1
|
Isaac A, Klontzas ME, Dalili D, Akdogan AI, Fawzi M, Gugliemi G, Filippiadis D. Revolutionising osseous biopsy: the impact of artificial intelligence in the era of personalized medicine. Br J Radiol 2025; 98:795-809. [PMID: 39878877 DOI: 10.1093/bjr/tqaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalized medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted. We provide a brief review of AI in image- guided biopsy of bone tumours (primary and secondary) and specimen handling, in the era of personalized medicine. This article explores AI's role in enhancing diagnostic accuracy, improving safety in biopsies, and enabling more precise targeting in bone lesion biopsies, ultimately contributing to better patient outcomes in personalized medicine. We dive into various AI technologies applied to osseous biopsies, such as traditional machine learning, deep learning, radiomics, simulation, and generative models. We explore their roles in tumour-board meetings, communication between clinicians, radiologists, and pathologists. Additionally, we inspect ethical considerations associated with the integration of AI in bone biopsy procedures, technical limitations, and we delve into health equity, generalizability, deployment issues, and reimbursement challenges in AI-powered healthcare. Finally, we explore potential future developments and offer a list of open-source AI tools and algorithms relevant to bone biopsies, which we include to encourage further discussion and research.
Collapse
Affiliation(s)
- Amanda Isaac
- School of Biomedical Engineering and Imaging Sciences, King's College London, 100 Lambeth Palace Rd, London SE1 7AR, United Kingdom
| | - Michail E Klontzas
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, P.C. 71003, Greece
| | - Danoob Dalili
- Southwest London Elective Orthopaedic Centre, Epsom and St Helier Hospitals, Surrey, London SM5 1AA, United Kingdom
| | - Asli Irmak Akdogan
- Ataturk Training and Research Hospital, Izmir Katip Çelebi University, Izmir, Turkey
| | - Mohamed Fawzi
- Department of Radiology, National Hepatology and Tropical Research Institute, Cairo, Egypt
| | | | - Dimitrios Filippiadis
- 2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
2
|
Hong R, Li Q, Ma J, Lu C, Zhong Z. Computed tomography-based radiomics machine learning models for differentiating enchondroma and atypical cartilaginous tumor in long bones. ROFO-FORTSCHR RONTG 2025; 197:416-423. [PMID: 39074797 DOI: 10.1055/a-2344-5398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
To explore the value of CT-based radiomics machine learning models for differentiating enchondroma from atypical cartilaginous tumor (ACT) in long bones and methods to improve model performance.59 enchondromas and 53 ACTs in long bones confirmed by pathology were collected retrospectively. The features were extracted from preoperative CT images of these patients, and least absolute shrinkage and selection operator (LASSO) regression was used for feature selection and dimensionality reduction. The selected features were used to construct classification models by thirteen machine learning algorithms. The data set was randomly divided into a training set and a test set at a proportion of 7:3 by ten-fold cross-validation to evaluate the performance of these models.A total of 1199 features were extracted, 9 features were selected, and 13 radiomics machine learning models were constructed. The area under the curve (AUC) of 11 models was more than 0.8, and that of 3 models was more than 0.9. The Extremely Randomized Trees model achieved the best performance (AUC = 0.9375 ± 0.0884), followed by the Adaptive Boosting model (AUC = 0.9188 ± 0.1010) and the Linear Discriminant Analysis model (AUC = 0.9062 ± 0.1459).CT-based radiomics machine learning models had great ability to distinguish enchondroma and ACT in long bones. By using filters to deeply mine high-order features in the original image and selecting appropriate machine learning algorithms, the performance of the model can be improved. · CT-based radiomics machine learning models can distinguish enchondroma and ACT in long bones.. · Using filters and selecting advanced machine learning algorithms can improve model performance.. · Clinical features have limited utility in distinguishing enchondroma and ACT in long bones.. · Hong R, Li Q, Ma J et al. Computed tomography-based radiomics machine learning models for differentiating enchondroma and atypical cartilaginous tumor in long bones. Fortschr Röntgenstr 2025; 197: 416-423.
Collapse
Affiliation(s)
- Rui Hong
- Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jielin Ma
- Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunmiao Lu
- Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiwei Zhong
- Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Spaanderman DJ, Marzetti M, Wan X, Scarsbrook AF, Robinson P, Oei EHG, Visser JJ, Hemke R, van Langevelde K, Hanff DF, van Leenders GJLH, Verhoef C, Grünhagen DJ, Niessen WJ, Klein S, Starmans MPA. AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines. EBioMedicine 2025; 114:105642. [PMID: 40118007 PMCID: PMC11976239 DOI: 10.1016/j.ebiom.2025.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches. This systematic review aims to provide an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours, highlighting challenges in clinical translation, and evaluating study alignment with the Checklist for AI in Medical Imaging (CLAIM) and the FUTURE-AI international consensus guidelines for trustworthy and deployable AI to promote the clinical translation of AI methods. METHODS The systematic review identified literature from several bibliographic databases, covering papers published before 17/07/2024. Original research published in peer-reviewed journals, focused on radiology-based AI for diagnosis or prognosis of primary STBT was included. Exclusion criteria were animal, cadaveric, or laboratory studies, and non-English papers. Abstracts were screened by two of three independent reviewers to determine eligibility. Included papers were assessed against the two guidelines by one of three independent reviewers. The review protocol was registered with PROSPERO (CRD42023467970). FINDINGS The search identified 15,015 abstracts, from which 325 articles were included for evaluation. Most studies performed moderately on CLAIM, averaging a score of 28.9 ± 7.5 out of 53, but poorly on FUTURE-AI, averaging 5.1 ± 2.1 out of 30. INTERPRETATION Imaging-AI tools for STBT remain at the proof-of-concept stage, indicating significant room for improvement. Future efforts by AI developers should focus on design (e.g. defining unmet clinical need, intended clinical setting and how AI would be integrated in clinical workflow), development (e.g. building on previous work, training with data that reflect real-world usage, explainability), evaluation (e.g. ensuring biases are evaluated and addressed, evaluating AI against current best practices), and the awareness of data reproducibility and availability (making documented code and data publicly available). Following these recommendations could improve clinical translation of AI methods. FUNDING Hanarth Fonds, ICAI Lab, NIHR, EuCanImage.
Collapse
Affiliation(s)
- Douwe J Spaanderman
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Matthew Marzetti
- Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, UK; Leeds Biomedical Research Centre, University of Leeds, UK
| | - Xinyi Wan
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrew F Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, UK; Leeds Institute of Medical Research, University of Leeds, UK
| | - Philip Robinson
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, UK
| | - Edwin H G Oei
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jacob J Visser
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robert Hemke
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - David F Hanff
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dirk J Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Faculty of Medical Sciences, University of Groningen, Groningen, the Netherlands
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martijn P A Starmans
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Santos CS, Amorim-Lopes M. Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review. BMC Med Res Methodol 2025; 25:45. [PMID: 39984835 PMCID: PMC11843972 DOI: 10.1186/s12874-025-02463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND This scoping review systematically maps externally validated machine learning (ML)-based models in cancer patient care, quantifying their performance, and clinical utility, and examining relationships between models, cancer types, and clinical decisions. By synthesizing evidence, this study identifies, strengths, limitations, and areas requiring further research. METHODS The review followed the Joanna Briggs Institute's methodology, Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines, and the Population, Concept, and Context mnemonic. Searches were conducted across Embase, IEEE Xplore, PubMed, Scopus, and Web of Science (January 2014-September 2022), targeting English-language quantitative studies in Q1 journals (SciMago Journal and Country Ranking > 1) that used ML to evaluate clinical outcomes for human cancer patients with commonly available data. Eligible models required external validation, clinical utility assessment, and performance metric reporting. Studies involving genetics, synthetic patients, plants, or animals were excluded. Results were presented in tabular, graphical, and descriptive form. RESULTS From 4023 deduplicated abstracts and 636 full-text reviews, 56 studies (2018-2022) met the inclusion criteria, covering diverse cancer types and applications. Convolutional neural networks were most prevalent, demonstrating high performance, followed by gradient- and decision tree-based algorithms. Other algorithms, though underrepresented, showed promise. Lung and digestive system cancers were most frequently studied, focusing on diagnosis and outcome predictions. Most studies were retrospective and multi-institutional, primarily using image-based data, followed by text-based and hybrid approaches. Clinical utility assessments involved 499 clinicians and 12 tools, indicating improved clinician performance with AI assistance and superior performance to standard clinical systems. DISCUSSION Interest in ML-based clinical decision-making has grown in recent years alongside increased multi-institutional collaboration. However, small sample sizes likely impacted data quality and generalizability. Persistent challenges include limited international validation across ethnicities, inconsistent data sharing, disparities in validation metrics, and insufficient calibration reporting, hindering model comparison reliability. CONCLUSION Successful integration of ML in oncology decision-making requires standardized data and methodologies, larger sample sizes, greater transparency, and robust validation and clinical utility assessments. OTHER Financed by FCT-Fundação para a Ciência e a Tecnologia (Portugal, project LA/P/0063/2020, grant 2021.09040.BD) as part of CSS's Ph.D. This work was not registered.
Collapse
Affiliation(s)
- Catarina Sousa Santos
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal.
| | - Mário Amorim-Lopes
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| |
Collapse
|
5
|
Zhang HW, Wang YR, Hu B, Song B, Wen ZJ, Su L, Chen XM, Wang X, Zhou P, Zhong XM, Pang HW, Wang YH. Using machine learning to develop a stacking ensemble learning model for the CT radiomics classification of brain metastases. Sci Rep 2024; 14:28575. [PMID: 39562670 PMCID: PMC11577090 DOI: 10.1038/s41598-024-80210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
The objective of this study was to explore the potential of machine-learning techniques in the automatic identification and classification of brain metastases from a radiomic perspective, aiming to improve the accuracy of tumor volume assessment for radiotherapy. By using various machine-learning algorithms, including random forest, support vector machine, gradient boosting machine, XGBoost, decision tree, artificial neural network, k-nearest neighbors, LightGBM, and CatBoost algorithms, a stacking ensemble model was developed to classify gross tumor volume (GTV), brainstem, and normal brain tissue based on radiomic features. Multiple evaluation metrics, including the specificity, sensitivity, negative predictive value, positive predictive value, accuracy, Matthews correlation coefficient, and the Youden index, were used to assess the model's performance. The stacked ensemble model integrated the strengths of the nine base models and consistently outperformed individual base models in classifying GTV (area under the curve [AUC] = 0.928), brainstem (AUC = 0.932), and normal brain tissue (AUC = 0.942). Among the base models, the support vector machine model demonstrated the best performance in the three classifications (AUC = 0.922, 0.909, and 0.928). The higher performance of the stacked ensemble model highlighted the low performance of other models, including the decision tree (AUC = 0.709, 0.706, 0.804) and k-nearest neighbors (AUC = 0.721, 0.663, 0.729) models in certain contexts, such as when faced with high-dimensional feature spaces. While machine learning shows significant promise in medical image analysis, relying solely on a single model may lead to suboptimal results. By combining the strengths of various algorithms, the stacking ensemble model offers a better solution for the classification of brain metastases based on radiomic features.
