1
|
Terroba-Navajas P, Spatola M, Chuquisana O, Joubert B, de Vries JM, Dik A, Marmolejo L, Jönsson F, Lauc G, Kovac S, Prüss H, Wiendl H, Titulaer MJ, Honnorat J, Lünemann JD. Humoral signatures of Caspr2-antibody spectrum disorder track with clinical phenotypes and outcomes. MED 2025; 6:100515. [PMID: 39393351 DOI: 10.1016/j.medj.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Immunoglobulin (Ig) G4 auto-antibodies (Abs) against contactin-associated protein-like 2 (Caspr2), a transmembrane cell adhesion protein expressed in the central and peripheral nervous system, are found in patients with a broad spectrum of neurological symptoms. While the adoptive transfer of Caspr2-specific IgG induces brain pathology in susceptible rodents, the mechanisms by which Caspr2-Abs mediate neuronal dysfunction and translate into clinical syndromes are incompletely understood. METHODS We use a systems-level approach combined with high-dimensional characterization of Ab-associated immune features to deeply profile humoral biosignatures in patients with Caspr2-Ab-associated neurological syndromes. FINDINGS We identify two signatures strongly associated with two major clinical phenotypes, limbic encephalitis (LE) and predominant peripheral nerve hyperexcitability without LE (non-LE). Caspr2-IgG Fc-driven pro-inflammatory features, characterized by increased binding affinities for activating Fcγ receptors (FcγRs) and C1q, along with a higher prevalence of IgG1-class Abs, in addition to IgG4, are strongly associated with LE. Both the occurrence of Caspr2-specific IgG1 and higher serum levels of interleukin (IL)-6 and IL-15, along with increased concentrations of biomarkers reflecting neuronal damage and glial cell activation, are associated with poorer clinical outcomes at 1-year follow-up. CONCLUSIONS The presence of IgG1 isotypes and Fc-mediated effector functions control the pathogenicity of Caspr2-specific Abs to induce LE. Biologics targeting FcR function might potentially restrain Caspr2-Ab-induced pathology and improve clinical outcomes. FUNDING This study was funded by a German-French joint research program supported by the German Research Foundation (DFG) and the Agence Nationale de la Recherche (ANR) and by the Interdisciplinary Centre for Clinical Research (IZKF) Münster.
Collapse
Affiliation(s)
- Paula Terroba-Navajas
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marianna Spatola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Caixa Research Institute, Barcelona, Spain.
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Service de Neurologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Juna M de Vries
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Laura Marmolejo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Friederike Jönsson
- CNRS & Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb, Croatia; Genos, Ltd., Borongajska Cesta 83H, Zagreb, Croatia
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Salatin S, Shafiee-Kandjani AR, Hamidi S, Amirfiroozi A, Kalejahi P. Individualized psychiatric care: integration of therapeutic drug monitoring, pharmacogenomics, and biomarkers. Per Med 2025; 22:29-44. [PMID: 39706800 DOI: 10.1080/17410541.2024.2442897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Personalized treatment optimization considers individual clinical, genetic, and environmental factors influencing drug efficacy and tolerability. As evidence accumulates, these approaches may become increasingly integrated into standard psychiatric care, potentially transforming the treatment landscape for mental health disorders. While personalized treatment optimization shows promise in enhancing therapeutic outcomes and minimizing adverse effects, further research is needed to establish its clinical utility and cost-effectiveness across various psychiatric disorders. This review examines the potential utility of personalized treatment optimization in psychiatry, addressing the challenge of suboptimal effectiveness and variable patient responses to psychiatric medications. It explores how therapeutic drug monitoring, pharmacogenomics, and biomarker testing can be used to individualize and optimize pharmacotherapy for mental disorders such as depression, bipolar disorder, and schizophrenia.
