1
|
Bertini F, Catania V, Scirè Calabrisotto L, Dara M, Bisanti L, La Corte C, Staropoli M, Piazzese D, Parisi MG, Parrinello D, Cammarata M. A multi-comprehensive approach to assess the responses of the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1919) to a simulation of a diesel-oil mixture spill. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107188. [PMID: 39642431 DOI: 10.1016/j.aquatox.2024.107188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Oil spills are a major cause of pollution impacting marine ecosystems. In this work, the effects of short-term exposure to three different concentrations of a hydrocarbon mixture (HC), that simulated the action of such an event, were investigated on Mytilus galloprovincialis specimens. Physiological effects were measured using a battery of biomarkers consisting of cellular activity (phagocytosis), immune-related enzymes, chaperonins (HSP70 and HSC70), and histomorphological alterations. Different concentrations of HC led to a significant decrease in phagocytosis, especially following high concentrations. Immune-related enzymes evaluated in hemolymph and digestive gland extract showed up-regulation, suggesting the activation of antioxidant, detoxicant, and inflammatory responses. Morphological alterations of digestive gland tubules were observed after exposure to the HC. HSP70 and HSC70 activity was up regulated following the treatments, indicating their involvement in maintaining organism homeostasis. In addition, the diversity and composition of hemolymph and digestive gland microbiota exposed to HC were analyzed by automated ribosomal intergenic spacer analysis (ARISA) and a Next Generation Sequencing (NGS) approach to evaluate the connection with hydrocarbon contamination. Metagenomic analysis revealed significant differences in the hemolymph and digestive gland microbiota composition between mussels exposed and unexposed to HC. Exposure to increasing HC concentrations had a positive effect on microbial diversity with clear adaptative responses, and an increase in the relative abundance of several known degrading bacterial genera, including Alcanivorax, Roseovarius, Pseudomonas, Vibrio, Oleibacter. These results show the utility of a multi-comprehensive approach to evaluating functional adaptation in terms of immunological dysfunctions and microbiota alteration in the sentinel organism M. galloprovincialis.
Collapse
Affiliation(s)
- F Bertini
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - V Catania
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - L Scirè Calabrisotto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy
| | - M Dara
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - L Bisanti
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy
| | - C La Corte
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy
| | - M Staropoli
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - D Piazzese
- NBFC, National Biodiversity Future Center, Palermo, 90133 Italy; Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 26, Palermo, 90123 Italy
| | - M G Parisi
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - D Parrinello
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy
| | - M Cammarata
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, bldg. 16, Palermo, 90128 Italy; NBFC, National Biodiversity Future Center, Palermo, 90133 Italy.
| |
Collapse
|
2
|
Mansour C, Esteban MÁ, Hacene OR, Mosbahi DS, Guardiola FA. Comparative study of immunological biomarkers in the carpet shell clams (Ruditapes decussatus) from metal-contaminated sites in the South Lagoon of Tunis (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12059-12074. [PMID: 36103068 PMCID: PMC9898382 DOI: 10.1007/s11356-022-22902-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The South Lagoon of Tunis (Tunisia) is a Mediterranean lagoon adversely affected by industrial contaminants, harbour activity and untreated urban sewage. In this lagoon, the clam Ruditapes decussatus has been widely used as a biomonitor of seawater pollution through measurements of parameters related to oxidative stress and neurotoxicity. However, few studies have considered parameters of the immune system of this species in the South Lagoon of Tunis. Therefore, the aim of the present work was to evaluate several immune-related parameters in the cell-free haemolymph of carpet shell clams sampled during August and February from three polluted sites in the South Lagoon of Tunis (S1, S2 and S3) and one less polluted site as a reference site (RS) in order to identify suitable biomarkers for environmental quality assessments of this ecosystem. Concerning the immune-related parameters, seasonal factors modulated phenoloxidase, lysozyme, protease and esterase activity, with lower values measured for samples collected in August than for samples collected in February. In fact, bactericidal activity against two of the pathogenic bacteria tested and the activity of most immune-related enzymes were reduced in the cell-free haemolymph of clams collected from the most sampling sites in August compared to February one. In addition, values of abiotic parameters (temperature, salinity and pH) and metal (cadmium, copper, iron, lead and zinc) concentrations in the clams' soft tissues, previously obtained and published by the authors, as well as the values of immune-related parameters were integrated using principal component analyses. Results indicated that the values of all measured immune-related parameters were negatively correlated with the temperature values and the variations most of these parameters highlighted that the chemical industrial area (S3) was the most impacted location within the South Lagoon of Tunis. The present study illustrates that the immune-related parameters measured in carpet shell clam cell-free haemolymph represent suitable biomarkers for environmental quality assessments because they provide effective seasonal and spatial discrimination.