Collapse
Affiliation(s)
- Huai-Wen Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, Nanchang, 330029, China.
| | - Yi-Ren Wang
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Bo Hu
- Key Laboratory of Nondestructive Testing (Ministry of Education), Nanchang Hang Kong University, Nanchang, 330063, China
| | - Bo Song
- Department of Neurosurgery, Jingdezhen No.1 People's Hospital, Jingdezhen, 333000, China
| | - Zhong-Jian Wen
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
| | - Lei Su
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Man Chen
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
| | - Xi Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Ping Zhou
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Ming Zhong
- Department of Radiotherapy, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, Nanchang, 330029, China.
| | - Hao-Wen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - You-Hua Wang
- Department of Oncology, Gulin County People's Hospital, Gulin, 646500, China.
| |
Collapse
|
6
|
Yildirim M, Yildirim H. CT radiomics-based machine learning model for differentiating between enchondroma and low-grade chondrosarcoma. Medicine (Baltimore) 2024; 103:e39311. [PMID: 39151512 PMCID: PMC11332721 DOI: 10.1097/md.0000000000039311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
It may be difficult to distinguish between enchondroma and low-grade malignant cartilage tumors (grade 1) radiologically. This study aimed to construct machine learning models using 3D computed tomography (CT)-based radiomics analysis to differentiate low-grade chondrosarcoma from enchondroma. A total of 30 patients with enchondroma and 26 with chondrosarcoma were included in this retrospective study. Tumor volume segmentation was manually performed by 2 musculoskeletal radiologists. In total, 107 radiomic features were obtained for each patient. The intraclass correlation coefficient was used to assess interobserver reliability and estimate the absolute agreement between the 2 radiologists. Algorithm-based information gain was used as a feature reduction method, and the 5 most important features were detected. For classification, 7 machine learning models were utilized. Classification was carried out using either all features or 5 features. There was good to excellent agreement between the 2 radiologists for the 107 features of each patient. Therefore, a dataset containing 107 features was used for machine learning classification. When assessed based on area under curve (AUC) values, classification using all features revealed that naive Bayes was the best model (AUC = 0.950), while classification using 5 features revealed that random forest was the best model for differentiating chondrosarcoma from enchondroma (AUC = 0.967). In conclusion, machine learning models using CT-based radiomics analysis can be used to differentiate between low-grade chondrosarcoma and enchondroma.
Collapse
Affiliation(s)
- Mustafa Yildirim
- Firat University School of Medicine Department of Radiology, Elaziğ, Turkey
| | - Hanefi Yildirim
- Firat University School of Medicine Department of Radiology, Elaziğ, Turkey
| |
Collapse
|
7
|
Van Den Berghe T, Delbare F, Candries E, Lejoly M, Algoet C, Chen M, Laloo F, Huysse WCJ, Creytens D, Verstraete KL. A retrospective external validation study of the Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) for the management of solitary central cartilage tumours of the proximal humerus and around the knee. Eur Radiol 2024; 34:4988-5006. [PMID: 38319428 DOI: 10.1007/s00330-024-10604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVES This study aimed to externally validate the Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) recommendations for differentiation/follow-up of central cartilage tumours (CCTs) of the proximal humerus, distal femur, and proximal tibia and to propose BACTIP adaptations if the results provide new insights. METHODS MRIs of 123 patients (45 ± 11 years, 37 men) with an untreated CCT with MRI follow-up (n = 62) or histopathological confirmation (n = 61) were retrospectively/consecutively included and categorised following the BACTIP (2003-2020 / Ghent University Hospital/Belgium). Tumour length and endosteal scalloping differences between enchondroma, atypical cartilaginous tumour (ACT), and high-grade chondrosarcoma (CS II/III/dedifferentiated) were evaluated. ROC-curve analysis for differentiating benign from malignant CCTs and for evaluating the BACTIP was performed. RESULTS For lesion length and endosteal scalloping, ROC-AUCs were poor and fair-excellent, respectively, for differentiating different CCT groups (0.59-0.69 versus 0.73-0.91). The diagnostic performance of endosteal scalloping and the BACTIP was higher than that of lesion length. A 1° endosteal scalloping cut-off differentiated enchondroma from ACT + high-grade chondrosarcoma with a sensitivity of 90%, reducing the potential diagnostic delay. However, the specificity was 29%, inducing overmedicalisation (excessive follow-up). ROC-AUC of the BACTIP was poor for differentiating enchondroma from ACT (ROC-AUC = 0.69; 95%CI = 0.51-0.87; p = 0.041) and fair-good for differentiation between other CCT groups (ROC-AUC = 0.72-0.81). BACTIP recommendations were incorrect/unsafe in five ACTs and one CSII, potentially inducing diagnostic delay. Eleven enchondromas received unnecessary referrals/follow-up. CONCLUSION Although promising as a useful tool for management/follow-up of CCTs of the proximal humerus, distal femur, and proximal tibia, five ACTs and one chondrosarcoma grade II were discharged, potentially inducing diagnostic delay, which could be reduced by adapting BACTIP cut-off values. CLINICAL RELEVANCE STATEMENT Mostly, Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) assesses central cartilage tumours of the proximal humerus and the knee correctly. Both when using the BACTIP and when adapting cut-offs, caution should be taken for the trade-off between underdiagnosis/potential diagnostic delay in chondrosarcomas and overmedicalisation in enchondromas. KEY POINTS • This retrospective external validation confirms the Birmingham Atypical Cartilage Tumour Imaging Protocol as a useful tool for initial assessment and follow-up recommendation of central cartilage tumours in the proximal humerus and around the knee in the majority of cases. • Using only the Birmingham Atypical Cartilage Tumour Imaging Protocol, both atypical cartilaginous tumours and high-grade chondrosarcomas (grade II, grade III, and dedifferentiated chondrosarcomas) can be misdiagnosed, excluding them from specialist referral and further follow-up, thus creating a potential risk of delayed diagnosis and worse prognosis. • Adapted cut-offs to maximise detection of atypical cartilaginous tumours and high-grade chondrosarcomas, minimise underdiagnosis and reduce potential diagnostic delay in malignant tumours but increase unnecessary referral and follow-up of benign tumours.
Collapse
Affiliation(s)
- Thomas Van Den Berghe
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium.
| | - Felix Delbare
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Esther Candries
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Maryse Lejoly
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Chloé Algoet
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Min Chen
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Frederiek Laloo
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Wouter C J Huysse
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Koenraad L Verstraete
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| |
Collapse
|
8
|
Li X, Zhang J, Leng Y, Liu J, Li L, Wan T, Dong W, Fan B, Gong L. Preoperative prediction of histopathological grading in patients with chondrosarcoma using MRI-based radiomics with semantic features. BMC Med Imaging 2024; 24:171. [PMID: 38992609 PMCID: PMC11238384 DOI: 10.1186/s12880-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Distinguishing high-grade from low-grade chondrosarcoma is extremely vital not only for guiding the development of personalized surgical treatment but also for predicting the prognosis of patients. We aimed to establish and validate a magnetic resonance imaging (MRI)-based nomogram for predicting preoperative grading in patients with chondrosarcoma. METHODS Approximately 114 patients (60 and 54 cases with high-grade and low-grade chondrosarcoma, respectively) were recruited for this retrospective study. All patients were treated via surgery and histopathologically proven, and they were randomly divided into training (n = 80) and validation (n = 34) sets at a ratio of 7:3. Next, radiomics features were extracted from two sequences using the least absolute shrinkage and selection operator (LASSO) algorithms. The rad-scores were calculated and then subjected to logistic regression to develop a radiomics model. A nomogram combining independent predictive semantic features with radiomic by using multivariate logistic regression was established. The performance of each model was assessed by the receiver operating characteristic (ROC) curve analysis and the area under the curve, while clinical efficacy was evaluated via decision curve analysis (DCA). RESULTS Ultimately, six optimal radiomics signatures were extracted from T1-weighted imaging (T1WI) and T2-weighted imaging with fat suppression (T2WI-FS) sequences to develop the radiomics model. Tumour cartilage abundance, which emerged as an independent predictor, was significantly related to chondrosarcoma grading (p < 0.05). The AUC values of the radiomics model were 0.85 (95% CI, 0.76 to 0.95) in the training sets, and the corresponding AUC values in the validation sets were 0.82 (95% CI, 0.65 to 0.98), which were far superior to the clinical model AUC values of 0.68 (95% CI, 0.58 to 0.79) in the training sets and 0.72 (95% CI, 0.57 to 0.87) in the validation sets. The nomogram demonstrated good performance in the preoperative distinction of chondrosarcoma. The DCA analysis revealed that the nomogram model had a markedly higher clinical usefulness in predicting chondrosarcoma grading preoperatively than either the rad-score or clinical model alone. CONCLUSION The nomogram based on MRI radiomics combined with optimal independent factors had better performance for the preoperative differentiation between low-grade and high-grade chondrosarcoma and has potential as a noninvasive preoperative tool for personalizing clinical plans.
Collapse
Affiliation(s)
- Xiaofen Li
- 1Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Jingkun Zhang
- 2Department of Radiology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Yinping Leng
- Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006, China
| | - Jiaqi Liu
- 1Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Linlin Li
- 1Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Tianyi Wan
- 1Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Wentao Dong
- 1Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Bing Fan
- 1Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Lianggeng Gong
- Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006, China.
| |
Collapse
|
9
|
Rizk PA, Gonzalez MR, Galoaa BM, Girgis AG, Van Der Linden L, Chang CY, Lozano-Calderon SA. Machine Learning-Assisted Decision Making in Orthopaedic Oncology. JBJS Rev 2024; 12:01874474-202407000-00005. [PMID: 38991098 DOI: 10.2106/jbjs.rvw.24.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
» Artificial intelligence is an umbrella term for computational calculations that are designed to mimic human intelligence and problem-solving capabilities, although in the future, this may become an incomplete definition. Machine learning (ML) encompasses the development of algorithms or predictive models that generate outputs without explicit instructions, assisting in clinical predictions based on large data sets. Deep learning is a subset of ML that utilizes layers of networks that use various inter-relational connections to define and generalize data.» ML algorithms can enhance radiomics techniques for improved image evaluation and diagnosis. While ML shows promise with the advent of radiomics, there are still obstacles to overcome.» Several calculators leveraging ML algorithms have been developed to predict survival in primary sarcomas and metastatic bone disease utilizing patient-specific data. While these models often report exceptionally accurate performance, it is crucial to evaluate their robustness using standardized guidelines.» While increased computing power suggests continuous improvement of ML algorithms, these advancements must be balanced against challenges such as diversifying data, addressing ethical concerns, and enhancing model interpretability.
Collapse
Affiliation(s)
- Paul A Rizk
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcos R Gonzalez
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bishoy M Galoaa
- Interdisciplinary Science & Engineering Complex (ISEC), Northeastern University, Boston, Massachusetts
| | - Andrew G Girgis
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Lotte Van Der Linden
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Connie Y Chang
- Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Santiago A Lozano-Calderon
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Shi Y, Zhou M, Chang C, Jiang P, Wei K, Zhao J, Shan Y, Zheng Y, Zhao F, Lv X, Guo S, Wang F, He D. Advancing precision rheumatology: applications of machine learning for rheumatoid arthritis management. Front Immunol 2024; 15:1409555. [PMID: 38915408 PMCID: PMC11194317 DOI: 10.3389/fimmu.2024.1409555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease causing progressive joint damage. Early diagnosis and treatment is critical, but remains challenging due to RA complexity and heterogeneity. Machine learning (ML) techniques may enhance RA management by identifying patterns within multidimensional biomedical data to improve classification, diagnosis, and treatment predictions. In this review, we summarize the applications of ML for RA management. Emerging studies or applications have developed diagnostic and predictive models for RA that utilize a variety of data modalities, including electronic health records, imaging, and multi-omics data. High-performance supervised learning models have demonstrated an Area Under the Curve (AUC) exceeding 0.85, which is used for identifying RA patients and predicting treatment responses. Unsupervised learning has revealed potential RA subtypes. Ongoing research is integrating multimodal data with deep learning to further improve performance. However, key challenges remain regarding model overfitting, generalizability, validation in clinical settings, and interpretability. Small sample sizes and lack of diverse population testing risks overestimating model performance. Prospective studies evaluating real-world clinical utility are lacking. Enhancing model interpretability is critical for clinician acceptance. In summary, while ML shows promise for transforming RA management through earlier diagnosis and optimized treatment, larger scale multisite data, prospective clinical validation of interpretable models, and testing across diverse populations is still needed. As these gaps are addressed, ML may pave the way towards precision medicine in RA.
