1
|
Camarda L, Mattioli LB, Corazza I, Marzetti C, Budriesi R. Targeting the Gut-Brain Axis with Plant-Derived Essential Oils: Phytocannabinoids and Beyond. Nutrients 2025; 17:1578. [PMID: 40362887 PMCID: PMC12074236 DOI: 10.3390/nu17091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Background: The gut-brain axis (GBA) is a complex bidirectional communication system that links the gastrointestinal tract and the central nervous system. Essential oils (EOs) have emerged as promising natural compounds capable of modulating this axis. Methods: A comprehensive analysis of the recent literature was conducted, focusing on studies investigating the effects of EOs on the GBA. Particular attention was given to the endocannabinoid system, the role of cannabis-derived EOs, and other plant-based EOs with potential neuroprotective and gut microbiota-modulating effects. Results: Among the EOs analyzed, cannabis essential oil (CEO) gained attention for its interaction with cannabinoid receptors (CBR1 and CBR2), modulating gut motility, immune responses, and neurotransmission. While acute administration of the CEO reduces inflammation and gut permeability, chronic use has been associated with alterations in gut microbiota composition, potentially impairing cognitive function. Other EOs, such as those from rosemary, lavender, eucalyptus, and oregano, demonstrated effects on neurotransmitter modulation, gut microbiota balance, and neuroinflammation, supporting their potential therapeutic applications in GBA-related disorders. Conclusions: EOs demonstrate promising potential in modulating the GBA through mechanisms including neurotransmitter regulation, gut microbiota modulation, and anti-inflammatory activity. At the same time, phytocannabinoids offer therapeutic value; their long-term use warrants caution due to potential impacts on microbiota. Future research should aim to identify EO-based interventions that can synergistically restore GBA homeostasis and mitigate neurodegenerative and gastrointestinal disorders.
Collapse
Affiliation(s)
- Luca Camarda
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (L.B.M.); (R.B.)
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (L.B.M.); (R.B.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy;
| | - Ivan Corazza
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | | | - Roberta Budriesi
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (L.B.M.); (R.B.)
| |
Collapse
|
2
|
Panee J, Qin Y, Deng Y. Associations of Chronic Marijuana Use with Changes in Salivary Microbiome. Microorganisms 2024; 12:2244. [PMID: 39597633 PMCID: PMC11596347 DOI: 10.3390/microorganisms12112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The legalization of marijuana (MJ) for medicinal and recreational use has raised concerns about its potential impact on health, including oral health. While MJ use has been linked to poor oral health, its effects on the composition of the oral microbiome remain unclear. This cross-sectional study analyzed saliva samples from chronic MJ users (n = 18) and nonusers (n = 20) to investigate MJ-related changes in salivary microbiome composition. We identified significant differences in the relative abundance of 16 taxa, including seven species, such as Megasphaera micronucliformis, Prevotella melaninogenica, and Streptococcus anginosus. Additionally, five species showed positive correlations with cumulative lifetime MJ use, including Streptococcus vestibularis and Streptococcus parasanguinis. By grouping salivary microbial communities into clusters based on their association with periodontal health, we found that the cluster with species associated with poor periodontal health had the highest percentage of MJ users. Moreover, MJ use significantly contributed to variance in microbial communities in individuals with relatively good periodontal health. These findings suggest that chronic MJ use is associated with alterations in the salivary microbiome, highlighting its potential broader impact on oral and systemic health.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Yujia Qin
- Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
3
|
Drakes N, Kondrikova G, Pytel D, Hamlett ED. Unveiling the Intricate Link Between Anaerobe Niche and Alzheimer Disease Pathogenesis. J Infect Dis 2024; 230:S117-S127. [PMID: 39255391 DOI: 10.1093/infdis/jiae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Dysbiosis within microbiomes has been increasingly implicated in many systemic illnesses, such as cardiovascular disease, metabolic syndrome, respiratory infections, and Alzheimer disease (Ad). The correlation between Ad and microbial dysbiosis has been repeatedly shown, yet the etiologic cause of microbial dysbiosis remains elusive. From a neuropathology perspective, abnormal (often age-related) changes in the brain, associated structures, and bodily lumens tend toward an accumulation of oxygen-depleted pathologic structures, which are anaerobically selective niches. These anaerobic environments may promote progressive change in the microbial community proximal to the brain and thus deserve further investigation. In this review, we identify and explore what is known about the anaerobic niche near or associated with the brain and the anaerobes that it is harbors. We identify the anaerobe stakeholders within microbiome communities and the impacts on the neurodegenerative processes associated with Ad. Chronic oral dysbiosis in anaerobic dental pockets and the composition of the gut microbiota from fecal stool are the 2 largest anaerobic niche sources of bacterial transference to the brain. At the blood-brain barrier, cerebral atherosclerotic plaques are predominated by anaerobic species intimately associated with the brain vasculature. Focal cerebritis/brain abscess and corpora amylacea may also establish chronic anaerobic niches in direct proximity to brain parenchyma. In exploring the anaerobic niche proximal to the brain, we identify research opportunities to explore potential sources of microbial dysbiosis associated with Ad.