Collapse
Affiliation(s)
- Sara Salatin
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Amirfiroozi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Parinaz Kalejahi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Mantovani E, Martini A, Dinoto A, Zucchella C, Ferrari S, Mariotto S, Tinazzi M, Tamburin S. Biomarkers for cognitive impairment in alpha-synucleinopathies: an overview of systematic reviews and meta-analyses. NPJ Parkinsons Dis 2024; 10:211. [PMID: 39488513 PMCID: PMC11531557 DOI: 10.1038/s41531-024-00823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
Cognitive impairment (CI) is common in α-synucleinopathies, i.e., Parkinson's disease, Lewy bodies dementia, and multiple system atrophy. We summarize data from systematic reviews/meta-analyses on neuroimaging, neurophysiology, biofluid and genetic diagnostic/prognostic biomarkers of CI in α-synucleinopathies. Diagnostic biomarkers include atrophy/functional neuroimaging brain changes, abnormal cortical amyloid and tau deposition, and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, cortical rhythm slowing, reduced cortical cholinergic and glutamatergic and increased cortical GABAergic activity, delayed P300 latency, increased plasma homocysteine and cystatin C and decreased vitamin B12 and folate, increased CSF/serum albumin quotient, and serum neurofilament light chain. Prognostic biomarkers include brain regional atrophy, cortical rhythm slowing, CSF amyloid biomarkers, Val66Met polymorphism, and apolipoprotein-E ε2 and ε4 alleles. Some AD/amyloid/tau biomarkers may diagnose/predict CI in α-synucleinopathies, but single, validated diagnostic/prognostic biomarkers lack. Future studies should include large consortia, biobanks, multi-omics approach, artificial intelligence, and machine learning to better reflect the complexity of CI in α-synucleinopathies.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Alice Martini
- School of Psychology, Keele University, Newcastle, UK
- Addiction Department, Azienda Sanitaria Friuli Occidentale, Pordenone, Italy
| | - Alessandro Dinoto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
4
|
Katzdobler S, Nübling G, Klietz M, Fietzek UM, Palleis C, Bernhardt AM, Wegner F, Huber M, Rogozinski S, Schneider LS, Spruth EJ, Beyle A, Vogt IR, Brandt M, Hansen N, Glanz W, Brockmann K, Spottke A, Hoffmann DC, Peters O, Priller J, Wiltfang J, Düzel E, Schneider A, Falkenburger B, Klockgether T, Gasser T, Nuscher B, Haass C, Höglinger G, Levin J. GFAP and NfL as fluid biomarkers for clinical disease severity and disease progression in multiple system atrophy (MSA). J Neurol 2024; 271:6991-6999. [PMID: 39254698 PMCID: PMC11447157 DOI: 10.1007/s00415-024-12647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Multiple system atrophy (MSA), an atypical parkinsonian syndrome, is a rapidly progressive neurodegenerative disease with currently no established fluid biomarkers available. MSA is characterized by an oligodendroglial α-synucleinopathy, progressive neuronal cell loss and concomitant astrocytosis. Here, we investigate glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as fluid biomarkers for differential diagnosis, assessment of clinical disease severity and prediction of disease progression in MSA. METHODS GFAP and NfL levels were analyzed in plasma and CSF samples of 47 MSA patients as well as 24 Parkinson's disease (PD) and 25 healthy controls (HC) as reference cohorts. In MSA, biomarker levels were correlated to baseline and longitudinal clinical disease severity (UMSARS scores). RESULTS In MSA, GFAP levels in CSF and plasma predicted baseline clinical disease severity as indicated by UMSARS scores, while NfL levels predicted clinical disease progression as indicated by longitudinal changes in UMSARS scores. Cross-sectionally, NfL levels in CSF and plasma were significantly elevated in MSA compared to both PD and HC. Receiver operating curves (ROC) indicated high diagnostic accuracy of NfL for distinguishing MSA from PD (CSF: AUC = 0.97, 95% CI 0.90-1.00; plasma: AUC = 0.90, 95% CI 0.81-1.00). DISCUSSION In MSA, GFAP shows promise as novel biomarker for assessing current clinical disease severity, while NfL might serve as biomarker for prediction of disease progression and differential diagnosis of MSA against PD.
Collapse
Affiliation(s)
- Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Georg Nübling
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
| | - Martin Klietz
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Urban M Fietzek
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
| | - Alexander M Bernhardt
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
- Clinical Mass Spectrometry Center Munich, Munich, Germany
| | - Florian Wegner
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Meret Huber
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | | | - Luisa-Sophie Schneider
- Department of psychiatry and neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Aline Beyle
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Ina R Vogt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
| | - Moritz Brandt
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University, Magdeburg, Germany
- Clinic for Neurology, Medical Faculty, University Hospital Magdeburg, Magdeburg, Germany
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- Department of Neurology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
| | - Daniel C Hoffmann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
| | - Oliver Peters
- Department of psychiatry and neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Neuropsychiatry Unit and Laboratory of Molecular Psychiatry, Charité, Universitätsmedizin Berlin and DZNE, Berlin, Germany
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
- Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Björn Falkenburger
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Christian Haass
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Günter Höglinger
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany.