Collapse
Affiliation(s)
- Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Fuyu Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinliang Lv
- Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fubo Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Gitto S, Cuocolo R, Giannetta V, Badalyan J, Di Luca F, Fusco S, Zantonelli G, Albano D, Messina C, Sconfienza LM. Effects of Interobserver Segmentation Variability and Intensity Discretization on MRI-Based Radiomic Feature Reproducibility of Lipoma and Atypical Lipomatous Tumor. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1187-1200. [PMID: 38332405 PMCID: PMC11169199 DOI: 10.1007/s10278-024-00999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Segmentation and image intensity discretization impact on radiomics workflow. The aim of this study is to investigate the influence of interobserver segmentation variability and intensity discretization methods on the reproducibility of MRI-based radiomic features in lipoma and atypical lipomatous tumor (ALT). Thirty patients with lipoma or ALT were retrospectively included. Three readers independently performed manual contour-focused segmentation on T1-weighted and T2-weighted sequences, including the whole tumor volume. Additionally, a marginal erosion was applied to segmentations to evaluate its influence on feature reproducibility. After image pre-processing, with included intensity discretization employing both fixed bin number and width approaches, 1106 radiomic features were extracted from each sequence. Intraclass correlation coefficient (ICC) 95% confidence interval lower bound ≥ 0.75 defined feature stability. In contour-focused vs. margin shrinkage segmentation, the rates of stable features extracted from T1-weighted and T2-weighted images ranged from 92.68 to 95.21% vs. 90.69 to 95.66% after fixed bin number discretization and from 95.75 to 97.65% vs. 95.39 to 96.47% after fixed bin width discretization, respectively, with no difference between the two segmentation approaches (p ≥ 0.175). Higher stable feature rates and higher feature ICC values were found when implementing discretization with fixed bin width compared to fixed bin number, regardless of the segmentation approach (p < 0.001). In conclusion, MRI radiomic features of lipoma and ALT are reproducible regardless of the segmentation approach and intensity discretization method, although a certain degree of interobserver variability highlights the need for a preliminary reliability analysis in future studies.
Collapse
Affiliation(s)
- Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Milan, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Vincenzo Giannetta
- Diagnostic and Interventional Radiology Department, IRCCS Ospedale San Raffaele-Turro, Università Vita-Salute San Raffaele, Milan, Italy
| | - Julietta Badalyan
- Scuola Di Specializzazione in Statistica Sanitaria E Biometria, Università Degli Studi Di Milano, Milan, Italy
| | - Filippo Di Luca
- Scuola Di Specializzazione in Radiodiagnostica, Università Degli Studi Di Milano, Milan, Italy
| | - Stefano Fusco
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Milan, Italy
| | - Giulia Zantonelli
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Milan, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy
- Dipartimento Di Scienze Biomediche, Chirurgiche Ed Odontoiatriche, Università Degli Studi Di Milano, Milan, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy.
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
12
|
Wen J, Wang X, Xia M, Wei B, Yang H, Hou Y. Radiomics features based on dual-area CT predict the expression levels of fatty acid binding protein 4 and outcome in hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:1905-1917. [PMID: 38453791 DOI: 10.1007/s00261-023-04177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 03/09/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate the predictive value of tumor and peritumor radiomics in the fatty acid binding protein 4 (FABP4) expression levels and overall survival in patients with hepatocellular carcinoma. MATERIALS AND METHODS The genomic data of HCC patients were obtained from The Cancer Genome Atlas. The Dual-area CT images of corresponding patients were downloaded from The Cancer Imaging Archive, for radiomics feature extraction, model construction and prognosis analysis. Simultaneously, using patients from Sichuan Provincial People's Hospital, the prognostic value of the radiomics model in HCC patients was validated. RESULTS In the TCIA database, the area under the curve (AUC) values of the volumes of interest (VOI)whole model in the training set and internal validation set were 0.812 and 0.754, respectively, and the AUC value of VOIwhole+periphery in the training set and internal validation set were 0.866 and 0.779, respectively. In the VOIwhole and the VOIwhole+periphery model of the independent cohort, there were significant differences in OS between the high and low rad-score groups (P = 0.009, P = 0.021, respectively). Significant positive correlations can be observed between FABP4 expression and correlations with rad-score of VOIwhole model (r = 0.691) and VOIwhole+periphery model (r = 0.732) in the independent cohort. CONCLUSION Radiomics models of tumor and peritumor Dual-area CT images could predict stably the expression levels of FABP4 and may be helping in personalized treatment strategies.
Collapse
Affiliation(s)
- Jingyu Wen
- Department of Medical Insurance, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingge Xia
- Department of Medical Insurance, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bowen Wei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongji Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
13
|
Yoon H, Lee SK, Kim JY, Joo MW. Quantitative Bone SPECT/CT of Central Cartilaginous Bone Tumors: Relationship between SUVmax and Radiodensity in Hounsfield Unit. Cancers (Basel) 2024; 16:1968. [PMID: 38893090 PMCID: PMC11171356 DOI: 10.3390/cancers16111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: it is challenging to determine the accurate grades of cartilaginous bone tumors. Using bone single photon emission computed tomography (SPECT)/computed tomography (CT), maximum standardized uptake value (SUVmax) was found to be significantly associated with different grades of cartilaginous bone tumor. The inquiry focused on the effect of the tumor matrix on SUVmax. (2) Methods: a total of 65 patients from 2017 to 2022 with central cartilaginous bone tumors, including enchondromas and low-to-intermediate grade chondrosarcomas, who had undergone bone SPECT/CT were retrospectively enrolled. The SUVmax was recorded and any aggressive CT findings of cartilaginous bone tumor and Hounsfield units (HU) of the chondroid matrix as mean, minimum, maximum, and standard deviation (SD) were reviewed on CT scans. Pearson's correlation analysis was performed to determine the relationship between CT features and SUVmax. Subgroup analysis was also performed between the benign group (enchondroma) and the malignant group (grade 1 and 2 chondrosarcoma) for comparison of HU values and SUVmax. (3) Results: a significant negative correlation between SUVmax and HU measurements, including HUmax, HUmean, and HUSD, was found. The subgroup analysis showed significantly higher SUVmax in the malignant group, with more frequent CT aggressive features, and significantly lower HUSD in the malignant group than in the benign group. (4) Conclusions: it was observed that higher SUVmax and lower HUSD were associated with a higher probability of having a low-to-intermediate chondrosarcoma with aggressive features and a less calcified tumor matrix.
Collapse
Affiliation(s)
- Hyukjin Yoon
- Division of Nuclear Medicine, Department of Radiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seul Ki Lee
- Department of Radiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jee-Young Kim
- Department of Radiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min Wook Joo
- Department of Orthopaedic Surgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
14
|
Li X, Shi X, Wang Y, Pang J, Zhao X, Xu Y, Li Q, Wang N, Duan F, Nie P. A CT-based radiomics nomogram for predicting histologic grade and outcome in chondrosarcoma. Cancer Imaging 2024; 24:50. [PMID: 38605380 PMCID: PMC11007871 DOI: 10.1186/s40644-024-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE The preoperative identification of tumor grade in chondrosarcoma (CS) is crucial for devising effective treatment strategies and predicting outcomes. The study aims to build and validate a CT-based radiomics nomogram (RN) for the preoperative identification of tumor grade in CS, and to evaluate the correlation between the RN-predicted tumor grade and postoperative outcome. METHODS A total of 196 patients (139 in the training cohort and 57 in the external validation cohort) were derived from three different centers. A clinical model, radiomics signature (RS) and RN (which combines significant clinical factors and RS) were developed and validated to assess their ability to distinguish low-grade from high-grade CS with area under the curve (AUC). Additionally, Kaplan-Meier survival analysis was applied to examine the association between RN-predicted tumor grade and recurrence-free survival (RFS) of CS. The predictive accuracy of the RN was evaluated using Harrell's concordance index (C-index), hazard ratio (HR) and AUC. RESULTS Size, endosteal scalloping and active periostitis were selected to build the clinical model. Three radiomics features, based on CT images, were selected to construct the RS. Both the RN (AUC, 0.842) and RS (AUC, 0.835) were superior to the clinical model (AUC, 0.776) in the validation set (P = 0.003, 0.040, respectively). A correlation between Nomogram score (Nomo-score, derived from RN) and RFS was observed through Kaplan-Meier survival analysis in the training and test cohorts (log-rank P < 0.050). Patients with high Nomo-score tumors were 2.669 times more likely to suffer recurrence than those with low Nomo-score tumors (HR, 2.669, P < 0.001). CONCLUSIONS The CT-based RN performed well in predicting both the histologic grade and outcome of CS.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 369, Shanghai Road, 266000, Qingdao, Qingdao, Shandong, China
| | - Xianglong Shi
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 369, Shanghai Road, 266000, Qingdao, Qingdao, Shandong, China
| | - Yanmei Wang
- GE Healthcare China, Pudong New Town, Shanghai, China
| | - Jing Pang
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 369, Shanghai Road, 266000, Qingdao, Qingdao, Shandong, China
| | - Xia Zhao
- Department of Radiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan, China
| | - Qiyuan Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 369, Shanghai Road, 266000, Qingdao, Qingdao, Shandong, China
| | - Ning Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, 250021, Jinan, Shandong, China.
| | - Feng Duan
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 369, Shanghai Road, 266000, Qingdao, Qingdao, Shandong, China.
| | - Pei Nie
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 369, Shanghai Road, 266000, Qingdao, Qingdao, Shandong, China.
| |
Collapse
|
15
|
Salehi MA, Mohammadi S, Harandi H, Zakavi SS, Jahanshahi A, Shahrabi Farahani M, Wu JS. Diagnostic Performance of Artificial Intelligence in Detection of Primary Malignant Bone Tumors: a Meta-Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:766-777. [PMID: 38343243 PMCID: PMC11031503 DOI: 10.1007/s10278-023-00945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 04/20/2024]
Abstract
We aim to conduct a meta-analysis on studies that evaluated the diagnostic performance of artificial intelligence (AI) algorithms in the detection of primary bone tumors, distinguishing them from other bone lesions, and comparing them with clinician assessment. A systematic search was conducted using a combination of keywords related to bone tumors and AI. After extracting contingency tables from all included studies, we performed a meta-analysis using random-effects model to determine the pooled sensitivity and specificity, accompanied by their respective 95% confidence intervals (CI). Quality assessment was evaluated using a modified version of Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST). The pooled sensitivities for AI algorithms and clinicians on internal validation test sets for detecting bone neoplasms were 84% (95% CI: 79.88) and 76% (95% CI: 64.85), and pooled specificities were 86% (95% CI: 81.90) and 64% (95% CI: 55.72), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 84% (95% CI: 75.90) and 91% (95% CI: 83.96), respectively. The same numbers for clinicians were 85% (95% CI: 73.92) and 94% (95% CI: 89.97), respectively. The sensitivity and specificity for clinicians with AI assistance were 95% (95% CI: 86.98) and 57% (95% CI: 48.66). Caution is needed when interpreting findings due to potential limitations. Further research is needed to bridge this gap in scientific understanding and promote effective implementation for medical practice advancement.
