1
|
Isola V, Hulmi JJ, Mbay T, Kyröläinen H, Häkkinen K, Ahola V, Helms ER, Ahtiainen JP. Changes in hormonal profiles during competition preparation in physique athletes. Eur J Appl Physiol 2025; 125:393-408. [PMID: 39261323 PMCID: PMC11829922 DOI: 10.1007/s00421-024-05606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Physique athletes engage in rigorous competition preparation involving intense energy restriction and physical training to enhance muscle definition. This study investigates hormonal changes and their physiological and performance impacts during such preparation. METHODS Participants included female (10 competing (COMP) and 10 non-dieting controls (CTRL)) and male (13 COMP and 10 CTRL) physique athletes. COMP participants were tested 23 weeks before (PRE), one week before (MID), and 23 weeks after the competition (POST). Non-dieting CTRL participants were tested at similar intervals. Measurements included body composition (DXA), muscle cross-sectional area (ultrasound), energy availability (EA) derived by subtracting exercise energy expenditure (EEE) from energy intake (EI) and dividing by fat-free mass (FFM), muscle strength, and various serum hormone concentrations (ACTH, cortisol, estradiol, FSH, IGF-1, IGFBP-3, insulin, and free and total testosterone and SHBG). RESULTS During the diet, EA (p < 0.001), IGF-1 (p < 0.001), IGFBP-3 (p < 0.01), and absolute muscle strength (p < 0.01-0.001) decreased significantly in both sexes in COMP. Decreases in IGF-1 were also associated with higher loss in FFM. In males, testosterone (p < 0.01) and free testosterone (p < 0.05) decreased, while SHBG (p < 0.001) and cortisol (p < 0.05) increased. Insulin decreased significantly only in males (p < 0.001). Mood disturbances, particularly increased fatigue in males (p < 0.05), highlighted the psychological strain of competition preparation. All these changes were restored by increased EA during the post-competition recovery period. CONCLUSION Significant reductions in IGF-1 and IGFBP-3 during competition preparation may serve as biomarkers for monitoring physiological stress. This study offers valuable insights into hormonal changes, muscle strength, and mood state during energy-restricted intense training.
Collapse
Affiliation(s)
- Ville Isola
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Theo Mbay
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Keijo Häkkinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Vilho Ahola
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eric R Helms
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- Department of Exercise Science and Health Promotion, Muscle Physiology Research Laboratory, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
2
|
Chen F, Zhang Z, Zhang H, Guo P, Feng J, Shen H, Liu X. Activation of α7 Nicotinic Acetylcholine Receptor Improves Muscle Endurance by Upregulating Orosomucoid Expression and Glycogen Content in Mice. J Cell Biochem 2024; 125:e30630. [PMID: 39014907 DOI: 10.1002/jcb.30630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue. Results showed that nicotine and PNU-282987 (PNU), as nonspecific and specific agonists of α7nAChR, respectively, could both significantly increase C57BL6/J mice treadmill-running time in a time- and dose-dependent manner. The improvement effect of PNU on running time and ex vivo muscle fatigue index disappeared when α7nAChR deletion. RNA sequencing revealed that the differential mRNAs affected by PNU were enriched in glycolysis/gluconeogenesis signaling pathways. Further studies found that PNU treatment significantly elevates glycogen content and ATP level in the muscle tissues of α7nAChR+/+ mice but not α7nAChR-/- mice. α7nAChR activation specifically increased endogenous glycogen-targeting protein orosomucoid (ORM) expression both in vivo skeletal muscle tissues and in vitro C2C12 skeletal muscle cells. In ORM1 deficient mice, the positive effects of PNU on running time, glycogen and ATP content, as well as muscle fatigue index, were abolished. Therefore, the activation of α7nAChR could enhance muscle endurance via elevating endogenous anti-fatigue protein ORM and might act as a promising therapeutic strategy for the treatment of muscle fatigue.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Nutrition and Food Hygiene, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Pengyue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Daniels M, Margolis LM, Rood JC, Lieberman HR, Pasiakos SM, Karl JP. Comparative analysis of circulating metabolomic profiles identifies shared metabolic alterations across distinct multistressor military training exercises. Physiol Genomics 2024; 56:457-468. [PMID: 38738316 PMCID: PMC11368567 DOI: 10.1152/physiolgenomics.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Military training provides insight into metabolic responses under unique physiological demands that can be comprehensively characterized by global metabolomic profiling to identify potential strategies for improving performance. This study identified shared changes in metabolomic profiles across three distinct military training exercises, varying in magnitude and type of stress. Blood samples collected before and after three real or simulated military training exercises were analyzed using the same untargeted metabolomic profiling platform. Exercises included a 2-wk survival training course (ST, n = 36), a 4-day cross-country ski march arctic training (AT, n = 24), and a 28-day controlled diet- and exercise-induced energy deficit (CED, n = 26). Log2-fold changes of greater than ±1 in 191, 121, and 64 metabolites were identified in the ST, AT, and CED datasets, respectively. Most metabolite changes were within the lipid (57-63%) and amino acid metabolism (18-19%) pathways and changes in 87 were shared across studies. The largest and most consistent increases in shared metabolites were found in the acylcarnitine, fatty acid, ketone, and glutathione metabolism pathways, whereas the largest decreases were in the diacylglycerol and urea cycle metabolism pathways. Multiple shared metabolites were consistently correlated with biomarkers of inflammation, tissue damage, and anabolic hormones across studies. These three studies of real and simulated military training revealed overlapping alterations in metabolomic profiles despite differences in environment and the stressors involved. Consistent changes in metabolites related to lipid metabolism, ketogenesis, and oxidative stress suggest a potential common metabolomic signature associated with inflammation, tissue damage, and suppression of anabolic signaling that may characterize the unique physiological demands of military training.NEW & NOTEWORTHY The extent to which metabolomic responses are shared across diverse military training environments is unknown. Global metabolomic profiling across three distinct military training exercises identified shared metabolic responses with the largest changes observed for metabolites related to fatty acids, acylcarnitines, ketone metabolism, and oxidative stress. These changes also correlated with alterations in markers of tissue damage, inflammation, and anabolic signaling and comprise a potential common metabolomic signature underlying the unique physiological demands of military training.
Collapse
Affiliation(s)
- Michael Daniels
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland, United States
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
4
|
Green DJ, Chasland LC, Yeap BB, Naylor LH. Comparing the Impacts of Testosterone and Exercise on Lean Body Mass, Strength and Aerobic Fitness in Aging Men. SPORTS MEDICINE - OPEN 2024; 10:30. [PMID: 38563849 PMCID: PMC10987448 DOI: 10.1186/s40798-024-00703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Based on the largely untested premise that it is a restorative hormone that may reverse the detrimental impacts of aging, prescription of testosterone (T) has increased in recent decades despite no new clinical indications. It is apparent that middle-aged and older men with low-normal serum T levels are considering T supplementation as an anti-aging strategy. At the same time, there is evidence that physical activity (PA) is at historical lows in the Western world. In this review, we compare the impacts of T treatment aimed at achieving physiological T concentrations in middle-aged and older men, alongside the impacts of ecologically relevant forms of exercise training. The independent, and possible combined, effects of T and exercise therapy on physiological outcomes such as aerobic fitness, body composition and muscular strength are addressed. MAIN BODY Our findings suggest that both T treatment and exercise improve lean body mass in healthy older men. If improvement in lean body mass is the primary aim, then T treatment could be considered, and the combination of T and exercise may be more beneficial than either in isolation. In terms of muscle strength in older age, an exercise program is likely to be more beneficial than T treatment (where the dose is aimed at achieving physiological concentrations), and the addition of such T treatment does not provide further benefit beyond that of exercise alone. For aerobic fitness, T at doses aimed at achieving physiological concentrations has relatively modest impacts, particularly in comparison to exercise training, and there is limited evidence as to additive effects. Whilst higher doses of T, particularly by intramuscular injection, may have larger impacts on lean body mass and strength, this must be balanced against potential risks. CONCLUSION Knowing the impacts of T treatment and exercise on variables such as body composition, strength and aerobic fitness extends our understanding of the relative benefits of physiological and pharmacological interventions in aging men. Our review suggests that T has impacts on strength, body composition and aerobic fitness outcomes that are dependent upon dose, route of administration, and formulation. T treatment aimed at achieving physiological T concentrations in middle-aged and older men can improve lean body mass, whilst exercise training enhances lean body mass, aerobic fitness and strength. Men who are physically able to exercise safely should be encouraged to do so, not only in terms of building lean body mass, strength and aerobic fitness, but for the myriad health benefits that exercise training confers.
Collapse
Affiliation(s)
- Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, 6009, Australia.
| | - Lauren C Chasland
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, 6009, Australia
- Allied Health Department, Fiona Stanley Hospital, Perth, WA, Australia
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, WA, Australia
| | - Louise H Naylor
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, 6009, Australia
- Allied Health Department, Fiona Stanley Hospital, Perth, WA, Australia
| |
Collapse
|
5
|
Ponce T, Mainenti MRM, Barros T, Cahuê FLC, Fernanda Martins Dos Santos C, Piazera BKL, Salerno VP, Vaisman M. Biochemical and Hormone Markers in Firefighters: Effects of "Search, Rescue, and Survival Training" and Its Recovery. J Strength Cond Res 2024; 38:e189-e201. [PMID: 38266224 DOI: 10.1519/jsc.0000000000004695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
ABSTRACT Ponce, T, Mainenti, MRM, de Barros, T, Cahuê, FLC, Fernanda, C, Piazera, BKL, Salerno, VP, and Vaisman, M. Biochemical and hormone markers in firefighters: effects of "search, rescue, and survival training" and its recovery. J Strength Cond Res 38(4): e189-e201, 2024-This study aimed to evaluate the hormonal and biochemical responses in military firefighter cadets to a search, rescue, and survival training (SRST) course. Forty-three male volunteers participated in the SRST over 15 days consisting of intense physical effort, sleep deprivation, and a survival period with food deprivation. At 3 timepoints (baseline, SRST, and 1 week rec), subjects submitted to blood collections, body composition examinations, physical performance evaluations, and cognitive function tests. After the SRST, lower values were registered for testosterone (764.0; 565.1-895.0 to 180.6; 133.6-253.5 ng·dl -1 ) and insulin-like growth factor-1 (IGF-1) (217; 180-238 to 116; 102-143 ng·ml -1 ). Increases were observed for cortisol (9.7; 8.2-11.7 to 18.3; 16.5-21,2 μg·dl -1 ), growth hormone (GH) (0.11; 0.06-0.20 to 2.17; 1.4-3.4 ng·ml -1 ), CP, GSSG, lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase as well as the antioxidant response of superoxide dismutase and glutathione peroxidase. The values of gamma-glutamyl transferase were reduced. After 1 week of recovery, levels of GH, creatine kinase, GSH, and GSSG returned to baseline values ( p < 0.05). Vertical jump performance presented a regular positive correlation with testosterone (rho = 0.56 and p < 0.0001) and a strong negative correlation with cortisol (rho = -0.61 and p < 0.0001). Body fat showed a regular and positive correlation with both testosterone and IGF-1. We conclude that participation in the SRST caused significant hormonal and biochemical changes in individuals that correlated with a loss in physical performance. Importantly, the results suggest the need for longer recovery times before a return to normal military duties.