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
- German Center for Neurodegenerative Diseases, DZNE, Munich, Germany.
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
- Clinical Mass Spectrometry Center Munich, Munich, Germany.
| |
Collapse
|
5
|
Lünemann JD, Sao Avilés A, Tintoré M, Midaglia L, Fissolo N, Gutiérrez L, Wiendl H, Montalban X, Comabella M. Cytomegalovirus immune responses are associated with lower serum NfL and disability accumulation risk at multiple sclerosis onset. Mult Scler 2024; 30:1445-1454. [PMID: 39246021 DOI: 10.1177/13524585241274571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
BACKGROUND Infection by cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) play a prognostic role in multiple sclerosis (MS). OBJECTIVES To explore whether humoral immune responses to HCMV and EBV at disease onset were associated with changes in serum and cerebrospinal fluid (CSF) levels of inflammatory and neurodegeneration biomarkers. METHODS Ninety-eight MS patients with a median follow-up of 20 years were included in the study. The levels of a panel of nine biomarkers were measured in serum (N = 60) and CSF (N = 61) samples of patients at the time of the first demyelinating event. RESULTS Immune responses to HCMV inversely correlated with serum neurofilament light chain (sNfL) levels (rho = -0.367; p = 0.039). sNfL levels were reduced in patients with high immune responses to HCMV (p = 0.006). Elevated sNfL levels were associated with higher risk of Expanded Disability Status Scale (EDSS) 3.0 (p = 0.016), 4.0 (p = 0.009) and 6.0 (p = 0.003), and with higher risk of developing secondary progressive MS (p = 0.003) and to receive treatment (p = 0.032). Serum soluble CD21 levels were increased in patients with high immune responses to EBV nuclear antigen 1 (p = 0.020). CONCLUSIONS High immune responses to HCMV are associated with limited disease progression and central nervous system (CNS) injury in MS patients. These findings reinforce the protective role of HCMV infection in MS.
Collapse
Affiliation(s)
- Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Augusto Sao Avilés
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciana Midaglia
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-ISCIII, Madrid, Spain
| | - Nicolás Fissolo
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-ISCIII, Madrid, Spain
| | - Lucía Gutiérrez
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Xavier Montalban
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-ISCIII, Madrid, Spain
| | - Manuel Comabella
- Unitat de Neuroimmunologia Clínica, Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-ISCIII, Madrid, Spain
| |
Collapse
|
6
|
Dilcher R, Wall S, Groß M, Katzdobler S, Wagemann O, Palleis C, Weidinger E, Fietzek U, Bernhardt A, Kurz C, Ferschmann C, Scheifele M, Zaganjori M, Gnörich J, Bürger K, Janowitz D, Rauchmann B, Stöcklein S, Bartenstein P, Villemagne V, Seibyl J, Sabri O, Barthel H, Perneczky R, Schöberl F, Zwergal A, Höglinger GU, Levin J, Franzmeier N, Brendel M. Combining cerebrospinal fluid and PI-2620 tau-PET for biomarker-based stratification of Alzheimer's disease and 4R-tauopathies. Alzheimers Dement 2024; 20:6896-6909. [PMID: 39263969 PMCID: PMC11485081 DOI: 10.1002/alz.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Recent advances in biomarker research have improved the diagnosis and monitoring of Alzheimer's disease (AD), but in vivo biomarker-based workflows to assess 4R-tauopathy (4RT) patients are currently missing. We suggest a novel biomarker-based algorithm to characterize AD and 4RTs. METHODS We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau181 and t-tau) and 18F-PI-2620 tau-positron emission tomography (PET) in patients with AD (n = 64), clinically suspected 4RTs (progressive supranuclear palsy or corticobasal syndrome, n = 82) and healthy controls (n = 19). RESULTS Elevated CSF p-tau181 and cortical 18F-PI-2620 binding was characteristic for AD while normal CSF p-tau181 with elevated subcortical 18F-PI-2620 binding was characteristic for 4RTs. 18F-PI-2620-assessed posterior cortical hypoperfusion could be used as an additional neuronal injury biomarker in AD. DISCUSSION The specific combination of CSF markers and 18F-PI-2620 tau-PET in disease-specific regions facilitates the biomarker-guided stratification of AD and 4RTs. This has implications for biomarker-aided diagnostic workflows and the advancement in clinical trials. HIGHLIGHTS Novel biomarker-based algorithm for differentiating AD and 4R-tauopathies. A combination of CSF p-tau181 and 18F-PI-2620 discriminates AD versus 4R tauopathies. Hypoperfusion serves as an additional neuronal injury biomarker in AD.
