1
|
Gonçalves AB, Alves V, Neves I, Read A, Pinheiro N, Henius AE, Hasman H, Peixe L, Novais Â. Real-time FT-IR typing of Klebsiella pneumoniae: a flexible and rapid approach for outbreak detection and infection control. J Antimicrob Chemother 2025:dkaf170. [PMID: 40448545 DOI: 10.1093/jac/dkaf170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/17/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Expansion of carbapenemase-producing Klebsiella pneumoniae (CP-Kp) is driven by within-hospital transmission, requiring timely typing data for effective infection control. OBJECTIVES We evaluated real-time performance and flexibility of our previously developed Fourier-transform infrared (FT-IR) spectroscopy workflow (spectra acquisition and analysis by machine-learning model). METHODS All CP-Kp infection isolates (n = 136) identified at a northern Portuguese hospital (April 2022-March 2023) were tested from Columbia agar with 5% sheep blood, identified by FT-IR (KL-type/sublineage) and confirmed by reference methods (wzi sequencing, MLST and/or WGS). RESULTS FT-IR typing from Columbia agar with 5% sheep blood showed 73% sensitivity, 79% specificity and 74% accuracy. Our method correctly identified 94% of typeable isolates, 87% of which were communicated in <24 h. Non-typeable isolates belonged to new KL-types to the model (40%) or non-recognized KL-types (60%), most of which (66%) were correctly predicted when retested from Mueller-Hinton agar. Accuracy was then higher (88%) when results from both culture media were considered, and the model retrained to incorporate new sublineages. Three K. pneumoniae sublineages (ST147-KL64, ST15-KL19, ST268-KL20) were predominant and 86% of the isolates were correctly identified. During the study, an outbreak by ST268-KL20 in the neonatal ICU was quickly recognized, and solved in 23 days. Most isolates (98%) produced KPC-3. CONCLUSIONS We demonstrate that FT-IR spectroscopy meets high performance standards in real-time and adaptability to clonal dynamics, and we provide practical guidance for integrating FT-IR into daily microbiology practices. The unique time to response (same day as bacterial identification) enables early and effective infection control interventions.
Collapse
Affiliation(s)
- Ana Beatriz Gonçalves
- UCIBIO, i4HB, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Valquíria Alves
- Clinical Microbiology Laboratory, Local Healthcare Unit, Matosinhos, Portugal
- Infection Control and Antimicrobial Resistance Department, Local Healthcare Unit, Matosinhos, Portugal
| | - Isabel Neves
- Infection Control and Antimicrobial Resistance Department, Local Healthcare Unit, Matosinhos, Portugal
| | - Antónia Read
- Clinical Microbiology Laboratory, Local Healthcare Unit, Matosinhos, Portugal
| | - Natália Pinheiro
- Infection Control and Antimicrobial Resistance Department, Local Healthcare Unit, Matosinhos, Portugal
| | - Anna E Henius
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Hasman
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Luísa Peixe
- UCIBIO, i4HB, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Ângela Novais
- UCIBIO, i4HB, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| |
Collapse
|
2
|
Teng G, Qin Q, Ding S, Wu Y, Fu Y, Zhang M, Yang X, Jin Y, Xu Z, Huang M. The wzc mutation mediates virulence changes in K1-type Klebsiella pneumoniae within the same patient. Front Microbiol 2025; 16:1577629. [PMID: 40444005 PMCID: PMC12119577 DOI: 10.3389/fmicb.2025.1577629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/18/2025] [Indexed: 06/02/2025] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a major pathogen causing community-acquired infections, particularly severe diseases such as liver abscesses. Although extensive research has been conducted on the virulence mechanisms of hvKp and the genetic properties of resistance plasmids, studies on the adaptive evolution of clinical strains within the host are still limited. This study aimed to investigate the impact of genetic mutations on phenotypic changes in high-virulence K. pneumoniae within a host environment. We isolated three strains of K. pneumoniae from the same patient, two of which had identical genetic backgrounds but exhibited distinct phenotypic traits. Comparative genomic analysis was performed to identify genetic differences. A nucleotide mutation in the wzc gene was identified as a potential factor associated with changes in the mucoid phenotype. This mutation was verified using string tests and anti-centrifugal assays. Additionally, in vivo bioassays and animal infection models were conducted to further validate the findings. The comparative genomic analysis revealed a nucleotide mutation in the wzc gene, which was associated with changes in the mucoid phenotype of the strain. This was confirmed through string tests and anti-centrifugal assays. In vivo experiments and animal infection models suggested that hvKp adapts to the host by reducing capsular polysaccharide synthesis, thereby trading off some virulence for enhanced colonization capabilities. Our findings indicate that genetic mutations in hvKp can lead to significant phenotypic changes that facilitate adaptation within the host. The observed reduction in capsular polysaccharide synthesis appears to be a trade-off between virulence and colonization ability. This study provides insights into the adaptive evolution of hvKp and highlights the importance of considering intrahost genetic changes when studying the pathogenesis of hvKp. Future research should focus on further elucidating the mechanisms underlying these adaptations and their clinical implications.
Collapse
Affiliation(s)
- Gaoqin Teng
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Zhejiang, China
| | - Qiuying Qin
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shuo Ding
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Zhejiang, China
| | - Yanchao Wu
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Zhejiang, China
| | - Yingying Fu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Meng Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqiang Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ye Jin
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Zhejiang, China
| | - Zhijiang Xu
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Zhejiang, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Zhejiang, China
| |
Collapse
|
3
|
Wei DW, Song Y, Li Y, Zhang G, Chen Q, Wu L, Huang J, Tian X, Wang C, Feng J. Insertion sequences accelerate genomic convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae via capsular phase variation. Genome Med 2025; 17:45. [PMID: 40329368 PMCID: PMC12057282 DOI: 10.1186/s13073-025-01474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND The convergence of resistance and hypervirulence in Klebsiella pneumoniae represents a significant public health threat, driven by the horizontal transfer of plasmids. Understanding factors affecting plasmid transfer efficiency is essential to elucidate mechanisms behind emergence of these formidable pathogens. METHODS Hypermucoviscous K. pneumoniae strains were serially passaged in LB medium to investigate capsule-deficient phenotypes. Capsule-deficient mutants were analyzed using genetic sequencing to identify the types and insertion sites of insertion sequences (IS). Bioinformatics and statistical analyses based on the NCBI and National Microbiology Data Center (NMDC) database were used to map the origins and locations of IS elements. Conjugation assays were performed to assess plasmid transfer efficiency between encapsulated and capsule-deficient strains. A murine intestinal colonization model was employed to evaluate virulence levels and IS excision-mediated capsule restoration. RESULTS Our research revealed that a hypervirulent K. pneumoniae (hvKP) strain acquired a blaNDM-1-bearing IncX3 plasmid with IS5 and ISKox3 elements. These IS elements are capable of inserting into capsular polysaccharide synthesis genes, causing a notably high frequency of capsule loss in vitro. The IS-mediated capsular phase variation, whether occurring in the donor or recipient strain, significantly increased the conjugation frequency of both the resistance plasmid and the virulence plasmid. Additionally, capsular phase variation enhanced bacterial adaptability in vitro. Experiments in mouse models demonstrated that capsule-deficient mutants exhibited reduced virulence and colonization capacity. However, during long-term intestinal colonization, IS element excision restored capsule expression, leading to the recovery of hypervirulence and enhanced colonization efficiency. CONCLUSIONS Our findings reveal that IS elements mediate capsular phase variation by toggling gene activity, accelerating the genomic convergence of multidrug resistance and hypervirulence in K. pneumoniae, as well as facilitating adaptive transitions in different environments.
