1
|
Tomomura A, Bandow K, Tomomura M. Purification and Biological Function of Caldecrin. MEDICINES (BASEL, SWITZERLAND) 2021; 8:41. [PMID: 34436220 PMCID: PMC8398347 DOI: 10.3390/medicines8080041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Blood calcium homeostasis is critical for biological function. Caldecrin, or chymotrypsin-like elastase, was originally identified in the pancreas as a serum calcium-decreasing factor. The serum calcium-decreasing activity of caldecrin requires the trypsin-mediated activation of the protein. Protease activity-deficient mature caldecrin can also reduce serum calcium concentration, indicating that structural processing is necessary for serum calcium-decreasing activity. Caldecrin suppresses the differentiation of bone-resorbing osteoclasts from bone marrow macrophages (BMMs) by inhibiting receptor activator of NF-κB ligand (RANKL)-induced nuclear factor of activated T-cell cytoplasmic 1 expression via the Syk-PLCγ-Ca2+ oscillation-calcineurin signaling pathway. It also suppresses mature osteoclastic bone resorption by RANKL-stimulated TRAF6-c-Src-Syk-calcium entry and actin ring formation. Caldecrin inhibits lipopolysaccharide (LPS)-induced osteoclast formation in RANKL-primed BMMs by inducing the NF-κB negative regulator A20. In addition, caldecrin suppresses LPS-mediated M1 macrophage polarization through the immunoreceptor triggering receptor expressed on myeloid cells (TREM) 2, suggesting that caldecrin may function as an anti-osteoclastogenic and anti-inflammatory factor via TREM2. The ectopic intramuscular expression of caldecrin cDNA prevents bone resorption in ovariectomized mice, and the administration of caldecrin protein also prevents skeletal muscle destruction in dystrophic mice. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease and a possible therapeutic target for skeletal and inflammatory diseases.
Collapse
Affiliation(s)
- Akito Tomomura
- Division of Biochemistry, Department of Oral Biology & Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Kenjiro Bandow
- Division of Biochemistry, Department of Oral Biology & Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, 1-1 Akemi, Urayasu, Chiba 279-8550, Japan;
| |
Collapse
|
2
|
Zhan X, Wan J, Zhang G, Song L, Gui F, Zhang Y, Li Y, Guo J, Dawra RK, Saluja AK, Haddock AN, Zhang L, Bi Y, Ji B. Elevated intracellular trypsin exacerbates acute pancreatitis and chronic pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 2019; 316:G816-G825. [PMID: 30943050 PMCID: PMC6620583 DOI: 10.1152/ajpgi.00004.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/31/2023]
Abstract
Intra-acinar trypsinogen activation occurs in the earliest stages of pancreatitis and is believed to play important roles in pancreatitis pathogenesis. However, the exact role of intra-acinar trypsin activity in pancreatitis remains elusive. Here, we aimed to examine the specific effects of intra-acinar trypsin activity on the development of pancreatitis using a transgenic mouse model. This transgenic mouse model allowed for the conditional expression of a mutant trypsinogen that can be activated specifically inside pancreatic acinar cells. We found that expression of this active mutated trypsin had no significant effect on triggering spontaneous pancreatitis. Instead, several protective compensatory mechanisms, including SPINK1 and heat shock proteins, were upregulated. Notably, these transgenic mice developed much more severe acute pancreatitis, compared with control mice, when challenged with caerulein. Elevated tissue edema, serum amylase, inflammatory cell infiltration and acinar cell apoptosis were dramatically associated with increased trypsin activity. Furthermore, chronic pathological changes were observed in the pancreas of all transgenic mice, including inflammatory cell infiltration, parenchymal atrophy and cell loss, fibrosis, and fatty replacement. These changes were not observed in control mice treated with caerulein. The alterations in pancreata from transgenic mice mimicked the histological changes common to human chronic pancreatitis. Taken together, we provided in vivo evidence that increased intra-acinar activation of trypsinogen plays an important role in the initiation and progression of both acute and chronic pancreatitis. NEW & NOTEWORTHY Trypsinogen is activated early in pancreatitis. However, the roles of trypsin in the development of pancreatitis have not been fully addressed. Using a genetic approach, we showed trypsin activity is critical for the severity of both acute and chronic pancreatitis.
Collapse
Affiliation(s)
- Xianbao Zhan
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
- Department of Oncology, Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Jianhua Wan
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Guowei Zhang
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Lele Song
- Department of Oncology, Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Fu Gui
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Yuebo Zhang
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Yinghua Li
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Jia Guo
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Rajinder K Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami , Miami, Florida
| | - Ashok K Saluja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami , Miami, Florida
| | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Lizhi Zhang
- Department of Pathology, Mayo Clinic , Rochester, Minnesota
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic , Jacksonville, Florida
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| |
Collapse
|
3
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
4
|
Chronic Pancreatitis in the 21st Century - Research Challenges and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2016; 45:1365-1375. [PMID: 27748719 PMCID: PMC5117429 DOI: 10.1097/mpa.0000000000000713] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases to focus on research gaps and opportunities in chronic pancreatitis (CP) and its sequelae. This conference marked the 20th year anniversary of the discovery of the cationic trypsinogen (PRSS1) gene mutation for hereditary pancreatitis. The event was held on July 27, 2016, and structured into 4 sessions: (1) pathophysiology, (2) exocrine complications, (3) endocrine complications, and (4) pain. The current state of knowledge was reviewed; many knowledge gaps and research needs were identified that require further investigation. Common themes included the need to design better tools to diagnose CP and its sequelae early and reliably, identify predisposing risk factors for disease progression, develop standardized protocols to distinguish type 3c diabetes mellitus from other types of diabetes, and design effective therapeutic strategies through novel cell culture technologies, animal models mimicking human disease, and pain management tools. Gene therapy and cystic fibrosis conductance regulator potentiators as possible treatments of CP were discussed. Importantly, the need for CP end points and intermediate targets for future drug trials was emphasized.
