1
|
Ge Y, Liu X, Shu J, Jiang X, Wu Y. Development of a Diagnostic Model for Focal Segmental Glomerulosclerosis: Integrating Machine Learning on Activated Pathways and Clinical Validation. Int J Gen Med 2025; 18:1127-1142. [PMID: 40026806 PMCID: PMC11872063 DOI: 10.2147/ijgm.s498407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
Background Focal segmental glomerulosclerosis (FSGS) represents a major global health challenge, with its incidence rising in parallel with advances in diagnostic techniques and the growing prevalence of chronic diseases. This study seeks to enhance the diagnostic accuracy of FSGS by integrating machine learning approaches to identify activated pathways, complemented by robust clinical validation. Methods We analyzed data from 163 FSGS patients and 42 living donors across multiple GEO cohorts via the ComBat algorithm to address batch effects and ensure the comparability of gene expression profiles. Gene set enrichment analysis (GSEA) identified key signaling pathways involved in FSGS pathogenesis. We then developed a highly accurate diagnostic model by integrating nine machine learning algorithms into 101 combinations, achieving near-perfect AUC values across training, validation, and external cohorts. The model identified six genes as potential biomarkers for FSGS. Additionally, immune cell infiltration patterns, particularly those involving natural killer (NK) cells, were explored, revealing the complex interplay between genetics and the immune response in FSGS patients. Immunohistochemical analysis validated the expression of the key markers CD99 and OAZ2 and confirmed the association between NK cells and FSGS. Results The glmBoost+Ridge model exhibited exceptional diagnostic accuracy, achieving an AUC of 0.998 using just six genes: BANF1, TUSC2, SMAD3, TGFB1, CD99, and OAZ2. The prediction score was calculated as follows: score = (0.3997×BANF1) + (0.5543×TUSC2) + (0.5279×SMAD3) + (0.4118×TGFB1) + (0.8665×CD99) + (0.5996×OAZ2). Immunohistochemical analysis confirmed significantly elevated expression levels of CD99 and OAZ2 in the glomeruli and tubulointerstitial tissues of FSGS patients compared with those of controls. Conclusion This study demonstrates a highly accurate machine learning model for FSGS diagnosis. Immunohistochemical validation confirmed elevated expression of CD99 and OAZ2, offering valuable insights into FSGS pathogenesis and potential biomarkers for clinical application.
Collapse
Affiliation(s)
- Yating Ge
- The Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Department of Nephrology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xueqi Liu
- The Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Jinlian Shu
- The Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Department of Nephrology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiao Jiang
- The Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yonggui Wu
- The Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
2
|
Saha A, Ganguly A, Kumar A, Srivastava N, Pathak R. Harnessing Epigenetics: Innovative Approaches in Diagnosing and Combating Viral Acute Respiratory Infections. Pathogens 2025; 14:129. [PMID: 40005506 PMCID: PMC11858160 DOI: 10.3390/pathogens14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Acute respiratory infections (ARIs) caused by viruses such as SARS-CoV-2, influenza viruses, and respiratory syncytial virus (RSV), pose significant global health challenges, particularly for the elderly and immunocompromised individuals. Substantial evidence indicates that acute viral infections can manipulate the host's epigenome through mechanisms like DNA methylation and histone modifications as part of the immune response. These epigenetic alterations can persist beyond the acute phase, influencing long-term immunity and susceptibility to subsequent infections. Post-infection modulation of the host epigenome may help distinguish infected from uninfected individuals and predict disease severity. Understanding these interactions is crucial for developing effective treatments and preventive strategies for viral ARIs. This review highlights the critical role of epigenetic modifications following viral ARIs in regulating the host's innate immune defense mechanisms. We discuss the implications of these modifications for diagnosing, preventing, and treating viral infections, contributing to the advancement of precision medicine. Recent studies have identified specific epigenetic changes, such as hypermethylation of interferon-stimulated genes in severe COVID-19 cases, which could serve as biomarkers for early detection and disease progression. Additionally, epigenetic therapies, including inhibitors of DNA methyltransferases and histone deacetylases, show promise in modulating the immune response and improving patient outcomes. Overall, this review provides valuable insights into the epigenetic landscape of viral ARIs, extending beyond traditional genetic perspectives. These insights are essential for advancing diagnostic techniques and developing innovative treatments to address the growing threat of emerging viruses causing ARIs globally.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India;
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India;
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
3
|
Maikoo S, Palstra RJ, Dong KL, Mahmoudi T, Ndung'u T, Madlala P. Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal. J Virus Erad 2024; 10:100575. [PMID: 39811575 PMCID: PMC11730875 DOI: 10.1016/j.jve.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus. Furthermore, the impact of genetic variation between viral subtypes, specifically within the long terminal repeat (LTR) element of the viral transcriptional promoter on latency reversal, remains unclear. To address this scientific gap, we constructed a minimal genome retroviral vector expressing HIV-1C consensus transactivator of transcription protein (Tat) and green fluorescent protein (GFP) under the control of either HIV-1C consensus LTR (C731CC) or the transmitted/founder (T/F) LTRs derived from PLWH (CT/F731CC), produced corresponding LTR pseudotyped viruses using a vesicular stomatitis virus (VSV-G) pseudotyped Envelope vector and the pCMVΔR8.91 packaging vector containing HIV-1 accessory and rev genes. Viruses produced in this way were used to infect Jurkat E6 and primary CD4+ T cells in vitro. By enriching for latently infected cells, and treating them with different latency reversing agents, we developed an HIV-1C latency model that demonstrated that the HIV-1C consensus LTR has lower reactivation potential compared to its HIV-1B counterpart. Furthermore, HIV-1C T/F LTR pseudotyped proviral genetic variants exhibited a heterogenous reactivation response which was modulated by host cell (genetic) variation. Our data suggests that genetic variation both within and between HIV-1 subtypes influences latency reversal. Future studies should investigate the specific role of variation in host cellular environment on reactivation differences.