Collapse
Affiliation(s)
- Da-Wei Wei
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqin Song
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiangqing Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xueru Tian
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chao Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Yao J, Hu Y, Wang X, Sheng J, Zhang Y, Zhao X, Wang J, Xu X, Li X. Carbapenem-resistant Morganella morganii carrying blaKPC-2 or blaNDM-1 in the clinic: one-decade genomic epidemiology analysis. Microbiol Spectr 2025; 13:e0247624. [PMID: 40029330 PMCID: PMC11960177 DOI: 10.1128/spectrum.02476-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Carbapenem-resistant Morganella morganii (CRMM) isolates, particularly those producing Klebsiella pneumoniae carbapenemase-2 (KPC-2) or New Delhi metallo-β-lactamase-1 (NDM-1), are increasingly being recognized as causative agents of nosocomial infections. However, systematic phylogeography and genetic characterization of these isolates worldwide are still lacking. Here, through seven years of surveillance of CRMM in a tertiary hospital, we analyzed the genomic characteristics of blaKPC-2- or blaNDM-1-positive CRMM isolates. Furthermore, we conducted a global genomic epidemiological study of Morganella spp. harboring blaKPC or blaNDM using the NCBI database over the past decade. By combining the timeline of isolate collection with the structural analysis of the plasmids, we traced the evolution of the IncL/M plasmid, which acquired the blaKPC-2 gene. Our findings indicate that horizontal transfer of Tn6296 based on IS26 is crucial for the transmission of blaKPC in CRMM isolates. Additionally, the Tn125 transposon appears to have played an important role in early plasmid-mediated dissemination of blaNDM; however, it has been surpassed in recent years by other elements, including IS26 and ISCR. In summary, through phylogeographic analysis of Morganella spp. globally, we elucidated their spatial-temporal distribution and revealed the evolutionary characteristics of KPC- or NDM-producing CRMM isolates as the predominant "epidemic" clone. IMPORTANCE Currently, infections attributable to carbapenem-resistant Morganella morganii (CRMM) isolates harboring blaKPC or blaNDM are on the rise, highlighting the increasing severity of acquired antimicrobial resistance. However, systematic phylogeographic and genetic characterization of these isolates worldwide is still lacking. In this study, we elucidated the spatial-temporal distribution and evolutionary trajectory of blaKPC and blaNDM genes within their core genetic environments. We emphasize the necessity of strengthening surveillance and controlling these organisms in clinical settings to prevent the generation of so-called "superbug" isolates.
Collapse
Affiliation(s)
- Jiayao Yao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yueyue Hu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinru Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Sheng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ying Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaofei Zhao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiaqing Wang
- Shaoxing Central Hospital, The Central Affiliated Hospital, Shaoxing University, Shaoxing, China
| | - Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Mu Y, Song Y, Tian X, Ding Z, Yao S, Li Y, Wang C, Wei D, Vollmer W, Zhang G, Feng J. Leveraging collateral sensitivity to counteract the evolution of bacteriophage resistance in bacteria. MLIFE 2025; 4:143-154. [PMID: 40313983 PMCID: PMC12042119 DOI: 10.1002/mlf2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 05/03/2025]
Abstract
The escalating antibiotic resistance crisis poses a major global health threat. Bacteriophage therapy offers a promising alternative for combating multidrug-resistant infections. However, bacterial resistance to phages remains a significant hurdle. Innovative strategies are needed to overcome this challenge. In this study, we developed a phage cocktail based on our phage library, consisting of three phages that suppressed phage resistance of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp). This cocktail capitalized on dual instances of collateral sensitivity, thereby constraining the evolution of phage resistance. The first-layered collateral sensitivity arose from overlapping coverage between capsular polysaccharide (CPS) and lipopolysaccharide (LPS), rendering the bacteria resistant to CPS-binding phages but more susceptible to LPS-binding phages. The second-layered collateral sensitivity resulted from an O serotype switch (from O1 to O2), causing resistance to O1 antigen-binding phages but increasing susceptibility to phages that target the O2 antigen. This dual-layered collateral sensitivity phage cocktail effectively mitigated infection caused by CR-hvKp in mice. Our research highlights the importance of the collateral sensitivity mechanism in counteracting the evolution of phage resistance and offers a sophisticated strategy for configuring phage cocktails to eliminate bacterial resistance.
Collapse
Affiliation(s)
- Yongqi Mu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xueru Tian
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- School of Clinical and Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Zixuan Ding
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- School of Clinical and Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Shigang Yao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yi Li
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Dawei Wei
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Waldemar Vollmer
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
- Centre for Bacterial Cell Biology, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Zheng Y, Zhu X, Ding C, Chu W, Pang X, Zhang R, Ma J, Xu G. Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Future Microbiol 2025; 20:499-511. [PMID: 40135944 PMCID: PMC11980460 DOI: 10.1080/17460913.2025.2482478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Xiaojue Zhu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Chao Ding
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Weiqiang Chu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Xiaoxiao Pang
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Ruxia Zhang
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Jiucheng Ma
- Department of Burns and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Dai Y, Zhao Q, Yan H, Ye K, Wang L, Guo L, Guo N, Li W, Yang J. Adaptive attenuation of virulence mediated by Wzc mutation in ST11-KL47 Carbapenem-resistant Klebsiella pneumonia. Front Cell Infect Microbiol 2025; 15:1561631. [PMID: 40134783 PMCID: PMC11933079 DOI: 10.3389/fcimb.2025.1561631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction The impact of the hypermucoviscosity (HMV) phenotype in ST11-KL47 carbapenem-resistant Klebsiella pneumoniae (CRKp) pathogenicity warrants investigation for public health risk assessment. Methods We analyzed 230 clinical ST11-KL47 CRKp to identify the key factor in mucoviscosity acquisition via comparative genomic analysis. Sedimentation value served as the objective index to quantify HMV. The virulence in vivo was assessed using Galleria mellonella and mouse infection models. We employed genome engineering, capsular polysaccharides (CPS) quantification, and visualization to explore the role of Wzc mutation in CPS biosynthesis and HMV. The biological impact of Wzc-mediated HMV was investigated through competitive growth analysis, biofilm formation, serum resistance, anti-phagocytic ability, and adhesion assays. Transcriptomic analysis and scanning electron microscopy (SEM) were utilized to explore the relationship between polysaccharide composition, physical distribution, and changes in virulence. Results The Wzc mutations are identified as the key to mucoviscosity acquisition. Unexpectedly, Wzc-mediated HMV CRKp exhibits reduced pathogenicity versus non-mucoviscosity (NMV) strains in different animal models, with competitive disadvantage, decreased biofilm formation, serum resistance, and adhesion, yet higher anti-phagocytic ability in vitro. CPS extraction and visualization of genome-engineered strains verify the Wzc mutations mediate HMV by standardizing CPS chain length and overproducing cell-free extracellular polysaccharides (cell-free EPS). Transcriptomic results, lipopolysaccharides (LPS) quantification, and SEM collectively indicate a downregulation of LPS synthesis and the masking of LPS in HMV strains. Discussion These findings demonstrate that the Wzc-induced HMV attenuates ST11-KL47 CRKp virulence by modifying the exopolysaccharide composition and physical distribution.