Collapse
Affiliation(s)
- Roxane Dilcher
- NeuroscienceMonash UniversityMelbourneAustralia
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Stephan Wall
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Mattes Groß
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Sabrina Katzdobler
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Olivia Wagemann
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Carla Palleis
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Endy Weidinger
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Urban Fietzek
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Alexander Bernhardt
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Carolin Kurz
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Christian Ferschmann
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Maximilian Scheifele
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Mirlind Zaganjori
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Johannes Gnörich
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Katharina Bürger
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Daniel Janowitz
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Boris‐Stephan Rauchmann
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
- Institute for NeuroradiologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Sophia Stöcklein
- Department of RadiologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Peter Bartenstein
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Victor Villemagne
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergAustralia
| | - John Seibyl
- Institute for Neurodegenerative DisordersNew HavenConnecticutUSA
| | - Osama Sabri
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Henryk Barthel
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Robert Perneczky
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Florian Schöberl
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Andreas Zwergal
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- German Center for Vertigo and Balance Disorders (DSGZ)University Hospital of Munich, LMU MunichMünchenGermany
| | - Günter U. Höglinger
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Johannes Levin
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of Psychiatry and NeurochemistryUniversity of GothenburgThe Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyMölndal and GothenburgSweden
| | - Matthias Brendel
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| |
Collapse
|
7
|
Smith BJ, Guest PC, Martins-de-Souza D. Maximizing Analytical Performance in Biomolecular Discovery with LC-MS: Focus on Psychiatric Disorders. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:25-46. [PMID: 38424029 DOI: 10.1146/annurev-anchem-061522-041154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this review, we discuss the cutting-edge developments in mass spectrometry proteomics and metabolomics that have brought improvements for the identification of new disease-based biomarkers. A special focus is placed on psychiatric disorders, for example, schizophrenia, because they are considered to be not a single disease entity but rather a spectrum of disorders with many overlapping symptoms. This review includes descriptions of various types of commonly used mass spectrometry platforms for biomarker research, as well as complementary techniques to maximize data coverage, reduce sample heterogeneity, and work around potentially confounding factors. Finally, we summarize the different statistical methods that can be used for improving data quality to aid in reliability and interpretation of proteomics findings, as well as to enhance their translatability into clinical use and generalizability to new data sets.
Collapse
Affiliation(s)
- Bradley J Smith
- 1Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo, Brazil;
| | - Paul C Guest
- 1Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo, Brazil;
- 2Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- 3Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniel Martins-de-Souza
- 1Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo, Brazil;
- 4Experimental Medicine Research Cluster, University of Campinas, São Paulo, Brazil
- 5National Institute of Biomarkers in Neuropsychiatry, National Council for Scientific and Technological Development, São Paulo, Brazil
- 6D'Or Institute for Research and Education, São Paulo, Brazil
- 7INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil
| |
Collapse
|
8
|
Süße M, Kloetzer C, Strauß S, Ruhnau J, Overeem LH, Bendig M, Schulze J, Reuter U, Vogelgesang A, Fleischmann R. Increased CX3CL1 in cerebrospinal fluid and ictal serum t-tau elevations in migraine: results from a cross-sectional exploratory case-control study. J Headache Pain 2024; 25:46. [PMID: 38561692 PMCID: PMC10985871 DOI: 10.1186/s10194-024-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND To date, migraine is diagnosed exclusively based on clinical criteria, but fluid biomarkers are desirable to gain insight into pathophysiological processes and inform clinical management. We investigated the state-dependent profile of fluid biomarkers for neuroaxonal damage and microglial activation as two potentially relevant aspects in human migraine pathophysiology. METHODS This exploratory study included serum and cerebrospinal fluid (CSF) samples of patients with migraine during the headache phase (ictally) (n = 23), between attacks (interictally) (n = 16), and age/sex-matched controls (n = 19). Total Tau (t-Tau) protein, glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light chain (NfL) were measured with the Neurology 4-plex kit on a Single Molecule Array SR-X Analyzer (Simoa® SR-X, Quanterix Corp., Lexington, MA). Markers of microglial activation, C-X3-C motif chemokine ligand 1 (CX3CL1) and soluble triggering receptor expressed on myeloid cells 2 (sTREM2), were assessed using an immunoassay. RESULTS Concentrations