Collapse
Affiliation(s)
- Mohammad Amin Salehi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran.
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran
| | - Seyed Sina Zakavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jahanshahi
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Jim S Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
16
|
Yim D, Khuntia J, Parameswaran V, Meyers A. Preliminary Evidence of the Use of Generative AI in Health Care Clinical Services: Systematic Narrative Review. JMIR Med Inform 2024; 12:e52073. [PMID: 38506918 PMCID: PMC10993141 DOI: 10.2196/52073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Generative artificial intelligence tools and applications (GenAI) are being increasingly used in health care. Physicians, specialists, and other providers have started primarily using GenAI as an aid or tool to gather knowledge, provide information, train, or generate suggestive dialogue between physicians and patients or between physicians and patients' families or friends. However, unless the use of GenAI is oriented to be helpful in clinical service encounters that can improve the accuracy of diagnosis, treatment, and patient outcomes, the expected potential will not be achieved. As adoption continues, it is essential to validate the effectiveness of the infusion of GenAI as an intelligent technology in service encounters to understand the gap in actual clinical service use of GenAI. OBJECTIVE This study synthesizes preliminary evidence on how GenAI assists, guides, and automates clinical service rendering and encounters in health care The review scope was limited to articles published in peer-reviewed medical journals. METHODS We screened and selected 0.38% (161/42,459) of articles published between January 1, 2020, and May 31, 2023, identified from PubMed. We followed the protocols outlined in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to select highly relevant studies with at least 1 element on clinical use, evaluation, and validation to provide evidence of GenAI use in clinical services. The articles were classified based on their relevance to clinical service functions or activities using the descriptive and analytical information presented in the articles. RESULTS Of 161 articles, 141 (87.6%) reported using GenAI to assist services through knowledge access, collation, and filtering. GenAI was used for disease detection (19/161, 11.8%), diagnosis (14/161, 8.7%), and screening processes (12/161, 7.5%) in the areas of radiology (17/161, 10.6%), cardiology (12/161, 7.5%), gastrointestinal medicine (4/161, 2.5%), and diabetes (6/161, 3.7%). The literature synthesis in this study suggests that GenAI is mainly used for diagnostic processes, improvement of diagnosis accuracy, and screening and diagnostic purposes using knowledge access. Although this solves the problem of knowledge access and may improve diagnostic accuracy, it is oriented toward higher value creation in health care. CONCLUSIONS GenAI informs rather than assisting or automating clinical service functions in health care. There is potential in clinical service, but it has yet to be actualized for GenAI. More clinical service-level evidence that GenAI is used to streamline some functions or provides more automated help than only information retrieval is needed. To transform health care as purported, more studies related to GenAI applications must automate and guide human-performed services and keep up with the optimism that forward-thinking health care organizations will take advantage of GenAI.
Collapse
Affiliation(s)
- Dobin Yim
- Loyola University, Maryland, MD, United States
| | - Jiban Khuntia
- University of Colorado Denver, Denver, CO, United States
| | | | - Arlen Meyers
- University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
17
|
Jiang T, Lau SH, Zhang J, Chan LC, Wang W, Chan PK, Cai J, Wen C. Radiomics signature of osteoarthritis: Current status and perspective. J Orthop Translat 2024; 45:100-106. [PMID: 38524869 PMCID: PMC10958157 DOI: 10.1016/j.jot.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 03/26/2024] Open
Abstract
Osteoarthritis (OA) is one of the fast-growing disability-related diseases worldwide, which has significantly affected the quality of patients' lives and brings about substantial socioeconomic burdens in medical expenditure. There is currently no cure for OA once the bone damage is established. Unfortunately, the existing radiological examination is limited to grading the disease's severity and is insufficient to precisely diagnose OA, detect early OA or predict OA progression. Therefore, there is a pressing need to develop novel approaches in medical image analysis to detect subtle changes for identifying early OA development and rapid progressors. Recently, radiomics has emerged as a unique approach to extracting high-dimensional imaging features that quantitatively characterise visible or hidden information from routine medical images. Radiomics data mining via machine learning has empowered precise diagnoses and prognoses of disease, mainly in oncology. Mounting evidence has shown its great potential in aiding the diagnosis and contributing to the study of musculoskeletal diseases. This paper will summarise the current development of radiomics at the crossroads between engineering and medicine and discuss the application and perspectives of radiomics analysis for OA diagnosis and prognosis. The translational potential of this article Radiomics is a novel approach used in oncology, and it may also play an essential role in the diagnosis and prognosis of OA. By transforming medical images from qualitative interpretation to quantitative data, radiomics could be the solution for precise early OA detection, progression tracking, and treatment efficacy prediction. Since the application of radiomics in OA is still in the early stages and primarily focuses on fundamental studies, this review may inspire more explorations and bring more promising diagnoses, prognoses, and management results of OA.
Collapse
Affiliation(s)
- Tianshu Jiang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sing-Hin Lau
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lok-Chun Chan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wei Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ping-Keung Chan
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Cai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
18
|
Gitto S, Annovazzi A, Nulle K, Interlenghi M, Salvatore C, Anelli V, Baldi J, Messina C, Albano D, Di Luca F, Armiraglio E, Parafioriti A, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM. X-rays radiomics-based machine learning classification of atypical cartilaginous tumour and high-grade chondrosarcoma of long bones. EBioMedicine 2024; 101:105018. [PMID: 38377797 PMCID: PMC10884340 DOI: 10.1016/j.ebiom.2024.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones. METHODS This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centres. At centre 1, the dataset was split into training (n = 71 ACT, n = 24 high-grade CS) and internal test (n = 19 ACT, n = 6 high-grade CS) cohorts, respectively, based on the date of surgery. At centre 2, the dataset constituted the external test cohort (n = 12 ACT, n = 18 high-grade CS). Manual segmentation was performed on frontal view X-rays, using MRI or CT for preliminary identification of lesion margins. After image pre-processing, radiomic features were extracted. Dimensionality reduction included stability, coefficient of variation, and mutual information analyses. In the training cohort, after class balancing, a machine learning classifier (Support Vector Machine) was automatically tuned using nested 10-fold cross-validation. Then, it was tested on both the test cohorts and compared to two musculoskeletal radiologists' performance using McNemar's test. FINDINGS Five radiomic features (3 morphology, 2 texture) passed dimensionality reduction. After tuning on the training cohort (AUC = 0.75), the classifier had 80%, 83%, 79% and 80%, 89%, 67% accuracy, sensitivity, and specificity in the internal (temporally independent) and external (geographically independent) test cohorts, respectively, with no difference compared to the radiologists (p ≥ 0.617). INTERPRETATION X-rays radiomics-based machine learning accurately differentiates between ACT and high-grade CS of long bones. FUNDING AIRC Investigator Grant.
Collapse
Affiliation(s)
- Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Kitija Nulle
- Radiology Department, Riga East Clinical University Hospital, Riga, Latvia
| | | | - Christian Salvatore
- DeepTrace Technologies s.r.l., Milan, Italy; Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Jacopo Baldi
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Filippo Di Luca
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Roberto Biagini
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Castiglioni
- Department of Physics "G. Occhialini", Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
19
|
Gitto S, Cuocolo R, Huisman M, Messina C, Albano D, Omoumi P, Kotter E, Maas M, Van Ooijen P, Sconfienza LM. CT and MRI radiomics of bone and soft-tissue sarcomas: an updated systematic review of reproducibility and validation strategies. Insights Imaging 2024; 15:54. [PMID: 38411750 PMCID: PMC10899555 DOI: 10.1186/s13244-024-01614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE To systematically review radiomic feature reproducibility and model validation strategies in recent studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas, thus updating a previous version of this review which included studies published up to 2020. METHODS A literature search was conducted on EMBASE and PubMed databases for papers published between January 2021 and March 2023. Data regarding radiomic feature reproducibility and model validation strategies were extracted and analyzed. RESULTS Out of 201 identified papers, 55 were included. They dealt with radiomics of bone (n = 23) or soft-tissue (n = 32) tumors. Thirty-two (out of 54 employing manual or semiautomatic segmentation, 59%) studies included a feature reproducibility analysis. Reproducibility was assessed based on intra/interobserver segmentation variability in 30 (55%) and geometrical transformations of the region of interest in 2 (4%) studies. At least one machine learning validation technique was used for model development in 34 (62%) papers, and K-fold cross-validation was employed most frequently. A clinical validation of the model was reported in 38 (69%) papers. It was performed using a separate dataset from the primary institution (internal test) in 22 (40%), an independent dataset from another institution (external test) in 14 (25%) and both in 2 (4%) studies. CONCLUSIONS Compared to papers published up to 2020, a clear improvement was noted with almost double publications reporting methodological aspects related to reproducibility and validation. Larger multicenter investigations including external clinical validation and the publication of databases in open-access repositories could further improve methodology and bring radiomics from a research area to the clinical stage. CRITICAL RELEVANCE STATEMENT An improvement in feature reproducibility and model validation strategies has been shown in this updated systematic review on radiomics of bone and soft-tissue sarcomas, highlighting efforts to enhance methodology and bring radiomics from a research area to the clinical stage. KEY POINTS • 2021-2023 radiomic studies on CT and MRI of musculoskeletal sarcomas were reviewed. • Feature reproducibility was assessed in more than half (59%) of the studies. • Model clinical validation was performed in 69% of the studies. • Internal (44%) and/or external (29%) test datasets were employed for clinical validation.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Merel Huisman
- Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Carmelo Messina
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elmar Kotter
- Department of Radiology, Freiburg University Medical Center, Freiburg, Germany
| | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
20
|
Albano D, Galiano V, Basile M, Di Luca F, Gitto S, Messina C, Cagetti MG, Del Fabbro M, Tartaglia GM, Sconfienza LM. Artificial intelligence for radiographic imaging detection of caries lesions: a systematic review. BMC Oral Health 2024; 24:274. [PMID: 38402191 PMCID: PMC10894487 DOI: 10.1186/s12903-024-04046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND The aim of this systematic review is to evaluate the diagnostic performance of Artificial Intelligence (AI) models designed for the detection of caries lesion (CL). MATERIALS AND METHODS An electronic literature search was conducted on PubMed, Web of Science, SCOPUS, LILACS and Embase databases for retrospective, prospective and cross-sectional studies published until January 2023, using the following keywords: artificial intelligence (AI), machine learning (ML), deep learning (DL), artificial neural networks (ANN), convolutional neural networks (CNN), deep convolutional neural networks (DCNN), radiology, detection, diagnosis and dental caries (DC). The quality assessment was performed using the guidelines of QUADAS-2. RESULTS Twenty articles that met the selection criteria were evaluated. Five studies were performed on periapical radiographs, nine on bitewings, and six on orthopantomography. The number of imaging examinations included ranged from 15 to 2900. Four studies investigated ANN models, fifteen CNN models, and two DCNN models. Twelve were retrospective studies, six cross-sectional and two prospective. The following diagnostic performance was achieved in detecting CL: sensitivity from 0.44 to 0.86, specificity from 0.85 to 0.98, precision from 0.50 to 0.94, PPV (Positive Predictive Value) 0.86, NPV (Negative Predictive Value) 0.95, accuracy from 0.73 to 0.98, area under the curve (AUC) from 0.84 to 0.98, intersection over union of 0.3-0.4 and 0.78, Dice coefficient 0.66 and 0.88, F1-score from 0.64 to 0.92. According to the QUADAS-2 evaluation, most studies exhibited a low risk of bias. CONCLUSION AI-based models have demonstrated good diagnostic performance, potentially being an important aid in CL detection. Some limitations of these studies are related to the size and heterogeneity of the datasets. Future studies need to rely on comparable, large, and clinically meaningful datasets. PROTOCOL PROSPERO identifier: CRD42023470708.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | | | - Mariachiara Basile
- Postgraduate School of Diagnostic and Interventional Radiology, University of Milan, Milan, Italy
| | - Filippo Di Luca
- Postgraduate School of Diagnostic and Interventional Radiology, University of Milan, Milan, Italy
| | - Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Maria Grazia Cagetti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Ospedale Maggiore Policlinico, UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Ospedale Maggiore Policlinico, UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Gitto S, Serpi F, Albano D, Risoleo G, Fusco S, Messina C, Sconfienza LM. AI applications in musculoskeletal imaging: a narrative review. Eur Radiol Exp 2024; 8:22. [PMID: 38355767 PMCID: PMC10866817 DOI: 10.1186/s41747-024-00422-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
This narrative review focuses on clinical applications of artificial intelligence (AI) in musculoskeletal imaging. A range of musculoskeletal disorders are discussed using a clinical-based approach, including trauma, bone age estimation, osteoarthritis, bone and soft-tissue tumors, and orthopedic implant-related pathology. Several AI algorithms have been applied to fracture detection and classification, which are potentially helpful tools for radiologists and clinicians. In bone age assessment, AI methods have been applied to assist radiologists by automatizing workflow, thus reducing workload and inter-observer variability. AI may potentially aid radiologists in identifying and grading abnormal findings of osteoarthritis as well as predicting the onset or progression of this disease. Either alone or combined with radiomics, AI algorithms may potentially improve diagnosis and outcome prediction of bone and soft-tissue tumors. Finally, information regarding appropriate positioning of orthopedic implants and related complications may be obtained using AI algorithms. In conclusion, rather than replacing radiologists, the use of AI should instead help them to optimize workflow, augment diagnostic performance, and keep up with ever-increasing workload.Relevance statement This narrative review provides an overview of AI applications in musculoskeletal imaging. As the number of AI technologies continues to increase, it will be crucial for radiologists to play a role in their selection and application as well as to fully understand their potential value in clinical practice. Key points • AI may potentially assist musculoskeletal radiologists in several interpretative tasks.• AI applications to trauma, age estimation, osteoarthritis, tumors, and orthopedic implants are discussed.• AI should help radiologists to optimize workflow and augment diagnostic performance.