Collapse
Affiliation(s)
- Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Omar Rouane Hacene
- Laboratoire Réseau de Surveillance Environnementale (LRSE), Department of Biology, University of Oran, 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000, Oran, Algeria
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Elbahnaswy S, Elshopakey GE, Ibrahim I, Habotta OA. Potential role of dietary chitosan nanoparticles against immunosuppression, inflammation, oxidative stress, and histopathological alterations induced by pendimethalin toxicity in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2021; 118:270-282. [PMID: 34537335 DOI: 10.1016/j.fsi.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
A 21-days feeding screening period was conducted to highlight the protective efficacy of dietary chitosan nanoparticles (CSNPs) on pendimethalin (PD)-induced toxicity in Nile tilapia (Oreochromis niloticus). Hematology, non-specific immune response, the antioxidative enzymes [superoxide dismutase (SOD) and catalase (CAT), glutathione reduced (GSH), and glutathione peroxidase (GPx)] in the liver and anterior kidney, changes of pro-inflammatory cytokine genes [interleukins-8 (IL-8), interleukins-1β (IL-1β), and tumor necrosis-α (TNF-α)] in the anterior kidney and histopathological alterations were assessed. Fish (50 ± 7.5 g) were randomly assigned into four groups (Three replicates), the first group served as the negative control and fed on the control diet only, and the second group served as the positive control and fed on the control diet supplemented with CSNPs (1 g kg-1 diet). The two other groups were exposed to 1/10 96-h LC50 PD (0.5 mg L-1) in rearing water and simultaneously fed the control diet alone or supplemented with CSNPs (1 g kg-1 diet), respectively. Fish were fed on the experimental diets twice a day for 21 days. The results revealed that PD exposure caused a significant decline in the survival rate of the Nile tilapia, as well as in most of the hematological indices, respiratory burst activity, phagocytic activity, total immunoglobulin levels, lysozyme, and bactericidal activity. Additionally, PD toxicity markedly suppressed most of the antioxidative enzymatic activities in both tissues together with upregulation of immune genes (IL-8 and TNF-α); however, IL-1β expression remained unaffected. The histopathological results revealed marked pathological changes in spleen, liver and intestine with a notable decrease of intestinal goblet cells in PD-exposed groups. Conversely, CSNPs exerted protective effects through improving the above mentioned parameters. Thus, CSNPs supplementation exhibited defensive effects against PD toxicity in Nile tilapia that might provide an insight into the promising role of CSNPs as a potential immunomodulatory feed additive for tilapia in aquaculture.
