1
|
Luo W, Xu M, Wong N, Ng CSH. Alternative Splicing in Lung Adenocarcinoma: From Bench to Bedside. Cancers (Basel) 2025; 17:1329. [PMID: 40282505 PMCID: PMC12025742 DOI: 10.3390/cancers17081329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor and the most prevalent pathological type of lung cancer. The alternative splicing (AS) of mRNA enables the generation of multiple protein products from a single gene. This is a tightly regulated process that significantly contributes to the proteome diversity in eukaryotes. Recent multi-omics studies have delineated the splicing profiles that underline LUAD tumorigenesis from initiation to metastasis. Such progress holds robust promise to facilitate the development of screening strategies and individualized therapies. Perturbed AS fosters the emergence of novel neoantigen resources and disturbances in the immune microenvironment, which allow new investigations into modulatory targets for LUAD immunotherapy. This review presents an update on the landscape of dysregulated splicing events in LUAD and the associated mechanisms and theranostic perspectives with unique insights into AS-based immunotherapy, such as Chimeric Antigen Receptor T cell therapy. These AS variants can be used in conjunction with current therapeutic modules in LUAD, allowing bench to bedside translation to combat this highly malignant cancer.
Collapse
Affiliation(s)
| | | | - Nathalie Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.L.); (M.X.)
| | - Calvin Sze-Hang Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.L.); (M.X.)
| |
Collapse
|
2
|
Revelant A, Gessoni F, Montico M, Dhibi R, Brisotto G, Casarotto M, Zanchetta M, Paduano V, Sperti F, Evangelista C, Giordari F, De Re V, Trovò M, Minatel E, Mascarin M, Steffan A, Muraro E. Radical hemithorax radiotherapy induces an increase in circulating PD-1 + T lymphocytes and in the soluble levels of PD-L1 in malignant pleural mesothelioma patients: a possible synergy with PD-1/PD-L1 targeting treatment? Front Immunol 2025; 16:1534766. [PMID: 40236706 PMCID: PMC11997449 DOI: 10.3389/fimmu.2025.1534766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 04/17/2025] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is an aggressive tumor associated with asbestos exposure, characterized by a poor prognosis, managed with surgery, chemotherapy and radiotherapy. Recently, immunotherapy gives a survival advantage compared to chemotherapy, but limited to the non-epithelioid histotype, the rarest type. Radical hemithorax radiotherapy (RHRT) improves the Overall Survival (OS) of MPM patients, irrespective of histotype, and is able to induce immunomodulatory effects. In this study we aim to investigate changes in circulating T lymphocytes phenotype and activity, in MPM patients undergoing RHRT, to evaluate a possible therapeutic space for immunotherapy in this setting. To assess immunomodulatory effects of RHRT we evaluate peripheral blood samples of 35 MPM patients collected before treatment, at the end of RT, and 1 month later. We first notice that higher Lymphocyte-to-Monocyte Ratio (LMR) levels, before RT, are associated with an improved OS. The immune monitoring performed by ELISA assays reveals a significant increase in the serum levels of soluble PD-L1 (sPD-L1) and IFN-γ at the end of RHRT. Furthermore, the percentage of PD-1+ cells, evaluated by flow cytometry, significantly raise after RHRT in T cells, both CD4+ and CD8+. Also the proportion of proliferative cells is significantly expanded after RHRT in all T cell subtypes. After treatment we observe a significant increase in the number of patients showing WT-1 specific CD4+ T cells, measured by intracellular staining. The TCR repertoire analysis, investigated by Next Generation Sequencing, reveals an increased number of expanded T-cell clones after RHRT, and an association between TCR clonality and the percentage of proliferating cytotoxic T lymphocytes. The comparison of TCR sequences obtained in our cohort with those described in a literature cohort of MPM patients, reveals common entries, specific for MPM-associated antigens including WT-1. In this setting, pre-treatment levels of LMR seem to have a positive prognostic role, and RHRT would appear to induce immunomodulating effects, potential biomarkers for immunotherapy eligibility: i.e. increased PD-1+ T lymphocytes, proliferating T cells, expanded T cell clones and augmented levels of sPD-L1. These data suggest the design of a prospective study evaluating a maintenance immunotherapy after RHRT in MPM, even in the epithelioid histotype.
Collapse
Affiliation(s)
- Alberto Revelant
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Gessoni
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Marcella Montico
- Clinical Trial Office, Scientific Direction, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Raja Dhibi
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Mariateresa Casarotto
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Martina Zanchetta
- Clinical Trial Office, Scientific Direction, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Veronica Paduano
- Biobank, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Filippo Sperti
- Biobank, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Chiara Evangelista
- Biobank, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Fabiana Giordari
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Marco Trovò
- Department of Radiation Oncology, Udine General Hospital, Udine, Italy
| | - Emilio Minatel
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Maurizio Mascarin
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
3
|
Suri P, Badalov A, Ruggiu M. Alternative Splicing as a Modulator of the Interferon-Gamma Pathway. Cancers (Basel) 2025; 17:594. [PMID: 40002189 PMCID: PMC11853465 DOI: 10.3390/cancers17040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a critical cytokine that plays a pivotal role in immune system regulation. It is a key mediator of both cellular defense mechanisms and antitumor immunity. As the sole member of the type II interferon family, IFN-γ modulates immune responses by activating macrophages, enhancing natural killer cell function, and regulating gene expression across multiple cellular processes. Alternative splicing is a post-transcriptional gene expression regulatory mechanism that generates multiple mature messenger RNAs from a single gene, dramatically increasing proteome diversity without the need of a proportional genome expansion. This process occurs in 90-95% of human genes, with alternative splicing events allowing for the production of diverse protein isoforms that can have distinct-or even opposing-functional properties. Alternative splicing plays a crucial role in cancer immunology, potentially generating tumor neoepitopes and modulating immune responses. However, how alternative splicing affects IFN-γ's activity is still poorly understood. This review explores how alternative splicing regulates the expression and function of both upstream regulators and downstream effectors of IFN-γ, revealing complex mechanisms of gene expression and immune response modulation. Key transcription factors and signaling molecules of the IFN-γ pathway are alternatively spliced, and alternative splicing can dramatically alter IFN-γ signaling, immune cell function, and response to environmental cues. Specific splice variants can enhance or inhibit IFN-γ-mediated immune responses, potentially influencing cancer immunotherapy, autoimmune conditions, and infectious disease outcomes. The emerging understanding of these splicing events offers promising therapeutic strategies for manipulating immune responses through targeted molecular interventions.
Collapse
Affiliation(s)
- Parul Suri
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| | - Ariana Badalov
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| | - Matteo Ruggiu
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| |
Collapse
|
4
|
Lv X, Sun X, Gao Y, Song X, Hu X, Gong L, Han L, He M, Wei M. Targeting RNA splicing modulation: new perspectives for anticancer strategy? J Exp Clin Cancer Res 2025; 44:32. [PMID: 39885614 PMCID: PMC11781073 DOI: 10.1186/s13046-025-03279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized as a molecular characteristic present in almost all types of tumors. Therefore, identifying cancer-specific subtypes from aberrant processing offers new opportunities for therapeutic development. Numerous splicing modulators, each utilizing different mechanisms, have been developed as promising anticancer therapies, some of which are in clinical trials. In this review, we summarize the splice-altered signatures of cancer cell transcriptomes and the contributions of splicing aberrations to tumorigenesis and progression. Especially, we discuss current and emerging RNA splicing-targeted strategies for cancer therapy, including pharmacological approaches and splice-switching antisense oligonucleotides (ASOs). Finally, we address the challenges and opportunities in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
- Central Laboratory, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Yang Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China
| | - Lang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China.
| |
Collapse
|
5
|
Pecoraro C, Scianò F, Carbone D, Xu G, Deng J, Cascioferro S, Giovannetti E, Diana P, Parrino B. Synthesis and biological evaluation of a new class of azole urea compounds as Akt inhibitors with promising anticancer activity in pancreatic cancer models. Bioorg Chem 2024; 153:107959. [PMID: 39556934 DOI: 10.1016/j.bioorg.2024.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The PI3K/Akt pathway is crucial in numerous cellular functions such as cell growth, survival proliferation and movement in both normal and cancer cells. It plays also a key role in epithelial-mesenchymal transitions and angiogenesis during the tumorigenesis processes. Since many transformative events in cancer are driven by increased PI3K/Akt pathway signaling, Akt is considered a valuable target for developing new therapies against various tumor types, including pancreatic cancer. This is because the PI3K/AKT/mTOR pathway is a key downstream effector of RAS, and RAS activation is the most prominent genetic alteration in pancreatic cancer. Herein we report the synthesis and the biological evaluation of a new series of azole urea compounds that exhibited promising antiproliferative and antimigratory activities against pancreatic cancer cells through an Akt inhibition mechanism. These effects were demonstrated using a variety of assays, including Sulforhodamine B, cell-cycle, wound-healing, and kinase activity, apotposis and ELISA assays. Additionally, the anticancer properties of the most active compound in the series were confirmed in the 3D spheroid model of PATU-T cells.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Fabio Scianò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081 HV, The Netherlands
| | - Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081 HV, The Netherlands
| | - Juan Deng
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081 HV, The Netherlands
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081 HV, The Netherlands; Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 Pisa, Italy.