Collapse
Affiliation(s)
- Yufeng Dai
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Qiang Zhao
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huanhuan Yan
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Kun Ye
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lifeng Wang
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ling Guo
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Na Guo
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Wenwen Li
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Jiyong Yang
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
8
|
Guembe M, Hafian R, Díaz-Navarro M, Visedo A, De Maio F, Pimpinelli F, Cavallo I, Truglio M, Sivori F, Di Domenico EG. Virulence profile of carbapenem-resistant Klebsiella pneumoniae strains by an in vivo model of Galleria mellonella. Microbiol Spectr 2025; 13:e0221524. [PMID: 39804075 PMCID: PMC11792541 DOI: 10.1128/spectrum.02215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 02/05/2025] Open
Abstract
Klebsiella pneumoniae is a significant healthcare-associated pathogen, notable for its diverse virulence and antibiotic resistance profiles. This study aimed to characterize the genotypic and phenotypic diversity of K. pneumoniae isolates and evaluate their virulence using the Galleria mellonella model. Biomass production, metabolic activity, capsule formation, and siderophore production were assessed in 27 K. pneumoniae isolates from hospital-associated infections. Lethality curves were generated using the G. mellonella model, with survival monitored hourly from 16 to 48 hours. The most common sequence types (ST) identified were the high-risk clones ST307 (N = 10), ST512 (N = 8), ST101 (N = 7), and ST661 (N = 2). These STs were associated with distinct K-locus, including KL102, KL107, KL17, and KL39. Most isolates belonged to the O2afg locus (N = 18), with the K. pneumoniae carbapenemase genotype detected in 96.3% of strains. None of the isolates were classified as hypervirulent. Phenotypically, ST661 exhibited the highest biomass production despite showing similar metabolic activity to other STs. A positive correlation was observed between biomass and siderophore production, while capsule production was inversely correlated with biomass. In the G. mellonella model, ST661 demonstrated the highest virulence, resulting in 100% mortality by 48 hours, compared to survival rates of 21.4% for ST101, 38.0% for ST307, and 31.2% for ST512. These findings underscore the pathogenic potential of ST661 isolates with enhanced biofilm production. The G. mellonella model may serve as an effective in vivo system for evaluating the virulence of emerging K. pneumoniae lineages.IMPORTANCEWe demonstrate that the Galleria mellonella model is a useful tool to analyze the virulence of carbapenem-resistant Klebsiella pneumoniae strains. Our findings highlight the pathogenicity of carbapenem-resistant K pneumoniae isolates, particularly the role of the ST661 that, despite being a rare lineage, harbors the blaVIM gene and is associated with high biofilm production and the highest mortality rates.
Collapse
Affiliation(s)
- María Guembe
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- IiSGM, Madrid, Spain
| | | | - Marta Díaz-Navarro
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- IiSGM, Madrid, Spain
| | - Andrés Visedo
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- IiSGM, Madrid, Spain
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
9
|
Zhuo X, Lei Z, Pu D, Wu Y, Zhao J, Cao B. Hypervirulent Klebsiella pneumoniae have better clinical outcomes than classical Klebsiella pneumoniae for lower respiratory tract infection patients. BMC Microbiol 2025; 25:40. [PMID: 39844054 PMCID: PMC11753108 DOI: 10.1186/s12866-024-03726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The clinical outcomes and microbiological features of lower respiratory tract infections (LRTIs) caused by hypervirulent Klebsiella pneumoniae (hvKp) and classical Klebsiella pneumoniae (cKp) have not been well understood. METHODS This study collected 287 non-repetitive Klebsiella pneumoniae isolates from 287 LRTI patients. All these strains underwent annotation for resistance and virulence factors, with 141 strains undergoing mouse infection experiments to assess their virulence. The primary clinical outcomes of these patients were evaluated, including intensive care unit (ICU) admission and in-hospital mortality rates. RESULTS A total of 46 capsule serotypes were identified. Among these isolates subjected to mouse infection experiments, the proportions of strains exhibiting hypervirulent phenotypes were 92.6% (25/27), 92.1% (35/38), 80% (4/5), 25% (1/4), 10.5% (2/19), and 7.1% (1/14) for K2, K1, K20, K54, K47, and K25, respectively. Therefore, K1, K2, and K20 K. pneumoniae were defined as hvKp. In addition, the rates of ICU admission and in-hospital mortality for hvKp-infected patients were significantly lower than those of cKp-infected patients (51.4% vs. 65.9%, χ2 = 4.722, p = 0.03 and 8.6% vs. 29%, χ2 = 12.133, p < 0.001). Notably, among the cKp group, the cKp-ST11 subgroup had higher rates of ICU admission (77% vs. 58.5%, χ2 = 7.981, p = 0.005) and in-hospital mortality (44.8% vs. 18.5%, χ2 = 17.585, p < 0.001) than cKp-nonST11 subgroup. CONCLUSIONS These findings suggest that capsule serotype is a more accurate factor for the prediction of the virulence phenotype, while hvKp have better clinical outcomes than cKp for LRTI patients. Furthermore, the cKp-ST11 subgroup has the worst prognosis than cKp-nonST11 subgroup.
Collapse
Affiliation(s)
- Xianxia Zhuo
- Department of Respiratory Medicine, Capital Medical University, Beijing, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Chaoyang District, Beijing, 100029, China
| | - Zichen Lei
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Chaoyang District, Beijing, 100029, China
| | - Danni Pu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Chaoyang District, Beijing, 100029, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yongli Wu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Chaoyang District, Beijing, 100029, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiankang Zhao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Chaoyang District, Beijing, 100029, China.
| | - Bin Cao
- Department of Respiratory Medicine, Capital Medical University, Beijing, China.
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Chaoyang District, Beijing, 100029, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
10
|
Zhang M, Liu L, Yang X, Kang Y, Qin Q, Fu Y, Zhu L, Xu Y. Virulence phenotype alteration impacts nosocomial pathogen persistence on inanimate surfaces in hospital settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177877. [PMID: 39667160 DOI: 10.1016/j.scitotenv.2024.177877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
The hospital setting serves as a critical conduit for pathogen dissemination, particularly amid the escalating concern of nosocomial infections in China. Currently, most studies use metagenomics to investigate microbial communities in hospital settings, with less focus on the transmission strategies of individual bacteria. In our study, we identified two Klebsiella pneumoniae strains exhibiting different mucoid characteristics. The strain designated as KPE was obtained from a well sanitized ward, while the strain KPH was isolated from the sputum samples of patients within the identical ward. We characterized the KPE strain as not lethal to mice and showed a distinct hypomuciod phenotype, strikingly different from the virulent KPH isolate. Two strains harbored the single nucleotide polymorphism (SNP) mutations in the virulence-related gene rmpA and wcaJ promoter regions, resulting in the downregulation of mucoid regulatory gene rmpA and capsule synthesis genes. Consequently, this led to diminished production of capsular polysaccharides and weakened virulence in the KPE strain. Furthermore, the KPE strain exhibited an elevated capacity for acquiring antibiotic-resistant plasmids and greater material survival ability. These findings indicated that mucoid changes enable K. pneumoniae strains to survive better on inanimate surfaces, promoting their persistence ward environment and further transmission in patients.
Collapse
Affiliation(s)
- Meng Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lizhang Liu
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqiang Yang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanhua Kang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuying Qin
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingying Fu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yongchang Xu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
11
|
Kang Y, Xu C, Ma W, Li Q, Jia W, Wang P. Genomic characterization of ST11-KL25 hypervirulent KPC-2-producing multidrug-resistant Klebsiella pneumoniae from China. iScience 2024; 27:111471. [PMID: 39759012 PMCID: PMC11696639 DOI: 10.1016/j.isci.2024.111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/28/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
The global prevalence of ST11 hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) isolates has been increasingly documented, yet genomic characterization of this clone remains insufficiently explored. Here, we report a clinical ST11-KL25 hv-CRKP strain (KP156) that exhibited resistance to multiple antibiotics and demonstrated hypervirulence in a mouse infection model. Whole-genome sequencing revealed that KP156 harbored one virulence plasmid (pKP156-Vir) and two resistance plasmids (pKP156-KPC and pKP156-tetA). The pKP156-Vir contains several virulence factors, including rmpA2 and iucABCD, which are critical contributors to its hypervirulence. The bla KPC-2 and bla CTX-M-65 genes, located within the Tn6296 transposon of pKP156-KPC, along with a multidrug-resistant (MDR) region containing multiple transposons and conjugative elements in pKP156-tetA, are associated with the transfer of resistance genes. Phylogenetic analysis indicates that KP156 shares high homology with other ST11 hv-CRKPs, suggesting potential transmission of this clone. Our study informs the development of genomic surveillance and control strategies for this strain.