Collapse
Affiliation(s)
- NyEmma Drakes
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Biology, College of Charleston
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Dariusz Pytel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Poland
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| |
Collapse
|
4
|
Esposito MM, Kalinowski J, Mikhaeil M. The Effects of Recreational and Pharmaceutical Substance Use on Oral Microbiomes and Health. BACTERIA 2024; 3:209-222. [DOI: 10.3390/bacteria3030015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Oral health remains one of the most taken for granted parts of human body health, even though poor oral health has now been linked to various diseases, such as cancers, diabetes, autoimmune complications, neurological disorders, and cardiovascular disease, just to name a few. As we review in this paper, substance use or abuse, including alcohol, smoking, recreational drugs, and pharmaceutical drugs can have significant implications on oral health, which in turn can lead to more systemic diseases. In this paper, we show that oral microbiome dysbiosis and inflammatory cytokine pathways are two of the most significant mechanisms contributing to oral health complications from substance use. When substance use decreases beneficial oral species and increases periodontopathogenic strains, a subsequent cascade of oncogenic and inflammatory cytokines is triggered. In this review, we explore these mechanisms and others to determine the consequences of substance use on oral health. The findings are of significance clinically and in research fields as the substance-use-induced deterioration of oral health significantly reduces quality of life and daily functions. Overall, the studies in this review may provide valuable information for future personalized medicine and safer alternatives to legal and pharmaceutical substances. Furthermore, they can lead towards better rehabilitation or preventative initiatives and policies, as it is critical for healthcare and addiction aid specialists to have proper tools at their disposal.
Collapse
Affiliation(s)
- Michelle Marie Esposito
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, New York, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- Macaulay Honors College, City University of New York, New York, NY 10023, USA
| | - Julia Kalinowski
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, New York, NY 10314, USA
- Macaulay Honors College, City University of New York, New York, NY 10023, USA
| | - Mirit Mikhaeil
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, New York, NY 10314, USA
- DMD Program, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
6
|
Al-Khazaleh AK, Jaye K, Chang D, Münch GW, Bhuyan DJ. Buds and Bugs: A Fascinating Tale of Gut Microbiota and Cannabis in the Fight against Cancer. Int J Mol Sci 2024; 25:872. [PMID: 38255944 PMCID: PMC10815411 DOI: 10.3390/ijms25020872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Emerging research has revealed a complex bidirectional interaction between the gut microbiome and cannabis. Preclinical studies have demonstrated that the gut microbiota can significantly influence the pharmacological effects of cannabinoids. One notable finding is the ability of the gut microbiota to metabolise cannabinoids, including Δ9-tetrahydrocannabinol (THC). This metabolic transformation can alter the potency and duration of cannabinoid effects, potentially impacting their efficacy in cancer treatment. Additionally, the capacity of gut microbiota to activate cannabinoid receptors through the production of secondary bile acids underscores its role in directly influencing the pharmacological activity of cannabinoids. While the literature reveals promising avenues for leveraging the gut microbiome-cannabis axis in cancer therapy, several critical considerations must be accounted for. Firstly, the variability in gut microbiota composition among individuals presents a challenge in developing universal treatment strategies. The diversity in gut microbiota may lead to variations in cannabinoid metabolism and treatment responses, emphasising the need for personalised medicine approaches. The growing interest in understanding how the gut microbiome and cannabis may impact cancer has created a demand for up-to-date, comprehensive reviews to inform researchers and healthcare practitioners. This review provides a timely and invaluable resource by synthesizing the most recent research findings and spotlighting emerging trends. A thorough examination of the literature on the interplay between the gut microbiome and cannabis, specifically focusing on their potential implications for cancer, is presented in this review to devise innovative and effective therapeutic strategies for managing cancer.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (A.K.A.-K.); (K.J.); (D.C.)