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
6
|
Pecoraro C, Carbone D, Scianò F, Terrana F, Xu G, Bergonzini C, Roeten MSF, Cascioferro S, Cirrincione G, Diana P, Giovannetti E, Parrino B. Exploring the therapeutic potential of a novel series of imidazothiadiazoles targeting focal adhesion kinase (FAK) for pancreatic cancer treatment: synthesis, mechanistic insights and promising antitumor and safety profile. J Drug Target 2024; 32:1278-1294. [PMID: 39067009 DOI: 10.1080/1061186x.2024.2385557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Focal Adhesion Kinase (FAK) is a non-receptor protein tyrosine kinase that plays a crucial role in various oncogenic processes related to cell adhesion, migration, proliferation, and survival. The strategic targeting of FAK represents a burgeoning approach to address resistant tumours, such as pancreatic ductal adenocarcinoma (PDAC). Herein, we report a new series of twenty imidazo[2,1-b][1, 3, 4]thiadiazole derivatives assayed for their antiproliferative activity against the National Cancer Institute (NCI-60) panel and a wide panel of PDAC models. Lead compound 10l exhibited effective antiproliferative activity against immortalised (SUIT-2, CAPAN-1, PANC-1, PATU-T, BxPC-3), primary (PDAC-3) and gemcitabine-resistant clone (PANC-1-GR) PDAC cells, eliciting IC50 values in the low micromolar range (1.04-3.44 µM), associated with a significant reduction in cell-migration and spheroid shrinkage in vitro. High-throughput kinase arrays revealed a significant inhibition of the FAK signalling network, associated to induction of cell cycle arrest in G2/M phase, suppression of tumour cell invasion and apoptosis induction. The high selectivity index/toxicity prompted studies using PDAC mouse xenografts, demonstrating significant inhibition of tumour growth and safety. In conclusion, compound 10l displayed antitumor activity and safety in both in vitro and in vivo models, emerging as a highly promising lead for the development of FAK inhibitors in PDAC.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Lumobiotics, Karlsruhe, Germany
| | - Francesca Terrana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Cecilia Bergonzini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Margot S F Roeten
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
7
|
Guo Y, Wang X, Du Y, Zhao Y, Gao L, Hao Y, Lv D, Feng X, Zhai Y, Zou B, Han J, Xu E, Yang Y, Yang B, Xi Y, Zhang L. The splicing factor SF3B1 confers ferroptosis resistance and promotes lung adenocarcinoma progression via upregulation of SLC7A11. Cancer Gene Ther 2024; 31:1498-1510. [PMID: 39127833 DOI: 10.1038/s41417-024-00817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the expression of SF3B1 in non-small cell lung cancer, and its clinical significance, biological function, and molecular mechanisms. SF3B1 mRNA and protein levels were elevated in both lung squamous cell carcinoma and lung adenocarcinoma (LUAD) tissues based on TCGA data and immunohistochemistry. Notably, high SF3B1 expression in LUAD was significantly associated with increased lymph node metastasis. Functional experiments involving SF3B1 knockdown and overexpression demonstrated that SF3B1 facilitated the proliferation, invasion, and migration of LUAD cells. Additionally, the SF3B1 inhibitor pladienolide-B attenuated the aggressive behavior of LUAD cells both in vitro and in vivo. RNA sequencing analysis indicated that differentially expressed genes in the SF3B1 knockdown and SF3B1 inhibitor groups were enriched in ferroptosis-related pathways compared to their respective control groups. The antiferroptotic role of SF3B1 in LUAD cells was validated by detecting glutathione depletion, lipid peroxidation, and observing morphological changes using transmission electron microscopy. This process was confirmed to be independent of apoptosis and autophagy, as evidenced by the effects of the ferroptosis inducer erastin, the apoptosis inhibitor Z-VAD-FMK, and the autophagy inhibitor 3-methyladenine. Rescue experiments indicated that the antiferroptotic role of SF3B1 in LUAD is partially mediated by upregulating the expression of SLC7A11.
Collapse
Affiliation(s)
- Yanlin Guo
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaohui Wang
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yu Du
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Inspection and Testing Center, Taiyuan, 030031, Shanxi, China
| | - Yixuan Zhao
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lvye Gao
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanlong Hao
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dou Lv
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Xuefei Feng
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanfang Zhai
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Binbin Zou
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jinli Han
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China
| | - Yue Yang
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China
| | - Bin Yang
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China.
| | - Ling Zhang
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
8
|
Nguyen JQN, Drabarek W, Leeflang AMCHJ, Brands T, van den Bosch TPP, Verdijk RM, van de Werken HJG, van Riet J, Paridaens D, de Klein A, Brosens E, Kiliç E. The Impact of Spliceosome Inhibition in SF3B1-Mutated Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:11. [PMID: 39374010 PMCID: PMC11463709 DOI: 10.1167/iovs.65.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Unfortunately, treatment of patients with uveal melanoma (UM) with metastatic disease is limited. Twenty percent of patients with UM harbor a mutation in the splicing factor gene SF3B1, suggesting that aberrant spliceosome function plays a vital role in tumorigenesis. Splicing inhibitors exploit the preferential sensitivity of spliceosome-compromised leukemic cells to these compounds. Methods We studied the effect of the splicing inhibitor E7107 using two UM cell lines and ex vivo cultured SF3B1- and BAP1-mutated primary UM tumor slices. These UM cell lines and ex vivo tumor slices were exposed for 24 hours to different concentrations of E7107. Tumor slices were stained with hematoxylin and eosin (H&E) and incubated with BAP1, MelanA, MIB-1, and caspase-3 antisera. Results The E7107-exposed UM cell lines exhibited decreased cell viability and increased apoptosis, with the greatest effect on SF3B1-mutated UM cells. A similar effect on UM tumor slices was observed upon exposure to E7107. Additionally, RNA was isolated for differential isoform expression analysis. No significant difference in isoform usage was found genome-wide. However, specific genes were differentially expressed after E7107 treatment in the SF3B1-mutated samples. Moreover, E7107 had the greatest effect on intron retention. Conclusions This study indicates/suggests that mutated SF3B1 UM cells are more sensitive to the splicing inhibitor E7107 than wild-type SF3B1 UM cells.
Collapse
Affiliation(s)
- Josephine Q. N. Nguyen
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | | | - Aïsha M. C. H. J. Leeflang
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Tom Brands
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Thierry P. P. van den Bosch
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Robert M. Verdijk
- The Rotterdam Eye Hospital, BH Rotterdam, The Netherlands
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, ZA Leiden, The Netherlands
| | - Harmen J. G. van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Dion Paridaens
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, BH Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - on behalf of the Rotterdam Ocular Melanoma Study Group
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, BH Rotterdam, The Netherlands
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, ZA Leiden, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| |
Collapse
|
9
|
Weinstein HNW, Hu K, Fish L, Chen YA, Allegakoen P, Pham JH, Hui KSF, Chang CH, Tutar M, Benitez-Rivera L, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a splicing regulator of MDM4. Cell Rep 2024; 43:114622. [PMID: 39146182 PMCID: PMC12035866 DOI: 10.1016/j.celrep.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N W Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Julia H Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Keliana S F Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Chih-Hao Chang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Meltem Tutar
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lorena Benitez-Rivera
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Baco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew O Giacomelli
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
10
|
Harasim G, Frańczak MA, Minutolo F, Granchi C, Giovannetti E, Słomińska EM, Smoleński RT, Peters GJ. Effects of lactate dehydrogenase A and GLUT1 inhibition on human endothelial cell migration in relation to their intracellular nucleotide pool. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:761-769. [PMID: 39037350 DOI: 10.1080/15257770.2024.2379321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
The expression of both lactate dehydrogenase A (LDH-A) and glucose transporter type 1 (GLUT1) is high in pancreatic, thoracic and many other types of cancer. GLUT1 is also highly expressed in endothelial cells (EC), that play an important role in tumor metastasis. We investigated the effect of inhibition of LDH-A by NHI-2 and GLUT1 by PGL14 on cellular migration, a hallmark of metastasis, in relation to changes in intracellular purine nucleotide and nicotinamide adenine dinucleotide pools in a human microvascular endothelial cell line (HMEC-1). HMEC-1 were treated with NHI-2 and PGL14 alone or in combination. Cell migration was tested by the wound healing assay. The intracellular purine nucleotides and NAD+/NADH concentrations were measured using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). Both NHI-2 at 15 µM and 45 µM and PGL14 at 10 µM and 30 µM inhibited migration by 5 to 28% while the combination led to 46% inhibition. The drugs also decreased intracellular nucleotide pools, but only 45 µM NHI-2 altered energy charge and redox status in HMEC-1 cells. Inhibitors of glycolysis attenuated migration and the energy charge of EC and support further development of LDH-A and GLUT1 inhibitors to target cancer aggressiveness and metastasis.