Collapse
Affiliation(s)
- Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chao Xu
- First Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Wanting Ma
- First Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qiujie Li
- First Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| |
Collapse
|
12
|
Li Y, Yang Q, Chen M, Cai H, Fang L, Zhou J, Weng R, Ni H, Jiang Y, Hua X, Yu Y. Decadal Evolution of KPC-related plasmids in Pseudomonas aeruginosa high-risk clone ST463 in Zhejiang, China. Commun Biol 2024; 7:1646. [PMID: 39702826 DOI: 10.1038/s42003-024-07337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase-producing Pseudomonas aeruginosa (KPC-PA) isolates have quickly expanded in China, especially the high-risk clone ST463. We aimed to explore the evolution of KPC-related plasmids driving ST463 clone success. Whole-genome sequencing of 1258 clinical P. aeruginosa strains (2011-2020) identified 106 ST463-PA isolates, with a KPC prevalence of 90.6%. Early on (2011-2012), ST463-PA obtained the KPC-encoding type II (pT2-KPC) or type I plasmid (pT1-KPC) to overcome carbapenem stress. Between 2012 and 2017, pT1-KPC plasmid dominated due to its lower fitness costs and IS26-driven blaKPC amplification ability. By 2017-2020, large fragment deletions in pT1-KPC formed pT1del-KPC plasmid. It conferred even lower fitness costs, enhanced blaKPC-2 gene stability, and greater copy-number flexibility, while maintaining horizontal transmission ability. Consequently, pT1del-KPC plasmid finally succeeded, making ST463 the dominant ST in China. Our findings highlight evolutionary pressures driving ST463 dominance and emphasize the need for targeted strategies to control its spread and antibiotic resistance development.
Collapse
Affiliation(s)
- Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minhua Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Li Fang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Rui Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Hanming Ni
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Zhang F, Li Z, Li Z, Liu X, Lei Z, Zhuo X, Yang X, Zhao J, Zhang Y, Lu B. Two outbreak cases involving ST65-KL2 and ST11-KL64 hypervirulent carbapenem-resistant Klebsiella pneumoniae: similarity and diversity analysis. Commun Biol 2024; 7:1602. [PMID: 39623086 PMCID: PMC11612158 DOI: 10.1038/s42003-024-07310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The rise of the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae has been increasingly reported in recent years, however, there are few outbreak cases for these producing NDM carbapenemase. In this study, ST65-KL2 and ST11-KL64 hypervirulent and carbapenem-resistant K. pneumoniae (hvCRKP) were identified from two different outbreak cases: (1) clonal spreading of ST65-KL2 in five patients within transplantation wards spanning three months; and (2) clonal transmission of ST11-KL64 in ten patients across 10 months. The representative strains of ST65-KL2 and ST11-KL64 hvCRKP, K22877 and K56649, produced carbapenemase NDM-5 and dual carbapenemases KPC-2 and NDM-13, respectively, and both exhibited high-level carbapenem resistance. Moreover, virulent analysis showed that K22877 and K56649 were hypervirulent and the former possessed stronger virulence. Evolutionary pathways suggested ST65-KL2 and ST11-KL64 hvCRKP could be classified as CR-hvKP (hvKP acquiring carbapenem resistance) and hv-CRKP (CRKP acquiring hypervirulence), respectively. Unexpectedly, ST65-KL2 CR-hvKP showed resistance to ciprofloxacin mediated by plasmid acquisition as its spread, and ST11-KL64 hv-CRKP developed into enhanced virulence and macrophage resistance. Furthermore, compared to the ST65-KL2 CR-hvKP, the ST11-KL64 hv-CRKP tends to cause occult and persistent infection. Global genome analysis revealed ST11-KL64 hv-CRKP and ST65-KL2 CR-hvKP mainly carried blaKPC-2 and had significant differences in Ompk35/36, ybt, resistance and virulence. Effective surveillance should be implemented and novel therapeutic strategies are urgently needed to deal with refractory infections.
Collapse
Affiliation(s)
- Feilong Zhang
- Peking Union Medical College, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhihua Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ziyao Li
- Peking Union Medical College, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xinmeng Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zichen Lei
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
| | - Xianxia Zhuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China
| | - Xinrui Yang
- Peking Union Medical College, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiankang Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yulin Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Binghuai Lu
- Peking Union Medical College, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Zhao Z, Yang T, Xiang G, Zhang S, Cai Y, Zhong G, Pu J, Shen C, Zeng J, Chen C, Huang B. A novel small RNA PhaS contributes to polymyxin B-heteroresistance in carbapenem-resistant Klebsiella pneumoniae. Emerg Microbes Infect 2024; 13:2366354. [PMID: 38979571 PMCID: PMC11238654 DOI: 10.1080/22221751.2024.2366354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tingting Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shebin Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yimei Cai
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Guosheng Zhong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jieying Pu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Cong Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Jianming Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Chen T, Wang Y, Chi X, Xiong L, Lu P, Wang X, Chen Y, Luo Q, Shen P, Xiao Y. Genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 carbapenem-resistant Klebsiella pneumoniae. Virulence 2024; 15:2349768. [PMID: 38736039 PMCID: PMC11093053 DOI: 10.1080/21505594.2024.2349768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
ST11 is the most common lineage among carbapenem-resistant Klebsiella pneumoniae (CRKP) infections in Asia. Diverse morphotypes resulting from genetic mutations are associated with significant differences in microbial characteristics among K. pneumoniae isolates. Here, we investigated the genetic determinants and critical characteristics associated with distinct morphotypes of ST11 CRKP. An ST11-KL47 CRKP isolate carrying a pLVPK-like virulence plasmid was isolated from a patient with a bloodstream infection; the isolate had the "mcsw" morphotype. Two distinct morphotypes ("ntrd" and "msdw") were derived from this strain during in vitro passage. Whole genome sequencing was used to identify mutations that cause the distinct morphotypes of ST11 CRKP. Transmission electron microscopy, antimicrobial susceptibility tests, growth assays, biofilm formation, virulence assays, membrane permeability assays, and RNA-seq analysis were used to investigate the specific characteristics associated with different morphotypes of ST11 CRKP. Compared with the parental mcsw morphotype, the ntrd morphotype resulted from mutation of genes involved in capsular polysaccharide biosynthesis (wza, wzc, and wbaP), a result validated by gene knockout experiments. This morphotype showed capsule deficiency and lower virulence potential, but higher biofilm production. By contrast, the msdw morphotype displayed competition deficiency and increased susceptibility to chlorhexidine and polymyxin B. Further analyses indicated that these characteristics were caused by interruption of the sigma factor gene rpoN by insertion mutations and deletion of the rpoN gene, which attenuated membrane integrity presumably by downregulating the phage shock protein operon. These data expand current understanding of genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 CRKP.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Chi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Luying Xiong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| |
Collapse
|
16
|
Wu W, Ni S, Zheng Y, Zhang P, Jiang Y, Li X, Yu Y, Qu T. Hypervirulent carbapenem-susceptible klebsiella pneumoniae ST412/K57 with strong biofilm formation: association with gas gangrene and sepsis. Int J Antimicrob Agents 2024; 64:107373. [PMID: 39486468 DOI: 10.1016/j.ijantimicag.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) poses a serious public health threat. Gas gangrene caused by hvKp is rarely reported and potentially results in a poor prognosis. This study describes the case of a hospitalised patient with gas gangrene and sepsis caused by hvKP. Carbapenem-susceptible hypervirulent Klebsiella pneumoniae (CS-hvKp) strains KPLSN and KPLSX were isolated from the knee joint pus and blood specimens of the patient for further investigations. Whole genome sequencing revealed that KPLSN and KPLSX were highly homologous (single nucleotide polymorphisms [SNPs]<10) and belonged to ST412/K57. The minimum inhibitory concentration and minimum bactericidal concentration under biofilm values of meropenem in KPLSN and KPLSX were significantly higher than in the planktonic state (>128 mg/L vs. 0.25 mg/L, P<0.0001). These two strains had high biofilm formation ability, and the results from fluorescence staining experiments showed that they were not easily killed by meropenem in the biofilm state. KPLSN and KPLSX showed high capsule production and were confirmed to have high virulence through experiments with the Galleria mellonella infection model and the BALB/c mice abdominal infection model. The persistent symptoms may be due to enhanced biofilm and capsule formation. Phylogenetic analysis of global ST412 strains showed their evolution towards higher virulence and resistance. These results emphasise the critical need for judicious antibiotic use and novel therapeutic approaches to combat special infections caused by these pathogens.