Collapse
Affiliation(s)
- Thalita Ponce
- Department of Physical Education, Dom Pedro II Military Firefighter Academy (ABMDPII), Rio de Janeiro, State of Rio de Janeiro, Brazil
- Department of Biosciences, Physical Education and Sports College of the Federal University of Rio de Janeiro (EEFD/UFRJ), State of Rio de Janeiro, Brazil
- Department of Internal Medicine-Endocrinology, Federal University of Rio de Janeiro (FM-UFRJ), State of Rio de Janeiro, Brazil; and
| | | | - Thiago Barros
- Department of Physical Education, Dom Pedro II Military Firefighter Academy (ABMDPII), Rio de Janeiro, State of Rio de Janeiro, Brazil
- Department of Biosciences, Physical Education and Sports College of the Federal University of Rio de Janeiro (EEFD/UFRJ), State of Rio de Janeiro, Brazil
| | - Fabio Luiz Cândido Cahuê
- Department of Biosciences, Physical Education and Sports College of the Federal University of Rio de Janeiro (EEFD/UFRJ), State of Rio de Janeiro, Brazil
| | - Camilli Fernanda Martins Dos Santos
- Department of Biosciences, Physical Education and Sports College of the Federal University of Rio de Janeiro (EEFD/UFRJ), State of Rio de Janeiro, Brazil
| | - Bruna Karoline Lima Piazera
- Department of Biosciences, Physical Education and Sports College of the Federal University of Rio de Janeiro (EEFD/UFRJ), State of Rio de Janeiro, Brazil
| | - Verônica P Salerno
- Department of Biosciences, Physical Education and Sports College of the Federal University of Rio de Janeiro (EEFD/UFRJ), State of Rio de Janeiro, Brazil
| | - Mario Vaisman
- Department of Internal Medicine-Endocrinology, Federal University of Rio de Janeiro (FM-UFRJ), State of Rio de Janeiro, Brazil; and
| |
Collapse
|
6
|
Lieberman HR, Caldwell JA, Vartanian O, Carmichael OT, Karl JP, Berryman CE, Gadde KM, Niro PJ, Harris MN, Rood JC, Pasiakos SM. Effects of testosterone enanthate on aggression, risk-taking, competition, mood, and other cognitive domains during 28 days of severe energy deprivation. Psychopharmacology (Berl) 2024; 241:461-478. [PMID: 38038817 PMCID: PMC10884082 DOI: 10.1007/s00213-023-06502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
RATIONALE Behavioral effects of testosterone depend on dose, acute versus sustained formulation, duration of administration, personality, genetics, and endogenous levels of testosterone. There are also considerable differences between effects of endogenous and exogenous testosterone. OBJECTIVES This study was the secondary behavioral arm of a registered clinical trial designed to determine if testosterone protects against loss of lean body mass and lower-body muscle function induced by a severe energy deficit typical of sustained military operations. METHODS Behavioral effects of repeated doses of testosterone on healthy young men whose testosterone was reduced by severe energy deficit were examined. This was a double-blind, placebo-controlled, between-group study. Effects of four weekly intramuscular injections of testosterone enanthate (200 mg/week, N = 24) or matching placebo (N = 26) were evaluated. Determination of sample size was based on changes in lean body mass. Tasks assessing aggression, risk-taking, competition, social cognition, vigilance, memory, executive function, and mood were repeatedly administered. RESULTS During a period of artificially induced, low testosterone levels, consistent behavioral effects of administration of exogenous testosterone were not observed. CONCLUSIONS Exogeneous testosterone enanthate (200 mg/week) during severe energy restriction did not reliably alter the measures of cognition. Study limitations include the relatively small sample size compared to many studies of acute testosterone administration. The findings are specific to healthy males experiencing severe energy deficit and should not be generalized to effects of other doses, formulations, or acute administration of endogenous testosterone or studies conducted with larger samples using tests of cognitive function designed to detect specific effects of testosterone.
Collapse
Affiliation(s)
- Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, 01760-5007, USA.
- University of Toronto, Toronto, ON, Canada.
| | - John A Caldwell
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, 01760-5007, USA
- University of Toronto, Toronto, ON, Canada
- Laulima Government Solutions, Frederick, MD, USA
| | - Oshin Vartanian
- University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto, ON, Canada
| | - Owen T Carmichael
- University of Toronto, Toronto, ON, Canada
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - J Philip Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, 01760-5007, USA
- University of Toronto, Toronto, ON, Canada
| | - Claire E Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, 01760-5007, USA
- University of Toronto, Toronto, ON, Canada
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Kishore M Gadde
- University of Toronto, Toronto, ON, Canada
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Philip J Niro
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, 01760-5007, USA
- University of Toronto, Toronto, ON, Canada
| | - Melissa N Harris
- University of Toronto, Toronto, ON, Canada
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jennifer C Rood
- University of Toronto, Toronto, ON, Canada
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, 01760-5007, USA
- University of Toronto, Toronto, ON, Canada
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Lee H, Hwang EC, Oh CK, Lee S, Yu HS, Lim JS, Kim HW, Walsh T, Kim MH, Jung JH, Dahm P. Testosterone replacement in men with sexual dysfunction. Cochrane Database Syst Rev 2024; 1:CD013071. [PMID: 38224135 PMCID: PMC10788910 DOI: 10.1002/14651858.cd013071.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
BACKGROUND Clinical practice guidelines recommend testosterone replacement therapy (TRT) for men with sexual dysfunction and testosterone deficiency. However, TRT is commonly promoted in men without testosterone deficiency and existing trials often do not clearly report participants' testosterone levels or testosterone-related symptoms. This review assesses the potential benefits and harms of TRT in men presenting with complaints of sexual dysfunction. OBJECTIVES To assess the effects of testosterone replacement therapy compared to placebo or other medical treatments in men with sexual dysfunction. SEARCH METHODS We performed a comprehensive search of CENTRAL (the Cochrane Library), MEDLINE, EMBASE, and the trials registries ClinicalTrials.gov and World Health Organization International Clinical Trials Registry Platform, with no restrictions on language of publication or publication status, up to 29 August 2023. SELECTION CRITERIA We included randomized controlled trials (RCTs) in men (40 years or over) with sexual dysfunction. We excluded men with primary or secondary hypogonadism. We compared testosterone or testosterone with phosphodiesterase-5 inhibitors (PDEI5I) to placebo or PDE5I alone. DATA COLLECTION AND ANALYSIS Two review authors independently screened the literature, assessed the risk of bias, extracted data, and rated the certainty of evidence (CoE) according to GRADE using a minimally contextualized approach. We performed statistical analyses using a random-effects model and interpreted them according to standard Cochrane methodology. Predefined primary outcomes were self-reported erectile dysfunction assessed by a validated instrument, sexual quality of life assessed by a validated instrument, and cardiovascular mortality. Secondary outcomes were treatment withdrawal due to adverse events, prostate-related events, and lower urinary tract symptoms (LUTS). We distinguished between short-term (up to 12 months) and long-term (> 12 months) outcomes. MAIN RESULTS We identified 43 studies with 11,419 randomized participants across three comparisons: testosterone versus placebo, testosterone versus PDE5I, and testosterone with PDE5I versus PDE5I alone. This abstract focuses on the most relevant comparison of testosterone versus placebo. Testosterone versus placebo (up to 12 months) Based on a predefined sensitivity analysis of studies at low risk of bias, and an analysis combing data from the similar International Index of Erectile Function (IIEF-EF) and IIEF-5 instruments, TRT likely results in little to no difference in erectile function assessed with the IIEF-EF (mean difference (MD) 2.37, 95% confidence interval (CI) 1.67 to 3.08; I² = 0%; 6 RCTs, 2016 participants; moderate CoE) on a scale from 6 to 30 with larger values reflecting better erectile function. We assumed a minimal clinically important difference (MCID) of greater than or equal to 4. TRT likely results in little to no change in sexual quality of life assessed with the Aging Males' Symptoms scale (MD -2.31, 95% CI -3.63 to -1.00; I² = 0%; 5 RCTs, 1030 participants; moderate CoE) on a scale from 17 to 85 with larger values reflecting worse sexual quality of life. We assumed a MCID of greater than or equal to 10. TRT also likely results in little to no difference in cardiovascular mortality (risk ratio (RR) 0.83, 95% CI 0.21 to 3.26; I² = 0%; 10 RCTs, 3525 participants; moderate CoE). Based on two cardiovascular deaths in the placebo group and an assumed MCID of 3%, this would correspond to no additional deaths per 1000 men (95% CI 1 fewer to 4 more). TRT also likely results in little to no difference in treatment withdrawal due to adverse events, prostate-related events, or LUTS. Testosterone versus placebo (later than 12 months) We are very uncertain about the longer-term effects of TRT on erectile dysfunction assessed with the IIEF-EF (MD 4.20, 95% CI -2.03 to 10.43; 1 study, 42 participants; very low CoE). We did not find studies reporting on sexual quality of life or cardiovascular mortality. We are very uncertain about the effect of testosterone on treatment withdrawal due to adverse events. We found no studies reporting on prostate-related events or LUTS. AUTHORS' CONCLUSIONS In the short term, TRT probably has little to no effect on erectile function, sexual quality of life, or cardiovascular mortality compared to a placebo. It likely results in little to no difference in treatment withdrawals due to adverse events, prostate-related events, or LUTS. In the long term, we are very uncertain about the effects of TRT on erectile function when compared to placebo; we did not find data on its effects on sexual quality of life or cardiovascular mortality. The certainty of evidence ranged from moderate (signaling that we are confident that the reported effect size is likely to be close to the true effect) to very low (indicating that the true effect is likely to be substantially different). The findings of this review should help to inform future guidelines and clinical decision-making at the point of care.
Collapse
Affiliation(s)
- Hunju Lee
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea, South
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea, South
- Center of Evidence-Based Medicine, Institute of Convergence Science, Yonsei University, Seoul, Korea, South
| | - Cheol Kyu Oh
- Department of Urology, Heaundae Paik Hospital, Inje University, Busan, Korea, South
| | - Solam Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea, South
| | - Ho Song Yu
- Department of Urology, Chonnam National University, Gwangju, Korea, South
| | - Jung Soo Lim
- Division of Endocrinology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea, South
| | - Hong Wook Kim
- Department of Urology, Konyang University College of Medicine, Daejeon, Korea, South
| | - Thomas Walsh
- Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Myung Ha Kim
- Yonsei Wonju Medical Library, Yonsei University Wonju College of Medicine, Wonju, Korea, South
| | - Jae Hung Jung
- Center of Evidence-Based Medicine, Institute of Convergence Science, Yonsei University, Seoul, Korea, South
- Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Korea, South
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea, South
| | - Philipp Dahm
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, USA
- Urology Section, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Barnett N, Ljubic M, Chung J, Capizzi A. Testosterone and neurobehavioral outcomes in special operations forces military with multiple mild traumatic brain injury. NeuroRehabilitation 2024; 55:271-279. [PMID: 38995807 PMCID: PMC11612980 DOI: 10.3233/nre-230291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND U.S. Special Operations Forces (SOF) are at increased risk of multiple mild traumatic brain injury (mmTBI). Testosterone was prescribed for several participants in a VA program designed to address sequelae of mmTBI for SOF. OBJECTIVE To determine testosterone prevalence in the Palo Alto VA Intensive Evaluation and Treatment Program (IETP) and observe for association between testosterone and neurobehavioral outcomes. METHODS A retrospective cohort study included patients in the Palo Alto VA IETP. Sociodemographic data, testosterone blood levels, and neurobehavioral outcomes were collected from medical records. RESULTS 55 IETP participants were included: six were testosterone users; the rest were classified as non-users. Testosterone use in this population is 11%, higher than reported national averages in the U.S. Of the 6 testosterone users, 2 (33%) had a formal diagnosis of hypogonadism prior to initiation of testosterone. Neurobehavioral outcome scores between testosterone users and non-users failed to show statistically significant differences, except for the PROMIS pain score, which was higher in the testosterone user population. CONCLUSION The current study did not find an association between mmTBI, testosterone use, or testosterone level and neurobehavioral outcomes. This study highlights a need to further examine the relationship between hypogonadism, mmTBI, SOF culture around testosterone, and the effects of testosterone use in this population.