Collapse
Affiliation(s)
- Gabriela Harasim
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Marika A Frańczak
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| | - Ewa M Słomińska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Sciarrillo R, Terrana F, Comandatore A, Supadmanaba IGP, Wang B, Hassouni BE, Mantini G, Jansen G, Avan A, Carbone D, Diana P, Peters GJ, Morelli L, Cloos J, Assaraf YG, Giovannetti E. Exploring Splicing Modulation as an Innovative Approach to Combat Pancreatic Cancer: SF3B1 Emerges as a Prognostic Indicator and Therapeutic Target. Int J Biol Sci 2024; 20:3173-3184. [PMID: 38904016 PMCID: PMC11186358 DOI: 10.7150/ijbs.92671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges in terms of prognosis and treatment. Recent research has identified splicing deregulation as a new cancer hallmark. Herein, we investigated the largely uncharacterized alternative splicing profile and the key splicing factor SF3B1 in PDAC pancreatic cells and tissues as a potential discovery source of plausible drug targets and new predictive biomarkers of clinical outcome. The research involved a transcriptome-wide analysis, comparing profiles of splicing profiles in PDAC primary cells with normal ductal cells. This revealed more than 400 significant differential splicing events in genes involved in regulation of gene expression, primarily related to mRNA splicing, and metabolism of nucleic acids. PDAC cultures were highly sensitive to the SF3B1 modulators, E7107 and Pladienolide-B, showing IC50s in the low nanomolar range. These compounds induced apoptosis, associated to induction of the MCL-1/S splice variant. and reduced cell migration, associated to RON mis-splicing. In an orthotopic mouse model, E7107 showed promising results. Furthermore, we evaluated SF3B1 expression in specimens from 87 patients and found a significant association of SF3B1 expression with progression-free and overall survival. In conclusion, SF3B1 emerges as both a potential prognostic factor and therapeutic target in PDAC, impacting cell proliferation, migration, and apoptosis. These findings warrant future studies on this new therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Francesca Terrana
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Bing Wang
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Btissame El Hassouni
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Gerrit Jansen
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Amir Avan
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Jacqueline Cloos
- Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
12
|
Zhang Y, Lu Y, Wang N, Yang Y, Hao F, Fei X, Chen Y, Wang J. Alternative splicing-related long noncoding RNA ANRIL facilitates hepatocellular carcinoma by targeting the miR-199a-5p/SRSF1 axis and impacting Anillin. Mol Carcinog 2024; 63:1064-1078. [PMID: 38411272 DOI: 10.1002/mc.23709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized by aberrant alternative splicing (AS), which plays an important part in the pathological process of this disease. However, available reports about genes and mechanisms involved in AS process are limited. Our previous research has identified ANRIL as a long noncoding RNA related to the AS process of HCC. Here, we investigated the exact effect and the mechanism of ANRIL on HCC progress. The ANRIL expression profile was validated using the real-time quantitative polymerase chain reaction assay. The western blot analysis and IHC assay were conducted on candidate targets, including SRSF1 and Anillin. The clinicopathological features of 97 patients were collected and analyzed. Loss-of and gain-of-function experiments were conducted. The dual-luciferase reporter assay was applied to verify the interaction between ANRIL, miR-199a-5p, and SRSF1. Anomalous upregulation of ANRIL in HCC was observed, correlating with worse clinicopathological features of HCC. HCC cell proliferation, mobility, tumorigenesis, and metastasis were impaired by depleting ANRIL. We found that ANRIL acts as a sponger of miRNA-199a-5p, resulting in an elevated level of its target protein SRSF1. The phenotypes induced by ANRIL/miR-199a-5p/SRSF1 alteration are associated with Anillin, a validated HCC promoter. ANRIL is an AS-related lncRNA promoting HCC progress by modulating the miR-199a-5p/SRSF1 axis. The downstream effector of this axis in the development of HCC is Anillin.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yiquan Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuchen Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Weinstein HN, Hu K, Fish L, Chen YA, Allegakoen P, Hui KSF, Pham JH, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a key splicing regulator of MDM4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570873. [PMID: 38106152 PMCID: PMC10723389 DOI: 10.1101/2023.12.10.570873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microsatellite instability high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion, cell proliferation, and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N.W. Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California; San Francisco, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Keliana S. F. Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Julia H. Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | | | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | | | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California; San Francisco, USA
| | - Franklin W. Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| |
Collapse
|
14
|
Carbone D, Pecoraro C, Panzeca G, Xu G, Roeten MSF, Cascioferro S, Giovannetti E, Diana P, Parrino B. 1,3,4-Oxadiazole and 1,3,4-Thiadiazole Nortopsentin Derivatives against Pancreatic Ductal Adenocarcinoma: Synthesis, Cytotoxic Activity, and Inhibition of CDK1. Mar Drugs 2023; 21:412. [PMID: 37504943 PMCID: PMC10381170 DOI: 10.3390/md21070412] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
A new series of nortopsentin analogs, in which the central imidazole ring of the natural lead was replaced by a 1,3,4-oxadiazole or 1,3,4-thiadiazole moiety, was efficiently synthesized. The antiproliferative activity of all synthesized derivatives was evaluated against five pancreatic ductal adenocarcinoma (PDAC) cell lines, a primary culture and a gemcitabine-resistant variant. The five more potent compounds elicited EC50 values in the submicromolar-micromolar range, associated with a significant reduction in cell migration. Moreover, flow cytometric analysis after propidium iodide staining revealed an increase in the G2-M and a decrease in G1-phase, indicating cell cycle arrest, while a specific ELISA demonstrated the inhibition of CDK1 activity, a crucial regulator of cell cycle progression and cancer cell proliferation.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Giovanna Panzeca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Margot S. F. Roeten
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 Pisa, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| |
Collapse
|
15
|
Panzeri V, Pieraccioli M, Cesari E, de la Grange P, Sette C. CDK12/13 promote splicing of proximal introns by enhancing the interaction between RNA polymerase II and the splicing factor SF3B1. Nucleic Acids Res 2023; 51:5512-5526. [PMID: 37026485 PMCID: PMC10287901 DOI: 10.1093/nar/gkad258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Transcription-associated cyclin-dependent kinases (CDKs) regulate the transcription cycle through sequential phosphorylation of RNA polymerase II (RNAPII). Herein, we report that dual inhibition of the highly homologous CDK12 and CDK13 impairs splicing of a subset of promoter-proximal introns characterized by weak 3' splice sites located at larger distance from the branchpoint. Nascent transcript analysis indicated that these introns are selectively retained upon pharmacological inhibition of CDK12/13 with respect to downstream introns of the same pre-mRNAs. Retention of these introns was also triggered by pladienolide B (PdB), an inhibitor of the U2 small nucelar ribonucleoprotein (snRNP) factor SF3B1 that recognizes the branchpoint. CDK12/13 activity promotes the interaction of SF3B1 with RNAPII phosphorylated on Ser2, and disruption of this interaction by treatment with the CDK12/13 inhibitor THZ531 impairs the association of SF3B1 with chromatin and its recruitment to the 3' splice site of these introns. Furthermore, by using suboptimal doses of THZ531 and PdB, we describe a synergic effect of these inhibitors on intron retention, cell cycle progression and cancer cell survival. These findings uncover a mechanism by which CDK12/13 couple RNA transcription and processing, and suggest that combined inhibition of these kinases and the spliceosome represents an exploitable anticancer approach.
Collapse
Affiliation(s)
- Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco Pieraccioli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Gemelli Science and Technology Park (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Gemelli Science and Technology Park (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | | | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Gemelli Science and Technology Park (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
16
|
Splicing Modulation Results in Aberrant Isoforms and Protein Products of p53 Pathway Genes and the Sensitization of B Cells to Non-Genotoxic MDM2 Inhibition. Int J Mol Sci 2023; 24:ijms24032410. [PMID: 36768733 PMCID: PMC9916657 DOI: 10.3390/ijms24032410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Several molecular subtypes of cancer are highly dependent on splicing for cell survival. There is a general interest in the therapeutic targeting of splicing by small molecules. E7107, a first-in-class spliceosome inhibitor, showed strong growth inhibitory activities against a large variety of human cancer xenografts. Chronic lymphocytic leukaemia (CLL) is a clinically heterogeneous hematologic malignancy, with approximately 90% of cases being TP53 wild-type at diagnosis. An increasing number of studies are evaluating alternative targeted agents in CLL, including MDM2-p53 binding antagonists. In this study, we report the effect of splicing modulation on key proteins in the p53 signalling pathway, an important cell death pathway in B cells. Splicing modulation by E7107 treatment reduced full-length MDM2 production due to exon skipping, generating a consequent reciprocal p53 increase in TP53WT cells. It was especially noteworthy that a novel p21WAF1 isoform with compromised cyclin-dependent kinase inhibitory activity was produced due to intron retention. E7107 synergized with the MDM2 inhibitor RG7388, via dual MDM2 inhibition; by E7107 at the transcript level and by RG7388 at the protein level, producing greater p53 stabilisation and apoptosis. This study provides evidence for a synergistic MDM2 and spliceosome inhibitor combination as a novel approach to treat CLL and potentially other haematological malignancies.
Collapse
|
17
|
Gregori A, Bergonzini C, Capula M, Mantini G, Khojasteh-Leylakoohi F, Comandatore A, Khalili-Tanha G, Khooei A, Morelli L, Avan A, Danen EH, Schmidt T, Giovannetti E. Prognostic Significance of Integrin Subunit Alpha 2 (ITGA2) and Role of Mechanical Cues in Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2023; 15:628. [PMID: 36765586 PMCID: PMC9913151 DOI: 10.3390/cancers15030628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION PDAC is an extremely aggressive tumor with a poor prognosis and remarkable therapeutic resistance. The dense extracellular matrix (ECM) which characterizes PDAC progression is considered a fundamental determinant of chemoresistance, with major contributions from mechanical factors. This study combined biomechanical and pharmacological approaches to evaluate the role of the cell-adhesion molecule ITGA2, a key regulator of ECM, in PDAC resistance to gemcitabine. METHODS The prognostic value of ITGA2 was analysed in publicly available databases and tissue-microarrays of two cohorts of radically resected and metastatic patients treated with gemcitabine. PANC-1 and its gemcitabine-resistant clone (PANC-1R) were analysed by RNA-sequencing and label-free proteomics. The role of ITGA2 in migration, proliferation, and apoptosis was investigated using hydrogel-coated wells, siRNA-mediated knockdown and overexpression, while collagen-embedded spheroids assessed invasion and ECM remodeling. RESULTS High ITGA2 expression correlated with shorter progression-free and overall survival, supporting its impact on prognosis and the lack of efficacy of gemcitabine treatment. These findings were corroborated by transcriptomic and proteomic analyses showing that ITGA2 was upregulated in the PANC-1R clone. The aggressive behavior of these cells was significantly reduced by ITGA2 silencing both in vitro and in vivo, while PANC-1 cells growing under conditions resembling PDAC stiffness acquired resistance to gemcitabine, associated to increased ITGA2 expression. Collagen-embedded spheroids of PANC-1R showed a significant matrix remodeling and spreading potential via increased expression of CXCR4 and MMP2. Additionally, overexpression of ITGA2 in MiaPaCa-2 cells triggered gemcitabine resistance and increased proliferation, both in vitro and in vivo, associated to upregulation of phospho-AKT. CONCLUSIONS ITGA2 emerged as a new prognostic factor, highlighting the relevance of stroma mechanical properties as potential therapeutic targets to counteract gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | | | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Alireza Khooei
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Erik H. Danen
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| |
Collapse
|
18
|
Li M, Cheng Q, Wang X, Yang Y. Research progress and therapeutic prospect of PHF5A acting as a new target for malignant tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:647-655. [PMID: 36581580 PMCID: PMC10264978 DOI: 10.3724/zdxbyxb-2022-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/01/2022] [Indexed: 11/30/2022]
Abstract