Collapse
|
5
|
Xiao X, Jones G, Sevilla WA, Stolz DB, Magee KE, Haughney M, Mukherjee A, Wang Y, Lowe ME. A Carboxyl Ester Lipase (CEL) Mutant Causes Chronic Pancreatitis by Forming Intracellular Aggregates That Activate Apoptosis. J Biol Chem 2016; 291:23224-23236. [PMID: 27650499 DOI: 10.1074/jbc.m116.734384] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/23/2022] Open
Abstract
Patients with chronic pancreatitis (CP) frequently have genetic risk factors for disease. Many of the identified genes have been connected to trypsinogen activation or trypsin inactivation. The description of CP in patients with mutations in the variable number of tandem repeat (VNTR) domain of carboxyl ester lipase (CEL) presents an opportunity to study the pathogenesis of CP independently of trypsin pathways. We tested the hypothesis that a deletion and frameshift mutation (C563fsX673) in the CEL VNTR causes CP through proteotoxic gain-of-function activation of maladaptive cell signaling pathways including cell death pathways. HEK293 or AR42J cells were transfected with constructs expressing CEL with 14 repeats in the VNTR (CEL14R) or C563fsX673 CEL (CEL maturity onset diabetes of youth with a deletion mutation in the VNTR (MODY)). In both cell types, CEL MODY formed intracellular aggregates. Secretion of CEL MODY was decreased compared with that of CEL14R. Expression of CEL MODY increased endoplasmic reticulum stress, activated the unfolded protein response, and caused cell death by apoptosis. Our results demonstrate that disorders of protein homeostasis can lead to CP and suggest that novel therapies to decrease the intracellular accumulation of misfolded protein may be successful in some patients with CP.
Collapse
Affiliation(s)
- Xunjun Xiao
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Gabrielle Jones
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Wednesday A Sevilla
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Kelsey E Magee
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Margaret Haughney
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Amitava Mukherjee
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Yan Wang
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Mark E Lowe
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| |
Collapse
|
6
|
Dytz MG, Mendes de Melo J, de Castro Santos O, da Silva Santos ID, Rodacki M, Conceição FL, Ortiga-Carvalho TM. Hereditary Pancreatitis Associated With the N29T Mutation of the PRSS1 Gene in a Brazilian Family: A Case-Control Study. Medicine (Baltimore) 2015; 94:e1508. [PMID: 26376395 PMCID: PMC4635809 DOI: 10.1097/md.0000000000001508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hereditary pancreatitis (HP) is an autosomal-dominant disease with incomplete penetrance manifesting as early-onset chronic relapsing pancreatitis. A mutation in the PRSS1 gene is present in greater than 70% of HP kindreds and leads to a gain-of-function characterized by the increased autocatalytic conversion of trypsinogen to active trypsin, promoting autodigestion and damage to acinar cells. Other genetic defects observed in the pathogenic mechanism of pancreatitis include mutations in the genes encoding SPINK1, CTRC, and CPA1. There are few reports of HP in Latin America, and no families have been investigated in Brazil. A case-control observational study was conducted at Clementino Fraga Filho University Hospital in Brazil. Patients with suspected HP and healthy controls were enrolled in this study, and a detailed questionnaire was administered to patients with HP. PRSS1 and SPINK1 genes were analyzed by DNA sequencing, and a family that fit the HP diagnostic criteria was identified. The neutral polymorphism c.88-352A > G in the SPINK1 gene was found to be prevalent in the individuals studied, but no important alterations were found in this gene. Ten out of 16 individuals in this family carried the N29T mutation in the PRSS1 gene, with 2 clinically unaffected mutation carriers. The median age of HP onset was 6 years. Pancreatic exocrine failure occurred in 6 patients, 5 of whom also had diabetes mellitus. Surgical procedures were performed on 3 affected members, and no cases of pancreatic cancer have been reported thus far. This study identified the first PRSS1 gene mutation in a Brazilian family with HP.
Collapse
Affiliation(s)
- Marcio Garrison Dytz
- From the Department of Endocrinology, Clementino Fraga Filho University Hospital (MGD, OdCS, FLC); Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho (MGD, JMdM, IDdSS, TMO-C); and Department of Diabetes and Nutrology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil (MR)
| | | | | | | | | | | | | |
Collapse
|
7
|
Ogawa H, Kusumi I, Ogata A, Wada A, Sakagami H, Mitsuhashi K, Date K. Autoactivation of pancreatic trypsinogen is controlled by carbohydrate-specific interaction. FEBS Lett 2015; 589:569-75. [PMID: 25637872 DOI: 10.1016/j.febslet.2015.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/31/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Activation of bovine pancreatic trypsinogen (BPTG) by trypsin (BPT) was found to be inhibited by d GalN/GalNAc at pH 5.5, the pH of secretory granules in the pancreas. Binding studies with biotinylated sugar-polymers indicated that BPTG and BPT bind to α-GalNAc, α-Man, and α-Gal better at pH 5.5 than at pH 7.5. Ultraviolet-difference spectra indicated that BPTG binding to α-GalNAc differs substantially from BPTG binding to other sugars. The N-α-benzoyl-d,l-arginine-p-nitroanilide hydrochloride-hydrolyzing activity of BPT was only slightly affected by these sugars. The results indicate that the binding of GalNAc - containing glycoconjugates protects BPTG from autoactivation, and this may be a self-defense mechanism against intrapancreatic activation.