Collapse
Affiliation(s)
- Nathan Barnett
- Polytrauma System of Care, VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Physical Medicine and Rehabilitation, Stanford School of Medicine, Redwood City, CA, USA
| | - Milica Ljubic
- Polytrauma System of Care, VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Joyce Chung
- Polytrauma System of Care, VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Allison Capizzi
- Polytrauma System of Care, VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Physical Medicine and Rehabilitation, Stanford School of Medicine, Redwood City, CA, USA
| |
Collapse
|
9
|
Luo X, Liu W, Zheng B, Zheng Y, Zhao M, Feng F, Liu L. Sea cucumber peptides positively regulate sexual hormones in male mice with acute exhaustive swimming: possibly through the Ca 2+/PKA signaling pathway. Food Funct 2023; 14:10188-10203. [PMID: 37909356 DOI: 10.1039/d3fo03031h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Sea cucumber peptides (SCPs) have been proven to have many active functions; however, their impact on testosterone synthesis and the corresponding mechanism are not yet clear. This study attempts to explore the effects of SCPs on sex hormone regulation in acute exhaustive swimming (AES) male mice and the possible mechanisms. In the present study, SCP intervention significantly prolonged exhaustive swimming time and reduced exercise metabolite accumulation. The reproductive ability-related parameters including penile index, mating ability, testicular morphology, and sperm storage were dramatically improved by SCP intervention. Notably, SCPs markedly reversed the AES-induced decrease in serum testosterone (T), estradiol (E2), and follicle-stimulating hormone (FSH) levels. Moreover, treatment with a high dose of SCP (0.6 mg per g bw) significantly enhanced the expression of testosterone synthesis-related proteins in testis, meanwhile markedly increasing the gene expression of StAR, Hsd17b3, Hsd17b2, Ldlr, and Cyp19a1. Serum metabolomics results indicated that SCP intervention notably upregulated the expression of 1-stearoyl-2-arachidonoyl-sn-glycerol but downregulated the concentrations of succinate and DL-lactate. Furthermore, serum metabolomics combined with testicular transcriptome, western blot, and correlation analyses demonstrated that SCPs may regulate testosterone synthesis via the Ca2+/PKA signaling pathway. This study indicated that the SCP could be a potential dietary supplement to improve the symptoms of decreased sex hormones related to exercise fatigue.
Collapse
Affiliation(s)
- Xianliang Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
10
|
Green DJ, Chasland LC, Naylor LH, Yeap BB. New Horizons: Testosterone or Exercise for Cardiometabolic Health in Older Men. J Clin Endocrinol Metab 2023; 108:2141-2153. [PMID: 36964918 PMCID: PMC10438896 DOI: 10.1210/clinem/dgad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Middle-aged and older men have typically accumulated comorbidities, are increasingly sedentary, and have lower testosterone concentrations (T) compared to younger men. Reduced physical activity (PA) and lower T both are associated with, and may predispose to, metabolically adverse changes in body composition, which contribute to higher risks of cardiometabolic disease. Exercise improves cardiometabolic health, but sustained participation is problematic. By contrast, rates of T prescription have increased, particularly in middle-aged and older men without organic diseases of the hypothalamus, pituitary, or testes, reflecting the unproven concept of a restorative hormone that preserves health. Two recent large randomized trials of T, and meta-analyses of randomized trials, did not show a signal for adverse cardiovascular (CV) events, and T treatment on a background of lifestyle intervention reduced type 2 diabetes by 40% in men at high risk. Men with both higher endogenous T and higher PA levels have lower CV risk, but causality remains unproven. Exercise training interventions improve blood pressure and endothelial function in middle-aged and older men, without comparable benefits or additive effects of T treatment. Therefore, exercise training improves cardiometabolic health in middle-aged and older men when effectively applied as a supervised regimen incorporating aerobic and resistance modalities. Treatment with T may have indirect cardiometabolic benefits, mediated via favorable changes in body composition. Further evaluation of T as a pharmacological intervention to improve cardiometabolic health in aging men could consider longer treatment durations and combination with targeted exercise programs.
Collapse
Affiliation(s)
- Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, 6009, Australia
| | - Lauren C Chasland
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, 6009, Australia
- Allied Health Department, Fiona Stanley Hospital, Perth, WA, 6150, Australia
| | - Louise H Naylor
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, 6009, Australia
- Allied Health Department, Fiona Stanley Hospital, Perth, WA, 6150, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, WA, 6150, Australia
| |
Collapse
|
11
|
Margolis LM, Marlatt KL, Berryman CE, Howard EE, Murphy NE, Carrigan CT, Harris MN, Beyl RA, Ravussin E, Pasiakos SM, Rood JC. Metabolic Adaptations and Substrate Oxidation are Unaffected by Exogenous Testosterone Administration during Energy Deficit in Men. Med Sci Sports Exerc 2023; 55:661-669. [PMID: 36563086 PMCID: PMC11801180 DOI: 10.1249/mss.0000000000003089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION/PURPOSE The effects of testosterone on energy and substrate metabolism during energy deficit are unknown. The objective of this study was to determine the effects of weekly testosterone enanthate (TEST; 200 mg·wk -1 ) injections on energy expenditure, energy substrate oxidation, and related gene expression during 28 d of energy deficit compared with placebo (PLA). METHODS After a 14-d energy balance phase, healthy men were randomly assigned to TEST ( n = 24) or PLA ( n = 26) for a 28-d controlled diet- and exercise-induced energy deficit (55% below total energy needs by reducing energy intake and increasing physical activity). Whole-room indirect calorimetry and 24-h urine collections were used to measure energy expenditure and energy substrate oxidation during balance and deficit. Transcriptional regulation of energy and substrate metabolism was assessed using quantitative reverse transcription-polymerase chain reaction from rested/fasted muscle biopsy samples collected during balance and deficit. RESULTS Per protocol design, 24-h energy expenditure increased ( P < 0.05) and energy intake decreased ( P < 0.05) in TEST and PLA during deficit compared with balance. Carbohydrate oxidation decreased ( P < 0.05), whereas protein and fat oxidation increased ( P < 0.05) in TEST and PLA during deficit compared with balance. Change (∆; deficit minus balance) in 24-h energy expenditure was associated with ∆activity factor ( r = 0.595), but not ∆fat-free mass ( r = 0.147). Energy sensing (PRKAB1 and TP53), mitochondria (TFAM and COXIV), fatty acid metabolism (CD36/FAT, FABP, CPT1b, and ACOX1) and storage (FASN), and amino acid metabolism (BCAT2 and BCKHDA) genes were increased ( P < 0.05) during deficit compared with balance, independent of treatment. CONCLUSIONS These data demonstrate that increased physical activity and not exogenous testosterone administration is the primary determinate of whole-body and skeletal muscle metabolic adaptations during diet- and exercise-induced energy deficit.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | | | | - Emily E Howard
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Nancy E Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Christopher T Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | | - Robbie A Beyl
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Stefan M Pasiakos
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | |
Collapse
|
12
|
Roop K, Coakley KE, Cohen D, Gonzales-Pacheco D. The Relationship Between Exogenous Testosterone and Resting Energy Expenditure in Adults. TOP CLIN NUTR 2023. [DOI: 10.1097/tin.0000000000000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Naruse M, Trappe S, Trappe TA. Human skeletal muscle-specific atrophy with aging: a comprehensive review. J Appl Physiol (1985) 2023; 134:900-914. [PMID: 36825643 PMCID: PMC10069966 DOI: 10.1152/japplphysiol.00768.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Age-related skeletal muscle atrophy appears to be a muscle group-specific process, yet only a few specific muscles have been investigated and our understanding in this area is limited. This review provides a comprehensive summary of the available information on age-related skeletal muscle atrophy in a muscle-specific manner, nearly half of which comes from the quadriceps. Decline in muscle-specific size over ∼50 yr of aging was determined from 47 cross-sectional studies of 982 young (∼25 yr) and 1,003 old (∼75 yr) individuals and nine muscle groups: elbow extensors (-20%, -0.39%/yr), elbow flexors (-19%, -0.38%/yr), paraspinals (-24%, -0.47%/yr), psoas (-29%, -0.58%/yr), hip adductors (-13%, -0.27%/yr), hamstrings (-19%, -0.39%/yr), quadriceps (-27%, -0.53%/yr), dorsiflexors (-9%, -0.19%/yr), and triceps surae (-14%, -0.28%/yr). Muscle-specific atrophy rate was also determined for each of the subcomponent muscles in the hamstrings, quadriceps, and triceps surae. Of all the muscles included in this review, there was more than a fivefold difference between the least (-6%, -0.13%/yr, soleus) to the most (-33%, -0.66%/yr, rectus femoris) atrophying muscles. Muscle activity level, muscle fiber type, sex, and timeline of the aging process all appeared to have some influence on muscle-specific atrophy. Given the large range of muscle-specific atrophy and the large number of muscles that have not been investigated, more muscle-specific information could expand our understanding of functional deficits that develop with aging and help guide muscle-specific interventions to improve the quality of life of aging women and men.
Collapse
Affiliation(s)
- Masatoshi Naruse
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
14
|
Varanoske AN, Harris MN, Hebert C, Johannsen NM, Heymsfield SB, Greenway FL, Ferrando AA, Rood JC, Pasiakos SM. Bioelectrical impedance phase angle is associated with physical performance before but not after simulated multi-stressor military operations. Physiol Rep 2023; 11:e15649. [PMID: 36949577 PMCID: PMC10033850 DOI: 10.14814/phy2.15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Physical performance decrements observed during multi-stressor military operations may be attributed, in part, to cellular membrane dysfunction, which is quantifiable using phase angle (PhA) derived from bioelectrical impedance analysis (BIA). Positive relationships between PhA and performance have been previously reported in cross-sectional studies and following longitudinal exercise training programs, but whether changes in PhA are indicative of acute decrements in performance during military operations is unknown. Data from the Optimizing Performance for Soldiers II study, a clinical trial examining the effects of exogenous testosterone administration on body composition and performance during military stress, was used to evaluate changes in PhA and their associations with physical performance. Recreationally active, healthy males (n = 34; 26.6 ± 4.3 years; 77.9 ± 12.4 kg) were randomized to receive testosterone undecanoate or placebo before a 20-day simulated military operation, which was followed by a 23-day recovery period. PhA of the whole-body (Whole) and legs (Legs) and physical performance were measured before (PRE) and after (POST) the simulated military operation as well as in recovery (REC). Independent of treatment, PhAWhole and PhALegs decreased from PRE to POST (p < 0.001), and PhALegs , but not PhAWhole , remained lower at REC than PRE. PhAWhole at PRE and REC were associated with vertical jump height and Wingate peak power (p < 0.001-0.050), and PhAWhole at PRE was also associated with 3-RM deadlift mass (p = 0.006). However, PhA at POST and changes in PhA from PRE to POST were not correlated with any performance measure (p > 0.05). Additionally, PhA was not associated with aerobic performance at any timepoint. In conclusion, reduced PhA from PRE to POST provides indirect evidence of cellular membrane disruption. Associations between PhA and strength and power were only evident at PRE and REC, suggesting PhA may be a useful indicator of strength and power, but not aerobic capacity, in non-stressed conditions, and not a reliable indicator of physical performance during severe physiological stress.