PHD-finger domain protein 5A (PHF5A) is a member of the PHD-finger like protein superfamily and widely expressed in the nucleus of eukaryotes. The PHD-finger like domain is a protein-DNA or protein-protein interaction region. In addition to regulate alternative splicing of target genes as a spliceosome protein subunit, PHF5A is also involved in pluripotency maintenance of embryonic stem cells, chromatin remodeling, DNA damage repair, embryogenesis and histomorphological development. Recently, increasing studies have focused on exploring spliceosome-related and non-spliceosome-related functions of PHF5A and its relationship with the tumorigenesis, development and patient prognosis of various malignant tumors, such as breast cancer, lung cancer and colorectal cancer. The underlying mechanisms of PHF5A may include mediating aberrant alternative splicing of target genes, activating downstream signaling pathways as an oncogene/protein, and regulating abnormal gene transcription as a nuclear transcription factor or cofactor. Besides, PHF5A was also found to be involved in the growth regulation of cancer stem cells. In this review, we aimed to delineate the structural and functional characteristics of PHF5A, to summarize its role in the occurrence and development of malignant tumors hitherto described, and to provide potential targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Man Li
- 1. Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Qianqian Cheng
- 1. Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Xiaojing Wang
- 2. Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu 233004, Anhui Province, China
- 3. Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Yan Yang
- 1. Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| |
Collapse
|
19
|
Setlai BP, Mkhize-Kwitshana ZL, Mehrotra R, Mulaudzi TV, Dlamini Z. Microbiomes, Epigenomics, Immune Response, and Splicing Signatures Interplay: Potential Use of Combination of Regulatory Pathways as Targets for Malignant Mesothelioma. Int J Mol Sci 2022; 23:8991. [PMID: 36012262 PMCID: PMC9409175 DOI: 10.3390/ijms23168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant mesotheliomas (MM) are hard to treat malignancies with poor prognosis and high mortality rates. This cancer is highly misdiagnosed in Sub-Saharan African countries. According to literature, the incidence of MM is likely to increase particularly in low-middle-income countries (LMICs). The burden of asbestos-induced diseases was estimated to be about 231,000 per annum. Lack of awareness and implementation of regulatory frameworks to control exposure to asbestos fibers contributes to the expected increase. Exposure to asbestos fibers can lead to cancer initiation by several mechanisms. Asbestos-induced epigenetic modifications of gene expression machinery and non-coding RNAs promote cancer initiation and progression. Furthermore, microbiome-epigenetic interactions control the innate and adaptive immunity causing exacerbation of cancer progression and therapeutic resistance. This review discusses epigenetic mechanisms with more focus on miRNAs and their interaction with the microbiome. The potential use of epigenetic alterations and microbiota as specific biomarkers to aid in the early detection and/or development of therapeutic targets is explored. The advancement of combinatorial therapies to prolong overall patient survival or possible eradication of MM especially if it is detected early is discussed.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0007, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Ravi Mehrotra
- India Cancer Research Consortium (ICMR-DHR), Department of Health Research, Red Cross Road, New Delhi 110001, India
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0007, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
20
|
Sellin M, Mack R, Rhodes MC, Zhang L, Berg S, Joshi K, Liu S, Wei W, S. J. PB, Larsen P, Taylor RE, Zhang J. Molecular mechanisms by which splice modulator GEX1A inhibits leukaemia development and progression. Br J Cancer 2022; 127:223-236. [PMID: 35422078 PMCID: PMC9296642 DOI: 10.1038/s41416-022-01796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Splice modulators have been assessed clinically in treating haematologic malignancies exhibiting splice factor mutations and acute myeloid leukaemia. However, the mechanisms by which such modulators repress leukaemia remain to be elucidated. OBJECTIVES The primary goal of this assessment was to assess the molecular mechanism by which the natural splice modulator GEX1A kills leukaemic cells in vitro and within in vivo mouse models. METHODS Using human leukaemic cell lines, we assessed the overall sensitivity these cells have to GEX1A via EC50 analysis. We subsequently analysed its effects using in vivo xenograft mouse models and examined whether cell sensitivities were correlated to genetic characteristics or protein expression levels. We also utilised RT-PCR and RNAseq analyses to determine splice change and RNA expression level differences between sensitive and resistant leukaemic cell lines. RESULTS We found that, in vitro, GEX1A induced an MCL-1 isoform shift to pro-apoptotic MCL-1S in all leukaemic cell types, though sensitivity to GEX1A-induced apoptosis was negatively associated with BCL-xL expression. In BCL-2-expressing leukaemic cells, GEX1A induced BCL-2-dependent apoptosis by converting pro-survival BCL-2 into a cell killer. Thus, GEX1A + selective BCL-xL inhibition induced synergism in killing leukaemic cells, while GEX1A + BCL-2 inhibition showed antagonism in BCL-2-expressing leukaemic cells. In addition, GEX1A sensitised FLT3-ITD+ leukaemic cells to apoptosis by inducing aberrant splicing and repressing the expression of FLT3-ITD. Consistently, in in vivo xenografts, GEX1A killed the bulk of leukaemic cells via apoptosis when combined with BCL-xL inhibition. Furthermore, GEX1A repressed leukaemia development by targeting leukaemia stem cells through inhibiting FASTK mitochondrial isoform expression across sensitive and non-sensitive leukaemia types. CONCLUSION Our study suggests that GEX1A is a potent anti-leukaemic agent in combination with BCL-xL inhibitors, which targets leukaemic blasts and leukaemia stem cells through distinct mechanisms.
Collapse
|
21
|
Costamagna A, Natalini D, Camacho Leal MDP, Simoni M, Gozzelino L, Cappello P, Novelli F, Ambrogio C, Defilippi P, Turco E, Giovannetti E, Hirsch E, Cabodi S, Martini M. Docking Protein p130Cas Regulates Acinar to Ductal Metaplasia During Pancreatic Adenocarcinoma Development and Pancreatitis. Gastroenterology 2022; 162:1242-1255.e11. [PMID: 34922945 DOI: 10.1053/j.gastro.2021.12.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acinar to ductal metaplasia is the prerequisite for the initiation of Kras-driven pancreatic ductal adenocarcinoma (PDAC), and candidate genes regulating this process are emerging from genome-wide association studies. The adaptor protein p130Cas emerged as a potential PDAC susceptibility gene and a Kras-synthetic lethal interactor in pancreatic cell lines; however, its role in PDAC development has remained largely unknown. METHODS Human PDAC samples and murine KrasG12D-dependent pancreatic cancer models of increasing aggressiveness were used. p130Cas was conditionally ablated in pancreatic cancer models to investigate its role during Kras-induced tumorigenesis. RESULTS We found that high expression of p130Cas is frequently detected in PDAC and correlates with higher histologic grade and poor prognosis. In a model of Kras-driven PDAC, loss of p130Cas inhibits tumor development and potently extends median survival. Deletion of p130Cas suppresses acinar-derived tumorigenesis and progression by means of repressing PI3K-AKT signaling, even in the presence of a worsening condition like pancreatitis. CONCLUSIONS Our observations finally demonstrated that p130Cas acts downstream of Kras to boost the PI3K activity required for acinar to ductal metaplasia and subsequent tumor initiation. This demonstrates an unexpected driving role of p130Cas downstream of Kras through PI3K/AKT, thus indicating a rational therapeutic strategy of targeting the PI3K pathway in tumors with high expression of p130Cas.
Collapse
Affiliation(s)
- Andrea Costamagna
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Dora Natalini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Del Pilar Camacho Leal
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Matilde Simoni
- IRCCS Ospedale San Raffaele, Preclinical Models of Cancer Unit, Milan, Italy
| | - Luca Gozzelino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Paola Cappello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy; Laboratory of Tumor Immunology, Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Francesco Novelli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy; Laboratory of Tumor Immunology, Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Emilia Turco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Elisa Giovannetti
- Cancer Pharmacology Laboratory, AIRC-Start-Up, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Sara Cabodi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Miriam Martini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
22
|
Supadmanaba IGP, Mantini G, Randazzo O, Capula M, Muller IB, Cascioferro S, Diana P, Peters GJ, Giovannetti E. Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma. Epigenetics 2022; 17:381-404. [PMID: 34057028 PMCID: PMC8993068 DOI: 10.1080/15592294.2021.1916697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient's survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets and/or biomarkers. Remarkably, several studies showed that they actually interact with each other in influencing PDAC progression. Some splicing factors directly interact with specific miRNAs and either facilitate or inhibit their expression, such as Rbfox2, which cleaves the well-known oncogenic miRNA miR-21. Conversely, miR-15a-5p and miR-25-3p significantly downregulate the splicing factor hnRNPA1 which acts also as a tumour suppressor gene and is involved in processing of miR-18a, which in turn, is a negative regulator of KRAS expression. Therefore, this review describes the interaction between splicing and miRNA, as well as bioinformatic tools to explore the effect of splicing modulation towards miRNA profiles, in order to exploit this interplay for the development of innovative treatments. Targeting aberrant splicing and deregulated miRNA, alone or in combination, may hopefully provide novel therapeutic approaches to fight the complex biology and the common treatment recalcitrance of PDAC.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Mjriam Capula
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Ittai B. Muller
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| |
Collapse
|
23
|
Fortarezza F, Pezzuto F, Marzullo A, Cavone D, Romano DE, d'Amati A, Serio G, Vimercati L. Molecular Pathways in Peritoneal Mesothelioma: A Minireview of New Insights. Front Oncol 2022; 12:823839. [PMID: 35223506 PMCID: PMC8866824 DOI: 10.3389/fonc.2022.823839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Mesothelioma is a rare malignant neoplasm with poor survival. It mainly affects the pleura (90%) but can arise in all serous cavities: peritoneum (5-10%), pericardium and tunica vaginalis testis (<1%). The onset of pleural mesothelioma is strictly related to asbestos exposure with a long latency time. The causal link with asbestos has also been suggested for peritoneal mesothelioma, while the importance of exposure in the onset of pericardial and tunica vaginalis testis mesotheliomas is not well known. Mesothelioma remains an aggressive and fatal disease with a five-year mortality rate higher than 95%. However, new therapeutic approaches based on molecular-targeted and immunomodulatory therapies are being explored but have conflicting results. In this context, the identification of critical targets appears mandatory. Awareness of the molecular and physiological changes leading to the neoplastic degeneration of mesothelial cells and the identification of gene mutations, epigenetic alterations, gene expression profiles and altered pathways could be helpful for selecting targetable mechanisms and molecules. In this review, we aimed to report recent research in the last 20 years focusing on the molecular pathways and prognostic factors in peritoneal mesothelioma and their possible diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Pathology Unit, University of Padova, Padova, Italy
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Pathology Unit, University of Padova, Padova, Italy
| | - Andrea Marzullo
- Department of Emergency and Organ Transplantation, Pathology Unit, University of Bari, Bari, Italy
| | - Domenica Cavone
- Department of Interdisciplinary Medicine, Occupational Health Unit, University of Bari, Bari, Italy
| | - Daniele Egidio Romano
- Department of Emergency and Organ Transplantation, Pathology Unit, University of Bari, Bari, Italy
| | - Antonio d'Amati
- Department of Emergency and Organ Transplantation, Pathology Unit, University of Bari, Bari, Italy
| | - Gabriella Serio
- Department of Emergency and Organ Transplantation, Pathology Unit, University of Bari, Bari, Italy
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Occupational Health Unit, University of Bari, Bari, Italy
| |
Collapse
|
24
|
Anobile DP, Montenovo G, Pecoraro C, Franczak M, Ait Iddouch W, Peters GJ, Riganti C, Giovannetti E. Splicing deregulation, microRNA and notch aberrations: fighting the three-headed dog to overcome drug resistance in malignant mesothelioma. Expert Rev Clin Pharmacol 2022; 15:305-322. [PMID: 35533249 DOI: 10.1080/17512433.2022.2074835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/04/2022] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Malignant mesothelioma (MMe) is an aggressive rare cancer of the mesothelium, associated with asbestos exposure. MMe is currently an incurable disease at all stages mainly due to resistance to treatments. It is therefore necessary to elucidate key mechanisms underlying chemoresistance, in an effort to exploit them as novel therapeutic targets. AREAS COVERED Chemoresistance is frequently elicited by microRNA (miRNA) alterations and splicing deregulations. Indeed, several miRNAs, such as miR-29c, have been shown to exert oncogenic or oncosuppressive activity. Alterations in the splicing machinery might also be involved in chemoresistance. Moreover, the Notch signaling pathway, often deregulated in MMe, plays a key role in cancer stem cells formation and self-renewal, leading to drug resistance and relapses. EXPERT OPINION The prognosis of MMe in patients varies among different tumors and patient characteristics, and novel biomarkers and therapies are warranted. This work aims at giving an overview of MMe, with a special focus on state-of-the-art treatments and new therapeutic strategies against vulnerabilities emerging from studies on epigenetics factors. Besides, this review is also the first to discuss the interplay between miRNAs and alternative splicing as well as the role of Notch as new promising frontiers to overcome drug resistance in MMe.