of CX3CL1 but not sTREM2 were significantly increased both ictally and interictally in CSF but not in serum in comparison to the control cohort (p = 0.039). ROC curve analysis provided an AUC of 0.699 (95% CI 0.563 to 0.813, p = 0.007). T-Tau in serum but not in CSF was significantly increased in samples from patients taken during the headache phase, but not interictally (effect size: η2 = 0.121, p = 0.038). ROC analysis of t-Tau protein in serum between ictal and interictal collected samples provided an AUC of 0.729 (95% CI 0.558 to 0.861, p = 0.006). The other determined biomarkers for axonal damage were not significantly different between the cohorts in either serum or CSF. DISCUSSION CX3CL1 in CSF is a novel potential fluid biomarker of migraine that is unrelated to the headache status. Serum t-Tau is linked to the headache phase but not interictal migraine. These data need to be confirmed in a larger hypothesis-driven prospective study.
Collapse
Affiliation(s)
- Marie Süße
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany.
| | - Christine Kloetzer
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany
| | - Sebastian Strauß
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany
| | - Johanna Ruhnau
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany
| | - Lucas Hendrik Overeem
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- International Graduate Program Medical Neurosciences, Humboldt Graduate School, 10117, Berlin, Germany
| | - Merle Bendig
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany
| | - Juliane Schulze
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany
| | - Uwe Reuter
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Antje Vogelgesang
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany
| | - Robert Fleischmann
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475, Greifswald, Germany
| |
Collapse
|
9
|
Bauer A, Hegen H, Reindl M. Body fluid markers for multiple sclerosis and differential diagnosis from atypical demyelinating disorders. Expert Rev Mol Diagn 2024; 24:283-297. [PMID: 38533708 DOI: 10.1080/14737159.2024.2334849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Body fluid markers could be helpful to predict the conversion into clinically definite multiple sclerosis (MS) in people with a first demyelinating event of the central nervous system (CNS). Consequently, biomarkers such as oligoclonal bands, which are integrated in the current MS diagnostic criteria, could assist early MS diagnosis. AREAS COVERED This review examines existing knowledge on a broad spectrum of body fluid markers in people with a first CNS demyelinating event, explores their potential to predict conversion to MS, to assess MS disease activity, as well as their utility to differentiate MS from atypical demyelinating disorders such as neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disease. EXPERT OPINION This field of research has shown a dramatic increase of evidence, especially in the last decade. Some biomarkers are already established in clinical routine (e.g. oligoclonal bands) while others are currently implemented (e.g. kappa free light chains) or considered as breakthroughs (e.g. neurofilament light). Determination of biomarkers poses challenges for continuous monitoring, especially if exclusively detectable in cerebrospinal fluid. A handful of biomarkers are measurable in blood which holds a significant potential.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Shah VA, Hinson HE, Reznik ME, Hahn CD, Alexander S, Elmer J, Chou SHY. Common Data Elements for Disorders of Consciousness: Recommendations from the Working Group on Biospecimens and Biomarkers. Neurocrit Care 2024; 40:58-64. [PMID: 38087173 DOI: 10.1007/s12028-023-01883-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND In patients with disorders of consciousness (DoC), laboratory and molecular biomarkers may help define endotypes, identify therapeutic targets, prognosticate outcomes, and guide patient selection in clinical trials. We performed a systematic review to identify common data elements (CDEs) and key design elements (KDEs) for future coma and DoC research. METHODS The Curing Coma Campaign Biospecimens and Biomarkers work group, composed of seven invited members, reviewed existing biomarker and biospecimens CDEs and conducted a systematic literature review for laboratory and molecular biomarkers using predetermined search words and standardized methodology. Identified CDEs and KDEs were adjudicated into core, basic, supplemental, or experimental CDEs per National Institutes of Health classification based on level of evidence, reproducibility, and generalizability across different diseases through a consensus process. RESULTS Among existing National Institutes of Health CDEs, those developed for ischemic stroke, traumatic brain injury, and subarachnoid hemorrhage were most relevant to DoC and included. KDEs were common to all disease states and included biospecimen collection time points, baseline indicator, biological source, anatomical location of collection, collection method, and processing and storage methodology. Additionally, two disease core, nine basic, 24 supplemental, and 59 exploratory biomarker CDEs were identified. Results were summarized and generated into a Laboratory Data and Biospecimens Case Report Form (CRF) and underwent public review. A final CRF version 1.0 is reported here. CONCLUSIONS Exponential growth in biomarkers development has generated a growing number of potential experimental biomarkers associated with DoC, but few meet the quality, reproducibility, and generalizability criteria to be classified as core and basic biomarker and biospecimen CDEs. Identification and adaptation of KDEs, however, contribute to standardizing methodology to promote harmonization of future biomarker and biospecimens studies in DoC. Development of this CRF serves as a basic building block for future DoC studies.