Collapse
Affiliation(s)
- Alyssa N. Varanoske
- Military Performance Division, U.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Oak Ridge Institute for Science and EducationOak RidgeTennesseeUSA
| | - Melissa N. Harris
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Callie Hebert
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Neil M. Johannsen
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Steven B. Heymsfield
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Frank L. Greenway
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Arny A. Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & LongevityUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Jennifer C. Rood
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Stefan M. Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
15
|
Vartanian O, Lam TK, Mandel DR, Ann Saint S, Navarrete G, Carmichael OT, Murray K, Pillai SR, Shankapal P, Caldwell J, Berryman CE, Karl JP, Harris M, Rood JC, Pasiakos SM, Rice E, Duncan M, Lieberman HR. Effect of exogenous testosterone in the context of energy deficit on risky choice: Behavioural and neural evidence from males. Biol Psychol 2023; 176:108468. [PMID: 36481265 DOI: 10.1016/j.biopsycho.2022.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Previous research has shown greater risk aversion when people make choices about lives than cash. We tested the hypothesis that compared to placebo, exogenous testosterone administration would lead to riskier choices about cash than lives, given testosterone's association with financial risk-taking and reward sensitivity. A double-blind, placebo-controlled, randomized trial was conducted to test this hypothesis (Clinical Trials Registry: NCT02734238, www.clinicaltrials.gov). We collected functional magnetic resonance imaging (fMRI) data from 50 non-obese males before and shortly after 28 days of severe exercise-and-diet-induced energy deficit, during which testosterone (200 mg testosterone enanthate per week in sesame oil) or placebo (sesame seed oil only) was administered. Because we expected circulating testosterone levels to be reduced due to severe energy deficit, testosterone administration served a restorative function to mitigate the impact of energy deficit on testosterone levels. The fMRI task involved making choices under uncertainty for lives and cash. We also manipulated whether the outcomes were presented as gains or losses. Consistent with prospect theory, we observed the reflection effect such that participants were more risk averse when outcomes were presented as gains than losses. Brain activation in the thalamus covaried with individual differences in exhibiting the reflection effect. Testosterone did not impact choice, but it increased sensitivity to negative feedback following risky choices. These results suggest that exogenous testosterone administration in the context of energy deficit can impact some aspects of risky choice, and that individual differences in the reflection effect engage a brain structure involved in processing emotion, reward and risk.
Collapse
Affiliation(s)
- Oshin Vartanian
- Defence Research and Development Canada, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| | - Timothy K Lam
- Defence Research and Development Canada, Toronto, ON, Canada
| | - David R Mandel
- Defence Research and Development Canada, Toronto, ON, Canada
| | - Sidney Ann Saint
- Defence Research and Development Canada, Toronto, ON, Canada; University of Waterloo, Waterloo, ON, Canada
| | - Gorka Navarrete
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | | | - Kori Murray
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | - John Caldwell
- Alaka'ina, Frederick, MD, USA; Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - Claire E Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - J Philip Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - Melissa Harris
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - Emma Rice
- Defence Research and Development Canada, Toronto, ON, Canada; University of Waterloo, Waterloo, ON, Canada
| | - Matthew Duncan
- Defence Research and Development Canada, Toronto, ON, Canada
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| |
Collapse
|
16
|
Stein JA, Karl JP, Berryman CE, Harris MN, Rood JC, Pasiakos SM, Lieberman HR. Metabolomics of testosterone enanthate administration during severe-energy deficit. Metabolomics 2022; 18:100. [PMID: 36450940 PMCID: PMC9712311 DOI: 10.1007/s11306-022-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Testosterone administration attenuates reductions in total body mass and lean mass during severe energy deficit (SED). OBJECTIVES This study examined the effects of testosterone administration on the serum metabolome during SED. METHODS In a double-blind, placebo-controlled clinical trial, non-obese men were randomized to receive 200-mg testosterone enanthate/wk (TEST) (n = 24) or placebo (PLA) (n = 26) during a 28-d inpatient, severe exercise- and diet-induced energy deficit. This study consisted of three consecutive phases. Participants were free-living and provided a eucaloric diet for 14-d during Phase 1. During Phase 2, participants were admitted to an inpatient unit, randomized to receive testosterone or placebo, and underwent SED for 28-d. During Phase 3, participants returned to their pre-study diet and physical activity habits. Untargeted metabolite profiling was conducted on serum samples collected during each phase. Body composition was measured using dual-energy X-ray absorptiometry after 11-d of Phase 1 and after 25-d of Phase 2 to determine changes in fat and lean mass. RESULTS TEST had higher (Benjamini-Hochberg adjusted, q < 0.05) androgenic steroid and acylcarnitine, and lower (q < 0.05) amino acid metabolites after SED compared to PLA. Metabolomic differences were reversed by Phase 3. Changes in lean mass were associated (Bonferroni-adjusted, p < 0.05) with changes in androgenic steroid metabolites (r = 0.42-0.70), acylcarnitines (r = 0.37-0.44), and amino acid metabolites (r = - 0.36-- 0.37). Changes in fat mass were associated (p < 0.05) with changes in acylcarnitines (r = - 0.46-- 0.49) and changes in urea cycle metabolites (r = 0.60-0.62). CONCLUSION Testosterone administration altered androgenic steroid, acylcarnitine, and amino acid metabolites, which were associated with changes in body composition during SED.
Collapse
Affiliation(s)
- Jesse A. Stein
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - J. Philip Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Claire E. Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL USA
| | - Melissa N. Harris
- Louisiana State University’s Pennington Biomedical Research Center, Baton Rouge, LA USA
| | - Jennifer C. Rood
- Louisiana State University’s Pennington Biomedical Research Center, Baton Rouge, LA USA
| | - Stefan M. Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Harris R. Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| |
Collapse
|
17
|
Barsky ST, Monks DA. Myocytic androgen receptor overexpression does not affect sex differences in adaptation to chronic endurance exercise. Biol Sex Differ 2022; 13:59. [PMID: 36274144 PMCID: PMC9590152 DOI: 10.1186/s13293-022-00471-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
Muscle-specific androgen receptor (AR) overexpression (HSAAR transgene) in sedentary male rats results in reduced adiposity, increased mitochondrial enzyme activity, and selective increase in Type 2b myofiber size. Here, we tested chronic endurance exercise interactions with this phenotype in both sexes. Across 9 weeks, rats ran 5×/week on motorized running wheels at increasing speeds and durations. Exercise reduced fat mass in all groups, but sex affected endurance exercise outcomes such that absolute lean mass increased only in females and total body mass decreased only in males. Expected sex differences were observed with males exhibiting greater total body and lean mass; absolute and relative fat mass; bone mineral density; extensor digitorum longus (EDL) myofiber size and glycolytic proportion; but lesser Type 2a and Type 1 myosin expression in tibialis anterior. Observed HSAAR outcomes were not altered by sex, with transgenic rats having greater lean mass, Type 2a myosin expression in soleus, and glycolytic myofiber size in EDL. Tibialis AR content was independently affected by sex, HSAAR, and exercise. No sex differences were observed in tibialis AR expression in wild-type rats, although HSAAR males had greater AR content than HSAAR females. We identified a moderate correlation between AR expression and glycolytic myofiber size, but not whole-body composition. Overall, results suggest myocytic AR overexpression and chronic exercise, despite sharing a similar phenotype to adaptation, are mediated by distinct mechanisms. Further, this study illustrates sex differences in adaptation to chronic endurance exercise, and suggests sex-similarity in the relationship between muscle AR and exercise response. Adaptations in bone, lean, and total mass after forced endurance exercise are sex-dependent in rats. Sex differences in muscle fiber-type size and proportion, lean body mass, and bone density are independent of exercise in rats. Myocytic AR overexpression promotes lean body mass and glycolytic myofiber size in both sexes. Skeletal muscle AR protein is elevated by chronic endurance exercise in rats, and these changes in AR content are correlated with improved glycolytic myofiber size.
Collapse
|
18
|
Berryman CE, McClung HL, Sepowitz JJ, Gaffney‐Stomberg E, Ferrando AA, McClung JP, Pasiakos SM. Testosterone status following short-term, severe energy deficit is associated with fat-free mass loss in U.S. Marines. Physiol Rep 2022; 10:e15461. [PMID: 36117330 PMCID: PMC9483439 DOI: 10.14814/phy2.15461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023] Open
Abstract
The objective of this study was to determine metabolic and physiological differences between males with low testosterone (LT) versus those with normal testosterone (NT) following a period of severe energy deficit. In this secondary analysis, 68 male US Marines (mean ± SD, 24.6 ± 2.4 y) were dichotomized by testosterone concentration (< or ≥ 10.5 nmol/L as determined from a single blood sample collected between 0600-0630 after an 8-10 h overnight fast by automated immunoassay) following 7 days of near complete starvation (~300 kcal consumed/d, ~85% energy deficit) during Survival, Evasion, Resistance, and Escape (SERE) training. Dietary intake was assessed before (PRE) SERE. Body composition (dual-energy x-ray absorptiometry and peripheral quantitative computed tomography) and whole-body protein turnover (15 N alanine) were assessed before (PRE) and after (POST) SERE. Mean testosterone concentrations decreased PRE (17.5 ± 4.7 nmol/L) to POST (9.8 ± 4.0 nmol/L, p < 0.0001). When volunteers were dichotomized by POST testosterone concentrations [NT (n = 24) 14.1 ± 3.4 vs. LT (n = 44): 7.5 ± 1.8 nmol/L, p < 0.0001], PRE BMI, total fat mass, trunk fat mass, and testosterone were greater and the diet quality score and total carbohydrate intake were lower in NT compared to LT (p ≤ 0.05). LT lost more fat-free mass and less fat mass, particularly in the trunk region, compared to NT following SERE (p-interaction≤0.044). Whole-body protein synthesis, net balance, and flux decreased and whole-body protein breakdown increased from PRE to POST in both groups (p-time ≤0.025). Following short-term, severe energy deficit, Marines who exhibited low testosterone had greater fat-free mass loss than those who maintained normal testosterone concentrations. Altering body composition and dietary strategies prior to physical training that elicits severe energy deficit may provide an opportunity to attenuate post-training decrements in testosterone and its associated effects (e.g., loss of lean mass, performance declines, fatigue).
Collapse
Affiliation(s)
- Claire E. Berryman
- Military Nutrition DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Oak Ridge Institute for Science and EducationBelcampMarylandUSA
- Department of Nutrition and Integrative PhysiologyFlorida State UniversityTallahasseeFloridaUSA
| | - Holly L. McClung
- Military Nutrition DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - John J. Sepowitz
- Military Nutrition DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Erin Gaffney‐Stomberg
- Military Performance DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Arny A. Ferrando
- Department of Geriatrics, The Center for Translational Research in Aging & LongevityDonald W. Reynolds Institute of Aging, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - James P. McClung
- Military Nutrition DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Stefan M. Pasiakos
- Military Performance DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
19
|
Varanoske AN, Harris MN, Hebert C, Howard EE, Johannsen NM, Heymsfield SB, Greenway FL, Margolis LM, Lieberman HR, Beyl RA, Church DD, Ferrando AA, Pasiakos SM, Rood JC. Testosterone undecanoate administration prevents declines in fat-free mass but not physical performance during simulated multi-stressor military operations. J Appl Physiol (1985) 2022; 133:426-442. [PMID: 35796614 PMCID: PMC9359646 DOI: 10.1152/japplphysiol.00190.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Male military personnel conducting strenuous operations experience reduced testosterone concentrations, muscle mass, and physical performance. Pharmacological restoration of normal testosterone concentrations may attenuate performance decrements by mitigating muscle mass loss. Previously, administering testosterone enanthate (200 mg/wk) during 28 days of energy deficit prompted supraphysiological testosterone concentrations and lean mass gain without preventing isokinetic/isometric deterioration. Whether administering a practical dose of testosterone protects muscle and performance during strenuous operations is undetermined. The objective of this study was to test the effects of a single dose of testosterone undecanoate on body composition and military-relevant physical performance during a simulated operation. After a 7-day baseline phase (P1), 32 males (means ± SD; 77.1 ± 12.3 kg, 26.5 ± 4.4 yr) received a single dose of either testosterone undecanoate (750 mg; TEST) or placebo (PLA) before a 20-day simulated military operation (P2), followed by a 23-day recovery (P3). Assessments included body composition and physical performance at the end of each phase and circulating endocrine biomarkers throughout the study. Total and free testosterone concentrations in TEST were greater than PLA throughout most of P2 (P < 0.05), but returned to P1 values during P3. Fat-free mass (FFM) was maintained from P1 to P2 in TEST (means ± SE; 0.41 ± 0.65 kg, P = 0.53), but decreased in PLA (-1.85 ± 0.69 kg, P = 0.01) and recovered in P3. Regardless of treatment, total body mass and fat mass decreased from P1 to P2 (P < 0.05), but did not fully recover by P3. Physical performance decreased during P2 (P < 0.05) and recovered by P3, regardless of treatment. In conclusion, administering testosterone undecanoate before a simulated military operation protected FFM but did not prevent decrements in physical performance.NEW & NOTEWORTHY This study demonstrated that a single intramuscular dose of testosterone undecanoate (750 mg) administered to physically active males before a 20-day simulated, multi-stressor military operation increased circulating total and free testosterone concentrations within normal physiological ranges and spared FFM. However, testosterone administration did not attenuate decrements in physical performance across multiple measures of power, strength, anaerobic or aerobic capacity.