Collapse
Affiliation(s)
- Haruko Ogawa
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan; Glycoscience Institute, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.
| | - Izumi Kusumi
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Aya Ogata
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Arisa Wada
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hiromi Sakagami
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kana Mitsuhashi
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kimie Date
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
8
|
Protein surface charge of trypsinogen changes its activation pattern. BMC Biotechnol 2014; 14:109. [PMID: 25543846 PMCID: PMC4299543 DOI: 10.1186/s12896-014-0109-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/11/2014] [Indexed: 01/29/2023] Open
Abstract
Background Trypsinogen is the inactive precursor of trypsin, a serine protease that cleaves proteins and peptides after arginine and lysine residues. In this study, human trypsinogen was used as a model protein to study the influence of electrostatic forces on protein–protein interactions. Trypsinogen is active only after its eight-amino-acid-long activation peptide has been cleaved off by another protease, enteropeptidase. Trypsinogen can also be autoactivated without the involvement of enteropeptidase. This autoactivation process can occur if a trypsinogen molecule is activated by another trypsin molecule and therefore is based on a protein–protein interaction. Results Based on a rational protein design based on autoactivation-defective guinea pig trypsinogen, several amino acid residues, all located far away from the active site, were changed to modify the surface charge of human trypsinogen. The influence of the surface charge on the activation pattern of trypsinogen was investigated. The autoactivation properties of mutant trypsinogen were characterized in comparison to the recombinant wild-type enzyme. Surface-charged trypsinogen showed practically no autoactivation compared to the wild-type but could still be activated by enteropeptidase to the fully active trypsin. The kinetic parameters of surface-charged trypsinogen were comparable to the recombinant wild-type enzyme. Conclusion The variant with a modified surface charge compared to the wild-type enzyme showed a complete different activation pattern. Our study provides an example how directed modification of the protein surface charge can be utilized for the regulation of functional protein–protein interactions, as shown here for human trypsinogen. Electronic supplementary material The online version of this article (doi:10.1186/s12896-014-0109-5) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Sah RP, Garg SK, Dixit AK, Dudeja V, Dawra RK, Saluja AK. Endoplasmic reticulum stress is chronically activated in chronic pancreatitis. J Biol Chem 2014; 289:27551-61. [PMID: 25077966 DOI: 10.1074/jbc.m113.528174] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T(-/-)), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T(-/-) mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.
Collapse
Affiliation(s)
- Raghuwansh P Sah
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Sushil K Garg
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Ajay K Dixit
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Vikas Dudeja
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Rajinder K Dawra
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Ashok K Saluja
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
10
|
Szabó A, Radisky ES, Sahin-Tóth M. Zymogen activation confers thermodynamic stability on a key peptide bond and protects human cationic trypsin from degradation. J Biol Chem 2014; 289:4753-61. [PMID: 24403079 DOI: 10.1074/jbc.m113.538884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cationic trypsinogen, precursor of the digestive enzyme trypsin, can be rapidly degraded to protect the pancreas when pathological conditions threaten, while trypsin itself is impressively resistant to degradation. For either form, degradation is controlled by two necessary initial proteolytic events: cleavage of the Leu81-Glu82 peptide bond by chymotrypsin C (CTRC) and cleavage of the Arg122-Val123 peptide bond by trypsin. Here we demonstrate that the Leu81-Glu82 peptide bond of human cationic trypsin, but not trypsinogen, is thermodynamically stable, such that cleavage by CTRC leads to an equilibrium mixture containing 10% cleaved and 90% uncleaved trypsin. When cleaved trypsin was incubated with CTRC, the Leu81-Glu82 peptide bond was re-synthesized to establish the same equilibrium. The thermodynamic stability of the scissile peptide bond was not dependent on CTRC or Leu-81, as re-synthesis was also accomplished by other proteases acting on mutated cationic trypsin. The Leu81-Glu82 peptide bond is located within a calcium binding loop, and thermodynamic stability of the bond was strictly dependent on calcium and on the calcium-coordinated residue Glu-85. Trypsinolytic cleavage of the Arg122-Val123 site was also delayed in trypsin relative to trypsinogen in a calcium-dependent manner, but for this bond cleavage was modulated by kinetic rather than thermodynamic control. Our results reveal that the trypsinogen to trypsin conformational switch modulates cleavage susceptibility of nick sites by altering both the thermodynamics and kinetics of cleavage to protect human cationic trypsin from premature degradation.
Collapse
Affiliation(s)
- András Szabó
- From the Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118 and
| | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW In this article, we review important advances in our understanding of the mechanisms of pancreatitis. RECENT FINDINGS The relative contributions of intrapancreatic trypsinogen activation and nuclear factor kappa B (NFκB) activation, the two major early independent cellular events in pancreatitis, have been investigated using novel genetic models. Trypsinogen activation has traditionally held the spotlight for many decades as the central pathogenic event of pancreatitis. However, recent experimental evidence points to the role of trypsin activation in early acinar cell damage but not in the inflammatory response of acute pancreatitis, which was shown to be induced by NFκB activation. Further, chronic pancreatitis developed independently of trypsinogen activation in the caerulein model. Sustained NFκB activation, but not persistent intra-acinar expression of active trypsin, was shown to result in chronic pancreatitis. Calcineurin-NFAT (nuclear factor of activated T-cells) signaling was shown to mediate downstream effects of pathologic rise in intracellular calcium. Interleukin-6 was identified as a key cytokine mediating pancreatitis-associated lung injury. SUMMARY Recent advances challenge the long-believed trypsin-centered understanding of pancreatitis. It is becoming increasingly clear that activation of intense inflammatory signaling mechanisms in acinar cells is crucial to the pathogenesis of pancreatitis, which may explain the strong systemic inflammatory response in pancreatitis.