Collapse
Affiliation(s)
- Dario P Anobile
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Oncology, University of Torino, Orbassano, Italy
| | - Giulia Montenovo
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Pecoraro
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
- Farmaceutiche (STEBICEF), Università degli Studi di PalermoDipartimento Di Scienze E Tecnologie Biologiche Chimiche E , Palermo, Italy
| | - Marika Franczak
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Widad Ait Iddouch
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Chiara Riganti
- Department of Oncology, University of Torino, Orbassano, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
- Fondazione Pisana per la Scienza Pisa, 56100 Pisa, Italy
| |
Collapse
|
25
|
Štrbac D, Dolžan V. Novel and Future Treatment Options in Mesothelioma: A Systematic Review. Int J Mol Sci 2022; 23:1975. [PMID: 35216091 PMCID: PMC8874564 DOI: 10.3390/ijms23041975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 12/23/2022] Open
Abstract
Mesothelioma is a rare tumor, frequently associated with asbestos exposure, arising from pleura and peritoneum. Traditionally, diagnosis and treatment have been difficult in a clinical setting. The treatment is based on a trimodal approach involving surgery, chemotherapy, and radiotherapy. The introduction of chemotherapy improved the overall survival. However, the regimen of pemetrexed/cisplatin doublet has not been changed as a standard treatment since 2004. Novel combinations of ipilimumab and nivolumab have only been approved for clinical use in late 2020. The aim of this review was to systematically summarize findings on novel treatment options in mesothelioma. We searched available medical databases online, such as PubMed and Clinicaltrials.gov, to systematically review the literature on novel approaches in immunotherapy, vaccines, and Chimeric Antigen Receptor (CAR)-T cell therapy in mesothelioma. We manually screened 1127 articles on PubMed and 450 trials on ClinicalTrials.gov, and 24 papers and 12 clinical trials published in the last ten years were included in this review. Immunotherapy that was swiftly introduced to treat other thoracic malignancies was slow to reach desirable survival endpoints in mesothelioma, possibly due to limited patient numbers. Novel treatment approaches, such as CAR-T cell therapy, are being investigated. As the incidence of mesothelioma is still rising globally, novel treatment options based on a better understanding of the tumor microenvironment and the genetic drivers that modulate it are needed to support future precision-based therapies.
Collapse
Affiliation(s)
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Guo Z, Shen L, Li N, Wu X, Wang C, Gu Z, Chen Z, Liu J, Mao W, Han Y. Aurora Kinase A as a Diagnostic and Prognostic Marker of Malignant Mesothelioma. Front Oncol 2021; 11:789244. [PMID: 34956905 PMCID: PMC8692759 DOI: 10.3389/fonc.2021.789244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background Malignant mesothelioma (MM) is a highly aggressive cancer with a poor prognosis. Despite the use of several well-known markers, the diagnosis of MM is still challenging in some cases. we applied bioinformatics to identify key genes and screen for diagnostic and prognostic markers of MM. Methods The expression profiles of GSE2549 and GSE112154 microarray datasets from the Gene Expression Omnibus database contained 87 cases of MM tissue and 8 cases of normal mesothelial tissue in total. The GEO2R tool was used to detect differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed using DAVID Bioinformatics Resources. The DEGs protein-protein interaction networks were constructed from the STRING database. Cytoscape was used to identify significant modules and hub genes. The GEPIA database was used to explore relationships between hub genes and prognosis of MM. Immunohistochemistry was used to analyze protein expression in tissue microarrays with 47 Chinese MM tissues. Statistical analyses diagnostic and prognostic values. Results 346 DEGs were identified: 111 genes upregulated, and 235 downregulated. GO analysis showed that the primary biological processes of these DEGs were cell adhesion, leukocyte migration, and angiogenesis. The main cellular components included the extracellular space, extracellular exosome, and extracellular region. The molecular functions were integrin binding, heparin binding, and calcium ion binding. KEGG pathway analysis showed that DEGs are primarily involved in PPAR signaling pathway, extracellular matrix–receptor interactions, and regulation of lipolysis in adipocytes. Survival analysis showed that seven genes—AURKA, GAPDH, TOP2A, PPARG, SCD, FABP4, and CEBPA—may be potential prognostic markers for MM. Immunohistochemical studies showed that Aurora kinase A (AURKA gene encode, Aurora-A) and GAPDH were highly expressed in MM tissue in comparison with normal mesothelial tissue. Kaplan-Meier analysis confirmed a correlation between Aurora-A protein expression and overall survival but did not confirm a correlation with GAPDH. The receiver operating characteristic curves of Aurora-A protein expression suggested acceptable accuracy (AUC = 0.827; 95% CI [0.6686 to 0.9535]; p = 0.04). The sensitivity and specificity of Aurora-A were 83.33% and 77.78%, respectively. Conclusion Aurora-A could be an optimal diagnostic biomarker and a potential prognostic marker for MM.
Collapse
Affiliation(s)
- Zhenying Guo
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Shen
- Office of Education, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ningning Li
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoxiao Wu
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Canming Wang
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Zheng Gu
- Department of Clinical Medicine Engineering, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zhongjian Chen
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Junping Liu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Weimin Mao
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuchen Han,
| |
Collapse
|
27
|
Randazzo O, Cascioferro SM, Pecoraro C, Iddouch WA, Avan A, Parrino B, Carbone D, Perricone U, Peters GJ, Diana P, Giovannetti E. SF3B1 modulators affect key genes in metastasis and drug influx: a new approach to fight pancreatic cancer chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:904-922. [PMID: 35582381 PMCID: PMC8992438 DOI: 10.20517/cdr.2021.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Aim: Because mutations of splicing factor 3B subunit-1 (SF3B1) have been identified in 4% of pancreatic ductal adenocarcinoma (PDAC) patients, we investigated the activity of new potential inhibitors of SF3B1 in combination with gemcitabine, one of the standard drugs, in PDAC cell lines. Methods: One imidazo[2,1-b][1,3,4]thiadiazole derivative (IS1) and three indole derivatives (IS2, IS3 and IS4), selected by virtual screening from an in-house library, were evaluated by the sulforhodamine-B and wound healing assay for their cytotoxic and antimigratory activity in the PDAC cells SUIT-2, Hs766t and Panc05.04, the latter harbouring the SF3B1 mutations. The effects on the splicing pattern of proto-oncogene recepteur d'origine nantais (RON) and the gemcitabine transporter human equilibrative nucleoside transporter-1 (hENT1) were assessed by PCR, while the ability to reduce tumour volume was tested in spheroids of primary PDAC cells. Results: The potential SF3B1 modulators inhibited PDAC cell proliferation and prompted induction of cell death. All compounds showed an interesting anti-migratory ability, associated with splicing RON/ΔRON shift in SUIT-2 cells after 24 h exposure. Moreover, IS1 and IS4 potentiated the sensitivity to gemcitabine in both conventional 2D monolayer and 3D spheroid cultures, and these results might be explained by the statistically significant increase in hENT1 expression (P < 0.05 vs. untreated control cells), potentially reversing PDAC chemoresistance. Conclusion: These results support further studies on new SF3B1 inhibitors and the role of RON/hENT1 modulation to develop effective drug combinations against PDAC.