Collapse
Affiliation(s)
- Shreyal Maikoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, the Netherlands
- Department of Urology, Erasmus University Medical Center, the Netherlands
| | - Krista L. Dong
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Infectious Disease Division, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, the Netherlands
- Department of Urology, Erasmus University Medical Center, the Netherlands
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Africa Health Research Institute, Durban, KwaZulu-Natal, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Paradise Madlala
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Rao S, Romal S, Torenvliet B, Slotman JA, Huijs T, Mahmoudi T. A 3D organoid platform that supports liver-stage P.falciparum infection can be used to identify intrahepatic antimalarial drugs. Heliyon 2024; 10:e30740. [PMID: 38770342 PMCID: PMC11103482 DOI: 10.1016/j.heliyon.2024.e30740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Malaria, a major public health burden, is caused by Plasmodium spp parasites that first replicate in the human liver to establish infection before spreading to erythrocytes. Liver-stage malaria research has remained challenging due to the lack of a clinically relevant and scalable in vitro model of the human liver. Here, we demonstrate that organoids derived from intrahepatic ductal cells differentiated into a hepatocyte-like fate can support the infection and intrahepatic maturation of Plasmodium falciparum. The P.falciparum exoerythrocytic forms observed expressed both early and late-stage parasitic proteins and decreased in frequency in response to treatment with both known and putative antimalarial drugs that target intrahepatic P.falciparum. The P.falciparum-infected human liver organoids thus provide a platform not only for fundamental studies that characterise intrahepatic parasite-host interaction but can also serve as a powerful translational tool in pre-erythrocytic vaccine development and to identify new antimalarial drugs that target the liver stage infection.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
| | - Shahla Romal
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
| | - Bram Torenvliet
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
| | - Johan A. Slotman
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
- Optical Imaging Centre, Erasmus University Medical Centre, Zuid Holland, 3015, GD, Netherlands
| | | | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
| |
Collapse
|
5
|
Prins HAB, Crespo R, Lungu C, Rao S, Li L, Overmars RJ, Papageorgiou G, Mueller YM, Stoszko M, Hossain T, Kan TW, Rijnders BJA, Bax HI, van Gorp ECM, Nouwen JL, de Vries-Sluijs TEMS, Schurink CAM, de Mendonça Melo M, van Nood E, Colbers A, Burger D, Palstra RJ, van Kampen JJA, van de Vijver DAMC, Mesplède T, Katsikis PD, Gruters RA, Koch BCP, Verbon A, Mahmoudi T, Rokx C. The BAF complex inhibitor pyrimethamine reverses HIV-1 latency in people with HIV-1 on antiretroviral therapy. SCIENCE ADVANCES 2023; 9:eade6675. [PMID: 36921041 PMCID: PMC10017042 DOI: 10.1126/sciadv.ade6675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Reactivation of the latent HIV-1 reservoir is a first step toward triggering reservoir decay. Here, we investigated the impact of the BAF complex inhibitor pyrimethamine on the reservoir of people living with HIV-1 (PLWH). Twenty-eight PLWH on suppressive antiretroviral therapy were randomized (1:1:1:1 ratio) to receive pyrimethamine, valproic acid, both, or no intervention for 14 days. The primary end point was change in cell-associated unspliced (CA US) HIV-1 RNA at days 0 and 14. We observed a rapid, modest, and significant increase in (CA US) HIV-1 RNA in response to pyrimethamine exposure, which persisted throughout treatment and follow-up. Valproic acid treatment alone did not increase (CA US) HIV-1 RNA or augment the effect of pyrimethamine. Pyrimethamine treatment did not result in a reduction in the size of the inducible reservoir. These data demonstrate that the licensed drug pyrimethamine can be repurposed as a BAF complex inhibitor to reverse HIV-1 latency in vivo in PLWH, substantiating its potential advancement in clinical studies.
Collapse
Affiliation(s)
- Henrieke A. B. Prins
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cynthia Lungu
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Letao Li
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ronald J. Overmars
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bart J. A. Rijnders
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hannelore I. Bax
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan L. Nouwen
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theodora E. M. S. de Vries-Sluijs
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carolina A. M. Schurink
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mariana de Mendonça Melo
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Els van Nood
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - David Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Thibault Mesplède
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rob A. Gruters
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Birgit C. P. Koch
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, University Medical Center, Utrecht, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
7
|
Abana CZY, Lamptey H, Bonney EY, Kyei GB. HIV cure strategies: which ones are appropriate for Africa? Cell Mol Life Sci 2022; 79:400. [PMID: 35794316 PMCID: PMC9259540 DOI: 10.1007/s00018-022-04421-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Although combination antiretroviral therapy (ART) has reduced mortality and improved lifespan for people living with HIV, it does not provide a cure. Patients must be on ART for the rest of their lives and contend with side effects, unsustainable costs, and the development of drug resistance. A cure for HIV is, therefore, warranted to avoid the limitations of the current therapy and restore full health. However, this cure is difficult to find due to the persistence of latently infected HIV cellular reservoirs during suppressive ART. Approaches to HIV cure being investigated include boosting the host immune system, genetic approaches to disable co-receptors and the viral genome, purging cells harboring latent HIV with latency-reversing latency agents (LRAs) (shock and kill), intensifying ART as a cure, preventing replication of latent proviruses (block and lock) and boosting T cell turnover to reduce HIV-1 reservoirs (rinse and replace). Since most people living with HIV are in Africa, methods being developed for a cure must be amenable to clinical trials and deployment on the continent. This review discusses the current approaches to HIV cure and comments on their appropriateness for Africa.
Collapse
Affiliation(s)
- Christopher Zaab-Yen Abana
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y Bonney
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B Kyei
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Departments of Medicine and Molecular Microbiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, USA.
- Medical and Scientific Research Center, University of Ghana Medical Centre, Accra, Ghana.
| |
Collapse
|
8
|
Ne E, Crespo R, Izquierdo-Lara R, Rao S, Koçer S, Górska A, van Staveren T, Kan TW, van de Vijver D, Dekkers D, Rokx C, Moulos P, Hatzis P, Palstra RJ, Demmers J, Mahmoudi T. Catchet-MS identifies IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents. Nucleic Acids Res 2022; 50:5577-5598. [PMID: 35640596 PMCID: PMC9177988 DOI: 10.1093/nar/gkac407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022] Open
Abstract
A major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has been challenging. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to probe the differential protein composition of the latent and activated HIV-1 5′LTR. Catchet-MS identified known and novel latent 5′LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs. We demonstrate that, by targeting IKZF1 for degradation, these compounds reverse HIV-1 latency in CD4+ T-cells isolated from virally suppressed people living with HIV-1 and that they are able to synergize with other known LRAs.