Collapse
Affiliation(s)
- Alyssa N Varanoske
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Melissa N Harris
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Callie Hebert
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Emily E Howard
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Neil M Johannsen
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Robbie A Beyl
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - David D Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Arny A Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stefan M Pasiakos
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
20
|
Howard EE, Shankaran M, Evans WJ, Berryman CE, Margolis LM, Lieberman HR, Karl JP, Young AJ, Montano MA, Matthews MD, Bizieff A, Nyangao E, Mohammed H, Harris MN, Hellerstein MK, Rood JC, Pasiakos SM. Effects of Testosterone on Mixed-Muscle Protein Synthesis and Proteome Dynamics During Energy Deficit. J Clin Endocrinol Metab 2022; 107:e3254-e3263. [PMID: 35532889 DOI: 10.1210/clinem/dgac295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Effects of testosterone on integrated muscle protein metabolism and muscle mass during energy deficit are undetermined. OBJECTIVE The objective was to determine the effects of testosterone on mixed-muscle protein synthesis (MPS), proteome-wide fractional synthesis rates (FSR), and skeletal muscle mass during energy deficit. DESIGN This was a randomized, double-blind, placebo-controlled trial. SETTING The study was conducted at Pennington Biomedical Research Center. PARTICIPANTS Fifty healthy men. INTERVENTION The study consisted of 14 days of weight maintenance, followed by a 28-day 55% energy deficit with 200 mg testosterone enanthate (TEST, n = 24) or placebo (PLA, n = 26) weekly, and up to 42 days of ad libitum recovery feeding. MAIN OUTCOME MEASURES Mixed-MPS and proteome-wide FSR before (Pre), during (Mid), and after (Post) the energy deficit were determined using heavy water (days 1-42) and muscle biopsies. Muscle mass was determined using the D3-creatine dilution method. RESULTS Mixed-MPS was lower than Pre at Mid and Post (P < 0.0005), with no difference between TEST and PLA. The proportion of individual proteins with numerically higher FSR in TEST than PLA was significant by 2-tailed binomial test at Post (52/67; P < 0.05), but not Mid (32/67; P > 0.05). Muscle mass was unchanged during energy deficit but was greater in TEST than PLA during recovery (P < 0.05). CONCLUSIONS The high proportion of individual proteins with greater FSR in TEST than PLA at Post suggests exogenous testosterone exerted a delayed but broad stimulatory effect on synthesis rates across the muscle proteome during energy deficit, resulting in muscle mass accretion during subsequent recovery.
Collapse
Affiliation(s)
- Emily E Howard
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Willian J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Claire E Berryman
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Lee M Margolis
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Harris R Lieberman
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - J Philip Karl
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Andrew J Young
- Military Nutrit ion Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Monty A Montano
- MyoSyntax Corporation, Worcester, MA 01605, USA
- Harvard Medical School, Boston, MA 02115, USA
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marcy D Matthews
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Alec Bizieff
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Edna Nyangao
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Melissa N Harris
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| |
Collapse
|
21
|
D-aspartic Acid Supplementation Effects on Body Composition: A Systematic Review of Randomized Clinical Trials on Trained Males. Asian J Sports Med 2022. [DOI: 10.5812/asjsm-120161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: D-Aspartic acid (DAA) is an amino acid found in the brain and reproductive system. Some investigations have reported beneficial effects of DAA on brain function and reproductive system health by increasing testosterone through the hypothalamic-pituitary-gonadal axis. However, its effect on body composition is unknown. Given testosterone's role in muscle growth, this study aimed to evaluate the effect of DAA supplementation on the body composition of trained males. Evidence Acquisition: PubMed, Scopus, Embase, and Web of Science (until 1 August 2021) were searched for this systematic review. Inclusion criteria assumed as clinical trials assessed the effect of DAA on body composition in trained males. After including articles by keywords, the articles were reviewed for meeting the eligibility criteria. Three independent researchers conducted the search and full-text review. Results: Among 134 articles located during the primary search, five articles (47 interventions and 43 controls) were included in the study based on eligibility criteria. All included clinical trials had a low risk of bias. A review of the relevant literature concludes that different doses of DAA (three grams, six grams, 7.12, and 12 grams) in different intervention periods (two weeks, four weeks, and 12 weeks) have no effects on body composition in trained males. Conclusions: DAA supplementation is a low-level booster of testosterone and has no significant effect on the testosterone level in professional male athletes, and cannot alter the body composition.
Collapse
|
22
|
E Silva FB, Vaisman M, Ponce T, de Barros TR, E Silva CB, Salerno VP, Mainenti MRM. A systematic review of hormone levels, biomarkers of cellular injury and oxidative stress in multi-stressor military field training exercises. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:382-389. [PMID: 35289515 PMCID: PMC9832854 DOI: 10.20945/2359-3997000000443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
The fundamental objective of military field training exercises (FTX) is to prepare military personnel for real-life operations through simulated scenarios. These training sessions often require extreme physical efforts with prolonged, high-intensity exercises that can be combined with food restrictions and partial, or total, sleep deprivation. Such conditions can compromise an individual's physical performance and cause tissue damage, thus affecting their health. This study aimed to perform a systematic review of the literature to identify studies that measured the changes in hormone levels and biomarkers of cellular injury and oxidative stress resulting from FTX with high levels of energy expenditure combined with food and sleep restrictions. PubMed and the Scopus database were searched for articles that combined physical effort/food restriction/sleep deprivation with military training. The initial database search identified 158 articles that were reduced to 18 after confirmation. Significant reductions were reported in thyroid hormones, T3, T4, and anabolic hormones such as testosterone, insulin and androstenedione. An exception for GH was found, which increased throughout FTX. Less distinct responses to FTX were observed with cortisol, TSH and LH. The presence of biomarkers for cellular damage (myoglobin, TNF, and CRP) and increased immune response activities were also described. The scarcity of information on oxidative stress, analyses of cellular injury and biomarkers of inflammatory responses warrants the future study of these topics, which could be helpful in facilitating the safe and effective physical preparations of the members of the armed forces.
Collapse
Affiliation(s)
| | - Mario Vaisman
- Departamento de Medicina Interna - Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Thalita Ponce
- Departamento de Medicina Interna - Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Thiago Ramos de Barros
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Academia de Bombeiro Militar Dom Pedro II, Rio de Janeiro, RJ, Brasil
| | - Camila Brasil E Silva
- Companhia de Comando da 4ª Brigada de Infantaria Leve de Montanha - Exército Brasileiro, Juiz de Fora, MG, Brasil
| | - Verônica Pinto Salerno
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
23
|
Martins G, Verdeal JCR, Tostes H, da Silva ARO, Tessarollo B, Rocha NN, Rocco PRM, Silva PL. Testosterone Therapy and Diaphragm Performance in a Male Patient with COVID-19: A Case Report. Diagnostics (Basel) 2022; 12:diagnostics12020535. [PMID: 35204624 PMCID: PMC8871258 DOI: 10.3390/diagnostics12020535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Low levels of testosterone may lead to reduced diaphragm excursion and inspiratory time during COVID-19 infection. We report the case of a 38-year-old man with a positive result on a reverse transcriptase-polymerase chain reaction test for SARS-CoV-2, admitted to the intensive care unit with acute respiratory failure. After several days on mechanical ventilation and use of rescue therapies, during the weaning phase, the patient presented dyspnea associated with low diaphragm performance (diaphragm thickness fraction, amplitude, and the excursion-time index during inspiration were 37%, 1.7 cm, and 2.6 cm/s, respectively) by ultrasonography and reduced testosterone levels (total testosterone, bioavailable testosterone and sex hormone binding globulin (SHBG) levels were 9.3 ng/dL, 5.8 ng/dL, and 10.5 nmol/L, respectively). Testosterone was administered three times 2 weeks apart (testosterone undecanoate 1000 mg/4 mL intramuscularly). Diaphragm performance improved significantly (diaphragm thickness fraction, amplitude, and the excursion-time index during inspiration were 70%, 2.4 cm, and 3.0 cm/s, respectively) 45 and 75 days after the first dose of testosterone. No adverse events were observed, although monitoring was required after testosterone administration. Testosterone replacement therapy led to good diaphragm performance in a male patient with COVID-19. This should be interpreted with caution due to the exploratory nature of the study.
Collapse
Affiliation(s)
- Gloria Martins
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (G.M.); (N.N.R.); (P.R.M.R.)
- Barra D’Or, Rio de Janeiro 22775-002, Brazil; (J.C.R.V.); (H.T.); (A.R.O.d.S.); (B.T.)
| | | | - Helio Tostes
- Barra D’Or, Rio de Janeiro 22775-002, Brazil; (J.C.R.V.); (H.T.); (A.R.O.d.S.); (B.T.)
| | | | - Bernardo Tessarollo
- Barra D’Or, Rio de Janeiro 22775-002, Brazil; (J.C.R.V.); (H.T.); (A.R.O.d.S.); (B.T.)
| | - Nazareth Novaes Rocha
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (G.M.); (N.N.R.); (P.R.M.R.)
- Department of Physiology, Fluminense Federal University, Niterói 24210-130, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (G.M.); (N.N.R.); (P.R.M.R.)
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (G.M.); (N.N.R.); (P.R.M.R.)
- Correspondence:
| |
Collapse
|
24
|
Nykänen T, Ojanen T, Heikkinen R, Fogelholm M, Kyröläinen H. Changes in Body Composition, Energy Metabolites and Electrolytes During Winter Survival Training in Male Soldiers. Front Physiol 2022; 13:797268. [PMID: 35250611 PMCID: PMC8889070 DOI: 10.3389/fphys.2022.797268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to examine changes in body composition, energy metabolites and electrolytes during a 10-day winter survival training period. Two groups of male soldiers were examined: the REC group (n = 26; age 19.7 ± 1.2 years; BMI 23.9 ± 2.7) had recovery period between days 6 and 8 in the survival training, whereas the EXC group (n = 42; age 19.6 ± 0.8 years; BMI 23.1 ± 2.8) did not. The following data were collected: body composition (bioimpedance), energy balance (food diaries, heart rate variability measurements), and biomarkers (blood samples). In survival training, estimated energy balance was highly negative: −4,323 ± 1,515 kcal/d (EXC) and −4,635 ± 1,742 kcal/d (REC). Between days 1 and 10, body mass decreased by 3.9% (EXC) and 3.0% (REC). On day 6, free fatty acid and urea levels increased, whereas leptin, glucose and potassium decreased in all. Recovery period temporarily reversed some of the changes (body mass, leptin, free fatty acids, and urea) toward baseline levels. Survival training caused a severe energy deficit and reductions in body mass. The early stage of military survival training seems to alter energy, hormonal and fluid metabolism, but these effects disappear after an active recovery period.