Collapse
Affiliation(s)
- Salvatore Gitto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Francesca Serpi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Risoleo
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | - Stefano Fusco
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy
| | - Carmelo Messina
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Cristina Belgioioso 173, Milan, 20157, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
22
|
Brandenberger D, White LM. Radiomics in Musculoskeletal Tumors. Semin Musculoskelet Radiol 2024; 28:49-61. [PMID: 38330970 DOI: 10.1055/s-0043-1776428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Sarcomas are heterogeneous rare tumors predominantly affecting the musculoskeletal (MSK) system. Due to significant variations in their natural history and variable response to conventional treatments, the discovery of novel diagnostic and prognostic biomarkers to guide therapeutic decision-making is an active and ongoing field of research. As new cellular, molecular, and metabolic biomarkers continue to be discovered, quantitative radiologic imaging is becoming increasingly important in sarcoma management. Radiomics offers the potential for discovering novel imaging diagnostic and predictive biomarkers using standard-of-care medical imaging. In this review, we detail the core concepts of radiomics and the application of radiomics to date in MSK sarcoma research. Also described are specific challenges related to radiomic studies, as well as viewpoints on clinical adoption and future perspectives in the field.
Collapse
Affiliation(s)
- Daniel Brandenberger
- Department of Medical Imaging, Musculoskeletal Imaging, University of Toronto, Toronto, Ontario, Canada
- Institut für Radiologie und Nuklearmedizin, Kantonsspital Baselland, Liestal, Switzerland
- Toronto Joint Department of Medical Imaging, University Health Network, Sinai Health System, and Women's College Hospital, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lawrence M White
- Department of Medical Imaging, Musculoskeletal Imaging, University of Toronto, Toronto, Ontario, Canada
- Toronto Joint Department of Medical Imaging, University Health Network, Sinai Health System, and Women's College Hospital, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Anttila TT, Aspinen S, Pierides G, Haapamäki V, Laitinen MK, Ryhänen J. Enchondroma Detection from Hand Radiographs with an Interactive Deep Learning Segmentation Tool-A Feasibility Study. J Clin Med 2023; 12:7129. [PMID: 38002741 PMCID: PMC10672653 DOI: 10.3390/jcm12227129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Enchondromas are common benign bone tumors, usually presenting in the hand. They can cause symptoms such as swelling and pain but often go un-noticed. If the tumor expands, it can diminish the bone cortices and predispose the bone to fracture. Diagnosis is based on clinical investigation and radiographic imaging. Despite their typical appearance on radiographs, they can primarily be misdiagnosed or go totally unrecognized in the acute trauma setting. Earlier applications of deep learning models to image classification and pattern recognition suggest that this technique may also be utilized in detecting enchondroma in hand radiographs. We trained a deep learning model with 414 enchondroma radiographs to detect enchondroma from hand radiographs. A separate test set of 131 radiographs (47% with an enchondroma) was used to assess the performance of the trained deep learning model. Enchondroma annotation by three clinical experts served as our ground truth in assessing the deep learning model's performance. Our deep learning model detected 56 enchondromas from the 62 enchondroma radiographs. The area under receiver operator curve was 0.95. The F1 score for area statistical overlapping was 69.5%. Our deep learning model may be a useful tool for radiograph screening and raising suspicion of enchondroma.
Collapse
Affiliation(s)
- Turkka Tapio Anttila
- Musculoskeletal and Plastic Surgery, Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Samuli Aspinen
- Musculoskeletal and Plastic Surgery, Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Georgios Pierides
- Musculoskeletal and Plastic Surgery, Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Ville Haapamäki
- Department of Radiology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Minna Katariina Laitinen
- Musculoskeletal and Plastic Surgery, Department of Orthopedic Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Jorma Ryhänen
- Musculoskeletal and Plastic Surgery, Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
24
|
Meng Y, Yang Y, Hu M, Zhang Z, Zhou X. Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application. Semin Cancer Biol 2023; 95:75-87. [PMID: 37499847 DOI: 10.1016/j.semcancer.2023.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Radiomics is the extraction of predefined mathematic features from medical images for predicting variables of clinical interest. Recent research has demonstrated that radiomics can be processed by artificial intelligence algorithms to reveal complex patterns and trends for diagnosis, and prediction of prognosis and response to treatment modalities in various types of cancer. Artificial intelligence tools can utilize radiological images to solve next-generation issues in clinical decision making. Bone tumors can be classified as primary and secondary (metastatic) tumors. Osteosarcoma, Ewing sarcoma, and chondrosarcoma are the dominating primary tumors of bone. The development of bone tumor model systems and relevant research, and the assessment of novel treatment methods are ongoing to improve clinical outcomes, notably for patients with metastases. Artificial intelligence and radiomics have been utilized in almost full spectrum of clinical care of bone tumors. Radiomics models have achieved excellent performance in the diagnosis and grading of bone tumors. Furthermore, the models enable to predict overall survival, metastases, and recurrence. Radiomics features have exhibited promise in assisting therapeutic planning and evaluation, especially neoadjuvant chemotherapy. This review provides an overview of the evolution and opportunities for artificial intelligence in imaging, with a focus on hand-crafted features and deep learning-based radiomics approaches. We summarize the current application of artificial intelligence-based radiomics both in primary and metastatic bone tumors, and discuss the limitations and future opportunities of artificial intelligence-based radiomics in this field. In the era of personalized medicine, our in-depth understanding of emerging artificial intelligence-based radiomics approaches will bring innovative solutions to bone tumors and achieve clinical application.
Collapse
Affiliation(s)
- Yichen Meng
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China
| | - Yue Yang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China
| | - Miao Hu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China.
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
25
|
Gundavda MK, Lazarides AL, Burke ZDC, Focaccia M, Griffin AM, Tsoi KM, Ferguson PC, Wunder JS. Is a radiological score able to predict resection-grade chondrosarcoma in primary intraosseous lesions of the long bones? Bone Joint J 2023; 105-B:808-814. [PMID: 37391201 DOI: 10.1302/0301-620x.105b7.bjj-2022-1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Aims The preoperative grading of chondrosarcomas of bone that accurately predicts surgical management is difficult for surgeons, radiologists, and pathologists. There are often discrepancies in grade between the initial biopsy and the final histology. Recent advances in the use of imaging methods have shown promise in the ability to predict the final grade. The most important clinical distinction is between grade 1 chondrosarcomas, which are amenable to curettage, and resection-grade chondrosarcomas (grade 2 and 3) which require en bloc resection. The aim of this study was to evaluate the use of a Radiological Aggressiveness Score (RAS) to predict the grade of primary chondrosarcomas in long bones and thus to guide management. Methods A total of 113 patients with a primary chondrosarcoma of a long bone presenting between January 2001 and December 2021 were identified on retrospective review of a single oncology centre's prospectively collected database. The nine-parameter RAS included variables from radiographs and MRI scans. The best cut-off of parameters to predict the final grade of chondrosarcoma after resection was determined using a receiver operating characteristic curve (ROC), and this was correlated with the biopsy grade. Results A RAS of ≥ four parameters was 97.9% sensitive and 90.5% specific in predicting resection-grade chondrosarcoma based on a ROC cut-off derived using the Youden index. Cronbach's α of 0.897 was derived as the interclass correlation for scoring the lesions by four blinded reviewers who were surgeons. Concordance between resection-grade lesions predicted from the RAS and ROC cut-off with the final grade after resection was 96.46%. Concordance between the biopsy grade and the final grade was 63.8%. However, when the patients were analyzed based on surgical management, the initial biopsy was able to differentiate low-grade from resection-grade chondrosarcomas in 82.9% of biopsies. Conclusion These findings suggest that the RAS is an accurate method for guiding the surgical management of patients with these tumours, particularly when the initial biopsy results are discordant with the clinical presentation.