Collapse
Affiliation(s)
- Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
- Authors contributed equally
| | - Stella M. Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
- Authors contributed equally
| | - Camilla Pecoraro
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
- Authors contributed equally
| | - Widad Ait Iddouch
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
| | - Ugo Perricone
- Drug Discovery Unit, Fondazione Ri.MED, Palermo 90128, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-210, Poland
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa 56124, Italy
| |
Collapse
|
28
|
Wang J, Li X, Liu Z, Lin X, Zhong F, Li S, Tang X, Zhang Y, Li L. Second-generation antipsychotics induce cardiotoxicity by disrupting spliceosome signaling: Implications from proteomic and transcriptomic analyses. Pharmacol Res 2021; 170:105714. [PMID: 34098070 DOI: 10.1016/j.phrs.2021.105714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Second-generation antipsychotics (SGAs) are first-line drugs that are prescribed for mental disorders in clinic. Severe cardiotoxicity has been widely reported and thus limits their clinical application. This study aimed to identify the common mechanism underlying SGAs-induced cardiotoxicity using dual-omics analyses. Balb/C mice were intraperitoneally injected with two representative SGAs, olanzapine (2.5 mg/kg) and clozapine (25 mg/kg), at clinically comparable doses for 0, 7, 14 and 21 days. Our results showed that both SGAs induced cardiomyocyte degeneration, inflammation infiltration, and cardiac fibrosis, all of which worsened with time. Proteomic analysis revelaed that 22 differentially expressed (DE) proteins overlapped in olanzapine and clozapine-treated hearts. These proteins were significantly enriched in muscle contraction, amino acid metabolism and spliceosomal assembly by GO term analysis and spliceosome signaling was among the top enriched pathways by KEGG analysis. Among the 22 DE proteins, three spliceosome signal proteins were validated in a dynamic detection, and their expression significantly correlated with the extent of SGAs-induced cardiac fibrosis. Following the spliceosome signaling dysregulation, RNA sequencing revealed that alternative splicing events in the mouse hearts were markedly enhanced by SGAs treatments, and the production of vast transcript variants resulted in dysregulation of multiple pathways that are critical for cardiomyocytes adaptation and cardiac remodeling. Pladienolide B, a specific inhibitor of mRNA splicing, successfully corrected SGAs-induced alternative splicing and significantly attenuated the secretion of pro-inflammatory factors and cell deaths induced by SGAs exposure. Our study concluded that the spliceosome signaling was a common pathway driving SGAs cardiotoxicity. Pharmacological inhibition of the spliceosome signaling represents a novel therapeutic strategy against SGAs cardiotoxicity.
Collapse
Affiliation(s)
- Jing Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xiaoqing Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xinyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Fan Zhong
- Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xinru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
刘 佳, 米 春, 龙 文, 孙 涛. Role of alternative splicing events in endometrial cancer prognosis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:680-688. [PMID: 34382583 PMCID: PMC10930128 DOI: 10.11817/j.issn.1672-7347.2021.190763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Alternative splicing (AS), as a potent and pervasive mechanism of transcriptional regulation, can expand the genome's coding capacity. Growing evidence suggests that the AS events may be associated with various types of cancer. This study aims to explore the prognostic value of AS in endometrial cancer (EC). METHODS Differently expressed AS (DEAS) events were screened by pairing the percent spliced in (PSI) value of tumor and paracancerous tissues in The Cancer Genome Atlas (TCGA) database, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on their parental gene analysis of organisms. Subsequently, univariate Cox analysis was used to identify the prognostic AS events and a stepwise multi-factor Cox regression analysis was performed to further construct prognostic models. Furthermore, the diagnostic value of the prognostic model was evaluated by receiver operating characteristic (ROC) curve and Kaplan-Meier analysis. Finally, the regulatory network of AS events and splicing factory in the model was also constructed. RESULTS A total of 28 281 AS events were detected in EC. Of them, 42 DEAS were identified, and their parental genes were involved in tumor-related processes such as meiotic nuclear division, alpha-amino acid biosynthetic process, nuclear division, and so on. Univariate Cox analysis identified 2 289 prognostic-related AS events and constructed Cox prognostic models based on 7 different types and all types of AS events, in which the area under the curve of ROC of all types was as high as 0.882 and was better than that of 7 different splicing types. Finally, 12 splicing factors and AS events showed an obvious regulatory relationship. CONCLUSIONS We use the whole genome analysis of AS events to establish a scientific prognostic prediction model for EC patients, which provides a reliable theoretical basis for the evaluation of EC clinical prognosis.
Collapse
Affiliation(s)
| | - 春梅 米
- 米春梅,, ORCID: 0000-0002-8558-8602
| | | | | |
Collapse
|
30
|
Lai J, Yang H, Xu T. Systemic characterization of alternative splicing related to prognosis and immune infiltration in malignant mesothelioma. BMC Cancer 2021; 21:848. [PMID: 34294080 PMCID: PMC8299698 DOI: 10.1186/s12885-021-08548-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a relatively rare and highly lethal tumor with few treatment options. Thus, it is important to identify prognostic markers that can help clinicians diagnose mesothelioma earlier and assess disease activity more accurately. Alternative splicing (AS) events have been recognized as critical signatures for tumor diagnosis and treatment in multiple cancers, including MM. METHODS We systematically examined the AS events and clinical information of 83 MM samples from TCGA database. Univariate Cox regression analysis was used to identify AS events associated with overall survival. LASSO analyses followed by multivariate Cox regression analyses were conducted to construct the prognostic signatures and assess the accuracy of these prognostic signatures by receiver operating characteristic (ROC) curve and Kaplan-Meier survival analyses. The ImmuCellAI and ssGSEA algorithms were used to assess the degrees of immune cell infiltration in MM samples. The survival-related splicing regulatory network was established based on the correlation between survival-related AS events and splicing factors (SFs). RESULTS A total of 3976 AS events associated with overall survival were identified by univariate Cox regression analysis, and ES events accounted for the greatest proportion. We constructed prognostic signatures based on survival-related AS events. The prognostic signatures proved to be an efficient predictor with an area under the curve (AUC) greater than 0.9. Additionally, the risk score based on 6 key AS events proved to be an independent prognostic factor, and a nomogram composed of 6 key AS events was established. We found that the risk score was significantly decreased in patients with the epithelioid subtype. In addition, unsupervised clustering clearly showed that the risk score was associated with immune cell infiltration. The abundances of cytotoxic T (Tc) cells, natural killer (NK) cells and T-helper 17 (Th17) cells were higher in the high-risk group, whereas the abundances of induced regulatory T (iTreg) cells were lower in the high-risk group. Finally, we identified 3 SFs (HSPB1, INTS1 and LUC7L2) that were significantly associated with MM patient survival and then constructed a regulatory network between the 3 SFs and survival-related AS to reveal potential regulatory mechanisms in MM. CONCLUSION Our study provided a prognostic signature based on 6 key events, representing a better effective tumor-specific diagnostic and prognostic marker than the TNM staging system. AS events that are correlated with the immune system may be potential therapeutic targets for MM.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Hainan Yang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
31
|
Muller IB, Meijers S, Kampstra P, van Dijk S, van Elswijk M, Lin M, Wojtuszkiewicz AM, Jansen G, de Jonge R, Cloos J. Computational comparison of common event-based differential splicing tools: practical considerations for laboratory researchers. BMC Bioinformatics 2021; 22:347. [PMID: 34174808 PMCID: PMC8236165 DOI: 10.1186/s12859-021-04263-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated. RESULTS Log-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation (β > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 (β < 60%). CONCLUSIONS Prior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events.
Collapse
Affiliation(s)
- Ittai B Muller
- Department of Clinical Chemistry, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
| | | | | | | | | | - Marry Lin
- Department of Clinical Chemistry, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
| | - Anna M Wojtuszkiewicz
- Department of Hematology, Cancer Center Amsterdam, Rm CCA 4.24, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and immunology Center, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
| | - Robert de Jonge
- Department of Clinical Chemistry, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, Rm CCA 4.24, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Mahfuz AMUB, Zubair-Bin-Mahfuj AM, Podder DJ. A network-biology approach for identification of key genes and pathways involved in malignant peritoneal mesothelioma. Genomics Inform 2021; 19:e16. [PMID: 34261301 PMCID: PMC8261271 DOI: 10.5808/gi.21019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 11/20/2022] Open
Abstract
Even in the current age of advanced medicine, the prognosis of malignant peritoneal mesothelioma (MPM) remains abysmal. Molecular mechanisms responsible for the initiation and progression of MPM are still largely not understood. Adopting an integrated bioinformatics approach, this study aims to identify the key genes and pathways responsible for MPM. Genes that are differentially expressed in MPM in comparison with the peritoneum of healthy controls have been identified by analyzing a microarray gene expression dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of these differentially expressed genes (DEG) were conducted to gain a better insight. A protein-protein interaction (PPI) network of the proteins encoded by the DEGs was constructed using STRING and hub genes were detected analyzing this network. Next, the transcription factors and miRNAs that have possible regulatory roles on the hub genes were detected. Finally, survival analyses based on the hub genes were conducted using the GEPIA2 web server. Six hundred six genes were found to be differentially expressed in MPM; 133 are upregulated and 473 are downregulated. Analyzing the STRING generated PPI network, six dense modules and 12 hub genes were identified. Fifteen transcription factors and 10 miRNAs were identified to have the most extensive regulatory functions on the DEGs. Through bioinformatics analyses, this work provides an insight into the potential genes and pathways involved in MPM.