Collapse
Affiliation(s)
- Wenhao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuangling Ni
- Department of Infectious Disease, Lishui City People's Hospital, Lishui, Zhejiang Province, China
| | - Yi Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Li
- Center of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
17
|
Zhao F, Hou X, Sun G, Fu Y, Wang L, Yao B, Liu X, Weng R, Meng Y, Zhou J, Jiang Y, Yu Y, Shi Q. The prevalence of carbapenem-resistant Enterobacterales and the emergence of novel ST11-KL30 carbapenem-resistant Klebsiella pneumoniae in Xinjiang, China. J Glob Antimicrob Resist 2024; 39:189-195. [PMID: 39427989 DOI: 10.1016/j.jgar.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVES To address the lack of research on the prevalence of carbapenem-resistant Enterobacterales (CREs) in Xinjiang, China, and elucidate the genomic characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) ST11-KL30. METHODS CREs were collected in Xinjiang from 2021 to 2023. The antimicrobial susceptibility testing of carbapenems was performed via agar dilution method. Whole-genome sequencing was completed on the Illumina platform, and subsequent genomic analyses of CRKP, such as sequencing typing, K-locus and O-locus identification, virulence score assessment, and phylogenetic analysis, were performed. The virulence of CRKP isolates was determined in vitro and in vivo, and biofilm formation was assessed by crystal violet staining. Additionally, the virulence plasmid was reconstructed, and the formation of CRKP ST11-KL30 was revealed based on genome data from public database. RESULTS Eighty-five CRE isolates were collected, among which CRKP was most prevalent (68/85). KPC was the most dominant carbapenemase (60/68) in CRKP, while NDM-type carbapenemase was more prevalent in other species. ST11 was the dominant CRKP clone and was phylogenetically divided into three clusters: ST11-KL64, ST11-KL47 and ST11-KL30. CRKP ST11-KL30 is a novel recombinant clone that harbours a pK2044-like virulence plasmid and can be derived from ST11-KL64 by obtaining an ∼57 kb region from ST29-KL30. Compared to ST11-KL47 and ST11-KL64, ST11-KL30 had lower virulence, but had enhanced biofilm formation. CONCLUSIONS We describe the prevalence of CRE prevalence southern Xinjiang and report the emergence of a region-specific clone. Our findings underscore the potential dissemination of ST11-KL30, which warrants increased monitoring in the future.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xiangping Hou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China
| | - Gang Sun
- Department of Clinical Laboratory, The First Division Hospital of Xinjiang Production and Construction Corps, Aksu, China
| | - Ying Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China; Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China
| | - Bingyan Yao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China; Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Meng
- Department of Clinical Laboratory, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res 2024; 288:127839. [PMID: 39141971 DOI: 10.1016/j.micres.2024.127839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024]
Abstract
The evolution of hypervirulent and carbapenem-resistant Klebsiella pneumoniae can be categorized into three main patterns: the evolution of KL1/KL2-hvKp strains into CR-hvKp, the evolution of carbapenem-resistant K. pneumoniae (CRKp) strains into hv-CRKp, and the acquisition of hybrid plasmids carrying carbapenem resistance and virulence genes by classical K. pneumoniae (cKp). These strains are characterized by multi-drug resistance, high virulence, and high infectivity. Currently, there are no effective methods for treating and surveillance this pathogen. In addition, the continuous horizontal transfer and clonal spread of these bacteria under the pressure of hospital antibiotics have led to the emergence of more drug-resistant strains. This review discusses the evolution and distribution characteristics of hypervirulent and carbapenem-resistant K. pneumoniae, the mechanisms of carbapenem resistance and hypervirulence, risk factors for susceptibility, infection syndromes, treatment regimens, real-time surveillance and preventive control measures. It also outlines the resistance mechanisms of antimicrobial drugs used to treat this pathogen, providing insights for developing new drugs, combination therapies, and a "One Health" approach. Narrowing the scope of surveillance but intensifying implementation efforts is a viable solution. Monitoring of strains can be focused primarily on hospitals and urban wastewater treatment plants.
Collapse
Affiliation(s)
- Ting-Yu Lei
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Bin-Bin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Liang-Rui Yang
- First Affiliated Hospital of Dali University, Yunnan 671000, China.
| | - Ying Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Xu-Bing Chen
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
19
|
Zhang X, Xie Y, Zhang Y, Lei T, Zhou L, Yao J, Liu L, Liu H, He J, Yu Y, Tu Y, Li X. Evolution of ceftazidime-avibactam resistance driven by mutations in double-copy blaKPC-2 to blaKPC-189 during treatment of ST11 carbapenem-resistant Klebsiella pneumoniae. mSystems 2024; 9:e0072224. [PMID: 39287378 PMCID: PMC11495026 DOI: 10.1128/msystems.00722-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) variants can contribute to resistance to ceftazidime-avibactam (CZA) in Klebsiella pneumoniae (KP). However, two-copy KPC variant-mediated resistance to CZA has rarely been reported to date. Here, we aimed to clarify the evolutionary trajectory of CZA resistance driven by mutations in double-copy blaKPC-2 to blaKPC-189 carried by the tandem core structure (ISKpn6-blaKPC-ISKpn27-tnpR-IS26) during treatment of ST11 carbapenem-resistant K. pneumoniae (CRKP). The CZA-resistant KP strain carried double-copy blaKPC-189, a variant with alanine-threonine and aspartate-tyrosine substitutions at Ambler amino acid positions 172 (A172T) and 179 (D179Y) of blaKPC-2. Clone experiments confirmed that, compared with that of the wild-type blaKPC-2 clone strain, the minimum inhibitory concentration of CZA increased 16-fold in the blaKPC-189-mutant strain. Furthermore, protein structure analysis revealed the A172T and D179Y mutations of blaKPC-189 can have a direct effect on the binding affinity of CAZ and AVI for KPC. Sequence comparison revealed that blaKPC-189 was mutated in a double-copy format upon CZA exposure, which was carried by the IS26-mediated tandem core structure ISKpn27-blaKPC-ISKpn6. This tandem core structure apparently evolves in vivo during infection, although not by self-transferring, and multiple ISKpn27-blaKPC-ISKpn6 copy numbers could mediate transferable CZA resistance upon mobilization. In addition, compared with the wild-type blaKPC-2 gene, the blaKPC-189 gene had no fitness cost. In summary, our study highlighted the emergence of CZA-resistant blaKPC-189 variants in the ST11 clone and the presence of a double-copy blaKPC-189 in the IncFII-type plasmid, which is carried by a tandem core structure (IS26-ISKpn6-blaKPC-189-ISKpn27-tnpR-IS26). IMPORTANCE To date, ceftazidime-avibactam (CZA) resistance caused by double-copy Klebsiella pneumoniae carbapenemase (KPC) variants has not been elucidated. The multicopy forms of carbapenem resistance genes carried by the same plasmid are relatively rare in most carbapenem-resistant Enterobacteriaceae. In this study, we elucidate the evolutionary trajectory of CZA resistance in ST11 carbapenem-resistant K. pneumoniae harboring a double-copy blaKPC and provide new insights into the mechanisms of acquired resistance to CZA.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Clinical Laboratory, Feicheng Hospital of Traditional Chinese Medicine, Feicheng, Shandong, China
| | - Yinrong Xie
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Ying Zhang
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Longjie Zhou
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao He
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuexing Tu
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, Zhejiang, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Song S, Yang S, Zheng R, Yin D, Cao Y, Wang Y, Qiao L, Bai R, Wang S, Yin W, Dong Y, Bai L, Yang H, Shen J, Wu C, Hu F, Wang Y. Adaptive evolution of carbapenem-resistant hypervirulent Klebsiella pneumoniae in the urinary tract of a single patient. Proc Natl Acad Sci U S A 2024; 121:e2400446121. [PMID: 39150777 PMCID: PMC11363291 DOI: 10.1073/pnas.2400446121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.