Collapse
Affiliation(s)
- Manit K Gundavda
- University Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Centre for Bone & Joint/Cancer - Bone and Soft Tissue Tumours, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India
| | - Alexander L Lazarides
- University Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Department of Sarcoma, Mofitt Cancer Centre, Tampa, Florida, USA
| | - Zachary D C Burke
- University Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Sarcoma Program, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Marco Focaccia
- University Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Orthopaedic Oncology Unit, IRCCS Instituto Orthopedico Rizzoli, Bologna, Italy
| | - Anthony M Griffin
- University Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Kim M Tsoi
- University Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Peter C Ferguson
- University Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Jay S Wunder
- University Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Gitto S, Interlenghi M, Cuocolo R, Salvatore C, Giannetta V, Badalyan J, Gallazzi E, Spinelli MS, Gallazzi M, Serpi F, Messina C, Albano D, Annovazzi A, Anelli V, Baldi J, Aliprandi A, Armiraglio E, Parafioriti A, Daolio PA, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM. MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01657-y. [PMID: 37335422 DOI: 10.1007/s11547-023-01657-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE To determine diagnostic performance of MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor (ALT) of the extremities. MATERIAL AND METHODS This retrospective study was performed at three tertiary sarcoma centers and included 150 patients with surgically treated and histology-proven lesions. The training-validation cohort consisted of 114 patients from centers 1 and 2 (n = 64 lipoma, n = 50 ALT). The external test cohort consisted of 36 patients from center 3 (n = 24 lipoma, n = 12 ALT). 3D segmentation was manually performed on T1- and T2-weighted MRI. After extraction and selection of radiomic features, three machine learning classifiers were trained and validated using nested fivefold cross-validation. The best-performing classifier according to previous analysis was evaluated and compared to an experienced musculoskeletal radiologist in the external test cohort. RESULTS Eight features passed feature selection and were incorporated into the machine learning models. After training and validation (74% ROC-AUC), the best-performing classifier (Random Forest) showed 92% sensitivity and 33% specificity in the external test cohort with no statistical difference compared to the radiologist (p = 0.474). CONCLUSION MRI radiomics-based machine learning may classify deep-seated lipoma and ALT of the extremities with high sensitivity and negative predictive value, thus potentially serving as a non-invasive screening tool to reduce unnecessary referral to tertiary tumor centers.
Collapse
Affiliation(s)
- Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | | | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Christian Salvatore
- DeepTrace Technologies, Milan, Italy
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Vincenzo Giannetta
- Diagnostic and Interventional Radiology Department, IRCCS Ospedale San Raffaele-Turro, Università Vita-Salute San Raffaele, Milan, Italy
| | - Julietta Badalyan
- Scuola di Specializzazione in Statistica Sanitaria e Biometria, Università Degli Studi Di Milano, Milan, Italy
| | - Enrico Gallazzi
- UOC Patologia Vertebrale e Scoliosi, ASST Gaetano Pini - CTO, Milan, Italy
| | | | - Mauro Gallazzi
- UOC Radiodiagnostica, ASST Gaetano Pini - CTO, Milan, Italy
| | - Francesca Serpi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | | | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Jacopo Baldi
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | | | | - Roberto Biagini
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Castiglioni
- Department of Physics, Università degli Studi di Milano-Bicocca, Milan, Italy
- Institute of Biomedical Imaging and Physiology, Consiglio Nazionale Delle Ricerche, Segrate, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
27
|
Hosseinzadeh Kasani P, Lee JE, Park C, Yun CH, Jang JW, Lee SA. Evaluation of nutritional status and clinical depression classification using an explainable machine learning method. Front Nutr 2023; 10:1165854. [PMID: 37229464 PMCID: PMC10203418 DOI: 10.3389/fnut.2023.1165854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Depression is a prevalent disorder worldwide, with potentially severe implications. It contributes significantly to an increased risk of diseases associated with multiple risk factors. Early accurate diagnosis of depressive symptoms is a critical first step toward management, intervention, and prevention. Various nutritional and dietary compounds have been suggested to be involved in the onset, maintenance, and severity of depressive disorders. Despite the challenges to better understanding the association between nutritional risk factors and the occurrence of depression, assessing the interplay of these markers through supervised machine learning remains to be fully explored. Methods This study aimed to determine the ability of machine learning-based decision support methods to identify the presence of depression using publicly available health data from the Korean National Health and Nutrition Examination Survey. Two exploration techniques, namely, uniform manifold approximation and projection and Pearson correlation, were performed for explanatory analysis among datasets. A grid search optimization with cross-validation was performed to fine-tune the models for classifying depression with the highest accuracy. Several performance measures, including accuracy, precision, recall, F1 score, confusion matrix, areas under the precision-recall and receiver operating characteristic curves, and calibration plot, were used to compare classifier performances. We further investigated the importance of the features provided: visualized interpretation using ELI5, partial dependence plots, and local interpretable using model-agnostic explanations and Shapley additive explanation for the prediction at both the population and individual levels. Results The best model achieved an accuracy of 86.18% for XGBoost and an area under the curve of 84.96% for the random forest model in original dataset and the XGBoost algorithm with an accuracy of 86.02% and an area under the curve of 85.34% in the quantile-based dataset. The explainable results revealed a complementary observation of the relative changes in feature values, and, thus, the importance of emergent depression risks could be identified. Discussion The strength of our approach is the large sample size used for training with a fine-tuned model. The machine learning-based analysis showed that the hyper-tuned model has empirically higher accuracy in classifying patients with depressive disorder, as evidenced by the set of interpretable experiments, and can be an effective solution for disease control.
Collapse
Affiliation(s)
- Payam Hosseinzadeh Kasani
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung Eun Lee
- Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Chihyun Park
- Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Chuncheon, Republic of Korea
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Neurology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Sang-Ah Lee
- Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Chuncheon, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
28
|
Erdem F, Tamsel İ, Demirpolat G. The use of radiomics and machine learning for the differentiation of chondrosarcoma from enchondroma. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023. [PMID: 37009697 DOI: 10.1002/jcu.23461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE To construct and compare machine learning models for differentiating chondrosarcoma from enchondroma using radiomic features from T1 and fat suppressed Proton density (PD) magnetic resonance imaging (MRI). METHODS Eighty-eight patients (57 with enchondroma, 31 with chondrosarcoma) were retrospectively included. Histogram matching and N4ITK MRI bias correction filters were applied. An experienced musculoskeletal radiologist and a senior resident in radiology performed manual segmentation. Voxel sizes were resampled. Laplacian of Gaussian filter and wavelet-based features were used. One thousand eight hundred eighty-eight features were obtained for each patient, with 944 from T1 and 944 from PD images. Sixty-four unstable features were removed. Seven machine learning models were used for classification. RESULTS Classification with all features showed neural network was the best model for both readers' datasets with area under the curve (AUC), classification accuracy (CA), and F1 score of 0.979, 0.984; 0.920, 0.932; and 0.889, 0.903, respectively. Four features, including one common to both readers, were selected using fast correlation based filter. The best performing models with selected features were gradient boosting for Fatih Erdem's dataset and neural network for Gülen Demirpolat's dataset with AUC, CA, and F1 score of 0.990, 0.979; 0.943, 0.955; 0.921, 0.933, respectively. Neural Network was the second-best model for FE's dataset based on AUC (0.984). CONCLUSION Using pathology as a gold standard, this study defined and compared seven well-performing models to distinguish enchondromas from chondrosarcomas and provided radiomic feature stability and reproducibility among the readers.
Collapse
Affiliation(s)
- Fatih Erdem
- Department of Radiology, Balikesir University Hospital, Paşaköy, Bigadiç yolu üzeri, 10145 Balıkesir Merkez, Altıeylül, Balıkesir, Turkey
| | - İpek Tamsel
- Department of Radiology, Ege University Hospital, 35100, Bornova, Izmir, Turkey
| | - Gülen Demirpolat
- Department of Radiology, Balikesir University Hospital, Paşaköy, Bigadiç yolu üzeri, 10145 Balıkesir Merkez, Altıeylül, Balıkesir, Turkey
| |
Collapse
|
29
|
Ong W, Zhu L, Tan YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review. Cancers (Basel) 2023; 15:cancers15061837. [PMID: 36980722 PMCID: PMC10047175 DOI: 10.3390/cancers15061837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
An accurate diagnosis of bone tumours on imaging is crucial for appropriate and successful treatment. The advent of Artificial intelligence (AI) and machine learning methods to characterize and assess bone tumours on various imaging modalities may assist in the diagnostic workflow. The purpose of this review article is to summarise the most recent evidence for AI techniques using imaging for differentiating benign from malignant lesions, the characterization of various malignant bone lesions, and their potential clinical application. A systematic search through electronic databases (PubMed, MEDLINE, Web of Science, and clinicaltrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 34 articles were retrieved from the databases and the key findings were compiled and summarised. A total of 34 articles reported the use of AI techniques to distinguish between benign vs. malignant bone lesions, of which 12 (35.3%) focused on radiographs, 12 (35.3%) on MRI, 5 (14.7%) on CT and 5 (14.7%) on PET/CT. The overall reported accuracy, sensitivity, and specificity of AI in distinguishing between benign vs. malignant bone lesions ranges from 0.44–0.99, 0.63–1.00, and 0.73–0.96, respectively, with AUCs of 0.73–0.96. In conclusion, the use of AI to discriminate bone lesions on imaging has achieved a relatively good performance in various imaging modalities, with high sensitivity, specificity, and accuracy for distinguishing between benign vs. malignant lesions in several cohort studies. However, further research is necessary to test the clinical performance of these algorithms before they can be facilitated and integrated into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Correspondence: ; Tel.: +65-67725207
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
30
|
Luo Y, Xue Y, Liu W, Song H, Huang Y, Tang G, Wang X, Cai Y, Wang F, Guo X, Wang Q, Sun Z. Convolutional neural network based on T-SPOT.TB assay promoting the discrimination between active tuberculosis and latent tuberculosis infection. Diagn Microbiol Infect Dis 2023; 105:115892. [PMID: 36702072 DOI: 10.1016/j.diagmicrobio.2023.115892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The study aims to investigate the potential of convolutional neural network (CNN) based on spot image of T-SPOT assay for distinguishing active tuberculosis (ATB) from latent tuberculosis infection (LTBI). METHODS CNN was applied to recognize and classify T-SPOT spot image. Logistic regression was used to establish prediction model based on CNN. RESULTS Areas under the receiver operating characteristic curve (AUCs) of early secreted antigenic target 6 (ESAT-6) CNN, culture filtrate protein 10 (CFP-10) CNN, and phytohemagglutinin (PHA) CNN were more than 0.7 in differentiating ATB from LTBI, while the performance of these indicators was significantly better than that of spot number. Furthermore, prediction model based on the combination of CNNs yielded an AUC of 0.898. The model presented a sensitivity of 85.76% and a specificity of 90.23%. CONCLUSIONS The current study identified CNN based on T-SPOT spot image with the potential to serve as a tool for TB diagnostics.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochen Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, Key Laboratory of Environmental Health of Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyun Guo
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Eurofins Consumer Product Testing (Guangzhou) Co. Ltd., Guangzhou, China
| | - Qi Wang
- Télécom Physique Strasbourg, Illkirch-Graffenstaden, France.
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
31
|
Differentiating Multiple Myeloma and Osteolytic Bone Metastases on Contrast-Enhanced Computed Tomography Scans: The Feasibility of Radiomics Analysis. Diagnostics (Basel) 2023; 13:diagnostics13040755. [PMID: 36832243 PMCID: PMC9955828 DOI: 10.3390/diagnostics13040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Osteolytic lesions can be seen in both multiple myeloma (MM), and osteolytic bone metastasis on computed tomography (CT) scans. We sought to assess the feasibility of a CT-based radiomics model to distinguish MM from metastasis. This study retrospectively included patients with pre-treatment thoracic or abdominal contrast-enhanced CT from institution 1 (training set: 175 patients with 425 lesions) and institution 2 (external test set: 50 patients with 85 lesions). After segmenting osteolytic lesions on CT images, 1218 radiomics features were extracted. A random forest (RF) classifier was used to build the radiomics model with 10-fold cross-validation. Three radiologists distinguished MM from metastasis using a five-point scale, both with and without the assistance of RF model results. Diagnostic performance was evaluated using the area under the curve (AUC). The AUC of the RF model was 0.807 and 0.762 for the training and test set, respectively. The AUC of the RF model and the radiologists (0.653-0.778) was not significantly different for the test set (p ≥ 0.179). The AUC of all radiologists was significantly increased (0.833-0.900) when they were assisted by RF model results (p < 0.001). In conclusion, the CT-based radiomics model can differentiate MM from osteolytic bone metastasis and improve radiologists' diagnostic performance.