Collapse
Affiliation(s)
- Samia Elbahnaswy
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Iman Ibrahim
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Marchand A, Tebby C, Beaudouin R, Catteau A, Porcher JM, Turiès C, Bado-Nilles A. Reliability evaluation of biomarker reference ranges for mesocosm and field conditions: Cellular innate immunomarkers in Gasterosteus aculeatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134333. [PMID: 31783456 DOI: 10.1016/j.scitotenv.2019.134333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Due to their sensitivity to environmental contamination and their link with fish health status, innate immunomarkers are of great interest for environmental risk assessment studies. Nevertheless, the lack of knowledge about the effect of confounding factors can lead to data misinterpretation and false diagnostics. So, the determination of reference values was of huge interest for the integration of biomarkers in biomonitoring programs. Laboratory immunomarker reference ranges (including cellular mortality, leucocyte distribution, phagocytosis activity, respiratory burst and lysosomal presence) that consider three confounding factors (season, sex and body size) were previously developed in three-spined stickleback, Gasterosteus aculeatus, from our husbandry. Usefulness of these reference ranges in biomonitoring programs depends on how they can be transposed to various experimental levels, such as mesocosm (outdoor artificial pond) and field conditions. Immunomarkers were therefore measured every 2 months over 1 year in one mesocosm and in one site assumed to uncontaminated (Houdancourt, field). Differences between immunomarker seasonal variations in mesocosm and field fish on one side and laboratory fish on the other side were quantified: in some cases, seasonal trends were not significant or did not differ between mesocosm and laboratory conditions, but overall, models developed based on data obtained in laboratory conditions were poorly predictive of data obtained in mesocosm or field conditions. To propose valuable field reference ranges, mesocosm and field data were integrated in innate immunomarker modelling in order to strengthen the knowledge on the effect of confounding factors. As in laboratory conditions, sex was overall a confounding factor only for necrotic cell percentage and granulocyte-macrophage distribution and size was a confounding factor only for cellular mortality, leucocyte distribution and phagocytosis activity. Confounding factors explained a large proportion of immunomarker variability in particular for phagocytosis activity and lysosomal presence. Further research is needed to test the field models in a biomonitoring program to compare the sensitivity of immunomarkers to the confounding factors identified in this study and the sensitivity to various levels of pollution.
Collapse
Affiliation(s)
- Adrien Marchand
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de la Housse, B.P. 1039, 51687 Reims, France
| | - Cleo Tebby
- INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Rémy Beaudouin
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Audrey Catteau
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Cyril Turiès
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
5
|
Marchand A, Tebby C, Beaudouin R, Hani YMI, Porcher JM, Turies C, Bado-Nilles A. Modelling the effect of season, sex, and body size on the three-spined stickleback, Gasterosteus aculeatus, cellular innate immunomarkers: A proposition of laboratory reference ranges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:337-349. [PMID: 30121033 DOI: 10.1016/j.scitotenv.2018.07.381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Innate immunomarkers reflect both environmental contamination and fish health status, providing useful information in environmental risk assessment studies. Nevertheless, the lack of knowledge about the effect of confounding factors can lead to data misinterpretation and false diagnoses. The aim of this study was to evaluate the impact of three confounding factors (season, sex and body size) on three-spined stickleback innate immunomarkers in laboratory conditions. Results shown strong seasonal variations in stickleback innate immunomarkers, with higher immune capacities in late winter-early spring and a disturbance during the spawning period in late spring-summer. Sex and body size had a season dependant effect on almost all tested immunomarkers. Reference ranges were established in laboratory-controlled conditions (i.e. laboratory reference ranges) and compared with data obtained from in vivo chemical expositions. The predictive power of the statistical model depended on the immunomarker, but the control data of the in vivo experiments, realized in same laboratory conditions, were globally well include in the laboratory reference ranges. Moreover, some statistical effects of the in vivo exposures were correlated with an augmentation of values outside the reference ranges, indicating a possible harmful effect for the organisms. As confounding factors influence is a major limit to integrate immunomarkers in biomonitoring programs, modelling their influence on studied parameter may help to better evaluated environmental contaminations.