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (A.K.A.-K.); (K.J.); (D.C.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (A.K.A.-K.); (K.J.); (D.C.)
| | - Gerald W. Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (A.K.A.-K.); (K.J.); (D.C.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
7
|
Ren Y, Liang J, Li X, Deng Y, Cheng S, Wu Q, Song W, He Y, Zhu J, Zhang X, Zhou H, Yin J. Association between oral microbial dysbiosis and poor functional outcomes in stroke-associated pneumonia patients. BMC Microbiol 2023; 23:305. [PMID: 37875813 PMCID: PMC10594709 DOI: 10.1186/s12866-023-03057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Despite advances in our understanding of the critical role of the microbiota in stroke patients, the oral microbiome has rarely been reported to be associated with stroke-associated pneumonia (SAP). We sought to profile the oral microbial composition of SAP patients and to determine whether microbiome temporal instability and special taxa are associated with pneumonia progression and functional outcomes. METHODS This is a prospective, observational, single-center cohort study that examined patients with acute ischemic stroke (AIS) who were admitted within 24 h of experiencing a stroke event. The patients were divided into three groups based on the occurrence of pneumonia and the use of mechanical ventilation: nonpneumonia group, SAP group, and ventilator-associated pneumonia (VAP) group. We collected oral swabs at different time points post-admission and analyzed the microbiota using 16 S rRNA high-throughput sequencing. The microbiota was then compared among the three groups. RESULTS In total, 104 nonpneumonia, 50 SAP and 10 VAP patients were included in the analysis. We found that SAP and VAP patients exhibited significant dynamic differences in the diversity and composition of the oral microbiota and that the magnitude of this dysbiosis and instability increased during hospitalization. Then, by controlling the potential effect of all latent confounding variables, we assessed the changes associated with pneumonia after stroke and explored patients with a lower abundance of Streptococcus were more likely to suffer from SAP. The logistic regression analysis revealed that an increase in specific taxa in the phylum Actinobacteriota was linked to a higher risk of poor outcomes. A model for SAP patients based on oral microbiota could accurately predict 30-day clinical outcomes after stroke onset. CONCLUSIONS We concluded that specific oral microbiota signatures could be used to predict illness development and clinical outcomes in SAP patients. We proposed the potential of the oral microbiota as a non-invasive diagnostic biomarker in the clinical management of SAP patients. CLINICAL TRIAL REGISTRATION NCT04688138. Registered 29/12/2020, https://clinicaltrials.gov/ct2/show/NCT04688138 .
Collapse
Affiliation(s)
- Yueran Ren
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingru Liang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiting Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sanping Cheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Song
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiajia Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaomei Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Wan J, Fan H. Oral Microbiome and Alzheimer's Disease. Microorganisms 2023; 11:2550. [PMID: 37894208 PMCID: PMC10609607 DOI: 10.3390/microorganisms11102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The accumulation of amyloid-beta plaques in the brain is a central pathological feature of Alzheimer's disease. It is believed that amyloid responses may be a result of the host immune response to pathogens in both the central nervous system and peripheral systems. Oral microbial dysbiosis is a chronic condition affecting more than 50% of older adults. Recent studies have linked oral microbial dysbiosis to a higher brain Aβ load and the development of Alzheimer's disease in humans. Moreover, the presence of an oral-derived and predominant microbiome has been identified in the brains of patients with Alzheimer's disease and other neurodegenerative diseases. Therefore, in this opinion article, we aim to provide a summary of studies on oral microbiomes that may contribute to the pathogenesis of the central nervous system in Alzheimer's disease.