Collapse
Affiliation(s)
- Tarja Nykänen
- Army Academy, Finnish Defence Forces, Lappeenranta, Finland
- *Correspondence: Tarja Nykänen,
| | - Tommi Ojanen
- Finnish Defence Research Agency, Finnish Defence Forces, Tuusula, Finland
| | - Risto Heikkinen
- Statistical Analysis Services, Analyysitoimisto Statisti Oy, Jyväskylä, Finland
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Finnish Defence Forces, National Defence University, Helsinki, Finland
| |
Collapse
|
25
|
Roth C, Schoenfeld BJ, Behringer M. Lean mass sparing in resistance-trained athletes during caloric restriction: the role of resistance training volume. Eur J Appl Physiol 2022; 122:1129-1151. [PMID: 35146569 PMCID: PMC9012799 DOI: 10.1007/s00421-022-04896-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Many sports employ caloric restriction (CR) to reduce athletes’ body mass. During these phases, resistance training (RT) volume is often reduced to accommodate recovery demands. Since RT volume is a well-known anabolic stimulus, this review investigates whether a higher training volume helps to spare lean mass during CR. A total of 15 studies met inclusion criteria. The extracted data allowed calculation of total tonnage lifted (repetitions × sets × intensity load) or weekly sets per muscle group for only 4 of the 15 studies, with RT volume being highly dependent on the examined muscle group as well as weekly training frequency per muscle group. Studies involving high RT volume programs (≥ 10 weekly sets per muscle group) revealed low-to-no (mostly female) lean mass loss. Additionally, studies increasing RT volume during CR over time appeared to demonstrate no-to-low lean mass loss when compared to studies reducing RT volume. Since data regarding RT variables applied were incomplete in most of the included studies, evidence is insufficient to conclude that a higher RT volume is better suited to spare lean mass during CR, although data seem to favor higher volumes in female athletes during CR. Moreover, the data appear to suggest that increasing RT volume during CR over time might be more effective in ameliorating CR-induced atrophy in both male and female resistance-trained athletes when compared to studies reducing RT volume. The effects of CR on lean mass sparing seem to be mediated by training experience, pre-diet volume, and energy deficit, with, on average, women tending to spare more lean mass than men. Potential explanatory mechanisms for enhanced lean mass sparing include a preserved endocrine milieu as well as heightened anabolic signaling.
Collapse
Affiliation(s)
- C Roth
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Ginnheimer Landstrasse 39, 60487, Frankfurt/Main, Germany.
| | - B J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, USA
| | - M Behringer
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Ginnheimer Landstrasse 39, 60487, Frankfurt/Main, Germany
| |
Collapse
|
26
|
Vecchio FBD. Body Recomposition: would it be possible to induce fat loss and muscle hypertrophy at the same time? REVISTA BRASILEIRA DE CINEANTROPOMETRIA E DESEMPENHO HUMANO 2022. [DOI: 10.1590/1980-0037.2022v24e86265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
abstract Adipose tissue reduction and lean mass increase are frequent goals in exercise programs aimed at health and aesthetics. In this context, when postulating the need for an energy deficit for weight loss and a caloric surplus for muscle hypertrophy, was developed the idea that it would not be possible for both phenomena to exist simultaneously. Contrarily, the term “Body Recomposition” (BR) emerges in the literature, a phenomenon in which weight loss and muscle hypertrophy occur at the same time. BR has already been observed using different techniques for analyzing body composition, from doubly indirect methods to magnetic resonance imaging, and in different population groups, namely: adolescents, sedentary or physically active adults, the elderly and people with excess weight, as well as practitioners of sports, including bodybuilding. BR occurs with precise nutritional adjustment, with protein consumption above the recommended daily intake (0.8 g/kg), in ranges between 2.4 and 3.4 g/kg of body mass/day. Different types of exercises can lead to BR, from strength training, through high-intensity circuit training, high-intensity interval training, and even concurrent training – most often with a high weekly frequency.
Collapse
|
27
|
Grossmann M, Wittert GA. Dysregulation of the Hypothalamic-Pituitary-Testicular Axis due to Energy Deficit. J Clin Endocrinol Metab 2021; 106:e4861-e4871. [PMID: 34264314 DOI: 10.1210/clinem/dgab517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Although gonadal axis dysregulation from energy deficit is well recognized in women, the effects of energy deficit on the male gonadal axis have received much less attention. EVIDENCE ACQUISITION To identify relevant articles, we conducted PubMed searches from inception to May 2021. EVIDENCE SYNTHESIS Case series and mechanistic studies demonstrate that energy deficit (both acutely over days or chronically over months) either from inadequate energy intake and/or excessive energy expenditure can lower serum testosterone concentration as a result of hypothalamic-pituitary-testicular (HPT) axis dysregulation in men. The extent to which this has clinical consequences that can be disentangled from the effects of nutritional insufficiency, concomitant endocrine dysregulation (eg, adrenal and thyroid axis), and coexisting comorbidities (eg, depression and substance abuse) is uncertain. HPT axis dysfunction is primarily the result of loss of GnRH pulsatility resulting from a failure of leptin to induce kisspeptin signaling. The roles of neuroendocrine consequences of depression, hypothalamic-pituitary-adrenal axis activation, proinflammatory cytokines, Ghrelin, and genetic susceptibility remain unclear. In contrast to hypogonadism from organic pathology of the HPT axis, energy deficit-associated HPT dysregulation is functional, and generally reversible by restoring energy balance. CONCLUSIONS The clinical management of such men should aim to restore adequate nutrition and achieve and maintain a healthy body weight. Psychosocial comorbidities must be identified and addressed. There is no evidence that testosterone treatment is beneficial. Many knowledge gaps regarding epidemiology, pathophysiology, and treatment remain and we highlight several areas that require future research.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine (Austin Health), The University of Melbourne, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Gary A Wittert
- Freemasons Centre for Male Health and Well-being, University of Adelaide, Adelaide, South Australia, Australia
- The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| |
Collapse
|
28
|
Teixeira A, Gabriel R, Martinho J, Pinto G, Quaresma L, Faria A, Oliveira I, Moreira H. Connectedness to Nature Does Not Explain the Variation in Physical Activity and Body Composition in Adults and Older People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11951. [PMID: 34831707 PMCID: PMC8619523 DOI: 10.3390/ijerph182211951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Connectedness to nature (CN) is a significant predictor of pro-environmental behaviours, human health and well-being. However, research on how this connection to the natural world might promote a more active lifestyle and improve body mass composition according to gender is lacking. This study investigated the influence of CN on physical activity (PA) and body composition in adults and older people. We recruited a sample of 219 individuals (77 men and 142 women), and a self-administered questionnaire was used to measure CN and obtain demographic data. Body composition was assessed by bioimpedance, and PA was assessed by accelerometry. Correlations and stepwise multiple regressions were used in data analysis. CN's association with other variables was more pronounced in women than in men, and we only identified significant associations with steps/day and body composition. However, this variable would not be included in the regression models that we developed. Adiposity levels and muscle status were significant predictors of PA in women. In both genders, age, percentage of fat mass and fat-free mass were selected as regressors in the models developed for visceral fat area and muscle condition (R2 Adjusted ≥ 0.908).
Collapse
Affiliation(s)
- Andreia Teixeira
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ronaldo Gabriel
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Sports Science, Exercise and Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - José Martinho
- Geosciences Centre (CGeo), Department of Geology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Graça Pinto
- Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Department of Sports Science, Exercise and Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Luís Quaresma
- Department of Sports Science, Exercise and Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Aurélio Faria
- Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Department of Sport Science, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - Irene Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Mathematics, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Center for Computational and Stochastic Mathematics, CEMAT-IST-UL, University of Lisbon, 1600-214 Lisbon, Portugal
| | - Helena Moreira
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Department of Sports, Exercise and Health Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Sports, Exercise and Health Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
29
|
Synergistic effect of combined oyster peptide and ginseng extracts on anti-exercise-fatigue and promotion of sexual interest activity in male ICR mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
30
|
Varanoske AN, Harris MN, Hebert C, Howard EE, Johannsen NM, Heymsfield SB, Greenway FL, Margolis LM, Lieberman HR, Church DD, Ferrando AA, Rood JC, Pasiakos SM. Effects of testosterone undecanoate on performance during multi-stressor military operations: A trial protocol for the Optimizing Performance for Soldiers II study. Contemp Clin Trials Commun 2021; 23:100819. [PMID: 34278044 PMCID: PMC8264529 DOI: 10.1016/j.conctc.2021.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Previously, young males administered 200 mg/week of testosterone enanthate during 28 days of energy deficit (EDef) gained lean mass and lost less total mass than controls (Optimizing Performance for Soldiers I study, OPS I). Despite that benefit, physical performance deteriorated similarly in both groups. However, some experimental limitations may have precluded detection of performance benefits, as performance measures employed lacked military relevance, and the EDef employed did not elicit the magnitude of stress typically experienced by Soldiers conducting operations. Additionally, the testosterone administered required weekly injections, elicited supra-physiological concentrations, and marked suppression of endogenous testosterone upon cessation. Therefore, this follow-on study will address those limitations and examine testosterone's efficacy for preserving Solder performance during strenuous operations. METHODS In OPS II, 32 males will participate in a randomized, placebo-controlled, double-blind trial. After baseline testing, participants will be administered either testosterone undecanoate (750 mg) or placebo before completing four consecutive, 5-day cycles simulating a multi-stressor, sustained military operation (SUSOPS). SUSOPS will consist of two low-stress days (1000 kcal/day exercise-induced EDef; 8 h/night sleep), followed by three high-stress days (3000 kcal/day and 4 h/night). A 23-day recovery period will follow SUSOPS. Military relevant physical performance is the primary outcome. Secondary outcomes include 4-comparment body composition, muscle and whole-body protein turnover, intramuscular mechanisms, biochemistries, and cognitive function/mood. CONCLUSIONS OPS II will determine if testosterone undecanoate safely enhances performance, while attenuating muscle and total mass loss, without impairing cognitive function, during and in recovery from SUSOPS. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04120363.
Collapse
Key Words
- Anabolism
- And hypogonadism
- BIA, bioelectrical impedance analysis
- D2O, deuterium
- DSMB, data and safety monitoring board
- DXA, dual-energy x-ray absorptiometry
- ECW, extracellular water
- EDef, energy deficit
- EIEE, exercise-induced energy expenditure
- Energy deficit
- Exercise
- FBR, fractional breakdown rate
- FFM, fat-free mass
- FSR, fractional synthetic rate
- HR, heart rate
- HRR, heart rate reserve
- ICW, intracellular water
- ID, identification
- IRB, Institutional Review Board
- MRE, Meal
- Optimizing Performance for Soldiers Trial I, OPS II
- Optimizing Performance for Soldiers Trial II, PAR-Q+
- Pennington Biomedical Research Center, PLA
- Physical Activity Readiness Questionnaire+, PB
- Ready-to-Eat, OPS I
- Skeletal muscle
- Sleep deprivation
- TBW, total body water
- TDEE, total daily energy expenditure
- TDEI, total daily energy intake
- TEST, testosterone experimental group
- VO2max, maximal cardiorespiratory fitness
- VO2peak, peak oxygen uptake
- WBGT, wet bulb globe temperature
- placebo experimental group, PS
- protein breakdown, PBRC
- protein synthesis, Q
- ratings of perceived exertion, SUSOPS
- repetition maximum, RNA
- respiratory exchange ratio, RM
- ribonucleic acid, RPE
- sustained, multi-stressor military operations
- whole-body nitrogen flux, RER
Collapse
Affiliation(s)
- Alyssa N. Varanoske
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Melissa N. Harris
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Callie Hebert
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Emily E. Howard
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Neil M. Johannsen
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Steven B. Heymsfield
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank L. Greenway
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Lee M. Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Harris R. Lieberman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - David D. Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Arny A. Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer C. Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Stefan M. Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
31
|
Carmichael OT, Pillai SR, Murray K, Shankapal P, Caldwell J, Vartanian O, Berryman CE, Karl JP, Harris M, Rood JC, Pasiakos SM, Lieberman HR. Effects of testosterone administration on fMRI responses to executive function, aggressive behavior, and emotion processing tasks during severe exercise- and diet-induced energy deficit. Neuroimage 2021; 243:118496. [PMID: 34425226 DOI: 10.1016/j.neuroimage.2021.118496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Clinical administration of testosterone is widely used due to a variety of claimed physical and cognitive benefits. Testosterone administration is associated with enhanced brain and cognitive function, as well as mood, in energy-balanced males, although such relationships are controversial. However, the effects of testosterone administration on the brains of energy-deficient males, whose testosterone concentrations are likely to be well below normal, have not been investigated. METHODS This study collected functional magnetic resonance imaging (fMRI) data from 50 non-obese young men before (PRE) and shortly after (POST) 28 days of severe exercise-and-diet-induced energy deficit during which testosterone (200 mg testosterone enanthate per week in sesame oil, TEST) or placebo (sesame seed oil only, PLA) were administered. Scans were also collected after a post-energy-deficit weight regain period (REC). Participants completed five fMRI tasks that assessed aspects of: 1) executive function (Attention Network Task or ANT; Multi-Source Interference Task or MSIT; AXE Continuous Processing Task or AXCPT); 2) aggressive behavior (Provoked Aggression Task or AGG); and 3) latent emotion processing (Emotional Face Processing or EMO). RESULTS Changes over time in task-related fMRI activation in a priori defined task-critical brain regions during performance of 2 out of 5 tasks were significantly different between TEST and PLA, with TEST showing greater levels of activation during ANT in the right anterior cingulate gyrus at POST and during MSIT in several brain regions at REC. Changes over time in objective task performance were not statistically significant; testosterone-treated volunteers had greater self-reported anger during AGG at POST. CONCLUSIONS Testosterone administration can alter some aspects of brain function during severe energy deficit and increase levels of anger.