Collapse
Affiliation(s)
- Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Ray Izquierdo-Lara
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Selin Koçer
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Alicja Górska
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Thomas van Staveren
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| | - David van de Vijver
- Department of Viroscience, Erasmus University Medical Center, The Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rg-530, PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| |
Collapse
|
9
|
External quality assessment of HIV-1 DNA quantification assays used in the clinical setting in Italy. Sci Rep 2022; 12:3291. [PMID: 35228581 PMCID: PMC8885833 DOI: 10.1038/s41598-022-07196-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractTotal cell-associated HIV-1 DNA is a surrogate marker of the HIV-1 reservoir, however, certified systems for its quantification are not available. The Italian HIV DNA Network was launched to validate HIV-1 DNA quantification methods in use at University and Hospital labs. A quality control panel including HIV-1 DNA standards, reconstructed blood samples (RBSs) and DNA from different HIV-1 subtypes was blindly tested by 12 participating labs by quantitative real-time PCR (n = 6), droplet digital PCR (n = 3) or both (n = 3). The median 95% hit rate was 4.6 (3.7–5.5) copies per test and linearity in the tested range was excellent (R2 = 1.000 [1.000–1.000]). The median values obtained across labs were 3,370 (2,287–4,245), 445 (299–498), 59 (40–81) and 7 (6–11) HIV-1 DNA copies, for the 3,584, 448, 56 and 7-copy standards, respectively. With RBSs, measured values were within twofold with respect to the median in two thirds of cases. HIV-1 subtypes were missed (CRF01_AE by 3 labs) or underestimated by > 1 log (subtypes A, C, D, F by one lab; CRF01_AE by one lab; CRF02_AG by one lab). The overall performance was excellent with HIV-1 DNA standards, however detection of different HIV-1 subtypes must be improved.
Collapse
|
10
|
Launching a multidisciplinary European collaboration towards a cure for HIV: The EU2Cure Consortium. J Virus Erad 2021; 7:100045. [PMID: 34141442 PMCID: PMC8184646 DOI: 10.1016/j.jve.2021.100045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
We felt the urgency to launch the EU2Cure Consortium to support research and find a cure for the human immunodeficiency virus (HIV) infection through intensified collaboration within Europe. This consortium is open to stakeholders on cure in Europe from academia and the community to connect. The aim of this consortium is to intensify the research collaboration amongst European HIV cure groups and the community and facilitate interactions with other academic and community cure consortia, private parties, and policy makers. Our main aim is to create a European research agenda, data sharing, and development of best practice for clinical and translational science to achieve breakthroughs with clinically feasible HIV cure strategies. This consortium should also enable setting up collaborative studies accessible to a broader group of people living with HIV. Besides reservoir studies, we have identified three overlapping scientific interests in the consortium that provide a starting point for further research within a European network: developing “shock and kill” cure strategies, defining HIV cure biomarkers, and connecting cure cohorts. This strategy should aid stakeholders to sustain progress in HIV cure research regardless of coincidental global health or political crises.
Collapse
|
11
|
Selective cell death in HIV-1-infected cells by DDX3 inhibitors leads to depletion of the inducible reservoir. Nat Commun 2021; 12:2475. [PMID: 33931637 PMCID: PMC8087668 DOI: 10.1038/s41467-021-22608-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
An innovative approach to eliminate HIV-1-infected cells emerging out of latency, the major hurdle to HIV-1 cure, is to pharmacologically reactivate viral expression and concomitantly trigger intracellular pro-apoptotic pathways in order to selectively induce cell death (ICD) of infected cells, without reliance on the extracellular immune system. In this work, we demonstrate the effect of DDX3 inhibitors on selectively inducing cell death in latent HIV-1-infected cell lines, primary CD4+ T cells and in CD4+ T cells from cART-suppressed people living with HIV-1 (PLWHIV). We used single-cell FISH-Flow technology to characterise the contribution of viral RNA to inducing cell death. The pharmacological targeting of DDX3 induced HIV-1 RNA expression, resulting in phosphorylation of IRF3 and upregulation of IFNβ. DDX3 inhibition also resulted in the downregulation of BIRC5, critical to cell survival during HIV-1 infection, and selectively induced apoptosis in viral RNA-expressing CD4+ T cells but not bystander cells. DDX3 inhibitor treatment of CD4+ T cells from PLWHIV resulted in an approximately 50% reduction of the inducible latent HIV-1 reservoir by quantitation of HIV-1 RNA, by FISH-Flow, RT-qPCR and TILDA. This study provides proof of concept for pharmacological reversal of latency coupled to induction of apoptosis towards the elimination of the inducible reservoir.
Collapse
|
12
|
Sperber HS, Togarrati PP, Raymond KA, Bouzidi MS, Gilfanova R, Gutierrez AG, Muench MO, Pillai SK. μ-Lat: A mouse model to evaluate human immunodeficiency virus eradication strategies. FASEB J 2020; 34:14615-14630. [PMID: 32901981 PMCID: PMC8787083 DOI: 10.1096/fj.202001612rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
A critical barrier to the development of a human immunodeficiency virus (HIV) cure is the lack of a scalable animal model that enables robust evaluation of eradication approaches prior to testing in humans. We established a humanized mouse model of latent HIV infection by transplanting "J-Lat" cells, Jurkat cells harboring a latent HIV provirus encoding an enhanced green fluorescent protein (GFP) reporter, into irradiated adult NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ (NSG) mice. J-Lat cells exhibited successful engraftment in several tissues including spleen, bone barrow, peripheral blood, and lung, in line with the diverse natural tissue tropism of HIV. Administration of tumor necrosis factor (TNF)-α, an established HIV latency reversal agent, significantly induced GFP expression in engrafted cells across tissues, reflecting viral reactivation. These data suggest that our murine latency ("μ-Lat") model enables efficient determination of how effectively viral eradication agents, including latency reversal agents, penetrate, and function in diverse anatomical sites harboring HIV in vivo.