Collapse
Affiliation(s)
- Shikai Song
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
- Poultry Research Institute, Shandong Academy of Agricultural Science, Jinan250100, Shandong, China
| | - Shixin Yang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Ruicheng Zheng
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yue Cao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yao Wang
- Shandong Animal Disease Prevention and Control Center, Jinan250100, Shandong, China
| | - Lu Qiao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Rina Bai
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Shuge Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Wenjuan Yin
- Department of Microbiology and Immunology, College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding071002, China
| | - Yanjun Dong
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Hui Yang
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
21
|
Sun C, Zhou D, He J, Liu H, Fu Y, Zhou Z, Leptihn S, Yu Y, Hua X, Xu Q. A panel of genotypically and phenotypically diverse clinical Acinetobacter baumannii strains for novel antibiotic development. Microbiol Spectr 2024; 12:e0008624. [PMID: 38916336 PMCID: PMC11302250 DOI: 10.1128/spectrum.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Acinetobacter baumannii is one of the most important pathogens worldwide. The intrinsic and acquired resistance of A. baumannii, coupled with the slow pace of novel antimicrobial drug development, poses an unprecedented and enormous challenge to clinical anti-infective therapy of A. baumannii. Recent studies in the field of pathogenicity, antibiotic resistance, and biofilms of A. baumannii have focused on the model strains, including ATCC 17978, ATCC 19606, and AB5075. However, these model strains represent only a limited portion of the heterogeneity in A. baumannii. Furthermore, variants of these model strains have emerged that show significant diversity not only at the genotypic level but also reflected in differences at the phenotypic levels of capsule, virulence, pathogenicity, and antibiotic resistance. Research on A. baumannii, a key pathogen, would benefit from a standardized approach, which characterizes heterogeneous strains in order to facilitate rapid diagnosis, discovery of new therapeutic targets, and efficacy assessment. Our study provides and describes a standardized, genomically and phenotypically heterogeneous panel of 45 different A. baumannii strains for the research community. In addition, we performed comparative analyses of several phenotypes of this panel. We found that the sequence type 2 (ST2) group showed significantly higher rates of resistance, lower fitness cost for adaptation, and yet less biofilm formation. The Macrocolony type E (MTE, flat center and wavy edge phenotype reported in the literature) group showed a less clear correlation of resistance rates and growth rate, but was observed to produce more biofilms. Our study sheds light on the complex interplay of resistance fitness and biofilm formation within distinct strains, offering insights crucial for combating A. baumannii infection. IMPORTANCE Acinetobacter baumannii is globally notorious, and in an effort to combat the spread of such pathogens, several emerging candidate therapies have already surfaced. However, the strains used to test these therapies vary across studies (the sources and numbers of test strains are varied and often very large, with little heterogeneity). The variation complicates the studies. Furthermore, the limited standardized resources of A. baumannii strains have greatly restricted the research on the physiology, pathogenicity, and antibiotic resistance. Therefore, it is crucial for the research community to acquire a standardized and heterogeneous panel of A. baumannii. Our study meticulously selected 45 diverse A. baumannii strains from a total of 2,197 clinical isolates collected from 64 different hospitals across 27 provinces in China, providing a scientific reference for the research community. This assistance will significantly facilitate scientific exchange in academic research.
Collapse
Affiliation(s)
- Chunli Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
| | - Danyan Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Liu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sebastian Leptihn
- Department of Antimicrobial Biotechnology, Fraunhofer Institute for Cell Therapy & Immunology (IZI), Leipzig, Germany
- Department of Biochemistry, Health and Medical University, Erfurt, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingye Xu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Liang Q, Chen N, Wang W, Zhang B, Luo J, Zhong Y, Zhang F, Zhang Z, Martín–Rodríguez AJ, Wang Y, Xiang L, Xiong X, Hu R, Zhou Y. Co-occurrence of ST412 Klebsiella pneumoniae isolates with hypermucoviscous and non-mucoviscous phenotypes in a short-term hospitalized patient. mSystems 2024; 9:e0026224. [PMID: 38904378 PMCID: PMC11265266 DOI: 10.1128/msystems.00262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.
Collapse
Affiliation(s)
- Qinghua Liang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Yilong County People’s Hospital, Nanchong, China
| | - Nan Chen
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Biying Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Jinjing Luo
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Ying Zhong
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Alberto J. Martín–Rodríguez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital,Southwest Medical University, Luzhou, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medicine University, Luzhou, China
| |
Collapse
|
23
|
Teng G, Zhang M, Fu Y, Yang X, Kang Y, Qin Q, Jin Y, Huang M, Xu Y. Adaptive attenuation of virulence in hypervirulent carbapenem-resistant Klebsiella pneumoniae. mSystems 2024; 9:e0136323. [PMID: 38752758 PMCID: PMC11237801 DOI: 10.1128/msystems.01363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
The emergence of nosocomial infections caused by hypervirulent and carbapenem-resistant K. pneumoniae (hv-CRKP) has become a significant public health challenge. The genetic traits of virulence and resistance plasmids in hv-CRKP have been extensively studied; however, research on the adaptive evolution strategies of clinical strains inside the host was scarce. This study aimed to understand the effects of antibiotic treatment on the phenotype and genotype characteristics of hv-CRKP. We investigated the evolution of hv-CRKP strains isolated from the same patient to elucidate the transition between hospital invasion and colonization. A comparative genomics analysis was performed to identify single nucleotide polymorphisms in the rmpA promoter. Subsequent validation through RNA-seq and gene deletion confirmed that distinct rmpA promoter sequences exert control over the mucoid phenotype. Additionally, biofilm experiments, cell adhesion assays, and animal infection models were conducted to illuminate the influence of rmpA promoter diversity on virulence changes. We demonstrated that the P12T and P11T promoters of rmpA possess strong activity, which leads to the evolution of CRKP into infectious and virulent strains. Meanwhile, the specific sequence of polyT motifs in the rmpA promoter led to a decrease in the lethality of hv-CRKP and enhanced cell adhesion and colonization. To summarize, the rmpA promoter of hv-CRKP is utilized to control capsule production, thereby modifying pathogenicity to better suit the host's ecological environment.IMPORTANCEThe prevalence of hospital-acquired illness caused by hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is significant, leading to prolonged antibiotic treatment. However, there are few reports on the phenotypic changes of hv-CRKP in patients undergoing antibiotic treatment. We performed a comprehensive examination of the genetic evolutionary traits of hv-CRKP obtained from the same patient and observed variations in the promoter sequences of the virulence factor rmpA. The strong activity of the promoter sequences P11T and P12T enhances the consistent production of capsule polysaccharides, resulting in an invasive strain. Conversely, weak promoter activity of P9T and P10T is advantageous for exposing pili, hence improving bacterial cell attachment ability and facilitating bacterial colonization. This finding also explains the confusion of some clinical strains carrying wild-type rmpA but exhibiting a low mucoid phenotype. This adaptive alteration facilitates the dissemination of K. pneumoniae within the hospital setting.