Collapse
|
12
|
Sah RP, Dudeja V, Dawra RK, Saluja AK. Cerulein-induced chronic pancreatitis does not require intra-acinar activation of trypsinogen in mice. Gastroenterology 2013; 144:1076-1085.e2. [PMID: 23354015 PMCID: PMC3928043 DOI: 10.1053/j.gastro.2013.01.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Premature activation of trypsinogen activation can cause pancreatic injury and has been associated with chronic pancreatitis (CP). Mice that lack intra-acinar activation of trypsinogen, such as trypsinogen-7-null (T(-/-)) and cathepsin B-null (CB(-/-)) mice, have been used to study trypsin-independent processes of CP development. We compared histologic features and inflammatory responses of pancreatic tissues from these mice with those from wild-type mice after the development of CP. METHODS CP was induced in wild-type, T(-/-), and CB(-/-) mice by twice-weekly induction of acute pancreatitis for 10 weeks; acute pancreatitis was induced by hourly intraperitoneal injections of cerulein (50 μg/kg × 6). Pancreatic samples were collected and evaluated by histologic and immunohistochemical analyses. Normal human pancreas samples, obtained from the islet transplant program at the University of Minnesota, were used as controls and CP samples were obtained from surgical resections. RESULTS Compared with pancreatic tissues from wild-type mice, those from T(-/-) and CB(-/-) mice had similar levels of atrophy, histomorphologic features of CP, and chronic inflammation. All samples had comparable intra-acinar activation of nuclear factor (NF)-κB, a transcription factor that regulates the inflammatory response, immediately after injection of cerulein. Pancreatic tissue samples from patients with CP had increased activation of NF-κB (based on nuclear translocation of p65 in acinar cells) compared with controls. CONCLUSIONS Induction of CP in mice by cerulein injection does not require intra-acinar activation of trypsinogen. Pancreatic acinar cells of patients with CP have increased levels of NF-κB activation compared with controls; regulation of the inflammatory response by this transcription factor might be involved in the pathogenesis of CP.
Collapse
|
13
|
Du RQ, Jin L, Zhang F. [Copy number variations in the human genome: their mutational mechanisms and roles in diseases]. YI CHUAN = HEREDITAS 2011; 33:857-69. [PMID: 21831802 DOI: 10.3724/sp.j.1005.2011.00857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Copy number variation (CNV) is the main type of structure variation (SV) caused by genomic rearrangement, which mainly includes deletion and duplication of sub-microscopic but large (>1 kb) genomic segments. CNV has been recognized as one of the main genetic factors underlying human diseases. The mutation rate (per locus) of CNV is much higher than that of single nucleotide polymorphism (SNP). The genome-wide assays for CNV study include array-based comparative genomic hybridization (aCGH), SNP genotyping microarrays, and next-generation sequencing techniques. Various molecular mechanisms are involved in CNV formation, which can be divided into two main categories, DNA recombination-based and DNA replication-based mechanisms. CNVs can be associated with Mendelian diseases, sporadic diseases, and susceptibility to complex diseases. CNVs can convey clinical phenotypes by gene dosage, gene disruption, gene fusion, and position effects. Further studies on CNVs will shed new light on human genome structure, genetic variations between individuals, and missing heritability of human diseases.
Collapse
Affiliation(s)
- Ren-Qian Du
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
14
|
Joergensen MT, Geisz A, Brusgaard K, Schaffalitzky de Muckadell OB, Hegyi P, Gerdes AM, Sahin-Tóth M. Intragenic duplication: a novel mutational mechanism in hereditary pancreatitis. Pancreas 2011; 40:540-6. [PMID: 21499207 PMCID: PMC3088488 DOI: 10.1097/mpa.0b013e3182152fdf] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In a hereditary pancreatitis family from Denmark, we identified a novel intragenic duplication of 9 nucleotides in exon-2 of the human cationic trypsinogen (PRSS1) gene (c.63_71dup) which at the amino-acid level resulted in the insertion of 3 amino acids within the activation peptide of cationic trypsinogen (p.K23_I24insIDK). The aim of the present study was to characterize the effect of this unique genetic alteration on the function of human cationic trypsinogen. METHODS Wild-type and mutant cationic trypsinogens were produced recombinantly and purified to homogeneity. Trypsinogen activation was followed by enzymatic assays and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsinogen secretion was measured from transfected HEK 293T cells. RESULTS Recombinant cationic trypsinogen carrying the p.K23_I24insIDK mutation exhibited greater than 10-fold increased autoactivation. Activation by human cathepsin B also was accelerated by 10-fold. Secretion of the p.K23_I24insIDK mutant from transfected cells was diminished, consistent with intracellular autoactivation. CONCLUSIONS This is the first report of an intragenic duplication within the PRSS1 gene causing hereditary pancreatitis. The accelerated activation of p.K23_I24insIDK by cathepsin B is a unique biochemical property not found in any other pancreatitis-associated trypsinogen mutant. In contrast, the robust autoactivation of the novel mutant confirms the notion that increased autoactivation is a disease-relevant mechanism in hereditary pancreatitis.