Collapse
Affiliation(s)
- Hannah S. Sperber
- Vitalant Research Institute, San Francisco, California, United States of America
- Free University of Berlin, Institute of Biochemistry, Berlin, Germany
- University of California, San Francisco, California, United States of America
| | | | - Kyle A. Raymond
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Mohamed S. Bouzidi
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Renata Gilfanova
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Alan G. Gutierrez
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| |
Collapse
|
13
|
Reynolds VL, Butler P, Abernathy MM, Aschenbrenner L, Best DD, Blank J, Crosby M, Custer L, Escobar PA, Kolaja K, Moggs J, Shuey D, Snyder C, Van Vleet T, Zhou J, Hart TK. Nonclinical safety assessment of epigenetic modulatory drugs: Current status and industry perspective. Regul Toxicol Pharmacol 2020; 117:104746. [PMID: 32911461 DOI: 10.1016/j.yrtph.2020.104746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022]
Abstract
Pharmaceutic products designed to perturb the function of epigenetic modulators have been approved by regulatory authorities for treatment of advanced cancer. While the predominant effort in epigenetic drug development continues to be in oncology, non-oncology indications are also garnering interest. A survey of pharmaceutical companies was conducted to assess the interest and concerns for developing small molecule direct epigenetic effectors (EEs) as medicines. Survey themes addressed (1) general levels of interest and activity with EEs as therapeutic agents, (2) potential safety concerns, and (3) possible future efforts to develop targeted strategies for nonclinical safety assessment of EEs. Thirteen companies contributed data to the survey. Overall, the survey data indicate the consensus opinion that existing ICH guidelines are effective and appropriate for nonclinical safety assessment activities with EEs. Attention in the framework of study design should, on a case by case basis, be considered for delayed or latent toxicities, carcinogenicity, reproductive toxicity, and the theoretical potential for transgenerational effects. While current guidelines have been appropriate for the nonclinical safety assessments of epigenetic targets, broader experience with a wide range of epigenetic targets will provide information to assess the potential need for new or revised risk assessment strategies for EE drugs.
Collapse
Affiliation(s)
| | | | | | | | - Derek D Best
- Lilly Research Laboratories, Indianapolis, IN, USA
| | - Jim Blank
- Takeda Pharmaceutical, Cambridge, MA, USA
| | - Meredith Crosby
- AbbVie Inc. Global Pharmaceutical Research and Development, Preclinical Safety, 1 North Waukegan Road, North Chicago, IL, USA
| | - Laura Custer
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ, USA
| | | | - Kyle Kolaja
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ, USA
| | - Jonathan Moggs
- Novartis Institutes for BioMedical Research, Translational Medicine, Basel, Switzerland
| | - Dana Shuey
- Incyte Corporation, 1801 Augustine Cutoff, Wilmington, DE, USA
| | | | - Terry Van Vleet
- AbbVie Inc. Global Pharmaceutical Research and Development, Preclinical Safety, 1 North Waukegan Road, North Chicago, IL, USA
| | - Junguo Zhou
- Nonclinical Safety, Janssen Research and Development LLC., Raritan, NJ, USA
| | - Timothy K Hart
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA, USA
| |
Collapse
|
14
|
Stoszko M, Al-Hatmi AMS, Skriba A, Roling M, Ne E, Crespo R, Mueller YM, Najafzadeh MJ, Kang J, Ptackova R, LeMasters E, Biswas P, Bertoldi A, Kan TW, de Crignis E, Sulc M, Lebbink JH, Rokx C, Verbon A, van Ijcken W, Katsikis PD, Palstra RJ, Havlicek V, de Hoog S, Mahmoudi T. Gliotoxin, identified from a screen of fungal metabolites, disrupts 7SK snRNP, releases P-TEFb, and reverses HIV-1 latency. SCIENCE ADVANCES 2020; 6:eaba6617. [PMID: 32851167 PMCID: PMC7423394 DOI: 10.1126/sciadv.aba6617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/01/2020] [Indexed: 05/16/2023]
Abstract
A leading pharmacological strategy toward HIV cure requires "shock" or activation of HIV gene expression in latently infected cells with latency reversal agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs, we used fungal secondary metabolites as a source of bioactive molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the positive transcription elongation factor b (P-TEFb) inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex, to be significantly reduced upon GTX treatment of CD4+ T cells. GTX directly disrupted 7SK snRNP by targeting La-related protein 7 (LARP7), releasing active P-TEFb, which phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD), inducing HIV transcription.
Collapse
Affiliation(s)
- Mateusz Stoszko
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Abdullah M. S. Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
- Center of Expertise in Mycology of Radboud UMC/CWZ, Nijmegen, Netherlands
- Ministry of Health, Directorate General of Health Services, Ibri, Oman
| | - Anton Skriba
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic
| | - Michael Roling
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Yvonne M. Mueller
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Mohammad Javad Najafzadeh
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Joyce Kang
- Key Laboratory of Environmental Pollution Monitoring/Disease Control, Ministry of Education and Guizhou Talent Base of Microbes and Human Health, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Renata Ptackova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic
| | - Elizabeth LeMasters
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Pritha Biswas
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Alessia Bertoldi
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
- Microbiology Section, Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Elisa de Crignis
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Miroslav Sulc
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic
| | - Joyce H.G. Lebbink
- Departments of Molecular Genetics and Radiation Oncology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Wilfred van Ijcken
- Erasmus MC Genomics Core Facility, Department of Cell Biology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | - Vladimir Havlicek
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
- Center of Expertise in Mycology of Radboud UMC/CWZ, Nijmegen, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Netherlands
- Corresponding author.