Collapse
Affiliation(s)
- Gaoqin Teng
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - YingYing Fu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqiang Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanhua Kang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuying Qin
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ye Jin
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchang Xu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
24
|
Yang S, Fan J, Yu L, He J, Zhang L, Yu Y, Hua X. Dissemination of Ceftriaxone-Resistant Salmonella Enteritidis Harboring Plasmids Encoding blaCTX-M-55 or blaCTX-M-14 Gene in China. Antibiotics (Basel) 2024; 13:456. [PMID: 38786182 PMCID: PMC11117602 DOI: 10.3390/antibiotics13050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Salmonella Enteritidis was the primary foodborne pathogen responsible for acute gastroenteritis. The growing ceftriaxone resistance poses a significant threat to public health. Infection with S. Enteritidis has emerged as a major public health concern, particularly in developing countries. However, research on ceftriaxone-resistant S. Enteritidis (CRO-RSE) remains limited, particularly concerning its resistance mechanism, plasmid structure, and transmission characteristics. This study aims to address these gaps comprehensively. We collected 235 S. Enteritidis isolates from Hangzhou First People's Hospital between 2010 and 2020. Among these, 8.51% (20/235) exhibited resistance to ceftriaxone. Whole-genome analysis revealed that 20 CRO-RSE isolates harbored blaCTX-M-55 or blaCTX-M-14 on the plasmid. Moreover, the dissemination of the blaCTX-M-type gene was associated with IS26 and ISEcp1. Plasmid fusion entailing the integration of the p1 plasmid with antibiotic resistance genes and the p2 (pSEV) virulence plasmid was observed in certain CRO-RSE. Additionally, the structural analysis of the plasmids unveiled two types carrying the blaCTX-M-type gene: type A with multiple replicons and type B with IncI1 (Alpha) replicon. Type B plasmids exhibited superior adaptability and stability compared to type A plasmids within Enterobacteriaceae. Interestingly, although the type B (S808-p1) plasmid displayed the potential to spread to Acinetobacter baumannii, it failed to maintain stability in this species.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jianzhong Fan
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China;
| | - Lifei Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Infectious Diseases, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
25
|
Tang M, Zhao D, Zhang Y, Qian C, Chen H, Chen L, Ye J, Zhou T. Impact of LuxS on virulence and pathogenicity in Klebsiella pneumoniae exhibiting varied mucoid phenotypes. Infect Immun 2024; 92:e0001224. [PMID: 38358274 PMCID: PMC10929404 DOI: 10.1128/iai.00012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
How the LuxS/AI-2 quorum sensing (QS) system influences the pathogenicity of K. pneumoniae is complicated by the heterogeneity of the bacterial mucoid phenotypes. This study aims to explore the LuxS-mediated regulation of the pathogenicity of K. pneumoniae with diverse mucoid phenotypes, including hypermucoid, regular-mucoid, and nonmucoid. The wild-type, luxS knockout, and complemented strains of three K. pneumoniae clinical isolates with distinct mucoid phenotypes were constructed. The results revealed the downregulation of virulence genes of regular-mucoid, and nonmucoid but not hypermucoid strains. The deletion of luxS reduced the pathogenicity of the regular-mucoid, and nonmucoid strains in mice; while in hypermucoid strain, luxS knockout reduced virulence in late growth but enhanced virulence in the early growth phase. Furthermore, the absence of luxS led the regular-mucoid and nonmucoid strains to be more sensitive to the host cell defense, and less biofilm-productive than the wild-type at both the low and high-density growth state. Nevertheless, luxS knockout enhanced the resistances to adhesion and phagocytosis by macrophage as well as serum-killing, of hypermucoid K. pneumoniae at its early low-density growth state, while it was opposite to those in its late high-density growth phase. Collectively, our results suggested that LuxS plays a crucial role in the pathogenicity of K. pneumoniae, and it is highly relevant to the mucoid phenotypes and growth phases of the strains. LuxS probably depresses the capsule in the early low-density phase and promotes the capsule, biofilm, and pathogenicity during the late high-density phase, but inhibits lipopolysaccharide throughout the growth phase, in K. pneumoniae.IMPORTANCECharacterizing the regulation of physiological functions by the LuxS/AI-2 quorum sensing (QS) system in Klebsiella pneumoniae strains will improve our understanding of this important pathogen. The genetic heterogeneity of K. pneumoniae isolates complicates our understanding of its pathogenicity, and the association of LuxS with bacterial pathogenicity has remained poorly addressed in K. pneumoniae. Our results demonstrated strain and growth phase-dependent variation in the contributions of LuxS to the virulence and pathogenicity of K. pneumoniae. Our findings provide new insights into the important contribution of the LuxS/AI-2 QS system to the networks that regulate the pathogenicity of K. pneumoniae. Our study will facilitate our understanding of the regulatory mechanisms of LuxS/AI-2 QS on the pathogenicity of K. pneumoniae under the background of their genetic heterogeneity and help develop new strategies for diminished bacterial virulence within the clinical K. pneumoniae population.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deyi Zhao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huale Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Yang P, Liu C, Du P, Yi J, Wu Z, Zheng J, Shen N, Cui L, Lu M. ST218 Klebsiella pneumoniae became a high-risk clone for multidrug resistance and hypervirulence. BMC Microbiol 2024; 24:56. [PMID: 38347440 PMCID: PMC10860259 DOI: 10.1186/s12866-024-03205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The occurrence of multidrug-resistant and hypervirulent Klebsiella pneumoniae (MDR-hvKp) worldwide poses a great challenge for public health. Few studies have focused on ST218 MDR-hvKp. METHODS Retrospective genomic surveillance was conducted at the Peking University Third Hospital from 2017 and clinical information was obtained. To understand genomic and microbiological characteristics, antimicrobial susceptibility testing, plasmid conjugation and stability, biofilm formation, serum killing, growth curves and whole-genome sequencing were performed. We also assessed the clinical and microbiological characteristics of ST218 compared with ST23. RESULTS A total of eleven ST218 Kp isolates were included. The most common infection type was lower respiratory tract infection (72.7%, 8/11) in our hospital, whereas ST23 hvKp (72.7%, 8/11) was closely associated with bloodstream infection. Notably, nosocomial infections caused by ST218 (54.5%, 6/11) was slightly higher than ST23 (36.4%, 4/11). All of the ST218 and ST23 strains presented with the virulence genes combination of iucA + iroB + peg344 + rmpA + rmpA2. Interestingly, the virulence score of ST218 was lower than ST23, whereas one ST218 strain (pPEKP3107) exhibited resistance to carbapenems, cephalosporins, β-lactamase/inhibitors and quinolones and harbored an ~ 59-kb IncN type MDR plasmid carrying resistance genes including blaNDM-1, dfrA14 and qnrS1. Importantly, blaNDM-1 and qnrS1 were flanked with IS26 located within the plasmid that could successfully transfer into E. coli J53. Additionally, PEKP2044 harbored an ~ 41-kb resistance plasmid located within tetA indicating resistance to doxycycline. CONCLUSION The emergence of blaNDM-1 revealed that there is great potential for ST218 Kp to become a high-risk clone for MDR-hvKp, indicating the urgent need for enhanced genomic surveillance.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Chao Liu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | | | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China.
| | - Ming Lu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China.