Collapse
Affiliation(s)
- Maiken T Joergensen
- Department of Medical Gastroenterology, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | |
Collapse
|
15
|
Rosendahl J, Rónai Z, Kovacs P, Teich N, Wittenburg H, Blüher M, Stumvoll M, Mössner J, Keim V, Bradbury AR, Sahin-Tóth M. Sequence analysis of the human tyrosylprotein sulfotransferase-2 gene in subjects with chronic pancreatitis. Pancreatology 2010; 10:165-72. [PMID: 20460947 PMCID: PMC2899149 DOI: 10.1159/000231979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 07/14/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Human trypsinogens are post-translationally sulfated on Tyr154 by the Golgi resident enzyme tyrosylprotein sulfotransferase-2 (TPST2). Tyrosine sulfation stimulates the autoactivation of human cationic trypsinogen. Because increased trypsinogen autoactivation has been implicated as a pathogenic mechanism in chronic pancreatitis, we hypothesized that genetic variants of TPST2 might alter the risk for the disease. METHODS We sequenced the 4 protein-coding exons and the adjacent intronic sequences of TPST2 in 151 subjects with chronic pancreatitis and in 169 healthy controls. The functional effect of TPST2 variants on trypsinogen sulfation was analyzed in transfected HEK 293T cells. RESULTS We detected 10 common polymorphic variants, including 6 synonymous variants and 4 intronic variants, with similar frequencies in patients and controls. None of the 8 common haplotypes reconstructed from the frequent variants showed an association with chronic pancreatitis. In addition, we identified 5 rare TPST2 variants, which included 3 synonymous alterations, the c.458G>A (p.R153H) nonsynonymous variant and the c.-9C>T variant in the 5' untranslated region. The p.R153H variant was found in a family with hereditary pancreatitis; however, it did not segregate with the disease. In functional assays, both the p.R153H and c.-9C>T TPST2 variants catalyzed trypsinogen sulfation as well as wild-type TPST2. CONCLUSION Genetic variants of human TPST2 exert no influence on the risk of chronic pancreatitis.
Collapse
Affiliation(s)
- Jonas Rosendahl
- Department of Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany,*Jonas Rosendahl, Department für Innere Medizin, Medizinische Klinik und Poliklinik II, Universitätsklinikum Leipzig, Philipp-Rosenthal-Strasse 27, DE–04103 Leipzig (Germany), Tel. +49 341 97 13223, Fax +49 341 97 12209, E-Mail
| | - Zsolt Rónai
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Mass., USA
| | - Peter Kovacs
- Interdisciplinary Center for Clinical Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Niels Teich
- Internistische Gemeinschaftspraxis für Verdauungs- und Stoffwechselerkrankungen, Leipzig, Germany
| | - Henning Wittenburg
- Department of Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Joachim Mössner
- Department of Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany
| | - Volker Keim
- Department of Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany
| | - Andrew R.M. Bradbury
- Biosciences Division, TA-43, HRL-1, MS M888, Los Alamos National Laboratory, Los Alamos, N. Mex., USA
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Mass., USA
| |
Collapse
|
16
|
Szmola R, Sahin-Tóth M. Uncertainties in the classification of human cationic trypsinogen (PRSS1) variants as hereditary pancreatitis-associated mutations. J Med Genet 2010; 47:348-50. [PMID: 20452997 PMCID: PMC2930840 DOI: 10.1136/jmg.2009.072751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Autosomal dominant hereditary pancreatitis has been conclusively linked with cationic trypsinogen (PRSS1) mutations p.R122H and p.N29I, which can be found in approximately 90% of mutation-positive cases. To date, 35 additional rare or private PRSS1 variants have been identified in subjects with hereditary or sporadic, idiopathic chronic pancreatitis. Despite the lack of sufficient genetic and functional evidence, many of these rare variants have been labelled as pancreatitis associated. This problematic trend is notably illustrated by two recent studies that classified the p.A121T PRSS1 variant as pancreatitis associated, in large part owing to its intimate proximity to arginine-122, the residue affected by the disease causing p.R122H mutation. METHODS AND RESULTS Here we demonstrate that the p.A121T variant is functionally innocuous and shows no verifiable association with hereditary pancreatitis, on the basis of the available inconclusive data. CONCLUSION This case cautions that assignment of clinical relevance to rare PRSS1 variants should not be based on a perceived analogy with genuine disease causing PRSS1 mutations, and further studies are required to prove or rule out possible low penetrance causality of rare PRSS1 variants.
Collapse
Affiliation(s)
- Richárd Szmola
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, 02118
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, 02118
| |
Collapse
|
17
|
Szmola R, Sahin-Tóth M. Pancreatitis-associated chymotrypsinogen C (CTRC) mutant elicits endoplasmic reticulum stress in pancreatic acinar cells. Gut 2010; 59:365-72. [PMID: 19951900 PMCID: PMC2848392 DOI: 10.1136/gut.2009.198903] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Chronic pancreatitis is a progressive inflammatory disorder of the pancreas characterised by permanent destruction of acinar cells. Mutations in the chymotrypsinogen C (CTRC) gene have been linked to the development of chronic pancreatitis. The aim of the present study was to explore whether CTRC mutants induce endoplasmic reticulum (ER) stress in pancreatic acinar cells. DESIGN Dexamethasone-differentiated AR42J rat acinar cells and freshly isolated mouse acini were transfected with recombinant adenovirus carrying wild-type CTRC or the p.A73T pancreatitis-associated mutant. ER stress markers were assessed by reverse transcription-PCR and western blotting. Apoptosis was characterised by caspase-3/7 activity and the TUNEL assay. RESULTS Acinar cells transfected with the p.A73T mutant, but not those with wild-type CTRC, developed significant ER stress as judged by elevated mRNA and protein levels of the ER chaperone immunoglobulin-binding protein (BiP), increased splicing of the X-box binding protein-1 (XBP1) mRNA and marked induction of the transcription factor C/EBP-homologous protein (CHOP), a mediator of ER stress-associated apoptosis. Consistent with higher CHOP expression, AR42J cells expressing the p.A73T mutant became detached over time and showed considerably increased caspase-3/7 activity and TUNEL staining. CONCLUSIONS Pancreatitis-associated CTRC mutations can markedly increase the propensity of chymotrypsinogen C to elicit ER stress in pancreatic acinar cells. Thus, carriers of CTRC mutations may be at a higher risk of developing ER stress in the exocrine pancreas, which may contribute to parenchymal damage through acinar cell apoptosis.