Collapse
Affiliation(s)
- Jason Wan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Charleston County School of the Arts High School, North Charleston, SC 29405, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
9
|
Zhang J, Liu W, Shi L, Liu X, Wang M, Li W, Yu D, Wang Y, Zhang J, Yun K, Yan J. The Effects of Drug Addiction and Detoxification on the Human Oral Microbiota. Microbiol Spectr 2023; 11:e0396122. [PMID: 36722952 PMCID: PMC10100366 DOI: 10.1128/spectrum.03961-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 02/02/2023] Open
Abstract
Drug addiction can powerfully and chronically damage human health. Detoxification contributes to health recovery of the body. It is well established that drug abuse is associated with poor oral health in terms of dental caries and periodontal diseases. We supposed that drug addiction and detoxification might have significant effects on the oral microbiota. To test the hypothesis, we assessed the effects of drug (heroin and methylamphetamine) addiction/detoxification on the oral microbiota based on 16S rRNA gene sequencing by an observational investigation, including 495 saliva samples from participants. The oral microbial compositions differed between non-users, current and former drug users. Lower alpha diversities were observed in current drug users, with no significant differences between non-users and former drug users. Heroin and METH addiction can cause consistent variations in several specific phyla, such as the enrichment of Acidobacteria and depletion of Proteobacteria and Tenericutes. Current drug users had significantly lower relative abundances of Neisseria subflava and Haemophilus parainfluenzae compared to non-users and former drug users. The result of random forest prediction model suggested that the oral microbiota has a powerful classification potential for distinguishing current drug users from non-users and former drug users. A cooccurrence network analysis showed that current drug users had more complex oral microbial networks and lower functional modularity. Overall, our study suggested that drug addiction may damage the balance of the oral microbiota. These results may have benefits for further understanding the effects of addiction-related oral microbiota on the health of drug users and promoting the microbiota to serve as a potential tool for accurate forensic identification. IMPORTANCE Drug addiction has serious negative consequences for human health and public security. The evidence indicates that drug abuse can cause poor oral health. In the current study, we observed that drug addiction caused oral microbial dysbiosis. Detoxication have positive effects on the recovery of oral microbial community structures to some extent. Understanding the effects of drug addiction and detoxification on oral microbial communities will promote a more rational approach for recovering the oral function and health of drug users. Furthermore, specific microbial species might be considered biomarkers that could provide information regarding drug abuse status for saliva left at crime scenes. To the best of our knowledge, this is the first report on the role of the oral microbiota in drug addiction and detoxification. Our findings give new clues to understand the association between drug addiction and oral health.
Collapse
Affiliation(s)
- Jun Zhang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wenli Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Linyu Shi
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Mengchun Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wanting Li
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Daijing Yu
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yaya Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jingjing Zhang
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Keming Yun
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jiangwei Yan
- Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
10
|
Fu X, Bian C, Kruyer A, Zhou Z, Luo Z, Haque A, Wagner A, Lang R, Fitting S, Robinson C, McRae-Clark A, Amato D, Jiang W. Cocaine administration protects gut mucosa barrier and reduces plasma level of TNF-α. CURRENT PSYCHOPHARMACOLOGY 2022; 11:1-8. [PMID: 36860288 PMCID: PMC9974179 DOI: 10.2174/2211556011666220818091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Background Cocaine affects not only the central nervous system, but also systemic immunity. The role of cocaine in gut mucosal integrity is not fully understood. Methods Here we evaluated the effect of cocaine use on gut endothelial permeability and system inflammation in rats that self-administered cocaine or saline and in humans using immunohistochemistry, qPCR, ELISA, and Transepithelial/transendothelial electrical resistance (TEER). Results Cocaine administration maintained intact and undisturbed intestinal mucosal structures, increased tight junction claudin 1 and 2 mRNA expression, and decreased plasma TNF-α levels, compared to the control group, at the end of study in rats. Further, cocaine treatment decreased gut endothelial permeability in a dose-dependent manner in human epithelial Caco-2 cells in vitro. Consistently, chronic cocaine users exhibited decreased plasma levels of TNF-α compared with non-drug users in vivo. However, plasma IL-6 levels were similar between cocaine use and control groups both in humans and rats in vivo. Conclusions Our results from both human and rat studies in vivo and in vitro suggest that cocaine use may exert a protective effect on the integrity of gut mucosa and suppresses plasma TNF-α levels. This study may provide information on some beneficial effects of cocaine use on gut endothelial cells integrity and systemic inflammation.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
- Key Laboratory of Hunan Viral Hepatitis, Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chuanxiu Bian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China, 212013
| | - Anna Kruyer
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA, 29425
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China, 410081
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
| | - Amanda Wagner
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,100020
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catrina Robinson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Aimee McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, USA 29403
| | - Davide Amato
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA, 29425
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
- Key Laboratory of Hunan Viral Hepatitis, Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, USA, 29425
| |
Collapse
|
11
|
Hong H, Sloan L, Saxena D, Scott DA. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics. Biomedicines 2022; 10:1959. [PMID: 36009504 PMCID: PMC9406052 DOI: 10.3390/biomedicines10081959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP-microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.
Collapse
Affiliation(s)
- HeeJue Hong
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lucy Sloan
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Deepak Saxena
- Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - David A. Scott
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|