Collapse
Affiliation(s)
| | | | - Kori Murray
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - John Caldwell
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA; Laulima Government Solutions, Orlando, FL, USA
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Claire E Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA; Oak Ridge Institute for Science and Education, Belcamp, MD, USA; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - J P Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - Melissa Harris
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| |
Collapse
|
32
|
Beckner ME, Main L, Tait JL, Martin BJ, Conkright WR, Nindl BC. Circulating biomarkers associated with performance and resilience during military operational stress. Eur J Sport Sci 2021; 22:72-86. [PMID: 34346851 DOI: 10.1080/17461391.2021.1962983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Adaptation to military operational stress is a complex physiological response that calls upon the sympathetic nervous system (SNS), hypothalamic pituitary adrenal (HPA) axis and immune system, to create a delicate balance between anabolism and catabolism and meet the demands of an ever-changing environment. As such, resilience, the ability to withstand and overcome the negative impact of stress on military performance, is likely grounded in an appropriate biological adaptation to encountered stressors. Neuroendocrine [i.e. cortisol, epinephrine (EPI), norepinephrine (NE), neuropeptide-Y (NPY), and brain derived neurotropic factor (BDNF)], inflammatory [i.e. interleukin 6 (IL-6), IL-1β, IL-4, IL-10 and tumour necrosis factor (TNF)-α], as well as growth and anabolic [i.e. insulin-like growth factor-I (IGF-I), testosterone, and dehydroepiandrosterone (DHEA)] biomarkers independently and interactively function in stress adaptations that are associated with a soldier's physical and psychological performance. In this narrative review, we detail biomarkers across neuroendocrine, inflammatory, and growth stimulating domains to better elucidate the biological basis of a resilient soldier. The findings from the reviewed studies indicate that military readiness and resiliency may be enhanced through better homeostatic control, better regulated inflammatory responses, and balanced anabolic/catabolic processes. It is unlikely that one class of biomarkers is better for assessing physiological resilience. Therefore, a biomarker panel that can account for appropriate balance across these domains may be superior in developing monitoring frameworks. Real-time physiological monitoring to assess biomarkers associated with resilience will be possible pending more sophisticated technologies and provide a field-expedient application for early identification and intervention of at-risk soldiers to improve military resiliency.
Collapse
Affiliation(s)
- Meaghan E Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center. Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luana Main
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jamie L Tait
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Brian J Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center. Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Conkright
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center. Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center. Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Conkright WR, O'Leary TJ, Wardle SL, Greeves JP, Beckner ME, Nindl BC. SEX DIFFERENCES IN THE PHYSICAL PERFORMANCE, PHYSIOLOGICAL, AND PSYCHO-COGNITIVE RESPONSES TO MILITARY OPERATIONAL STRESS. Eur J Sport Sci 2021; 22:99-111. [PMID: 33840352 DOI: 10.1080/17461391.2021.1916082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combat roles are physically demanding and expose service personnel to operational stressors such as high levels of physical activity, restricted nutrient intake, sleep loss, psychological stress, and environmental extremes. Women have recently integrated into combat roles, but our knowledge of the physical, physiological, and psycho-cognitive responses to these operational stressors in women is limited. The aim of this narrative review was to evaluate the evidence for sex-specific physical, physiological, and psycho-cognitive responses to real, and simulated, military operational stress. Studies examining physical and cognitive performance, body composition, metabolism, hypothalamic-pituitary-gonadal axis, and psychological health outcomes were evaluated. These studies report that women expend less energy and lose less body mass and fat-free mass, but not fat mass, than men. Despite having similar physical performance decrements as men during operational stress, women experience greater physiological strain than men completing the same physical tasks, but this may be attributed to differences in fitness. From limited data, military operational stress suppresses hypothalamic-pituitary-gonadal, but not hypothalamic-pituitary-adrenal, axis function in both sexes. Men and women demonstrate different psychological and cognitive responses to operational stress, including disturbances in mood, with women having a higher risk of post-traumatic stress symptoms compared with men. Based on current evidence, separate strategies to maximize selection and combat training are not warranted until further data directly comparing men and women are available. However, targeted exercise training programs may be advisable to offset the physical performance gap between sexes and optimize performance prior to inevitable declines caused by intense military operations.
Collapse
Affiliation(s)
- William R Conkright
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory & Warrior Human Performance Research Center, University of Pittsburgh, United States
| | - Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Meaghan E Beckner
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory & Warrior Human Performance Research Center, University of Pittsburgh, United States
| | - Bradley C Nindl
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory & Warrior Human Performance Research Center, University of Pittsburgh, United States
| |
Collapse
|
34
|
de Barros TR, Salerno VP, Ponce T, Mainenti MRM. Body Composition Modifications Due to the "Search, Rescue and Survival Training" in Male Military Firefighter Cadets. Mil Med 2021; 187:e160-e166. [PMID: 33399870 DOI: 10.1093/milmed/usaa571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION To train and prepare cadets for a career as firefighters in Rio de Janeiro, the second-year students of the Officers Training Course are submitted to a Search, Rescue, and Survival Training (SRST) course, which is characterized by long periods of high physical exertion and sleep restriction during a 9-day instruction module, and food restriction during a 7-day survival module. The present study investigated changes in the body composition of 39 male cadets submitted to SRST during training and 4 weeks of recovery with no restrictions in food consumption. MATERIALS AND METHODS Each cadet was evaluated by anthropometric measurements at six time points: pre-SRST; after the first module; after the second module; and after 1, 2, and 4 weeks of recovery. Measurements included body girths and skinfolds, to estimate trunk (chest and waist) and limbs (arm and thigh) dimensions, as well as body composition. Repeated measures ANOVA and Friedman test were applied (depending on each data distribution). RESULTS Statistically significant decreases in body weight (76.2; 69.8-87.2 to 63.9; 58.9-73.5 kg) and fat free mass (FFM, 69.2; 63.7-77.2 to 60.1; 56.2-68.0 kg) were observed following the second module of SRST. Following a single week of recovery, the FFM returned to pre-SRST values. Body weight returned to pre-training levels in 2 weeks. Body fat percentage and mass also significantly decreased during SRST (9.0; 7.7-12.3 to 6.5; 5.1-9.3% and 6.9; 5.6-10.0 to 6.9; 5.6-10.0 kg, respectively), which showed a slower and more gradual recovery that reached pre-SRST values after 4 weeks. The girths of arm, thigh, chest and waist significantly decreased due to SRST. The girths of the limbs (arm and thigh) returned to pre-training values after one month of recovery, while the girths of the trunk (chest and waist) did not return to pre-SRST values during the study period. CONCLUSIONS The findings suggest that men who experience periods of high energy demands and sleep restriction followed by a period of food restriction will endure unavoidable physical consequences that can be mostly reversed by a 1-month recovery.
Collapse
Affiliation(s)
- Thiago Ramos de Barros
- Dom Pedro II Military Firefighter Academy, Rio de Janeiro Fire Department, Rio de Janeiro, State of Rio de Janeiro 21660-001, Brazil.,Physical Education College of the Brazilian Army, Brazilian Army, Rio de Janeiro, State of Rio de Janeiro 22291-090, Brazil.,Department of Biosciences Physical Activity, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Verônica Pinto Salerno
- Department of Biosciences Physical Activity, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Thalita Ponce
- Dom Pedro II Military Firefighter Academy, Rio de Janeiro Fire Department, Rio de Janeiro, State of Rio de Janeiro 21660-001, Brazil.,Department of Biosciences Physical Activity, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Míriam Raquel Meira Mainenti
- Physical Education College of the Brazilian Army, Brazilian Army, Rio de Janeiro, State of Rio de Janeiro 22291-090, Brazil
| |
Collapse
|
35
|
Parahiba SM, Ribeiro ÉCT, Corrêa C, Bieger P, Perry IS, Souza GC. Effect of testosterone supplementation on sarcopenic components in middle-aged and elderly men: A systematic review and meta-analysis. Exp Gerontol 2020; 142:111106. [PMID: 33045359 DOI: 10.1016/j.exger.2020.111106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study was to conduct a systematic review of the literature of randomized controlled trials on the effect of testosterone (T) supplementation compared to the placebo group or lower dose on sarcopenic components (muscle mass, strength and physical performance) in middle-aged and elderly men. Major electronic databases were searched for articles published on or before December 2019. Studies including individuals with age ≥ 40 years and which described the effect of T supplementation on sarcopenic components were found eligible (11 studies). Outcomes were calculated as the difference in means between the experimental and control/placebo groups, and data were presented as effect size with 95% confidence limits (95%CI). The meta-analysis was performed using a random effects model. Regarding lean body mass (LBM), eight studies evaluated the effect of T supplementation on this outcome, of these, seven reported gains after the intervention period. Our meta-analysis showed a beneficial effect on LBM of 2.54 kg (95% CI, 1.27 to 3.80) (p < 0.001). In muscle strength (MS), seven included studies evaluated the handgrip strength (HGS) and just one reported gain after the intervention period, but the meta-analysis showed an increase for HGS of 1.58 kgf (95%CI, 0.17 to 3.0) (p = 0.03). The second outcome for MS was leg strength (LS), where nine studies were included and five demonstrated gains in this parameter after the intervention period. In the meta-analysis, two out of three tests showed an effect on LS: T supplementation increase the leg press strength in 91.23 N (95%CI, 0.23 to 182.22) (p = 0.05) and leg extension in 144.10 N (95%CI, 44.21 to 244.00) (p < 0.01). In physical performance, four studies evaluated this outcome, with three of them showing positive effects in this parameter. In the meta-analysis, only two studies that reported the same assessment test (Physical Performance Test) were included, but no effect of T supplementation on this parameter was found. It can be concluded that T supplementation influences sarcopenic components in middle-aged and older men, because is associated with increased in muscle mass and strength in addition to physical performance.