Collapse
Affiliation(s)
| | - Miklós Sahin-Tóth
- Correspondence to Miklós Sahin-Tóth, 72 East Concord Street, Evans-433; Boston, MA 02118; Tel: (617) 414-1070; Fax: (617) 414-1041;
| |
Collapse
|
18
|
Mareninova OA, Hermann K, French SW, O'Konski MS, Pandol SJ, Webster P, Erickson AH, Katunuma N, Gorelick FS, Gukovsky I, Gukovskaya AS. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest 2009; 119:3340-55. [PMID: 19805911 DOI: 10.1172/jci38674] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 07/01/2009] [Indexed: 12/11/2022] Open
Abstract
The pathogenic mechanisms underlying acute pancreatitis are not clear. Two key pathologic acinar cell responses of this disease are vacuole accumulation and trypsinogen activation. We show here that both result from defective autophagy, by comparing the autophagic responses in rodent models of acute pancreatitis to physiologic autophagy triggered by fasting. Pancreatitis-induced vacuoles in acinar cells were greater in number and much larger than those induced with fasting. Degradation of long-lived proteins, a measure of autophagic efficiency, was markedly inhibited in in vitro pancreatitis, while it was stimulated by acinar cell starvation. Further, processing of the lysosomal proteases cathepsin L (CatL) and CatB into their fully active, mature forms was reduced in pancreatitis, as were their activities in the lysosome-enriched subcellular fraction. These findings indicate that autophagy is retarded in pancreatitis due to deficient lysosomal degradation caused by impaired cathepsin processing. Trypsinogen activation occurred in pancreatitis but not with fasting and was prevented by inhibiting autophagy. A marker of trypsinogen activation partially localized to autophagic vacuoles, and pharmacologic inhibition of CatL increased the amount of active trypsin in acinar cells. The results suggest that retarded autophagy is associated with an imbalance between CatL, which degrades trypsinogen and trypsin, and CatB, which converts trypsinogen into trypsin, resulting in intra-acinar accumulation of active trypsin in pancreatitis. Thus, deficient lysosomal degradation may be a dominant mechanism for increased intra-acinar trypsin in pancreatitis.
Collapse
Affiliation(s)
- Olga A Mareninova
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kereszturi E, Sahin-Tóth M. Intracellular autoactivation of human cationic trypsinogen mutants causes reduced trypsinogen secretion and acinar cell death. J Biol Chem 2009; 284:33392-9. [PMID: 19801634 DOI: 10.1074/jbc.m109.056812] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the activation peptide of human cationic trypsinogen have been found in patients with chronic pancreatitis. Previous biochemical studies demonstrated that mutations p.D19A, p.D22G, and p.K23R strongly stimulate trypsinogen autoactivation. In the present study, we characterized the cell biological effects of these mutants using human embryonic kidney 293T and AR42J rat acinar cells. We found that relative to wild-type trypsinogen, secretion of the mutants from transfected cells was markedly decreased. This apparent secretion defect was completely rescued by inhibition of autoactivation via (1) inclusion of the small molecule trypsin inhibitor benzamidine in the growth medium; or (2) cotransfection with the physiological trypsin inhibitor SPINK1; or (3) by mutation of the catalytic Ser(200) residue in trypsinogen. In contrast, extracellularly added SPINK1 or other nonpermeable proteinaceous trypsin inhibitors did not restore normal secretion of the mutants, indicating that intracellular autoactivation is responsible for the observed secretion loss. Acinar cells expressing the p.D22G mutant detached from the culture plate over time, became terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive, and exhibited elevated levels of the proapoptotic transcription factor CHOP. The observations indicate that activation peptide mutants of human cationic trypsinogen undergo autoactivation intracellularly, which leads to decreased trypsinogen secretion and eventual acinar cell death. The results thus define a novel pathological pathway for parenchymal injury in hereditary chronic pancreatitis.
Collapse
Affiliation(s)
- Eva Kereszturi
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
20
|
Kereszturi É, Szmola R, Kukor Z, Simon P, Weiss FU, Lerch MM, Sahin-Tóth M. Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen: a novel disease mechanism. Hum Mutat 2009; 30:575-82. [PMID: 19191323 PMCID: PMC2663013 DOI: 10.1002/humu.20853] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We investigated the biochemical properties and cellular expression of the c.346C>T (p.R116C) human cationic trypsinogen (PRSS1) mutant, which we identified in a German family with autosomal dominant hereditary pancreatitis. This mutation leads to an unpaired Cys residue with the potential to interfere with protein folding via incorrect disulfide bond formation. Recombinantly expressed p.R116C trypsinogen exhibited a tendency for misfolding in vitro. Biochemical analysis of the correctly folded, purified p.R116C mutant revealed unchanged activation and degradation characteristics compared to wild type trypsinogen. Secretion of mutant p.R116C from transfected 293T cells was reduced to approximately 20% of wild type. A similar secretion defect was observed with another rare PRSS1 variant, p.C139S, whereas mutants p.A16V, p.N29I, p.N29T, p.E79K, p.R122C, and p.R122H were secreted normally. All mutants were detected in cell extracts at comparable levels but a large portion of mutant p.R116C was present in an insoluble, protease-sensitive form. Consistent with intracellular retention of misfolded trypsinogen, the endoplasmic reticulum (ER) stress markers immunoglobulin-binding protein (BiP) and the spliced form of the X-box binding protein-1 (XBP1s) were elevated in cells expressing mutant p.R116C. The results indicate that mutation-induced misfolding and intracellular retention of human cationic trypsinogen causes hereditary pancreatitis in carriers of the p.R116C mutation. ER stress triggered by trypsinogen misfolding represents a new potential disease mechanism for chronic pancreatitis.