Collapse
|
32
|
Zhong J, Hu Y, Ge X, Xing Y, Ding D, Zhang G, Zhang H, Yang Q, Yao W. A systematic review of radiomics in chondrosarcoma: assessment of study quality and clinical value needs handy tools. Eur Radiol 2023; 33:1433-1444. [PMID: 36018355 DOI: 10.1007/s00330-022-09060-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/24/2022] [Accepted: 07/24/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate the study quality and clinical value of radiomics studies on chondrosarcoma. METHODS PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang Data were searched for articles on radiomics for evaluating chondrosarcoma as of January 31, 2022. The study quality was assessed according to Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, Image Biomarker Standardization Initiative (IBSI) guideline, and modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The level of evidence supporting clinical use of radiomics on chondrosarcoma differential diagnosis was determined based on meta-analyses. RESULTS Twelve articles were included. The median RQS was 10.5 (range, -3 to 15), with an adherence rate of 36%. The adherence rate was extremely low in domains of high-level evidence (0%), open science and data (17%), and imaging and segmentation (35%). The adherence rate of the TRIPOD checklist was 61%, and low for section of title and abstract (13%), introduction (42%), and results (56%). The reporting rate of pre-processing steps according to the IBSI guideline was 60%. The risk of bias and concern of application were mainly related to the index test. The meta-analysis on differential diagnosis of enchondromas vs. chondrosarcomas showed a diagnostic odds ratio of 43.90 (95% confidential interval, 25.33-76.10), which was rated as weak evidence. CONCLUSIONS The current scientific and reporting quality of radiomics studies on chondrosarcoma was insufficient. Radiomics has potential in facilitating the optimization of operation decision-making in chondrosarcoma. KEY POINTS • Among radiomics studies on chondrosarcoma, although differential diagnostic models showed promising performance, only pieces of weak level of evidence were reached with insufficient study quality. • Since the RQS rating, the TRIPOD checklist, and the IBSI guideline have largely overlapped with each other, it is necessary to establish one widely acceptable methodological and reporting guideline for radiomics research. • The TRIPOD model typing, the phase classification of image mining studies, and the level of evidence category are useful tools to assess the gap between academic research and clinical application, although their modifications for radiomics studies are needed.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Guangcheng Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
33
|
Gitto S, Corino VDA, Annovazzi A, Milazzo Machado E, Bologna M, Marzorati L, Albano D, Messina C, Serpi F, Anelli V, Ferraresi V, Zoccali C, Aliprandi A, Parafioriti A, Luzzati A, Biagini R, Mainardi L, Sconfienza LM. 3D vs. 2D MRI radiomics in skeletal Ewing sarcoma: Feature reproducibility and preliminary machine learning analysis on neoadjuvant chemotherapy response prediction. Front Oncol 2022; 12:1016123. [PMID: 36531029 PMCID: PMC9755864 DOI: 10.3389/fonc.2022.1016123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE The extent of response to neoadjuvant chemotherapy predicts survival in Ewing sarcoma. This study focuses on MRI radiomics of skeletal Ewing sarcoma and aims to investigate feature reproducibility and machine learning prediction of response to neoadjuvant chemotherapy. MATERIALS AND METHODS This retrospective study included thirty patients with biopsy-proven skeletal Ewing sarcoma, who were treated with neoadjuvant chemotherapy before surgery at two tertiary sarcoma centres. 7 patients were poor responders and 23 were good responders based on pathological assessment of the surgical specimen. On pre-treatment T1-weighted and T2-weighted MRI, 2D and 3D tumour segmentations were manually performed. Features were extracted from original and wavelet-transformed images. Feature reproducibility was assessed through small geometrical transformations of the regions of interest mimicking multiple manual delineations, and intraclass correlation coefficient >0.75 defined feature reproducibility. Feature selection also consisted of collinearity and significance analysis. After class balancing in the training cohort, three machine learning classifiers were trained and tested on unseen data using hold-out cross-validation. RESULTS 1303 (77%) 3D and 620 (65%) 2D radiomic features were reproducible. 4 3D and 4 2D features passed feature selection. Logistic regression built upon 3D features achieved the best performance with 85% accuracy (AUC=0.9) in predicting response to neoadjuvant chemotherapy. CONCLUSION Compared to 2D approach, 3D MRI radiomics of Ewing sarcoma had superior reproducibility and higher accuracy in predicting response to neoadjuvant chemotherapy, particularly when using logistic regression classifier.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Valentina D. A. Corino
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Marco Bologna
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy
| | - Lorenzo Marzorati
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy
| | | | - Carmelo Messina
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Francesca Serpi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Virginia Ferraresi
- Sarcomas and Rare Tumours Departmental Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmine Zoccali
- Department of Anatomical, Histological, Forensic and Musculoskeletal System Sciences, Sapienza University of Rome, Rome, Italy
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | - Roberto Biagini
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
34
|
Yan L, Gao N, Ai F, Zhao Y, Kang Y, Chen J, Weng Y. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis. Front Oncol 2022; 12:967758. [PMID: 36072795 PMCID: PMC9442032 DOI: 10.3389/fonc.2022.967758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAccurate prediction of prognosis is critical for therapeutic decisions in chondrosarcoma patients. Several prognostic models have been created utilizing multivariate Cox regression or binary classification-based machine learning approaches to predict the 3- and 5-year survival of patients with chondrosarcoma, but few studies have investigated the results of combining deep learning with time-to-event prediction. Compared with simplifying the prediction as a binary classification problem, modeling the probability of an event as a function of time by combining it with deep learning can provide better accuracy and flexibility.Materials and methodsPatients with the diagnosis of chondrosarcoma between 2000 and 2018 were extracted from the Surveillance, Epidemiology, and End Results (SEER) registry. Three algorithms—two based on neural networks (DeepSurv, neural multi-task logistic regression [NMTLR]) and one on ensemble learning (random survival forest [RSF])—were selected for training. Meanwhile, a multivariate Cox proportional hazards (CoxPH) model was also constructed for comparison. The dataset was randomly divided into training and testing datasets at a ratio of 7:3. Hyperparameter tuning was conducted through a 1000-repeated random search with 5-fold cross-validation on the training dataset. The model performance was assessed using the concordance index (C-index), Brier score, and Integrated Brier Score (IBS). The accuracy of predicting 1-, 3-, 5- and 10-year survival was evaluated using receiver operating characteristic curves (ROC), calibration curves, and the area under the ROC curves (AUC).ResultsA total of 3145 patients were finally enrolled in our study. The mean age at diagnosis was 52 ± 18 years, 1662 of the 3145 patients were male (53%), and mean survival time was 83 ± 67 months. Two deep learning models outperformed the RSF and classical CoxPH models, with the C-index on test datasets achieving values of 0.832 (DeepSurv) and 0.821 (NMTLR). The DeepSurv model produced better accuracy and calibrated survival estimates in predicting 1-, 3- 5- and 10-year survival (AUC:0.895-0.937). We deployed the DeepSurv model as a web application for use in clinical practice; it can be accessed through https://share.streamlit.io/whuh-ml/chondrosarcoma/Predict/app.py.ConclusionsTime-to-event prediction models based on deep learning algorithms are successful in predicting chondrosarcoma prognosis, with DeepSurv producing the best discriminative performance and calibration.
Collapse
Affiliation(s)
- Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Gao
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangxing Ai
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingsong Zhao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianghai Chen, ; Yuxiong Weng,
| | - Yuxiong Weng
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianghai Chen, ; Yuxiong Weng,
| |
Collapse
|
35
|
Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: an external validation study. Abdom Radiol (NY) 2022; 47:2770-2782. [PMID: 35710951 PMCID: PMC10150388 DOI: 10.1007/s00261-022-03572-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation. METHODS Consecutive patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant therapy followed by total mesorectal excision from March 2012 to February 2016 (Memorial Sloan Kettering Cancer Center/internal dataset, n = 114, 41% female, median age = 55) and July 2014 to October 2015 (Instituto do Câncer do Estado de São Paulo/external dataset, n = 50, 52% female, median age = 64.5) were retrospectively included. Two radiologists (R1, senior; R2, junior) independently evaluated restaging MRI, classifying patients (radiological complete response vs radiological partial response). Model A (n = 33 texture features), model B (n = 91 features including texture, shape, and edge features), and two combination models (model A + B + R1, model A + B + R2) were constructed. Pathology served as the reference standard for neoadjuvant treatment response. Comparison of the classifiers' AUCs on the external set was done using DeLong's test. RESULTS Models A and B had similar discriminative ability (P = 0.3; Model B AUC = 83%, 95% CI 70%-97%). Combined models increased inter-reader agreement compared with radiologist-only interpretation (κ = 0.82, 95% CI 0.70-0.89 vs k = 0.25, 95% CI 0.11-0.61). The combined model slightly increased junior radiologist specificity, positive predictive value, and negative predictive values (93% vs 90%, 57% vs 50%, and 91% vs 90%, respectively). CONCLUSION We developed and externally validated a combined model using radiomics and radiologist qualitative assessment, which improved inter-reader agreement and slightly increased the diagnostic performance of the junior radiologist in predicting pCR after neoadjuvant treatment in patients with LARC.
Collapse
|
36
|
Efficient Prediction of Ki-67 Proliferation Index in Meningiomas on MRI: From Traditional Radiological Findings to a Machine Learning Approach. Cancers (Basel) 2022; 14:cancers14153637. [PMID: 35892896 PMCID: PMC9330288 DOI: 10.3390/cancers14153637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Background/aim This study aimed to explore the value of radiological and radiomic features retrieved from magnetic resonance imaging in the prediction of a Ki-67 proliferative index in meningioma patients using a machine learning model. Methods This multicenter, retrospective study included 371 patients collected from two centers. The Ki-67 expression was classified into low-expressed and high-expressed groups with a threshold of 5%. Clinical features and radiological features were collected and analyzed by using univariate and multivariate statistical analyses. Radiomic features were extracted from contrast-enhanced images, followed by three independent feature selections. Six predictive models were constructed with different combinations of features by using linear discriminant analysis (LDA) classifier. Results The multivariate analysis suggested that the presence of intratumoral necrosis (p = 0.032) and maximum diameter (p < 0.001) were independently correlated with a high Ki-67 status. The predictive models showed good performance with AUC of 0.837, accuracy of 0.810, sensitivity of 0.857, and specificity of 0.771 in the internal test and with AUC of 0.700, accuracy of 0.557, sensitivity of 0.314, and specificity of 0.885 in the external test. Conclusion The results of this study suggest that the predictive model can efficiently predict the Ki-67 index of meningioma patients to facilitate the therapeutic management.