Collapse
Affiliation(s)
- A. M. U. B. Mahfuz
- Department of Biotechnology & Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka 1209, Bangladesh
| | | | - Dibya Joti Podder
- Department of General Surgery, Sher-E-Bangla Medical College, Barishal 8200, Bangladesh
| |
Collapse
|
33
|
Huang R, Zheng Z, Liu S, Yan P, Song D, Yin H, Hu P, Zhu X, Chang Z, Liu Y, Zhuang J, Meng T, Huang Z, Zhang J. Identification of prognostic and bone metastasis-related alternative splicing signatures in mesothelioma. Cancer Med 2021; 10:4478-4492. [PMID: 34041868 PMCID: PMC8267146 DOI: 10.1002/cam4.3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Mesothelioma (MESO) is an infrequent tumor derived from mesothelial cells of pleura, peritoneum, pericardium, and tunica vaginalis testis. Despite advancement in technologies and better understanding of tumor progression mechanism, the prognosis of MESO remains poor. The role of alternative splicing events (ASEs) in the oncogenesis, tumor metastasis and drug resistance has been widely discussed in multiple cancers. But the prognosis and potential therapeutic value of ASEs in MESO were not clearly studied by now. We constructed a prognostic model using RNA sequencing data and matched ASE data of MESO patients obtained from the TCGA and TCGASpliceSeq database. A total of 3,993 ASEs were identified associated with overall survival using Cox regression analysis. Eight of them were finally figured out to institute the model by lasso regression analysis. The risk score of the model can predict the prognosis independently. Among the identified 390 splicing factors (SF), HSPA1A and DDX3Y was significantly associated with 43 OS-SEs. Among these OS-SEs, SNX5-58744-AT (p = 0.048) and SNX5-58745-AT (p = 0.048) were significantly associated with bone metastasis. Co-expression analysis of signal pathways and SNX5-58744-AT, SNX5-58745-AT was also depicted using GSVA. Finally, we proposed that splicing factor (SF) HSPA1A could regulate SNX5-58744-AT (R = -0.414) and SNX5-58745-AT (R = 0.414) through the pathway "Class I MHC mediated antigen processing and presentation" (R = 0.400). In this way, tumorigenesis and bone metastasis of MESO were controlled.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Zixuan Zheng
- Tongji University School of Medicine, Shanghai, China
| | - Sijia Liu
- Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Tongji University School of Medicine, Shanghai, China
| | - Juanwei Zhuang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
35
|
Du JX, Zhu GQ, Cai JL, Wang B, Luo YH, Chen C, Cai CZ, Zhang SJ, Zhou J, Fan J, Zhu W, Dai Z. Splicing factors: Insights into their regulatory network in alternative splicing in cancer. Cancer Lett 2020; 501:83-104. [PMID: 33309781 DOI: 10.1016/j.canlet.2020.11.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022]
Abstract
More than 95% of all human genes are alternatively spliced after transcription, which enriches the diversity of proteins and regulates transcript and/or protein levels. The splicing isoforms produced from the same gene can manifest distinctly, even exerting opposite effects. Mounting evidence indicates that the alternative splicing (AS) mechanism is ubiquitous in various cancers and drives the generation and maintenance of various hallmarks of cancer, such as enhanced proliferation, inhibited apoptosis, invasion and metastasis, and angiogenesis. Splicing factors (SFs) play pivotal roles in the recognition of splice sites and the assembly of spliceosomes during AS. In this review, we mainly discuss the similarities and differences of SF domains, the details of SF function in AS, the effect of SF-driven pathological AS on different hallmarks of cancer, and the main drivers of SF expression level and subcellular localization. In addition, we briefly introduce the application prospects of targeted therapeutic strategies, including small-molecule inhibitors, siRNAs and splice-switching oligonucleotides (SSOs), from three perspectives (drivers, SFs and pathological AS). Finally, we share our insights into the potential direction of research on SF-centric AS-related regulatory networks.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
36
|
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020; 53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gerrit Jansen
- Amsterdam Immunology and Rheumatology Center, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
37
|
Van Der Steen N, Keller K, Dekker H, Porcelli L, Honeywell RJ, Van Meerloo J, Musters RJP, Kathmann I, Frampton AE, Liu DSK, Ruijtenbeek R, Rolfo C, Pauwels P, Giovannetti E, Peters GJ. Crizotinib sensitizes the erlotinib resistant HCC827GR5 cell line by influencing lysosomal function. J Cell Physiol 2020; 235:8085-8097. [PMID: 31960422 PMCID: PMC7540474 DOI: 10.1002/jcp.29463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
In non-small cell lung cancer, sensitizing mutations in epidermal growth factor receptor (EGFR) or cMET amplification serve as good biomarkers for targeted therapies against EGFR or cMET, respectively. Here we aimed to determine how this different genetic background would affect the interaction between the EGFR-inhibitor erlotinib and the cMET-inhibitor crizotinib. To unravel the mechanism of synergy we investigated the effect of the drugs on various parameters, including cell cycle arrest, migration, protein phosphorylation, kinase activity, the expression of drug efflux pumps, intracellular drug concentrations, and live-cell microscopy. We observed additive effects in EBC-1, H1975, and HCC827, and a strong synergism in the HCC827GR5 cell line. This cell line is a clone of the HCC827 cells that harbor an EGFR exon 19 deletion and has been made resistant to the EGFR-inhibitor gefitinib, resulting in cMET amplification. Remarkably, the intracellular concentration of crizotinib was significantly higher in HCC827GR5 compared to the parental HCC827 cell line. Furthermore, live-cell microscopy with a pH-sensitive probe showed a differential reaction of the pH in the cytoplasm and the lysosomes after drug treatment in the HCC827GR5 in comparison with the HCC827 cells. This change in pH could influence the process of lysosomal sequestration of drugs. These results led us to the conclusion that lysosomal sequestration is involved in the strong synergistic reaction of the HCC827GR5 cell line to crizotinib-erlotinib combination. This finding warrants future clinical studies to evaluate whether genetic background and lysosomal sequestration could guide tailored therapeutic interventions.
Collapse
Affiliation(s)
- Nele Van Der Steen
- Center for Oncological ResearchUniversity of AntwerpAntwerpBelgium
- Department of PathologyAntwerp University HospitalAntwerpBelgium
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Kaylee Keller
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Henk Dekker
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Letizia Porcelli
- Experimental Pharmacology LaboratoryIRCCS Istituto Tumori "Giovanni Paolo II"BariItaly
| | - Richard J. Honeywell
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Johan Van Meerloo
- Department of Pediatric Oncology/HematologyVUmcAmsterdamThe Netherlands
| | | | - Ietje Kathmann
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & CancerImperial CollegeLondonUnited Kingdom
- Department of Clinical & Experimental Medicine, Faculty of Health & Medical SciencesUniversity of SurreyGuildfordUnited Kingdom
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery & CancerImperial CollegeLondonUnited Kingdom
| | - Rob Ruijtenbeek
- Pamgene International BVPamGene‘s‐HertogenboschThe Netherlands
| | - Christian Rolfo
- Center for Oncological ResearchUniversity of AntwerpAntwerpBelgium
- Phase I‐Early Clinical Trials Unit, Oncology DepartmentAntwerp University HospitalAntwerpBelgium
| | - Patrick Pauwels
- Center for Oncological ResearchUniversity of AntwerpAntwerpBelgium
- Department of PathologyAntwerp University HospitalAntwerpBelgium
| | - Elisa Giovannetti
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
- Cancer Pharmacology Lab, AIRC Start‐Up UnitFondazione Pisana per la ScienzaPisaItaly
| | - Godefridus J. Peters
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| |
Collapse
|
38
|
Le Large TY, Mantini G, Meijer LL, Pham TV, Funel N, van Grieken NC, Kok B, Knol J, van Laarhoven HW, Piersma SR, Jimenez CR, Kazemier G, Giovannetti E, Bijlsma MF. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 2020; 5:e138290. [PMID: 32634123 PMCID: PMC7455080 DOI: 10.1172/jci.insight.138290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a relative paucity of cancer cells that are surrounded by an abundance of nontumor cells and extracellular matrix, known as stroma. The interaction between stroma and cancer cells contributes to poor outcome, but how proteins from these individual compartments drive aggressive tumor behavior is not known. Here, we report the proteomic analysis of laser-capture microdissected (LCM) PDAC samples. We isolated stroma, tumor, and bulk samples from a cohort with long- and short-term survivors. Compartment-specific proteins were measured by mass spectrometry, yielding what we believe to be the largest PDAC proteome landscape to date. These analyses revealed that, in bulk analysis, tumor-derived proteins were typically masked and that LCM was required to reveal biology and prognostic markers. We validated tumor CALB2 and stromal COL11A1 expression as compartment-specific prognostic markers. We identified and functionally addressed the contributions of the tumor cell receptor EPHA2 to tumor cell viability and motility, underscoring the value of compartment-specific protein analysis in PDAC.
Collapse
Affiliation(s)
- Tessa Y.S. Le Large
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Laura L. Meijer
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | - Jaco Knol
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
39
|
Optimization of a Luciferase-Expressing Non-Invasive Intrapleural Model of Malignant Mesothelioma in Immunocompetent Mice. Cancers (Basel) 2020; 12:cancers12082136. [PMID: 32752156 PMCID: PMC7465989 DOI: 10.3390/cancers12082136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is an aggressive tumor of the pleural lining that is usually identified at advanced stages and resistant to current therapies. Appropriate pre-clinical mouse tumor models are of pivotal importance to study its biology. Usually, tumor cells have been injected intraperitoneally or subcutaneously. Using three available murine mesothelioma cell lines with different histotypes (sarcomatoid, biphasic, epithelioid), we have set up a simplified model of in vivo growth orthotopically by inoculating tumor cells directly in the thorax with a minimally invasive procedure. Mesothelioma tumors grew along the pleura and spread on the superficial areas of the lungs, but no masses were found outside the thoracic cavity. As observed in human MPM, tumors were highly infiltrated by macrophages and T cells. The luciferase-expressing cells can be visualized in vivo by bioluminescent optical imaging to precisely quantify tumor growth over time. Notably, the bioluminescence signal detected in vivo correctly matched the tumor burden quantified with classical histology. In contrast, the subcutaneous or intraperitoneal growth of these mesothelioma cells was considered either non-representative of the human disease or unreliable to precisely quantify tumor load. Our non-invasive in vivo model of mesothelioma is simple and reproducible, and it reliably recapitulates the human disease.
Collapse
|
40
|
Li Petri G, El Hassouni B, Sciarrillo R, Funel N, Mantini G, Zeeuw van der Laan EA, Cascioferro S, Avan A, Zucali PA, Zaffaroni N, Lagerweij T, Parrino B, Smid K, Deraco M, Granchi C, Braczko A, Smolenski RT, Matherly LH, Jansen G, Assaraf YG, Diana P, Cloos J, Peters GJ, Minutolo F, Giovannetti E. Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds. Br J Cancer 2020; 123:644-656. [PMID: 32493992 PMCID: PMC7434895 DOI: 10.1038/s41416-020-0912-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/12/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors.