| |
Collapse
|
15
|
Chory EJ, Kirkland JG, Chang CY, D'Andrea VD, Gourisankar S, Dykhuizen EC, Crabtree GR. Chemical Inhibitors of a Selective SWI/SNF Function Synergize with ATR Inhibition in Cancer Cell Killing. ACS Chem Biol 2020; 15:1685-1696. [PMID: 32369697 PMCID: PMC8273930 DOI: 10.1021/acschembio.0c00312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SWI/SNF (BAF) complexes are a diverse family of ATP-dependent chromatin remodelers produced by combinatorial assembly that are mutated in and thought to contribute to 20% of human cancers and a large number of neurologic diseases. The gene-activating functions of BAF complexes are essential for viability of many cell types, limiting the development of small molecule inhibitors. To circumvent the potential toxicity of SWI/SNF inhibition, we identified small molecules that inhibit the specific repressive function of these complexes but are relatively nontoxic and importantly synergize with ATR inhibitors in killing cancer cells. Our studies suggest an avenue for therapeutic enhancement of ATR/ATM inhibition and provide evidence for chemical synthetic lethality of BAF complexes as a therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Emma J Chory
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jacob G Kirkland
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Chiung-Ying Chang
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Vincent D D'Andrea
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Sai Gourisankar
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gerald R Crabtree
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
16
|
Dhiman K, Nath SK, Ashish. Monomeric human soluble CD4 dimerizes at physiological temperature: VTSAXS data based modeling and screening of retardant molecules. J Biomol Struct Dyn 2020; 39:3813-3824. [PMID: 32425101 DOI: 10.1080/07391102.2020.1771422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Earlier, solution small angle X-ray scattering (SAXS) data at 10 °C showed that soluble CD4 (sCD4; 1 mg/ml) is monomer with shape similar to single chain in crystal structures of its dimer. Query remained whether the dimeric state of CD4 can form independent of packing effects of crystal? Taking cue from other systems, we explored heat induced possible association of native shapes of sCD4 by variable temperature SAXS (VTSAXS) experiments. The predominant particle size increased consistently with temperature and around 35-40 °C, the estimated mass indicated dimeric state in solution. Furthermore, the observed association was found to be reversible to certain extent. Using SAXS profile representing dimer and crystal structure of monomer, we solved models of CD4 dimers which were dominated by D4-D4 interactions and appeared "wobbling" about the crystal structure of dimeric CD4, convincing pre-existence of crystal-like association in solution. To break the dimerization, we theoretically screened for small molecules binding to dimeric interface of D4 domain. Additionally, as negative control or not expecting to interfere, we searched molecules preferentially docking on the apex of D1 domain. VTSAXS experiments of CD4 + molecules at ∼1:3 molar ratio showed that as expected few D4 reactive hits could retard dimerization, yet surprisingly molecules which docked at D1 domain could also derail dimerization. Additional analysis led to conclusion that there lies a systematic communication network across the structural length of sCD4 which senses binding to self and other molecules, and our work can be used to develop new (or re-purpose known) molecules as CD4-reactive immunosuppressive agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanika Dhiman
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Samir Kumar Nath
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashish
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
18
|
Hashemi P, Sadowski I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med Res Rev 2020; 40:881-908. [PMID: 31608481 PMCID: PMC7216841 DOI: 10.1002/med.21638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The latency phenomenon produced by human immunodeficiency virus (HIV-1) prevents viral clearance by current therapies, and consequently development of a cure for HIV-1 disease represents a formidable challenge. Research over the past decade has resulted in identification of small molecules that are capable of exposing HIV-1 latent reservoirs, by reactivation of viral transcription, which is intended to render these infected cells sensitive to elimination by immune defense recognition or apoptosis. Molecules with this capability, known as latency-reversing agents (LRAs) could lead to realization of proposed HIV-1 cure strategies collectively termed "shock and kill," which are intended to eliminate the latently infected population by forced reactivation of virus replication in combination with additional interventions that enhance killing by the immune system or virus-mediated apoptosis. Here, we review efforts to discover novel LRAs via low- and high-throughput small molecule screens, and summarize characteristics and biochemical properties of chemical structures with this activity. We expect this analysis will provide insight toward further research into optimized designs for new classes of more potent LRAs.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
19
|
Gatchalian J, Liao J, Maxwell MB, Hargreaves DC. Control of Stimulus-Dependent Responses in Macrophages by SWI/SNF Chromatin Remodeling Complexes. Trends Immunol 2020; 41:126-140. [PMID: 31928914 PMCID: PMC6995420 DOI: 10.1016/j.it.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic regulation plays an important role in controlling the activation, timing, and resolution of innate immune responses in macrophages. Previously, SWI/SNF chromatin remodeling was found to define the kinetics and selectivity of gene activation in response to microbial ligands; however, these studies do not reflect a comprehensive understanding of SWI/SNF complex regulation. In 2018, a new variant of the SWI/SNF complex was identified with unknown function in inflammatory gene regulation. Here, we summarize the biochemical and genomic properties of SWI/SNF complex variants and the potential for increased regulatory control of innate immune transcriptional programs in light of such biochemical diversity. Finally, we review the development of SWI/SNF complex chemical inhibitors and degraders that could be used to modulate immune responses.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingwen Liao