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
27
|
Pu D, Zhao J, Chang K, Zhuo X, Cao B. "Superbugs" with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing) 2023; 68:2658-2670. [PMID: 37821268 DOI: 10.1016/j.scib.2023.09.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Although hypervirulent Klebsiella pneumoniae (hvKP) can produce community-acquired infections that are fatal in young and adult hosts, such as pyogenic liver abscess, endophthalmitis, and meningitis, it has historically been susceptible to antibiotics. Carbapenem-resistant K. pneumoniae (CRKP) is usually associated with urinary tract infections acquired in hospitals, pneumonia, septicemias, and soft tissue infections. Outbreaks and quick spread of CRKP in hospitals have become a major challenge in public health due to the lack of effective antibacterial treatments. In the early stages of K. pneumoniae development, HvKP and CRKP first appear as distinct routes. However, the lines dividing the two pathotypes are vanishing currently, and the advent of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) is devastating as it is simultaneously multidrug-resistant, hypervirulent, and highly transmissible. Most CR-hvKP cases have been reported in Asian clinical settings, particularly in China. Typically, CR-hvKP develops when hvKP or CRKP acquires plasmids that carry either the carbapenem-resistance gene or the virulence gene. Alternatively, classic K. pneumoniae (cKP) may acquire a hybrid plasmid carrying both genes. In this review, we provide an overview of the key antimicrobial resistance mechanisms, virulence factors, clinical presentations, and outcomes associated with CR-hvKP infection. Additionally, we discuss the possible evolutionary processes and prevalence of CR-hvKP in China. Given the wide occurrence of CR-hvKP, continued surveillance and control measures of such organisms should be assigned a higher priority.
Collapse
Affiliation(s)
- Danni Pu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Kang Chang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Xianxia Zhuo
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
28
|
Khadka S, Ring BE, Walker RS, Krzeminski LR, Pariseau DA, Hathaway M, Mobley HLT, Mike LA. Urine-mediated suppression of Klebsiella pneumoniae mucoidy is counteracted by spontaneous Wzc variants altering capsule chain length. mSphere 2023; 8:e0028823. [PMID: 37610214 PMCID: PMC10597399 DOI: 10.1128/msphere.00288-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 08/24/2023] Open
Abstract
Klebsiella pneumoniae is a hospital-associated pathogen primarily causing urinary tract infections (UTIs), pneumonia, and septicemia. Two challenging lineages include the hypervirulent strains, causing invasive community-acquired infections, and the carbapenem-resistant classical strains, most frequently isolated from UTIs. While hypervirulent strains are often characterized by a hypermucoid phenotype, classical strains usually present with low mucoidy. Since clinical UTI isolates tend to exhibit limited mucoidy, we hypothesized that environmental conditions may drive K. pneumoniae adaptation to the urinary tract and select against mucoid isolates. We found that both hypervirulent K. pneumoniae and classical Klebsiella UTI isolates significantly suppressed mucoidy when cultured in urine without reducing capsule abundance. A genetic screen identified secondary mutations in the wzc tyrosine kinase that overcome urine-suppressed mucoidy. Over-expressing Wzc variants in trans was sufficient to boost mucoidy in both hypervirulent and classical Klebsiella UTI isolates. Wzc is a bacterial tyrosine kinase that regulates capsule polymerization and extrusion. Although some Wzc variants reduced Wzc phospho-status, urine did not alter Wzc phospho-status. Urine does, however, increase K. pneumoniae capsule chain length diversity and enhance cell-surface attachment. The identified Wzc variants counteract urine-mediated effects on capsule chain length and cell attachment. Combined, these data indicate that capsule chain length correlates with K. pneumoniae mucoidy and that this extracellular feature can be fine-tuned by spontaneous Wzc mutations, which alter host interactions. Spontaneous Wzc mutation represents a global mechanism that could fine-tune K. pneumoniae niche-specific fitness in both classical and hypervirulent isolates. IMPORTANCE Klebsiella pneumoniae is high-priority pathogen causing both hospital-associated infections, such as urinary tract infections, and community-acquired infections. Clinical isolates from community-acquired infection are often characterized by a tacky, hypermucoid phenotype, while urinary tract isolates are usually not mucoid. Historically, mucoidy was attributed to capsule overproduction; however, recent reports have demonstrated that K. pneumoniae capsule abundance and mucoidy are not always correlated. Here, we report that human urine suppresses K. pneumoniae mucoidy, diversifies capsule polysaccharide chain length, and increases cell surface association. Moreover, specific mutations in the capsule biosynthesis gene, wzc, are sufficient to overcome urine-mediated suppression of mucoidy. These Wzc variants cause constitutive production of more uniform capsular polysaccharide chains and increased release of capsule from the cell surface, even in urine. These data demonstrate that K. pneumoniae regulates capsule chain length and cell surface attachment in response host cues, which can alter bacteria-host interactions.
Collapse
Affiliation(s)
- Saroj Khadka
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Brooke E Ring
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Ryan S Walker
- Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan, USA
| | | | - Drew A Pariseau
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Matthew Hathaway
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Harry L T Mobley
- Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan, USA
| | - Laura A Mike
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| |
Collapse
|
29
|
Wang W, Tian D, Hu D, Chen W, Zhou Y, Jiang X. Different regulatory mechanisms of the capsule in hypervirulent Klebsiella pneumonia: "direct" wcaJ variation vs. "indirect" rmpA regulation. Front Cell Infect Microbiol 2023; 13:1108818. [PMID: 37180440 PMCID: PMC10168181 DOI: 10.3389/fcimb.2023.1108818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Hypervirulent Klebsiella pneumoniae produce an increased amount of capsular substance and are associated with a hypermucoviscous phenotype. Capsule production is regulated by capsular regulatory genes and capsular gene cluster variations. In the present study, we focus on the effect of rmpA and wcaJon capsule biosynthesis. Methods Phylogenetic trees were constructed to analyze wcaJ and rmpA sequence diversity in different serotypes hypervirulent strains. Then mutant strains (K2044ΔwcaJ, K2044K1wcaJ, K2044K2wcaJand K2044K64wcaJ) were used to verify the effects of wcaJ and its diversity on capsule synthesis and strain virulence. Furthmore, the role of rmpA in capsular synthesis and its mechanisms were detected in K2044ΔrmpA strain. Results RmpA sequences are conversed in different serotypes. And rmpA promoted the production of hypercapsules by simultaneously acting on three promoters in cps cluster. Whereas wcaJ, its sequences are different in different serotypes, and its loss result in the termination of capsular synthesis. Moreover, the results verified that K2 wcaJ could form hypercapsule in K2044 strains (K1 serotype), but K64 wcaJ could not. Discussion The interaction of multiple factors is involved in capsule synthesis, including wcaJ and rmpA. RmpA, an known conserved capsular regulator gene, acts on cps cluster promoters to promote the production of the hypercapsule. WcaJ as initiating enzyme of CPS biosynthesis, its presence determines the synthesis of capsule. Besides, different from rmpA, wcaJ sequence consistency is limited to the same serotype, which cause wcaJ functioning in different serotype strains with sequence recognition specificity.
Collapse
Affiliation(s)
- Weiwen Wang
- Department of Clinical Laboratory, Huashan Hospital of Fudan University, Shanghai, China
| | - Dongxing Tian
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Dakang Hu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Wenjie Chen
- Department of Infectious Disease, Huashan Hospital of Fudan University, Shanghai, China
| | - Ying Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital of Tongji University, Shanghai, China
| | - Xiaofei Jiang
- Department of Clinical Laboratory, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|