Collapse
Affiliation(s)
- Giovanna Li Petri
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Btissame El Hassouni
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Rocco Sciarrillo
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Niccola Funel
- Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Eveline A Zeeuw van der Laan
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Amir Avan
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paolo Andrea Zucali
- Department of Oncology, Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan), Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Tonny Lagerweij
- Department of Neurosurgery, Neuro-Oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Kees Smid
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcello Deraco
- Peritoneal Malignancy Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gerrit Jansen
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
41
|
Eymin B. Targeting the spliceosome machinery: A new therapeutic axis in cancer? Biochem Pharmacol 2020; 189:114039. [PMID: 32417188 DOI: 10.1016/j.bcp.2020.114039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Pre-mRNA splicing is the removal of introns and ligation of exons to form mature mRNAs, and it provides a critical mechanism by which eukaryotic cells can regulate their gene expression. Strikingly, more than 90% of protein-encoding transcripts are alternatively spliced, through exon inclusion/skipping, differential use of 5' or 3' alternative splice sites, intron retention or selection of an alternative promoter, thereby drastically increasing protein diversity. Splicing is altered in various pathological conditions, including cancers. In the last decade, high-throughput transcriptomic analyses have identified thousands of splice variants in cancers, which can distinguish between tumoral and normal tissues as well as identify tumor types, subtypes and clinical stages. These abnormal or aberrantly expressed splice variants, found in all cancer hallmarks, can result from mutations in splice sites, deregulated expression or even somatic mutations of components of the spliceosome machinery. Therefore, and based on these recent observations, a new anti-cancer strategy of targeting the spliceosome machinery with small molecules has emerged; however, the potential for these therapies is still a matter of great debate. Notably, more preclinical studies are needed to clarify which splicing patterns are mainly affected by these compounds, which cancer patients could be the most eligible for these treatments and whether using these spliceosome inhibitors alone or in combination with chemotherapies or targeted therapies would provide better therapeutic benefits. In this commentary, I will discuss all of these aspects.
Collapse
Affiliation(s)
- Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, 38000 Grenoble, France; Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
42
|
Sciarrillo R, Wojtuszkiewicz A, Kooi IE, Leon LG, Sonneveld E, Kuiper RP, Jansen G, Giovannetti E, Kaspers GJ, Cloos J. Glucocorticoid Resistant Pediatric Acute Lymphoblastic Leukemia Samples Display Altered Splicing Profile and Vulnerability to Spliceosome Modulation. Cancers (Basel) 2020; 12:723. [PMID: 32204435 PMCID: PMC7140081 DOI: 10.3390/cancers12030723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/01/2022] Open
Abstract
Glucocorticoid (GC) resistance is a crucial determinant of inferior response to chemotherapy in pediatric acute lymphoblastic leukemia (ALL); however, molecular mechanisms underlying this phenomenon are poorly understood. Deregulated splicing is a common feature of many cancers, which impacts drug response and constitutes an attractive therapeutic target. Therefore, the aim of the current study was to characterize global splicing profiles associated with GC resistance and determine whether splicing modulation could serve as a novel therapeutic option for GC-resistant patients. To this end, 38 primary ALL samples were profiled using RNA-seq-based differential splicing analysis. The impact of splicing modulators was investigated in GC-resistant leukemia cell lines and primary leukemic specimens. Our findings revealed, for the first time, markedly distinct splicing landscapes in ALL samples of B-cell precursor (BCP)-ALL and T-ALL lineages. Differential splicing events associated with GC resistance were involved in RNA processing, a direct response to GCs, survival signaling, apoptosis, cell cycle regulation and energy metabolism. Furthermore, our analyses showed that GC-resistant ALL cell lines and primary samples are sensitive to splicing modulation, alone and in combination with GC. Together, these findings suggest that aberrant splicing is associated with GC resistance and splicing modulators deserve further interest as a novel treatment option for GC-resistant patients.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Departments of Pediatric Oncology, Hematology and Medical Oncology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Anna Wojtuszkiewicz
- Amsterdam UMC, Vrije Universiteit Amsterdam, Departments of Pediatric Oncology and Hematology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Irsan E. Kooi
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Clinical Genetics, 1081 HV Amsterdam, The Netherlands
| | - Leticia G. Leon
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, 3000 CA Rotterdam, The Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, 3584 CX Utrecht, The Netherlands
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, 3584 CX Utrecht, The Netherlands
| | - Gerrit Jansen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Immunology and Rheumatology Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, 56017 San Giuliano Terme (Pisa), Italy
| | - Gertjan J.L. Kaspers
- Princess Máxima Center for Pediatric Oncology, 3584 CX Utrecht, The Netherlands
- Emma’s Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1081 HV Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
43
|
Drexler HL, Choquet K, Churchman LS. Splicing Kinetics and Coordination Revealed by Direct Nascent RNA Sequencing through Nanopores. Mol Cell 2020; 77:985-998.e8. [PMID: 31839405 PMCID: PMC7060811 DOI: 10.1016/j.molcel.2019.11.017] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Understanding how splicing events are coordinated across numerous introns in metazoan RNA transcripts requires quantitative analyses of transient RNA processing events in living cells. We developed nanopore analysis of co-transcriptional processing (nano-COP), in which nascent RNAs are directly sequenced through nanopores, exposing the dynamics and patterns of RNA splicing without biases introduced by amplification. Long nano-COP reads reveal that, in human and Drosophila cells, splicing occurs after RNA polymerase II transcribes several kilobases of pre-mRNA, suggesting that metazoan splicing transpires distally from the transcription machinery. Inhibition of the branch-site recognition complex SF3B rapidly diminished global co-transcriptional splicing. We found that splicing order does not strictly follow the order of transcription and is associated with cis-acting elements, alternative splicing, and RNA-binding factors. Further, neighboring introns in human cells tend to be spliced concurrently, implying that splicing of these introns occurs cooperatively. Thus, nano-COP unveils the organizational complexity of RNA processing.
Collapse
Affiliation(s)
- Heather L Drexler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Cascioferro S, Petri GL, Parrino B, Carbone D, Funel N, Bergonzini C, Mantini G, Dekker H, Geerke D, Peters GJ, Cirrincione G, Giovannetti E, Diana P. Imidazo[2,1-b] [1,3,4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur J Med Chem 2020; 189:112088. [PMID: 32007666 DOI: 10.1016/j.ejmech.2020.112088] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
A new series of eighteen imidazo [2,1-b] [1,3,4]thiadiazole derivatives was efficiently synthesized and screened for antiproliferative activity against the National Cancer Institute (NCI-60) cell lines panel. Two out of eighteen derivatives, compounds 12a and 12h, showed remarkably cytotoxic activity with the half maximal inhibitory concentration values (IC50) ranging from 0.23 to 11.4 μM, and 0.29-12.2 μM, respectively. However, two additional compounds, 12b and 13g, displayed remarkable in vitro antiproliferative activity against pancreatic ductal adenocarcinoma (PDAC) cell lines, including immortalized (SUIT-2, Capan-1, Panc-1), primary (PDAC-3) and gemcitabine-resistant (Panc-1R), eliciting IC50 values ranging from micromolar to sub-micromolar level, associated with significant reduction of cell-migration and spheroid shrinkage. These remarkable results might be explained by modulation of key regulators of epithelial-to-mesenchymal transition (EMT), including E-cadherin and vimentin, and inhibition of metalloproteinase-2/-9. High-throughput arrays revealed a significant inhibition of the phosphorylation of 45 tyrosine kinases substrates, whose visualization on Cytoscape highlighted PTK2/FAK as an important hub. Inhibition of phosphorylation of PTK2/FAK was validated as one of the possible mechanisms of action, using a specific ELISA. In conclusion, novel imidazothiadiazoles show potent antiproliferative activity, mediated by modulation of EMT and PTK2/FAK.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Giovanna Li Petri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56126, Pisa, Italy
| | - Cecilia Bergonzini
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Henk Dekker
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Daan Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, San Giuliano Terme, Pisa, Italy.
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
45
|
Zhang L, Zhang X, Zhang H, Liu F, Bi Y, Zhang Y, Cheng C, Liu J. Knockdown of SF3B1 inhibits cell proliferation, invasion and migration triggering apoptosis in breast cancer via aberrant splicing. Breast Cancer 2020; 27:464-476. [PMID: 31919642 DOI: 10.1007/s12282-020-01045-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Splicing factor 3b subunit 1 (SF3B1) was frequently reported to be significantly mutated in breast cancer. However, the status of SF3B1 expression, its function and molecular consequence in breast cancer remained unreported. METHODS Immunohistochemistry was used to assess SF3B1expression in 110 breast cancer samples. SF3B1 knock‑down in ZR-75-30 and MDA-MB-231 cells was performed by shRNA transfection. The expression of SF3B1 in cells was detected by quantitative real‑time PCR and western blot. Cell proliferation ability was determined by MTT and colony formation assay. Migration and invasion were determined by transwell assay. Flow cytometry was performed to investigate cell cycle and apoptosis. RNA-sequencing was performed to examine differentially expressed genes and affected alternative splicing events. RESULTS SF3B1 is overexpressed in breast cancer tissues compared with normal tissues. Overexpression of SF3B1 is associated with lymph node metastasis. SF3B1 knockdown in MDA-MB-231 and ZR-75-30 breast cancer cells significantly induced the suppression of proliferation, migration, invasion and also enhancement of apoptosis. RNA-sequencing data revealed that 860 genes were significantly up-regulated and 776 genes were significantly down-regulated upon SF3B1 knockdown. Differentially expressed genes enriched in the signaling pathways including Ras signaling pathway; cytokine receptor interaction; tight junction; MAPK signaling pathway, Glycine, serine and threonine metabolism. Alternative splicing analysis revealed that exon skipping (SKIP) and cassette exons (MSKIP) were the most common molecular effect upon SF3B1 knockdown. CONCLUSIONS Our study suggests that SF3B1 may be an important molecular target for breast cancer treatment and provides a new clue for clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.,Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xiaojuan Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.,Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Haitao Zhang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Feng Liu
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yanghui Bi
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.,Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yanyan Zhang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Caixia Cheng
- Department of Pathology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jing Liu
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
46
|
Apoptosis induction and cell cycle arrest of pladienolide B in erythroleukemia cell lines. Invest New Drugs 2019; 38:369-377. [PMID: 31147807 DOI: 10.1007/s10637-019-00796-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
|
47
|
Splicing molecular biology and novel therapies in diffuse malignant peritoneal mesothelioma. EBioMedicine 2019; 39:7-8. [PMID: 30612942 PMCID: PMC6355435 DOI: 10.1016/j.ebiom.2018.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 11/20/2022] Open
|