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Matthew B Maxwell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Li C, Mousseau G, Valente ST. Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 2019; 12:23. [PMID: 30992052 PMCID: PMC6466689 DOI: 10.1186/s13072-019-0267-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcription from the integrated HIV-1 promoter is directly governed by its chromatin environment, and the nucleosome-1 downstream from the transcription start site directly impedes transcription from the HIV-1 promoter. The HIV-1 Tat protein regulates the passage from viral latency to active transcription by binding to the viral mRNA hairpin (TAR) and recruiting transcriptional factors to promote transcriptional elongation. The Tat inhibitor didehydro-Cortistatin A (dCA) inhibits transcription and overtime, the lack of low-grade transcriptional events, triggers epigenetic changes at the latent loci that "lock" HIV transcription in a latent state. RESULTS Here we investigated those epigenetic changes using multiple cell line models of HIV-1 latency and active transcription. We demonstrated that dCA treatment does not alter the classic nucleosome positioning at the HIV-1 promoter, but promotes tighter nucleosome/DNA association correlating with increased deacetylated H3 occupancy at nucleosome-1. Recruitment of the SWI/SNF chromatin remodeling complex PBAF, necessary for Tat-mediated transactivation, is also inhibited, while recruitment of the repressive BAF complex is enhanced. These results were supported by loss of RNA polymerase II recruitment on the HIV genome, even during strong stimulation with latency-reversing agents. No epigenetic changes were detected in cell line models of latency with Tat-TAR incompetent proviruses confirming the specificity of dCA for Tat. CONCLUSIONS We characterized the dCA-mediated epigenetic signature on the HIV genome, which translates into potent blocking effects on HIV expression, further strengthening the potential of Tat inhibitors in "block-and-lock" functional cure approaches.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Guillaume Mousseau
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
21
|
Abner E, Jordan A. HIV "shock and kill" therapy: In need of revision. Antiviral Res 2019; 166:19-34. [PMID: 30914265 DOI: 10.1016/j.antiviral.2019.03.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/05/2023]
Abstract
The implementation of antiretroviral therapy 23 years ago has rendered HIV infection clinically manageable. However, the disease remains incurable, since it establishes latent proviral reservoirs, which in turn can stochastically begin reproducing viral particles throughout the patient's lifetime. Viral latency itself depends in large part on the silencing environment of the infected host cell, which can be chemically manipulated. "Shock and kill" therapy intends to reverse proviral quiescence by inducing transcription with pharmaceuticals and allowing a combination of antiretroviral therapy, host immune clearance and HIV-cytolysis to remove latently infected cells, leading to a complete cure. Over 160 compounds functioning as latency-reversing agents (LRAs) have been identified to date, but none of the candidates has yet led to a promising functional cure. Furthermore, fundamental bioinformatic and clinical research from the past decade has highlighted the complexity and highly heterogeneous nature of the proviral reservoirs, shedding doubt on the "shock and kill" concept. Alternative therapies such as the HIV transcription-inhibiting "block and lock" strategy are therefore being considered. In this review we describe the variety of existing classes of LRAs, discuss their current drawbacks and highlight the potential for combinatorial "shocktail" therapies for potent proviral reactivation. We also suggest investigating LRAs with lesser-known mechanisms of action, and examine the feasibility of "block and lock" therapy.
Collapse
Affiliation(s)
- Erik Abner
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
22
|
Marian CA, Stoszko M, Wang L, Leighty MW, de Crignis E, Maschinot CA, Gatchalian J, Carter BC, Chowdhury B, Hargreaves DC, Duvall JR, Crabtree GR, Mahmoudi T, Dykhuizen EC. Small Molecule Targeting of Specific BAF (mSWI/SNF) Complexes for HIV Latency Reversal. Cell Chem Biol 2018; 25:1443-1455.e14. [PMID: 30197195 PMCID: PMC6404985 DOI: 10.1016/j.chembiol.2018.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
The persistence of a pool of latently HIV-1-infected cells despite combination anti-retroviral therapy treatment is the major roadblock for a cure. The BAF (mammalian SWI/SNF) chromatin remodeling complex is involved in establishing and maintaining viral latency, making it an attractive drug target for HIV-1 latency reversal. Here we report a high-throughput screen for inhibitors of BAF-mediated transcription in cells and the subsequent identification of a 12-membered macrolactam. This compound binds ARID1A-specific BAF complexes, prevents nucleosomal positioning, and relieves transcriptional repression of HIV-1. Through this mechanism, these compounds are able to reverse HIV-1 latency in an in vitro T cell line, an ex vivo primary cell model of HIV-1 latency, and in patient CD4+ T cells without toxicity or T cell activation. These macrolactams represent a class of latency reversal agents with unique mechanism of action, and can be combined with other latency reversal agents to improve reservoir targeting.
Collapse
Affiliation(s)
- Christine A Marian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Lili Wang
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Matthew W Leighty
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Elisa de Crignis
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Chad A Maschinot
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Jovylyn Gatchalian
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin C Carter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Basudev Chowdhury
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Diana C Hargreaves
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeremy R Duvall
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Gerald R Crabtree
- HHMI and the Departments of Developmental Biology and Pathology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands.
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Chen M, Li W, Zhang ZP, Pan J, Sun Y, Zhang X, Zhang XE, Cui Z. Three-Fragment Fluorescence Complementation for Imaging of Ternary Complexes under Physiological Conditions. Anal Chem 2018; 90:13299-13305. [DOI: 10.1021/acs.analchem.8b02661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minghai Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
24
|
Zhao M, De Crignis E, Rokx C, Verbon A, van Gelder T, Mahmoudi T, Katsikis PD, Mueller YM. T cell toxicity of HIV latency reversing agents. Pharmacol Res 2018; 139:524-534. [PMID: 30366100 DOI: 10.1016/j.phrs.2018.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/07/2023]
Abstract
Combination antiretroviral therapy reduces morbidity and mortality in HIV infected patients. However, the cure of HIV infection is hindered by the persistence of the latent HIV reservoir. Latency reversing agents (LRAs) are developed to target the HIV latently infected cells for HIV reactivation. In addition to reversal of HIV latency, the eradication of HIV latently infected cells will require effector HIV-specific CD8+ T cells. Therefore it is imperative we understand how LRAs affect immune cells. We have performed a comparative in depth analysis of the cytotoxicity of several compounds belonging to four LRA classes on T cells, B cells, and NK cells. In addition, the effect of these LRAs on activation and inhibitory receptor expression of CD8+ T cells was examined. We show that the HDAC inhibitors romidepsin and panobinostat are highly cytotoxic for CD4+ and CD8+ T cells, whereas the PKC agonists bryostatin and prostratin and BET inhibitors JQ1 and OXT-015 were less cytotoxic. The BAF inhibitors CAPE and pyrimethamine exhibit no cytotoxicity. Drug-specific cytotoxicity on CD8+ T cells was comparable between healthy controls and cART-treated HIV-infected patients. Bryostatin and both BET inhibitors downregulated the expression of CD279 on CD8+ T cells without affecting their activation. Our comparison of LRAs identified differences in cytotoxicity between LRA classes and members within a class and suggests that some LRAs such as bryostatin and BET inhibitors may also downregulate inhibitory receptors on activated HIV-specific CD8+ T cells. These findings may guide the use of LRAs that have the capacity to preserve or restore CD8+ T cell immunity.