Collapse
Affiliation(s)
- Vishank A Shah
- Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H E Hinson
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael E Reznik
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecil D Hahn
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Sheila Alexander
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Elmer
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sherry H-Y Chou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Kardell O, von Toerne C, Merl-Pham J, König AC, Blindert M, Barth TK, Mergner J, Ludwig C, Tüshaus J, Eckert S, Müller SA, Breimann S, Giesbertz P, Bernhardt AM, Schweizer L, Albrecht V, Teupser D, Imhof A, Kuster B, Lichtenthaler SF, Mann M, Cox J, Hauck SM. Multicenter Collaborative Study to Optimize Mass Spectrometry Workflows of Clinical Specimens. J Proteome Res 2024; 23:117-129. [PMID: 38015820 PMCID: PMC10775142 DOI: 10.1021/acs.jproteome.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The foundation for integrating mass spectrometry (MS)-based proteomics into systems medicine is the development of standardized start-to-finish and fit-for-purpose workflows for clinical specimens. An essential step in this pursuit is to highlight the common ground in a diverse landscape of different sample preparation techniques and liquid chromatography-mass spectrometry (LC-MS) setups. With the aim to benchmark and improve the current best practices among the proteomics MS laboratories of the CLINSPECT-M consortium, we performed two consecutive round-robin studies with full freedom to operate in terms of sample preparation and MS measurements. The six study partners were provided with two clinically relevant sample matrices: plasma and cerebrospinal fluid (CSF). In the first round, each laboratory applied their current best practice protocol for the respective matrix. Based on the achieved results and following a transparent exchange of all lab-specific protocols within the consortium, each laboratory could advance their methods before measuring the same samples in the second acquisition round. Both time points are compared with respect to identifications (IDs), data completeness, and precision, as well as reproducibility. As a result, the individual performances of participating study centers were improved in the second measurement, emphasizing the effect and importance of the expert-driven exchange of best practices for direct practical improvements.
Collapse
Affiliation(s)
- Oliver Kardell
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Christine von Toerne
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Juliane Merl-Pham
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Ann-Christine König
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Marcel Blindert
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Teresa K. Barth
- Clinical
Protein Analysis Unit (ClinZfP), Biomedical Center (BMC), Faculty
of Medicine, Ludwig-Maximilians-University
(LMU) Munich, Großhaderner Straße 9, Martinsried 82152, Germany
| | - Julia Mergner
- Bavarian
Center for Biomolecular Mass Spectrometry at Klinikum Rechts der Isar
(BayBioMS@MRI), Technical University of
Munich, Munich 80333, Germany
| | - Christina Ludwig
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of
Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Johanna Tüshaus
- Chair
of Proteomics and Bioanalytics, Technical
University of Munich, Freising 85354, Germany
| | - Stephan Eckert
- Chair
of Proteomics and Bioanalytics, Technical
University of Munich, Freising 85354, Germany
| | - Stephan A. Müller
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Neuroproteomics,
School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Stephan Breimann
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Neuroproteomics,
School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Pieter Giesbertz
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Neuroproteomics,
School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Alexander M. Bernhardt
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Department
of Neurology, Ludwig-Maximilians-Universität
München, Munich 80539, Germany
| | - Lisa Schweizer
- Department
of Proteomics and Signal Transduction, Max-Planck
Institute of Biochemistry, Martinsried 82152, Germany
| | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max-Planck
Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel Teupser
- Institute
of Laboratory Medicine, University Hospital,
LMU Munich, Munich 81377, Germany
| | - Axel Imhof
- Clinical
Protein Analysis Unit (ClinZfP), Biomedical Center (BMC), Faculty
of Medicine, Ludwig-Maximilians-University
(LMU) Munich, Großhaderner Straße 9, Martinsried 82152, Germany
| | - Bernhard Kuster
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of