Collapse
Affiliation(s)
- Adrien Marchand
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de la Housse, B.P. 1039, 51687 Reims, France
| | - Cleo Tebby
- INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Rémy Beaudouin
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Younes M I Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de la Housse, B.P. 1039, 51687 Reims, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
6
|
Maulvault AL, Barbosa V, Alves R, Anacleto P, Camacho C, Cunha S, Fernandes JO, Ferreira PP, Rosa R, Marques A, Diniz M. Integrated multi-biomarker responses of juvenile seabass to diclofenac, warming and acidification co-exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:65-79. [PMID: 30007156 DOI: 10.1016/j.aquatox.2018.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceutical drugs, such as diclofenac (DCF), are frequently detected in the marine environment, and recent evidence has pointed out their toxicity to non-target marine biota. Concomitantly, altered environmental conditions associated with climate change (e.g. warming and acidification) can also affect the physiology of marine organisms. Yet, the underlying interactions between these environmental stressors (pharmaceutical exposure and climate change-related stressors) still require a deeper understanding. Comprehending the influence of abiotic variables on chemical contaminants' toxicological attributes provides a broader view of the ecological consequences of climate change. Hence, the aim of this study was to assess the ecotoxicological responses of juvenile seabass Dicenthrachus labrax under the co-exposure to DCF (from dietary sources, 500 ± 36 ng kg-1 dw), warming (ΔTºC = +5 °C) and acidification (ΔpCO2 ∼1000 μatm, equivalent to ΔpH = -0.4 units), using an "Integrated Biomarker Response" (IBR) approach. Fish were exposed to these three stressors, acting alone or combined, for 28 days in a full cross-factorial design, and blood, brain, liver and muscle tissues were subsequently collected in order to evaluate: i) animal/organ fitness; ii) hematological parameters and iii) molecular biomarkers. Results not only confirmed the toxicological attributes of dietary exposure to DCF in marine fish species at the tissue (e.g. lower HSI), cellular (e.g. increased ENAs and lower erythrocytes viability) and molecular levels (e.g. increased oxidative stress, protein degradation, AChE activity and VTG synthesis), but also showed that such attributes are altered by warming and acidification. Hence, while acidification and/or warming enhanced some effects of DCF exposure (e.g. by further lowering erythrocyte viability, and increasing brain GST activity and Ub synthesis in muscle), the co-exposure to these abiotic stressors also resulted in a reversion/inhibition of some molecular responses (e.g. lower CAT and SOD inhibition and VTG synthesis). IBRs evidenced that an overall higher degree of stress (i.e. high IBR index) was associated with DCF and warming co-exposure, while the effects of acidification were less evident. The distinct responses observed when DCF acted alone or the animals were co-exposed to the drug together with warming and acidification not only highlighted the relevance of considering the interactions between multiple environmental stressors in ecotoxicological studies, but also suggested that the toxicity of pharmaceuticals can be aggravated by climate change-related stressors (particularly warming), thus, posing additional biological challenges to marine fish populations.
Collapse
Affiliation(s)
- Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal.
| | - Vera Barbosa
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ricardo Alves
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal
| | - Patrícia Anacleto
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Carolina Camacho
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Sara Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Pedro Pousão Ferreira
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Mário Diniz
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Krolicka A, Boccadoro C, Nilsen MM, Baussant T. Capturing Early Changes in the Marine Bacterial Community as a Result of Crude Oil Pollution in a Mesocosm Experiment. Microbes Environ 2017; 32:358-366. [PMID: 29187706 PMCID: PMC5745021 DOI: 10.1264/jsme2.me17082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The results of marine bacterial community succession from a short-term study of seawater incubations at 4°C to North Sea crude oil are presented herein. Oil was used alone (O) or in combination with a dispersant (OD). Marine bacterial communities resulting from these incubations were characterized by a fingerprinting analysis and pyrosequencing of the 16S rRNA gene with the aim of 1) revealing differences in bacterial communities between the control, O treatment, and OD treatment and 2) identifying the operational taxonomic units (OTUs) of early responders in order to define the bacterial gene markers of oil pollution for in situ monitoring. After an incubation for 1 d, the distribution of the individual ribotypes of bacterial communities in control and oil-treated (O and OD) tanks differed. Differences related to the structures of bacterial communities were observed at later stages of the incubation. Among the early responders identified (Pseudoalteromonas, Sulfitobacter, Vibrio, Pseudomonas, Glaciecola, Neptunomonas, Methylophaga, and Pseudofulvibacter), genera that utilize a disintegrated biomass or hydrocarbons as well as biosurfactant producers were detected. None of these genera included obligate hydrocarbonoclastic bacteria (OHCB). After an incubation for 1 d, the abundances of Glaciecola and Pseudofulvibacter were approximately 30-fold higher in the OD and O tanks than in the control tank. OTUs assigned to the Glaciecola genus were represented more in the OD tank, while those of Pseudofulvibacter were represented more in the O tank. We also found that 2 to 3% of the structural community shift originated from the bacterial community in the oil itself, with Polaribacter being a dominant bacterium.