Collapse
Affiliation(s)
- Manzhi Zhao
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Elisa De Crignis
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Res 2018; 158:63-77. [PMID: 30063970 DOI: 10.1016/j.antiviral.2018.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) has successfully converted HIV to a chronic but manageable infection in many parts of the world, HIV continues to persist within latent cellular reservoirs, which can become reactivated at any time to produce infectious virus. New therapies are therefore needed not only for HIV suppression but also for containing or eliminating HIV reservoirs. Compounds derived from plant, marine, and other natural products have been found to combat HIV infection and/or target HIV reservoirs, and these discoveries have substantially guided current HIV therapy-based studies. Here we summarize the role of natural product-derived compounds in current HIV suppression, remission, and cure strategies.
Collapse
|
26
|
Megaridis MR, Lu Y, Tevonian EN, Junger KM, Moy JM, Bohn-Wippert K, Dar RD. Fine-tuning of noise in gene expression with nucleosome remodeling. APL Bioeng 2018; 2:026106. [PMID: 31069303 PMCID: PMC6481717 DOI: 10.1063/1.5021183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Engineering stochastic fluctuations of gene expression (or “noise”) is integral to precisely bias cellular-fate decisions and statistical phenotypes in both single-cell and multi-cellular systems. Epigenetic regulation has been shown to constitute a large source of noise, and thus, engineering stochasticity is deeply intertwined with epigenetics. Here, utilizing chromatin remodeling, we report that Caffeic acid phenethyl ester (CA) and Pyrimethamine (PYR), two inhibitors of BAF250a, a subunit of the Brahma-associated factor (BAF) nucleosome remodeling complex, enable differential and tunable control of noise in transcription and translation from the human immunodeficiency virus long terminal repeat promoter in a dose and time-dependent manner. CA conserves noise levels while increasing mean abundance, resulting in direct tuning of the transcriptional burst size, while PYR strictly increases transcriptional initiation frequency while conserving a constant transcriptional burst size. Time-dependent treatment with CA reveals non-continuous tuning with noise oscillating at a constant mean abundance at early time points and the burst size increasing for treatments after 5 h. Treatments combining CA and Protein Kinase C agonists result in an even larger increase of abundance while conserving noise levels with a highly non-linear increase in variance of up to 63× untreated controls. Finally, drug combinations provide non-antagonistic combinatorial tuning of gene expression noise and map a noise phase space for future applications with viral and synthetic gene vectors. Active remodeling of nucleosomes and BAF-mediated control of gene expression noise expand a toolbox for the future design and engineering of stochasticity in living systems.
Collapse
Affiliation(s)
- Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kendall M Junger
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer M Moy
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
27
|
A New Quinoline BRD4 Inhibitor Targets a Distinct Latent HIV-1 Reservoir for Reactivation from Other "Shock" Drugs. J Virol 2018; 92:JVI.02056-17. [PMID: 29343578 DOI: 10.1128/jvi.02056-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 01/30/2023] Open
Abstract
Upon HIV-1 infection, a reservoir of latently infected resting T cells prevents the eradication of the virus from patients. To achieve complete depletion, the existing virus-suppressing antiretroviral therapy must be combined with drugs that reactivate the dormant viruses. We previously described a novel chemical scaffold compound, MMQO (8-methoxy-6-methylquinolin-4-ol), that is able to reactivate viral transcription in several models of HIV latency, including J-Lat cells, through an unknown mechanism. MMQO potentiates the activity of known latency-reversing agents (LRAs) or "shock" drugs, such as protein kinase C (PKC) agonists or histone deacetylase (HDAC) inhibitors. Here, we demonstrate that MMQO activates HIV-1 independently of the Tat transactivator. Gene expression microarrays in Jurkat cells indicated that MMQO treatment results in robust immunosuppression, diminishes expression of c-Myc, and causes the dysregulation of acetylation-sensitive genes. These hallmarks indicated that MMQO mimics acetylated lysines of core histones and might function as a bromodomain and extraterminal domain protein family inhibitor (BETi). MMQO functionally mimics the effects of JQ1, a well-known BETi. We confirmed that MMQO interacts with the BET family protein BRD4. Utilizing MMQO and JQ1, we demonstrate how the inhibition of BRD4 targets a subset of latently integrated barcoded proviruses distinct from those targeted by HDAC inhibitors or PKC pathway agonists. Thus, the quinoline-based compound MMQO represents a new class of BET bromodomain inhibitors that, due to its minimalistic structure, holds promise for further optimization for increased affinity and specificity for distinct bromodomain family members and could potentially be of use against a variety of diseases, including HIV infection.IMPORTANCE The suggested "shock and kill" therapy aims to eradicate the latent functional proportion of HIV-1 proviruses in a patient. However, to this day, clinical studies investigating the "shocking" element of this strategy have proven it to be considerably more difficult than anticipated. While the proportion of intracellular viral RNA production and general plasma viral load have been shown to increase upon a shock regimen, the global viral reservoir remains unaffected, highlighting both the inefficiency of the treatments used and the gap in our understanding of viral reactivation in vivo Utilizing a new BRD4 inhibitor and barcoded HIV-1 minigenomes, we demonstrate that PKC pathway activators and HDAC and bromodomain inhibitors all target different subsets of proviral integration. Considering the fundamental differences of these compounds and the synergies displayed between them, we propose that the field should concentrate on investigating the development of combinatory shock cocktail therapies for improved reservoir reactivation.
