correlated significantly negatively with high abundance of immune cells and stromal cells around the tumor and high tumor mutational burden. Low-risk patients had a higher PD-1, CTLA-4, and HAVCR2 expression and had a better efficacy of immune checkpoint inhibitors, including PD-1/CTLA-4 inhibitor. A reliable signature on the basis of ARlncRNAs was constructed to explore the TIME and prognosis of patients with LUAD, which could provide valuable information for individualized LUAD treatment.
Collapse
Affiliation(s)
- Hang Chen
- Medical School, Ningbo University, Ningbo, China
| | - Zeyang Hu
- Medical School, Ningbo University, Ningbo, China
| | - Menglu Sang
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Saiqi Ni
- Department of Urology, Ningbo City First Hospital, Ningbo, China
| | - Yao Lin
- Medical School, Ningbo University, Ningbo, China
| | - Chengfang Wu
- Medical School, Ningbo University, Ningbo, China
| | - Yinyu Mu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Kaitai Liu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Shibo Wu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ni Li
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
41
|
Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: An update and perspective. Drug Resist Updat 2021; 59:100796. [PMID: 34953682 PMCID: PMC8810687 DOI: 10.1016/j.drup.2021.100796] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Driver mutations promote initiation and progression of cancer. Pharmacological treatment can inhibit the action of the mutant protein; however, drug resistance almost invariably emerges. Multiple studies revealed that cancer drug resistance is based upon a plethora of distinct mechanisms. Drug resistance mutations can occur in the same protein or in different proteins; as well as in the same pathway or in parallel pathways, bypassing the intercepted signaling. The dilemma that the clinical oncologist is facing is that not all the genomic alterations as well as alterations in the tumor microenvironment that facilitate cancer cell proliferation are known, and neither are the alterations that are likely to promote metastasis. For example, the common KRasG12C driver mutation emerges in different cancers. Most occur in NSCLC, but some occur, albeit to a lower extent, in colorectal cancer and pancreatic ductal carcinoma. The responses to KRasG12C inhibitors are variable and fall into three categories, (i) new point mutations in KRas, or multiple copies of KRAS G12C which lead to higher expression level of the mutant protein; (ii) mutations in genes other than KRAS; (iii) original cancer transitioning to other cancer(s). Resistance to adagrasib, an experimental antitumor agent exerting its cytotoxic effect as a covalent inhibitor of the G12C KRas, indicated that half of the cases present multiple KRas mutations as well as allele amplification. Redundant or parallel pathways included MET amplification; emerging driver mutations in NRAS, BRAF, MAP2K1, and RET; gene fusion events in ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN tumor suppressors. In the current review we discuss the molecular mechanisms underlying drug resistance while focusing on those emerging to common targeted cancer drivers. We also address questions of why cancers with a common driver mutation are unlikely to evolve a common drug resistance mechanism, and whether one can predict the likely mechanisms that the tumor cell may develop. These vastly important and tantalizing questions in drug discovery, and broadly in precision medicine, are the focus of our present review. We end with our perspective, which calls for target combinations to be selected and prioritized with the help of the emerging massive compute power which enables artificial intelligence, and the increased gathering of data to overcome its insatiable needs.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
42
|
Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers (Basel) 2021; 13:cancers13225622. [PMID: 34830777 PMCID: PMC8616104 DOI: 10.3390/cancers13225622] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The modulation of autophagy represents a potential therapeutic strategy for cancer. More than one hundred clinical trials have been conducted or are ongoing to explore the efficacy of autophagy modulators to reduce the tumor growth and potentiate the anti-cancer effects of conventional therapy. Despite this, the effective role of autophagy during tumor initiation, growth, and metastasis remains not well understood. Depending on the cancer type and stage of cancer, autophagy may have tumor suppressor properties as well as help cancer cells to proliferate and evade cancer therapy. The current review aims to summarize the current knowledge about the autophagy implications in cancer and report the therapeutic opportunities based on the modulation of the autophagy process. Abstract The malignant transformation of a cell produces the accumulation of several cellular adaptions. These changes determine variations in biological processes that are necessary for a cancerous cell to survive during stressful conditions. Autophagy is the main nutrient recycling and metabolic adaptor mechanism in eukaryotic cells, represents a continuous source of energy and biomolecules, and is fundamental to preserve the correct cellular homeostasis during unfavorable conditions. In recent decades, several findings demonstrate a close relationship between autophagy, malignant transformation, and cancer progression. The evidence suggests that autophagy in the cancer context has a bipolar role (it may act as a tumor suppressor and as a mechanism of cell survival for established tumors) and demonstrates that the targeting of autophagy may represent novel therapeutic opportunities. Accordingly, the modulation of autophagy has important clinical benefits in patients affected by diverse cancer types. Currently, about 30 clinical trials are actively investigating the efficacy of autophagy modulators to enhance the efficacy of cytotoxic chemotherapy treatments. A deeper understanding of the molecular pathways regulating autophagy in the cancer context will provide new ways to target autophagy for improving the therapeutic benefits. Herein, we describe how autophagy participates during malignant transformation and cancer progression, and we report the ultimate efforts to translate this knowledge into specific therapeutic approaches to treat and cure human cancers.
Collapse
|