Collapse
Affiliation(s)
- Adriana Krolicka
- International Research Institute of Stavanger (IRIS), Environment department
| | - Catherine Boccadoro
- International Research Institute of Stavanger (IRIS), Environment department
| | - Mari Mæland Nilsen
- International Research Institute of Stavanger (IRIS), Environment department
| | - Thierry Baussant
- International Research Institute of Stavanger (IRIS), Environment department
| |
Collapse
|
8
|
Luna-Acosta A, Bustamante P, Thomas-Guyon H, Zaldibar B, Izagirre U, Marigómez I. Integrative biomarker assessment of the effects of chemically and mechanically dispersed crude oil in Pacific oysters, Crassostrea gigas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:713-721. [PMID: 28456123 DOI: 10.1016/j.scitotenv.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/27/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
The impact of dispersed crude oil and dispersant on adult Pacific oysters, Crassostrea gigas, was evaluated through an integrative biomarker approach including (1) biochemical (plasma catecholase- and laccase-type phenoloxidase and superoxide dismutase), (2) histological (digestive cell lysosomal responses, digestive gland histopathology) and (3) physiological (flesh condition index) endpoints in the haemolymph and digestive gland. Adult oysters were exposed to non-contaminated water (control), chemically-dispersed oil (Brut Arabian Light), mechanically-dispersed oil and dispersant (FINASOL®) alone for 2days, and further depurated in non-contaminated water for 4weeks. After exposure to chemically and mechanically dispersed oil oysters exhibited induction of plasma laccase-type phenoloxidase and superoxide dismutase activities, enlargement of digestive cell lysosomes, lipofuscin accumulation, reduced neutral lipid content and atrophy of digestive gland diverticula; more markedly on exposure to chemically dispersed oil. From the studied biomarkers, only lysosomal biomarkers were significantly affected after exposure to the dispersant alone. This included lysosomal enlargement, neutral lipid depletion and lipofuscin accumulation in the digestive gland epithelium. A recovery of plasma enzyme activities was observed after 4weeks of depuration. The integrative biological response index indicated that chemically dispersed oil caused significantly higher stress to C. gigas than the mechanically-dispersed one or the dispersant alone; nevertheless, the response seems to be reversible after depuration.
Collapse
Affiliation(s)
- Andrea Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France; CBET Res Grp, Res Ctr Experimental Marine Biology & Biotechnology (PiE-UPV/EHU) & Zoology & Animal Cell Biology Dept., Univ. Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Hélène Thomas-Guyon
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Beñat Zaldibar
- CBET Res Grp, Res Ctr Experimental Marine Biology & Biotechnology (PiE-UPV/EHU) & Zoology & Animal Cell Biology Dept., Univ. Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Urtzi Izagirre
- CBET Res Grp, Res Ctr Experimental Marine Biology & Biotechnology (PiE-UPV/EHU) & Zoology & Animal Cell Biology Dept., Univ. Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Ionan Marigómez
- CBET Res Grp, Res Ctr Experimental Marine Biology & Biotechnology (PiE-UPV/EHU) & Zoology & Animal Cell Biology Dept., Univ. Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| |
Collapse
|
9
|
Luna-Acosta A, Breitwieser M, Renault T, Thomas-Guyon H. Recent findings on phenoloxidases in bivalves. MARINE POLLUTION BULLETIN 2017; 122:5-16. [PMID: 28673617 DOI: 10.1016/j.marpolbul.2017.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The production of melanin is a complex process involving biochemical cascades, such as the pro-phenoloxidase (proPO) system, and enzymes, such as phenoloxidases (POs). Different studies have shown a strong correlation between the decrease in PO activities and the occurrence of diseases in bivalve invertebrates, leading to mortalities in the host. Results of these studies suggest that POs could play a fundamental role in defense mechanisms in bivalves. This article reviews the fundamental knowledge on the proPO system in bivalves and the methods used to assess PO activities. Finally, this is the first report on the major findings of laboratory and field studies that indicate that a type of PO in bivalves, the laccase enzyme, is inducible and involved in the 1) immune 2) antioxidant and 3) detoxification roles in bivalves, and might be an ecological potential biomarker of environmental stress.