Collapse
|
28
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Ao M, Pan Z, Qian Y, Tang B, Feng Z, Fang H, Wu Z, Chen J, Xue Y, Fang M. Design, synthesis, and biological evaluation of AV6 derivatives as novel dual reactivators of latent HIV-1. RSC Adv 2018; 8:17279-17292. [PMID: 35539279 PMCID: PMC9080425 DOI: 10.1039/c8ra01216d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 01/31/2023] Open
Abstract
The “shock and kill” strategy might be a promising therapeutic approach for HIV/AIDS due to the existence of latent viral reservoirs. A major challenge of the “shock and kill” strategy arises from the general lack of clinically effective latency-reversing agents (LRAs). The 2-methylquinoline derivative, antiviral 6 (AV6) has been reported to induce latent HIV-1 expression and act synergistically with a HDAC inhibitor VA to reverse HIV latency. We report herein the design and identification of AV6 analogues which possess the zinc-binding group of HDAC inhibitors and have dual acting mechanism for the reactivation of HIV-1 from latency. Evaluation of compounds for the reactivation of HIV-1 latency identified two excellent active compounds 12c and 12d. Further bioassays revealed that these two compounds reactivated latent HIV-1 through dual mechanism, the inhibition of HDACs and NFAT-required for early HIV-1 gene expression. Additionally, it was found that 12c and 12d could reactivate HIV-1 transcription by releasing P-TEFb from the inactive complex 7SK snRNP. At last, molecular docking identified their orientation and binding interactions at the active site of HDAC2. This experimental data suggests that 12c and 12d can be served as effective HIV-1 LRAs which can be taken up for further studies. As dual-acting HIV LRAs, compounds 12c and 12d could activate latent HIV-1 via the NFAT-required mechanism and as histone deacetylase (HDAC) inhibitors.![]()
Collapse
|
30
|
Dou D, Zhao H, Li Z, Xu L, Xiong X, Wu X, Sun Y, Zeng S, Ouyang Q, Zhou D, Ma N, Lin G, Hu L. CHD1L Promotes Neuronal Differentiation in Human Embryonic Stem Cells by Upregulating PAX6. Stem Cells Dev 2017; 26:1626-1636. [PMID: 28946814 DOI: 10.1089/scd.2017.0110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromodomain helicase DNA-binding protein 1-like gene (CHD1L) was initially isolated as a candidate oncogene in hepatocellular carcinoma, and it has been associated with many malignancies. Knockdown of Chd1l in zygote-stage mouse embryos resulted in developmental arrest, suggesting that Chd1l is required for mouse early development. However, the exact role of CHD1L in development, especially in humans, has not been reported. In this study, we found that overexpression of CHD1L in human embryonic cells (hESCs) upregulated the expression of ectoderm genes, especially PAX6. Furthermore, ectopic expression of CHD1L promoted hESCs to differentiate into neuroepithelium both in embryoid bodies and in directed neuronal differentiation. Knockdown of CHD1L significantly impaired neuroepithelial differentiation of hESCs. Interestingly, Chd1l colocalized with a PAX6-positive cell population and was highly expressed in the ventricular (germinal) zone of fetal mice. Taken together, these data suggest that CHD1L promotes neuronal differentiation of hESCs and may play an important role in nervous system development.
Collapse
Affiliation(s)
- Dandan Dou
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China
| | - Hao Zhao
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China
| | - Zili Li
- 2 National Engineering and Research Center of Human Stem Cells , Changsha, China
| | - Liping Xu
- 3 Department of Histology and Embryology, School of Basic Sciences, Guangzhou Medical University , Guangzhou, China
| | - Xifeng Xiong
- 3 Department of Histology and Embryology, School of Basic Sciences, Guangzhou Medical University , Guangzhou, China
| | - Xingwu Wu
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China
| | - Yi Sun
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China .,2 National Engineering and Research Center of Human Stem Cells , Changsha, China .,4 Key Laboratory of Stem Cell and Reproductive Engineering, Ministry of Health , Changsha, China .,5 Reproductive and Genetic Hospital of CITIC-Xiangya , Changsha, China
| | - Sicong Zeng
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China .,2 National Engineering and Research Center of Human Stem Cells , Changsha, China .,4 Key Laboratory of Stem Cell and Reproductive Engineering, Ministry of Health , Changsha, China .,5 Reproductive and Genetic Hospital of CITIC-Xiangya , Changsha, China
| | - Qi Ouyang
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China .,2 National Engineering and Research Center of Human Stem Cells , Changsha, China .,4 Key Laboratory of Stem Cell and Reproductive Engineering, Ministry of Health , Changsha, China
| | - Di Zhou
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China .,2 National Engineering and Research Center of Human Stem Cells , Changsha, China .,4 Key Laboratory of Stem Cell and Reproductive Engineering, Ministry of Health , Changsha, China .,5 Reproductive and Genetic Hospital of CITIC-Xiangya , Changsha, China
| | - Ningfang Ma
- 3 Department of Histology and Embryology, School of Basic Sciences, Guangzhou Medical University , Guangzhou, China
| | - Ge Lin
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China .,2 National Engineering and Research Center of Human Stem Cells , Changsha, China .,4 Key Laboratory of Stem Cell and Reproductive Engineering, Ministry of Health , Changsha, China .,5 Reproductive and Genetic Hospital of CITIC-Xiangya , Changsha, China
| | - Liang Hu
- 1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University , Changsha, China .,2 National Engineering and Research Center of Human Stem Cells , Changsha, China .,4 Key Laboratory of Stem Cell and Reproductive Engineering, Ministry of Health , Changsha, China .,5 Reproductive and Genetic Hospital of CITIC-Xiangya , Changsha, China
| |
Collapse
|
31
|
Manoto SL, Thobakgale L, Malabi R, Maphanga C, Ombinda-Lemboumba S, Mthunzi-Kufa P. Therapeutic strategies to fight HIV-1 latency: progress and challenges. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Turner AMW, Margolis DM. Chromatin Regulation and the Histone Code in HIV Latency
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:229-243. [PMID: 28656010 PMCID: PMC5482300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of a latent reservoir of Human Immunodeficiency Virus (HIV) infection hidden from immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we discuss recent advances in the field of chromatin regulation, specifically in our understanding of the histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of proviral expression within latently infected cells. We aim to emphasize that a greater understanding of the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency reversal and clearance cure strategies.
Collapse
Affiliation(s)
- Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,To whom all correspondence should be addressed: David Margolis, University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, CB#7042, 120 Mason Farm Road, Chapel Hill, NC, 27599-7435, Tel: (919) 966-6388, .
| |
Collapse
|
33
|
The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:197-252. [PMID: 28069134 DOI: 10.1016/bs.ircmb.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay.
Collapse
|