Life Sciences, Technical University of Munich, Freising 85354, Germany
- Chair
of Proteomics and Bioanalytics, Technical
University of Munich, Freising 85354, Germany
| | - Stefan F. Lichtenthaler
- German
Center
for Neurodegenerative Diseases (DZNE) Munich, DZNE, Munich 81377, Germany
- Neuroproteomics,
School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich 81675, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Matthias Mann
- Department
of Proteomics and Signal Transduction, Max-Planck
Institute of Biochemistry, Martinsried 82152, Germany
| | - Jürgen Cox
- Computational Systems
Biochemistry Research Group, Max-Planck
Institute of Biochemistry, Martinsried 82152, Germany
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core (MPC), Helmholtz Zentrum
München,German Research Center for Environmental Health (GmbH), Munich 80939, Germany
| |
Collapse
|
12
|
Sosa-Acosta P, Nogueira FCS, Domont GB. Proteomics and Metabolomics in Congenital Zika Syndrome: A Review of Molecular Insights and Biomarker Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:63-85. [PMID: 38409416 DOI: 10.1007/978-3-031-50624-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Zika virus (ZIKV) infection can be transmitted vertically, leading to the development of congenital Zika syndrome (CZS) in infected fetuses. During the early stages of gestation, the fetuses face an elevated risk of developing CZS. However, it is important to note that late-stage infections can also result in adverse outcomes. The differences between CZS and non-CZS phenotypes remain poorly understood. In this review, we provide a summary of the molecular mechanisms underlying ZIKV infection and placental and blood-brain barriers trespassing. Also, we have included molecular alterations that elucidate the progression of CZS by proteomics and metabolomics studies. Lastly, this review comprises investigations into body fluid samples, which have aided to identify potential biomarkers associated with CZS.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Giovannini G, Meletti S. Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review. Int J Mol Sci 2023; 24:12519. [PMID: 37569895 PMCID: PMC10420319 DOI: 10.3390/ijms241512519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
As per the latest ILAE definition, status epilepticus (SE) may lead to long-term irreversible consequences, such as neuronal death, neuronal injury, and alterations in neuronal networks. Consequently, there is growing interest in identifying biomarkers that can demonstrate and quantify the extent of neuronal and glial injury. Despite numerous studies conducted on animal models of status epilepticus, which clearly indicate seizure-induced neuronal and glial injury, as well as signs of atrophy and gliosis, evidence in humans remains limited to case reports and small case series. The implications of identifying such biomarkers in clinical practice are significant, including improved prognostic stratification of patients and the early identification of those at high risk of developing irreversible complications. Moreover, the clinical validation of these biomarkers could be crucial in promoting neuroprotective strategies in addition to antiseizure medications. In this study, we present a systematic review of research on biomarkers of neuro-glial injury in patients with status epilepticus.
Collapse
Affiliation(s)
- Giada Giovannini
- Neurology Department, Azienda Ospedaliera-Universitaria di Modena, 41126 Modena, Italy;
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| | - Stefano Meletti
- Neurology Department, Azienda Ospedaliera-Universitaria di Modena, 41126 Modena, Italy;
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| |
Collapse
|
14
|
Bersano A, Engele J, Schäfer MKE. Neuroinflammation and Brain Disease. BMC Neurol 2023; 23:227. [PMID: 37308838 DOI: 10.1186/s12883-023-03252-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
Starting from the perspective of an immune-privileged site, our knowledge of the inflammatory processes within the central nervous system has increased rapidly over the last 30 years, leading to a rather puzzling picture today. Of particular interest is the emergence of disease- and injury-specific inflammatory responses within the brain, which may form the basis for future therapeutic approaches. To advance this important topic, we invite authors to contribute research and clinical papers to the Collection "Neuroinflammation and Brain Disease".
Collapse
Affiliation(s)
- A Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Via Celoria 11, Milan, 20133, Italy.
| | - J Engele
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - M K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg- University, Mainz, Germany
| |
Collapse
|