Collapse
Affiliation(s)
- A Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France; Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales (FEAR), Pontificia Universidad Javeriana, Transv. 4 No. 42-00, Bogota, Colombia.
| | - Marine Breitwieser
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France.
| | - T Renault
- Ifremer, Département Ressources biologiques et environnement (RBE), 44311 Nantes Cedex 03, France
| | - H Thomas-Guyon
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France
| |
Collapse
|
10
|
Rehberger K, Werner I, Hitzfeld B, Segner H, Baumann L. 20 Years of fish immunotoxicology - what we know and where we are. Crit Rev Toxicol 2017; 47:509-535. [PMID: 28425344 DOI: 10.1080/10408444.2017.1288024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite frequent field observations of impaired immune response and increased disease incidence in contaminant-exposed wildlife populations, immunotoxic effects are rarely considered in ecotoxicological risk assessment. The aim of this study was to review the literature on immunotoxic effects of chemicals in fish to quantitatively evaluate (i) which experimental approaches were used to assess immunotoxic effects, (ii) whether immune markers exist to screen for potential immunotoxic activities of chemicals, and (iii) how predictive those parameters are for adverse alterations of fish immunocompetence and disease resistance. A total of 241 publications on fish immunotoxicity were quantitatively analyzed. The main conclusions included: (i) To date, fish immunotoxicology focused mainly on innate immune responses and immunosuppressive effects. (ii) In numerous studies, the experimental conditions are poorly documented, as for instance age or sex of the fish or the rationale for the selected exposure conditions is often missing. (iii) Although a broad variety of parameters were used to assess immunotoxicity, the rationale for the choice of measured parameters was often not given, remaining unclear how they link to the suspected immunotoxic mode of action of the chemicals. (iv) At the current state of knowledge, it is impossible to identify a set of immune parameters that could reliably screen for immunotoxic potentials of chemicals. (v) Similarly, in fish immunotoxicology there is insufficient understanding of how and when chemical-induced modulations of molecular/cellular immune changes relate to adverse alterations of fish immunocompetence, although this would be crucial to include immunotoxicity in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Kristina Rehberger
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Inge Werner
- b Swiss Centre for Applied Ecotoxicology , Dübendorf , Switzerland
| | | | - Helmut Segner
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Lisa Baumann
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
11
|
Perrichon P, Le Menach K, Akcha F, Cachot J, Budzinski H, Bustamante P. Toxicity assessment of water-accommodated fractions from two different oils using a zebrafish (Danio rerio) embryo-larval bioassay with a multilevel approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:952-966. [PMID: 27312275 DOI: 10.1016/j.scitotenv.2016.04.186] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 06/06/2023]
Abstract
Petroleum compounds from chronic discharges and oil spills represent an important source of environmental pollution. To better understand the deleterious effects of these compounds, the toxicity of water-accommodated fractions (WAF) from two different oils (brut Arabian Light and Erika heavy fuel oils) were used in this study. Zebrafish embryos (Danio rerio) were exposed during 96h at three WAF concentrations (1, 10 and 100% for Arabian Light and 10, 50 and 100% for Erika) in order to cover a wide range of polycyclic aromatic hydrocarbon (PAH) concentrations, representative of the levels found after environmental oil spills. Several endpoints were recorded at different levels of biological organization, including lethal endpoints, morphological abnormalities, photomotor behavioral responses, cardiac activity, DNA damage and exposure level measurements (EROD activity, cyp1a and PAH metabolites). Neither morphological nor behavioral or physiological alterations were observed after exposure to Arabian Light fractions. In contrast, the Erika fractions led a high degree of toxicity in early life stages of zebrafish. Despite of defense mechanisms induced by oil, acute toxic effects have been recorded including mortality, delayed hatching, high rates of developmental abnormalities, disrupted locomotor activity and cardiac failures at the highest PAH concentrations (∑TPAHs=257,029±47,231ng·L(-1)). Such differences in toxicity are likely related to the oil composition. The use of developing zebrafish is a good tool to identify wide range of detrimental effects and elucidate their underlying foundations. Our work highlights once more, the cardiotoxic action (and potentially neurotoxic) of petroleum-related PAHs.