Collapse
Affiliation(s)
- Suena Medeiros Parahiba
- Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Food, Nutrition and Health, Medical School, Federal University of Rio Grande do Sul, 2400 Ramiro Barcelos Street - 2nd floor, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Édina Caroline Ternus Ribeiro
- Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Food, Nutrition and Health, Medical School, Federal University of Rio Grande do Sul, 2400 Ramiro Barcelos Street - 2nd floor, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Corrêa
- Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Medical Sciences: Endocrinology, Medical School, Federal University of Rio Grande do Sul, 2400 Ramiro Barcelos Street - 2nd floor, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Bieger
- Graduate Program in Food, Nutrition and Health, Medical School, Federal University of Rio Grande do Sul, 2400 Ramiro Barcelos Street - 2nd floor, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ingrid Schweigert Perry
- Food and Nutrition Research Center, Hospital de Clínicas de Porto Alegre/Federal University of Rio Grande do Sul, 2350 Ramiro Barcelos Street, 3rd floor of the Clinical Research Center, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Corrêa Souza
- Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Food, Nutrition and Health, Medical School, Federal University of Rio Grande do Sul, 2400 Ramiro Barcelos Street - 2nd floor, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
36
|
Howard EE, Margolis LM, Berryman CE, Lieberman HR, Karl JP, Young AJ, Montano MA, Evans WJ, Rodriguez NR, Johannsen NM, Gadde KM, Harris MN, Rood JC, Pasiakos SM. Testosterone supplementation upregulates androgen receptor expression and translational capacity during severe energy deficit. Am J Physiol Endocrinol Metab 2020; 319:E678-E688. [PMID: 32776828 PMCID: PMC7750513 DOI: 10.1152/ajpendo.00157.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Testosterone supplementation during energy deficit promotes whole body lean mass accretion, but the mechanisms underlying that effect remain unclear. To elucidate those mechanisms, skeletal muscle molecular adaptations were assessed from muscle biopsies collected before, 1 h, and 6 h after exercise and a mixed meal (40 g protein, 1 h postexercise) following 14 days of weight maintenance (WM) and 28 days of an exercise- and diet-induced 55% energy deficit (ED) in 50 physically active nonobese men treated with 200 mg testosterone enanthate/wk (TEST) or placebo (PLA) during the ED. Participants (n = 10/group) exhibiting substantial increases in leg lean mass and total testosterone (TEST) were compared with those exhibiting decreases in both of these measures (PLA). Resting androgen receptor (AR) protein content was higher and fibroblast growth factor-inducible 14 (Fn14), IL-6 receptor (IL-6R), and muscle ring-finger protein-1 gene expression was lower in TEST vs. PLA during ED relative to WM (P < 0.05). Changes in inflammatory, myogenic, and proteolytic gene expression did not differ between groups after exercise and recovery feeding. Mechanistic target of rapamycin signaling (i.e., translational efficiency) was also similar between groups at rest and after exercise and the mixed meal. Muscle total RNA content (i.e., translational capacity) increased more during ED in TEST than PLA (P < 0.05). These findings indicate that attenuated proteolysis at rest, possibly downstream of AR, Fn14, and IL-6R signaling, and increased translational capacity, not efficiency, may drive lean mass accretion with testosterone administration during energy deficit.
Collapse
Affiliation(s)
- Emily E Howard
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- University of Connecticut, Storrs, Connecticut
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Claire E Berryman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- Florida State University, Tallahassee, Florida
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Andrew J Young
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Monty A Montano
- MyoSyntax Corporation, Worcester, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - William J Evans
- University of California at Berkeley, Berkeley, California
- Duke University, Durham, North Carolina
| | | | - Neil M Johannsen
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Kishore M Gadde
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Melissa N Harris
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jennifer C Rood
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
37
|
|
38
|
Varanoske AN, Margolis LM, Pasiakos SM. Effects of Testosterone on Serum Concentrations, Fat-free Mass, and Physical Performance by Population: A Meta-analysis. J Endocr Soc 2020; 4:bvaa090. [PMID: 32864543 DOI: 10.1210/jendso/bvaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022] Open
Abstract
Testosterone (T) administration (TA) increases serum T and fat-free mass (FFM). Although TA-mediated increases in FFM may enhance physical performance, the data are largely equivocal, which may be due to differences in study populations, the magnitude of change in serum T and FFM, or the performance metrics. This meta-analysis explored effects of TA on serum T, FFM, and performance. Associations between increases in serum T and FFM were assessed, and whether changes in serum T or FFM, study population, or the performance metrics affected performance was determined. A systematic review of double-blind randomized trials comparing TA versus placebo on serum T, FFM, and performance was performed. Data were extracted from 20 manuscripts. Effect sizes (ESs) were assessed using Hedge's g and a random effects model. Data are presented as ES (95% confidence interval). No significant correlation between changes in serum T and FFM was observed (P = .167). Greater increases in serum T, but not FFM, resulted in larger effects on performance. Larger increases in testosterone (7.26 [0.76-13.75]) and FFM (0.80 [0.20-1.41]) were observed in young males, but performance only improved in diseased (0.16 [0.05-0.28]) and older males (0.19 [0.10-0.29]). TA increased lower body (0.12 [0.07-0.18]), upper body (0.26 [0.11-0.40]), and handgrip (0.13 [0.04-0.22]) strength, lower body muscular endurance (0.38 [0.09-0.68]), and functional performance (0.20 [0.00-0.41]), but not lower body power or aerobic endurance. TA elicits increases in serum T and FFM in younger, older, and diseased males; however, the performance-enhancing effects of TA across studies were small, observed mostly in muscular strength and endurance, and only in older and diseased males.
Collapse
Affiliation(s)
- Alyssa N Varanoske
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
39
|
Alajlouni D, Bliuc D, Tran T, Eisman JA, Nguyen TV, Center JR. Decline in Muscle Strength and Performance Predicts Fracture Risk in Elderly Women and Men. J Clin Endocrinol Metab 2020; 105:5868761. [PMID: 32639571 DOI: 10.1210/clinem/dgaa414] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT Muscle strength and performance are associated with fractures. However, the contribution of their rate of decline is unclear. OBJECTIVE To assess the independent contribution of the rate of decline in muscle strength and performance to fracture risk. DESIGN, SETTING, AND PARTICIPANTS Community-dwelling women (n = 811) and men (n = 440) aged 60 years or older from the prospective Dubbo Osteoporosis Epidemiology Study followed from 2000 to 2018 for incident fracture. Clinical data, appendicular lean mass/height2 (ht)2, bone mineral density, quadricep strength/ht (QS), timed get-up-and-go (TGUG), 5 times repeated sit-to-stand (5xSTS), and gait speed (GS) measured biennially. Rates of decline in muscle parameters were calculated using ordinary least squares regression and fracture risk was assessed using Cox's models. MAIN OUTCOME Incident low-trauma fracture ascertained by x-ray report. RESULTS Apart from lean mass in women, all muscle parameters declined over time. Greater rates of decline in physical performance were associated with increased fracture risk in women (Hazard ratios [HRs] ranging from 2.1 (95% CI: 1.5-2.9) for GS to 2.7 (95% CI: 1.9-3.6) for 5xSTS, while in men only the decline in GS was associated with fracture risk (HR: 3.4 [95% CI: 1.8-6.3]). Baseline performance and strength were also associated with increased fracture risk in men (HRs ranging from 1.8 (95% CI: 1.1-3.0) for QS to 2.5 (95% CI: 1.5-4.1) for TGUG, but not in women. CONCLUSION Rate of decline in physical performance in both genders, and baseline strength and performance in men, contributed independently to fracture risk. Sit-to-stand and GS were the tests most consistently associated with fractures. Further studies are required to determine whether muscle strength and/or performance improve the predictive accuracy of fracture prediction models.
Collapse
Affiliation(s)
- Dima Alajlouni
- Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dana Bliuc
- Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Thach Tran
- Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John A Eisman
- Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, New South Wales, Australia
| | - Tuan V Nguyen
- Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jacqueline R Center
- Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Hennigar SR, Berryman CE, Harris MN, Karl JP, Lieberman HR, McClung JP, Rood JC, Pasiakos SM. Testosterone Administration During Energy Deficit Suppresses Hepcidin and Increases Iron Availability for Erythropoiesis. J Clin Endocrinol Metab 2020; 105:5693356. [PMID: 31894236 DOI: 10.1210/clinem/dgz316] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
CONTEXT Severe energy deprivation markedly inhibits erythropoiesis by restricting iron availability for hemoglobin synthesis. OBJECTIVE The objective of this study was to determine whether testosterone supplementation during energy deficit increased indicators of iron turnover and attenuated the decline in erythropoiesis compared to placebo. DESIGN This was a 3-phase, randomized, double-blind, placebo-controlled trial. SETTING The study was conducted at the Pennington Biomedical Research Center. PATIENTS OR OTHER PARTICIPANTS Fifty healthy young males. INTERVENTION(S) Phase 1 was a 14-day free-living eucaloric controlled-feeding phase; phase 2 was a 28-day inpatient phase where participants were randomized to 200 mg testosterone enanthate/week or an isovolumetric placebo/week during an energy deficit of 55% of total daily energy expenditure; phase 3 was a 14-day free-living, ad libitum recovery period. MAIN OUTCOME MEASURE(S) Indices of erythropoiesis, iron status, and hepcidin and erythroferrone were determined. RESULTS Hepcidin declined by 41%, indicators of iron turnover increased, and functional iron stores were reduced with testosterone administration during energy deficit compared to placebo. Testosterone administration during energy deficit increased circulating concentrations of erythropoietin and maintained erythropoiesis, as indicated by an attenuation in the decline in hemoglobin and hematocrit with placebo. Erythroferrone did not differ between groups, suggesting that the reduction in hepcidin with testosterone occurs through an erythroferrone-independent mechanism. CONCLUSION These findings indicate that testosterone suppresses hepcidin, through either direct or indirect mechanisms, to increase iron turnover and maintain erythropoiesis during severe energy deficit. This trial was registered at www.clinicaltrials.gov as #NCT02734238.
Collapse
Affiliation(s)
- Stephen R Hennigar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Technology, Belcamp, Maryland
| | - Claire E Berryman
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Technology, Belcamp, Maryland
| | | | - J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Harris R Lieberman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
41
|
Karl JP, Berryman CE, Harris MN, Lieberman HR, Gadde KM, Rood JC, Pasiakos SM. Effects of Testosterone Supplementation on Ghrelin and Appetite During and After Severe Energy Deficit in Healthy Men. J Endocr Soc 2020; 4:bvaa024. [PMID: 32258956 PMCID: PMC7101089 DOI: 10.1210/jendso/bvaa024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Severe energy deficits cause interrelated reductions in testosterone and fat free mass. Testosterone supplementation may mitigate those decrements, but could also reduce circulating concentrations of the orexigenic hormone ghrelin, thereby exacerbating energy deficit by suppressing appetite. OBJECTIVE To determine whether testosterone supplementation during severe energy deficit influences fasting and postprandial ghrelin concentrations and appetite. DESIGN AND METHODS Secondary analysis of a randomized, double-blind trial that determined the effects of testosterone supplementation on body composition changes during and following severe energy deficit in nonobese, eugonadal men. Phase 1 (PRE-ED): 14-day run-in; phase 2: 28 days, 55% energy deficit with 200 mg testosterone enanthate weekly (TEST; n = 24) or placebo (PLA; n = 26); phase 3: free-living until body mass recovered (end-of-study; EOS). Fasting and postprandial acyl ghrelin and des-acyl ghrelin concentrations and appetite were secondary outcomes measured during the final week of each phase. RESULTS Fasting acyl ghrelin concentrations, and postprandial acyl and des-acyl ghrelin concentrations increased in PLA during energy deficit then returned to PRE-ED values by EOS, but did not change in TEST (phase-by-group, P < 0.05). Correlations between changes in free testosterone and changes in fasting acyl ghrelin concentrations during energy deficit (ρ = -0.42, P = 0.003) and body mass recovery (ρ = -0.38; P = 0.01) were not mediated by changes in body mass or body composition. Transient increases in appetite during energy deficit were not affected by testosterone treatment. CONCLUSIONS Testosterone supplementation during short-term, severe energy deficit in healthy men prevents deficit-induced increases in circulating ghrelin without blunting concomitant increases in appetite. CLINICAL TRIALS REGISTRATION www.clinicaltrials.gov NCT02734238 (registered 12 April 2016).
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Claire E Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
- Oak Ridge Institute for Science and Education, Belcamp, MD, USA
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Melissa N Harris
- Louisiana State University’s Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Kishore M Gadde
- Louisiana State University’s Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jennifer C Rood
- Louisiana State University’s Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
42
|
Testosterone replacement for male military personnel - A potential countermeasure to reduce injury and improve performance under extreme conditions. EBioMedicine 2019; 47:16-17. [PMID: 31405757 PMCID: PMC6796586 DOI: 10.1016/j.ebiom.2019.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/22/2022] Open
|