Collapse
Affiliation(s)
- Éva Kereszturi
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Richárd Szmola
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Zoltán Kukor
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Peter Simon
- Department of Medicine A, Ernst Moritz Arndt University, Friedrich-Loeffler-Str. 23a, D17475 Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, Ernst Moritz Arndt University, Friedrich-Loeffler-Str. 23a, D17475 Greifswald, Germany
| | - Markus M. Lerch
- Department of Medicine A, Ernst Moritz Arndt University, Friedrich-Loeffler-Str. 23a, D17475 Greifswald, Germany
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Abstract
Copy number variation (CNV) is a source of genetic diversity in humans. Numerous CNVs are being identified with various genome analysis platforms, including array comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) genotyping platforms, and next-generation sequencing. CNV formation occurs by both recombination-based and replication-based mechanisms and de novo locus-specific mutation rates appear much higher for CNVs than for SNPs. By various molecular mechanisms, including gene dosage, gene disruption, gene fusion, position effects, etc., CNVs can cause Mendelian or sporadic traits, or be associated with complex diseases. However, CNV can also represent benign polymorphic variants. CNVs, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
22
|
Clinical and radiological outcome of patients suffering from chronic pancreatitis associated with gene mutations. Pancreas 2008; 37:371-6. [PMID: 18953248 DOI: 10.1097/mpa.0b013e31817f52a1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cystic fibrosis transmembrane conductance regulator (CFTR), cationic trypsinogen gene (PRSS1), and serine protease inhibitor kazal type 1 (SPINK1) gene mutations have been associated with chronic pancreatitis (CP). The aim of this study was to compare clinical and radiological findings in sporadic CP with (CPgm) and without (CPwt) gene mutations. METHODS Data from patients observed between 2001 and 2006 were collected. All patients were tested for 25 CFTR gene mutations, for R122H and N29I on the PRSS1 gene, and for N34S mutation on the SPINK1 gene. RESULTS We found 34 (17.2%) of 198 patients with CPgm, 23 (11.6%) of them on the CFTR gene, 11 (5.6%) on the SPINK1, and none on the PRSS1 gene. The age at clinical onset was younger in CPgm (36.2 +/- 17.2 years) than in CPwt (44 +/- 12.6 years; P = 0.005). There were more heavy drinkers among CPwt (33%) than among CPgm (9%; P = 0.003), and the same applied to smokers (69% vs 33%, respectively; P < 0.0001). In CPgm group, the onset of pancreatic calcifications was observed more frequently in drinkers and/or smokers. Exocrine and endocrine insufficiency occurred less frequently and later in CPgm than in CPwt patients. CONCLUSIONS Clinical and radiological outcome differ in CPgm compared with CPwt. Alcohol, even in small quantities, and cigarette smoking influence the onset of pancreatic calcifications.
Collapse
|
23
|
Sahin-Tóth M, Hegyi P, Tóth M. [Genetic risk factors in chronic pancreatitis]. Orv Hetil 2008; 149:1683-1688. [PMID: 18755660 DOI: 10.1556/oh.2008.28441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic pancreatitis is a persistent inflammatory disorder of the pancreas, characterized by destruction of the pancreatic parenchyma, maldigestion, chronic pain and diabetes mellitus. Genetic factors determining susceptibility to chronic pancreatitis can be classified in two groups: 1. rare gene mutations affecting the cationic trypsinogen gene that directly cause the disease, and 2. genetic variants that increase the risk for chronic pancreatitis but require additional risk factors to precipitate the disease. These gene variants are considered genetic risk factors, which emerged during the past decade and now represent a clinically important etiological category. Susceptibility to chronic pancreatitis is inherited in a complex manner, which can involve alterations in several genes conferring various degrees of risk. The biochemical mechanism behind the genetic risk includes increased ectopic activation of the digestive enzyme trypsin in the pancreas and failure of protective mechanisms responsible for trypsin inactivation.
Collapse
Affiliation(s)
- Miklós Sahin-Tóth
- Boston University, Department of Molecular and Cell Biology, Boston, USA
| | | | | |
Collapse
|
24
|
Cigarette smoke-induced pancreatic damage: experimental data. Langenbecks Arch Surg 2008; 393:581-8. [PMID: 18193450 DOI: 10.1007/s00423-007-0273-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/30/2007] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Epidemiological data clearly indicate that cigarette smoking is associated with an increased risk for developing chronic pancreatitis and pancreatic cancer. Despite of this clear epidemiological correlation, cigarette smoke-induced pancreatic damage has only been investigated in a small number of experimental studies. METHODS Experimental studies examining the effect of cigarette smoke or cigarette smoke constituents on the pancreas were reviewed. RESULTS Recent data indicate that smoking also induces chronic pancreatic inflammation in rodents within a period of 12 weeks upon exposure with environmental cigarette smoke. Supported by the finding that morphologic pancreatic damage is also induced by nicotine treatment, cigarette smoke-induced pancreatic damage is likely to be caused by a disturbance of regulation of exocrine pancreas. The morphological alterations, however, induced by nicotine, are less pronounced and therefore, other substances and pathophysiologic mechanisms, such as carcinogen action or cigarette smoke-induced reduction of anti-protease activity, are likely to aggravate pancreatic damage upon cigarette smoke inhalation. CONCLUSION These data indicate that several constituents of cigarette smoke induce a disturbance of pancreatic function. This multifactorial event induces morphologic pancreatic damage upon cigarette smoke exposure in rodents.