Collapse
|
37
|
Tan P, Huang W, Wang L, Deng G, Yuan Y, Qiu S, Ni D, Du S, Cheng J. Deep learning predicts immune checkpoint inhibitor-related pneumonitis from pretreatment computed tomography images. Front Physiol 2022; 13:978222. [PMID: 35957985 PMCID: PMC9358138 DOI: 10.3389/fphys.2022.978222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of lung cancer, including both non-small cell lung cancer and small cell lung cancer. Despite the promising results of immunotherapies, ICI-related pneumonitis (ICIP) is a potentially fatal adverse event. Therefore, early detection of patients at risk for developing ICIP before the initiation of immunotherapy is critical for alleviating future complications with early interventions and improving treatment outcomes. In this study, we present the first reported work that explores the potential of deep learning to predict patients who are at risk for developing ICIP. To this end, we collected the pretreatment baseline CT images and clinical information of 24 patients who developed ICIP after immunotherapy and 24 control patients who did not. A multimodal deep learning model was constructed based on 3D CT images and clinical data. To enhance performance, we employed two-stage transfer learning by pre-training the model sequentially on a large natural image dataset and a large CT image dataset, as well as transfer learning. Extensive experiments were conducted to verify the effectiveness of the key components used in our method. Using five-fold cross-validation, our method accurately distinguished ICIP patients from non-ICIP patients, with area under the receiver operating characteristic curve of 0.918 and accuracy of 0.920. This study demonstrates the promising potential of deep learning to identify patients at risk for developing ICIP. The proposed deep learning model enables efficient risk stratification, close monitoring, and prompt management of ICIP, ultimately leading to better treatment outcomes.
Collapse
Affiliation(s)
- Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Huang
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingling Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Guanhua Deng
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Ye Yuan
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Shili Qiu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Dong Ni
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Shasha Du
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Shasha Du, ; Jun Cheng,
| | - Jun Cheng
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Shasha Du, ; Jun Cheng,
| |
Collapse
|
38
|
Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance. Radiol Med 2022; 127:518-525. [PMID: 35320464 PMCID: PMC9098537 DOI: 10.1007/s11547-022-01468-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/11/2022] [Indexed: 10/29/2022]
Abstract
PURPOSE To evaluate stability and machine learning-based classification performance of radiomic features of spine bone tumors using diffusion- and T2-weighted magnetic resonance imaging (MRI). MATERIAL AND METHODS This retrospective study included 101 patients with histology-proven spine bone tumor (22 benign; 38 primary malignant; 41 metastatic). All tumor volumes were manually segmented on morphologic T2-weighted sequences. The same region of interest (ROI) was used to perform radiomic analysis on ADC map. A total of 1702 radiomic features was considered. Feature stability was assessed through small geometrical transformations of the ROIs mimicking multiple manual delineations. Intraclass correlation coefficient (ICC) quantified feature stability. Feature selection consisted of stability-based (ICC > 0.75) and significance-based selections (ranking features by decreasing Mann-Whitney p-value). Class balancing was performed to oversample the minority (i.e., benign) class. Selected features were used to train and test a support vector machine (SVM) to discriminate benign from malignant spine tumors using tenfold cross-validation. RESULTS A total of 76.4% radiomic features were stable. The quality metrics for the SVM were evaluated as a function of the number of selected features. The radiomic model with the best performance and the lowest number of features for classifying tumor types included 8 features. The metrics were 78% sensitivity, 68% specificity, 76% accuracy and AUC 0.78. CONCLUSION SVM classifiers based on radiomic features extracted from T2- and diffusion-weighted imaging with ADC map are promising for classification of spine bone tumors. Radiomic features of spine bone tumors show good reproducibility rates.
Collapse
|
39
|
Radiomics of Musculoskeletal Sarcomas: A Narrative Review. J Imaging 2022; 8:jimaging8020045. [PMID: 35200747 PMCID: PMC8876222 DOI: 10.3390/jimaging8020045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Bone and soft-tissue primary malignant tumors or sarcomas are a large, diverse group of mesenchymal-derived malignancies. They represent a model for intra- and intertumoral heterogeneities, making them particularly suitable for radiomics analyses. Radiomic features offer information on cancer phenotype as well as the tumor microenvironment which, combined with other pertinent data such as genomics and proteomics and correlated with outcomes data, can produce accurate, robust, evidence-based, clinical-decision support systems. Our purpose in this narrative review is to offer an overview of radiomics studies dealing with Magnetic Resonance Imaging (MRI)-based radiomics models of bone and soft-tissue sarcomas that could help distinguish different histotypes, low-grade from high-grade sarcomas, predict response to multimodality therapy, and thus better tailor patients’ treatments and finally improve their survivals. Although showing promising results, interobserver segmentation variability, feature reproducibility, and model validation are three main challenges of radiomics that need to be addressed in order to translate radiomics studies to clinical applications. These efforts, together with a better knowledge and application of the “Radiomics Quality Score” and Image Biomarker Standardization Initiative reporting guidelines, could improve the quality of sarcoma radiomics studies and facilitate radiomics towards clinical translation.
Collapse
|
40
|
Gitto S, Cuocolo R, van Langevelde K, van de Sande MAJ, Parafioriti A, Luzzati A, Imbriaco M, Sconfienza LM, Bloem JL. MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine 2022; 75:103757. [PMID: 34933178 PMCID: PMC8688587 DOI: 10.1016/j.ebiom.2021.103757] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background Atypical cartilaginous tumour (ACT) and grade II chondrosarcoma (CS2) of long bones are respectively managed with watchful waiting or curettage and wide resection. Preoperatively, imaging diagnosis can be challenging due to interobserver variability and biopsy suffers from sample errors. The aim of this study is to determine diagnostic performance of MRI radiomics-based machine learning in differentiating ACT from CS2 of long bones. Methods One-hundred-fifty-eight patients with surgically treated and histology-proven cartilaginous bone tumours were retrospectively included at two tertiary bone tumour centres. The training cohort consisted of 93 MRI scans from centre 1 (n=74 ACT; n=19 CS2). The external test cohort consisted of 65 MRI scans from centre 2 (n=45 ACT; n=20 CS2). Bidimensional segmentation was performed on T1-weighted MRI. Radiomic features were extracted. After dimensionality reduction and class balancing in centre 1, a machine-learning classifier (Extra Trees Classifier) was tuned on the training cohort using 10-fold cross-validation and tested on the external test cohort. In centre 2, its performance was compared with an experienced musculoskeletal oncology radiologist using McNemar's test. Findings After tuning on the training cohort (AUC=0.88), the machine-learning classifier had 92% accuracy (60/65, AUC=0.94) in identifying the lesions in the external test cohort. Its accuracies in correctly classifying ACT and CS2 were 98% (44/45) and 80% (16/20), respectively. The radiologist had 98% accuracy (64/65) with no difference compared to the classifier (p=0.134). Interpretation Machine learning showed high accuracy in classifying ACT and CS2 of long bones based on MRI radiomic features. Funding ESSR Young Researchers Grant.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; Radiology Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Renato Cuocolo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy; Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | | | | | | | | - Massimo Imbriaco
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| | - Johan L Bloem
- Radiology Department, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
41
|
Kang CY, Duarte SE, Kim HS, Kim E, Park J, Lee AD, Kim Y, Kim L, Cho S, Oh Y, Gim G, Park I, Lee D, Abazeed M, Velichko YS, Chae YK. OUP accepted manuscript. Oncologist 2022; 27:e471-e483. [PMID: 35348765 PMCID: PMC9177100 DOI: 10.1093/oncolo/oyac036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
The recent, rapid advances in immuno-oncology have revolutionized cancer treatment and spurred further research into tumor biology. Yet, cancer patients respond variably to immunotherapy despite mounting evidence to support its efficacy. Current methods for predicting immunotherapy response are unreliable, as these tests cannot fully account for tumor heterogeneity and microenvironment. An improved method for predicting response to immunotherapy is needed. Recent studies have proposed radiomics—the process of converting medical images into quantitative data (features) that can be processed using machine learning algorithms to identify complex patterns and trends—for predicting response to immunotherapy. Because patients undergo numerous imaging procedures throughout the course of the disease, there exists a wealth of radiological imaging data available for training radiomics models. And because radiomic features reflect cancer biology, such as tumor heterogeneity and microenvironment, these models have enormous potential to predict immunotherapy response more accurately than current methods. Models trained on preexisting biomarkers and/or clinical outcomes have demonstrated potential to improve patient stratification and treatment outcomes. In this review, we discuss current applications of radiomics in oncology, followed by a discussion on recent studies that use radiomics to predict immunotherapy response and toxicity.
Collapse
Affiliation(s)
| | | | - Hye Sung Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eugene Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Alice Daeun Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leeseul Kim
- Department of Internal Medicine, AMITA Health Saint Francis Hospital, Evanston, IL, USA
| | - Sukjoo Cho
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yoojin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gahyun Gim
- Department of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Inae Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongyup Lee
- Department of Physical Medicine and Rehabilitation, Geisinger Health System, Danville, PA, USA
| | - Mohamed Abazeed
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yury S Velichko
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Young Kwang Chae
- Corresponding author: Young Kwang Chae, Department of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
42
|
Gitto S, Cuocolo R, Emili I, Tofanelli L, Chianca V, Albano D, Messina C, Imbriaco M, Sconfienza LM. Effects of Interobserver Variability on 2D and 3D CT- and MRI-Based Texture Feature Reproducibility of Cartilaginous Bone Tumors. J Digit Imaging 2021; 34:820-832. [PMID: 34405298 PMCID: PMC8455795 DOI: 10.1007/s10278-021-00498-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate the influence of interobserver manual segmentation variability on the reproducibility of 2D and 3D unenhanced computed tomography (CT)- and magnetic resonance imaging (MRI)-based texture analysis. Thirty patients with cartilaginous bone tumors (10 enchondromas, 10 atypical cartilaginous tumors, 10 chondrosarcomas) were retrospectively included. Three radiologists independently performed manual contour-focused segmentation on unenhanced CT and T1-weighted and T2-weighted MRI by drawing both a 2D region of interest (ROI) on the slice showing the largest tumor area and a 3D ROI including the whole tumor volume. Additionally, a marginal erosion was applied to both 2D and 3D segmentations to evaluate the influence of segmentation margins. A total of 783 and 1132 features were extracted from original and filtered 2D and 3D images, respectively. Intraclass correlation coefficient ≥ 0.75 defined feature stability. In 2D vs. 3D contour-focused segmentation, the rates of stable features were 74.71% vs. 86.57% (p < 0.001), 77.14% vs. 80.04% (p = 0.142), and 95.66% vs. 94.97% (p = 0.554) for CT and T1-weighted and T2-weighted images, respectively. Margin shrinkage did not improve 2D (p = 0.343) and performed worse than 3D (p < 0.001) contour-focused segmentation in terms of feature stability. In 2D vs. 3D contour-focused segmentation, matching stable features derived from CT and MRI were 65.8% vs. 68.7% (p = 0.191), and those derived from T1-weighted and T2-weighted images were 76.0% vs. 78.2% (p = 0.285). 2D and 3D radiomic features of cartilaginous bone tumors extracted from unenhanced CT and MRI are reproducible, although some degree of interobserver segmentation variability highlights the need for reliability analysis in future studies.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy.
| | - Renato Cuocolo
- Dipartimento Di Medicina Clinica E Chirurgia, Università Degli Studi Di Napoli "Federico II", Naples, Italy.,Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Dipartimento Di Ingegneria Elettrica E Delle Tecnologie Dell'Informazione, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Ilaria Emili
- Unità di Radiodiagnostica, Presidio CTO, ASST Pini-CTO, Milan, Italy
| | - Laura Tofanelli
- Dipartimento di Radiologia Diagnostica ed Interventistica, Università degli Studi di Milano, Ospedale San Paolo, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy.,Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Sezione Di Scienze Radiologiche, Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Università Degli Studi Di Palermo, Palermo, Italy
| | | | - Massimo Imbriaco
- Dipartimento Di Scienze Biomediche Avanzate, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Luca Maria Sconfienza
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|