Collapse
|
25
|
Novel mutation and polymorphism of PRSS1 gene in the Chinese patients with hereditary pancreatitis and chronic pancreatitis. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200801020-00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Rosendahl J, Witt H, Szmola R, Bhatia E, Ózsvári B, Landt O, Schulz HU, Gress TM, Pfützer R, Löhr M, Kovacs P, Blüher M, Stumvoll M, Choudhuri G, Hegyi P, te Morsche RHM, Drenth JPH, Truninger K, Macek M, Puhl G, Witt U, Schmidt H, Büning C, Ockenga J, Kage A, Groneberg DA, Nickel R, Berg T, Wiedenmann B, Bödeker H, Keim V, Mössner J, Teich N, Sahin-Tóth M. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet 2008; 40:78-82. [PMID: 18059268 PMCID: PMC2650829 DOI: 10.1038/ng.2007.44] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/24/2007] [Indexed: 12/17/2022]
Abstract
Chronic pancreatitis is a persistent inflammatory disease of the pancreas, in which the digestive protease trypsin has a fundamental pathogenetic role. Here we have analyzed the gene encoding the trypsin-degrading enzyme chymotrypsin C (CTRC) in German subjects with idiopathic or hereditary chronic pancreatitis. Two alterations in this gene, p.R254W and p.K247_R254del, were significantly overrepresented in the pancreatitis group, being present in 30 of 901 (3.3%) affected individuals but only 21 of 2,804 (0.7%) controls (odds ratio (OR) = 4.6; confidence interval (CI) = 2.6-8.0; P = 1.3 x 10(-7)). A replication study identified these two variants in 10 of 348 (2.9%) individuals with alcoholic chronic pancreatitis but only 3 of 432 (0.7%) subjects with alcoholic liver disease (OR = 4.2; CI = 1.2-15.5; P = 0.02). CTRC variants were also found in 10 of 71 (14.1%) Indian subjects with tropical pancreatitis but only 1 of 84 (1.2%) healthy controls (OR = 13.6; CI = 1.7-109.2; P = 0.0028). Functional analysis of the CTRC variants showed impaired activity and/or reduced secretion. The results indicate that loss-of-function alterations in CTRC predispose to pancreatitis by diminishing its protective trypsin-degrading activity.
Collapse
Affiliation(s)
- Jonas Rosendahl
- Department of Gastroenterology and Hepatology, University of Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Heiko Witt
- Department of Hepatology and Gastroenterology, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Richárd Szmola
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany Street, Evans-433, Boston, MA 02118, USA
| | - Eesh Bhatia
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Béla Ózsvári
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany Street, Evans-433, Boston, MA 02118, USA
- 1st Department of Medicine, University of Szeged, Korányi fasor 8−10, H-6720, Szeged, Hungary
| | - Olfert Landt
- TIB MOLBIOL, Eresburgstraße 22−23, 12103 Berlin, Germany
| | - Hans-Ulrich Schulz
- Department of Surgery, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology and Metabolism, Faculty of Medicine, University of Marburg, Baldinger Straße, 35043 Marburg, Germany
| | - Roland Pfützer
- Department of Medicine II (Gastroenterology/Hepatology/Infectious Diseases), University of Heidelberg, Medical Faculty of Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Matthias Löhr
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Peter Kovacs
- Interdisciplinary Center for Clinical Research Leipzig, University of Leipzig, Inselstrasse 22, 04103, Leipzig, Germany
| | - Matthias Blüher
- Department of Endocrinology, University of Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Endocrinology, University of Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Gourdas Choudhuri
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Péter Hegyi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8−10, H-6720, Szeged, Hungary
| | - René HM te Morsche
- Department of Medicine, Division of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Joost PH Drenth
- Department of Medicine, Division of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Kaspar Truninger
- Clinic of Gastroenterology, Inselspital, CH-3010 Bern, Switzerland
| | - Milan Macek
- Institute of Biology and Medical Genetics - Cystic Fibrosis Center, University Hospital Motol & 2nd School of Medicine of Charles University, V Uvalu 84, Prague 5, CZ 150 06, Czech Republic
| | - Gero Puhl
- Department of Surgery, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ulrike Witt
- Department of Surgery, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hartmut Schmidt
- Transplant Hepatology, University Hospital Münster, Albert-Schweitzer-Straße 33, 48149 Münster, Germany
| | - Carsten Büning
- Department of Gastroenterology, Hepatology & Endocrinology, Charité, 10008 Berlin, Germany
| | - Johann Ockenga
- Department of Gastroenterology, Hepatology & Endocrinology, Charité, 10008 Berlin, Germany
| | - Andreas Kage
- Institute of Laboratory Medicine and Pathobiochemistry, Charité, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | - Renate Nickel
- Department of Pediatrics, Charité, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Thomas Berg
- Department of Hepatology and Gastroenterology, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hans Bödeker
- Department of Gastroenterology and Hepatology, University of Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Volker Keim
- Department of Gastroenterology and Hepatology, University of Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Joachim Mössner
- Department of Gastroenterology and Hepatology, University of Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Niels Teich
- Department of Gastroenterology and Hepatology, University of Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany Street, Evans-433, Boston, MA 02118, USA
| |
Collapse
|
27
|
Le Maréchal C, Masson E, Chen JM, Morel F, Ruszniewski P, Levy P, Férec C. Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat Genet 2006; 38:1372-4. [PMID: 17072318 DOI: 10.1038/ng1904] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 09/18/2006] [Indexed: 02/02/2023]
Abstract
Hereditary pancreatitis has been reported to be caused by 'gain-of-function' missense mutations in the cationic trypsinogen gene (PRSS1). Here we report the triplication of a approximately 605-kb segment containing the PRSS1 gene on chromosome 7 in five families with hereditary pancreatitis. This triplication, which seems to result in a gain of trypsin through a gene dosage effect, represents a previously unknown molecular mechanism causing hereditary pancreatitis.
Collapse
Affiliation(s)
- Cédric Le Maréchal
- Institut National de la Santé et de la Recherche Médicale (INSERM), U613, 29220 Brest, France
| | | | | | | | | | | | | |
Collapse
|