Collapse
Affiliation(s)
- Prescilla Perrichon
- Ifremer, Laboratoire Biogéochimie et Écotoxicologie, L'Houmeau/Nantes, France; Littoral Environnement et Sociétés (LIENSs), CNRS-Université de La Rochelle, UMRi 7266, 2 rue Olympe de Gouges, F17042 La Rochelle Cedex 01, France.
| | - Karyn Le Menach
- Université de Bordeaux, UMR EPOC CNRS 5805, avenue des Facultés, F33405 Talence Cedex, France
| | - Farida Akcha
- Ifremer, Laboratoire Biogéochimie et Écotoxicologie, L'Houmeau/Nantes, France
| | - Jérôme Cachot
- Université de Bordeaux, UMR EPOC CNRS 5805, avenue des Facultés, F33405 Talence Cedex, France
| | - Hélène Budzinski
- Université de Bordeaux, UMR EPOC CNRS 5805, avenue des Facultés, F33405 Talence Cedex, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), CNRS-Université de La Rochelle, UMRi 7266, 2 rue Olympe de Gouges, F17042 La Rochelle Cedex 01, France
| |
Collapse
|
12
|
Bado-Nilles A, Jolly S, Lamand F, Geffard A, Gagnaire B, Turies C, Porcher JM, Sanchez W, Betoulle S. Involvement of fish immunomarkers in environmental biomonitoring approach: Urban and agri-viticultural context. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:35-40. [PMID: 26024812 DOI: 10.1016/j.ecoenv.2015.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
The Champagne region (France) is characterized by various chemical environmental pressures which could interfere with the immune status of natural populations of European bullhead, Cottus sp. Some adult fish were caught by electrofishing in spring, summer and autumn to determined immune effect of urban (Muizon), intensive agricultural (Bouy; Prunay) or viticultural (Serzy; Prunay) influences. The major results demonstrated an increase of cellular mortality and a decrease of phagocytosis activity in the stations impacted by agri-viticultural chemicals. These immunomodulations followed the temporal variability due to different treatments (agricultural impacts on spring; viticultural effects on autumn). At the present time, not enough data was provided to confirm the impact of agri-viticultural chemicals on fish immune system without interaction with other environmental factors. For example, in summer, the immunomarkers seems to be not only correlated with water contamination but also with other environmental factors (pathogens, physical field degradation, nutrients, temperature …). Nevertheless, immune parameters give a global view of organism and ecosystem health explaining growing interest for these biomarkers in environmental risk assessment.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- UMR-I 02 (INERIS, URCA, ULH) SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, B.P. 1039, 51687 Reims, France; UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Sabrina Jolly
- UMR-I 02 (INERIS, URCA, ULH) SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, B.P. 1039, 51687 Reims, France; UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Florent Lamand
- Office National de l'Eau et des Milieux Aquatiques (ONEMA), Délégation Inter-Régionale Nord-Est, 57155 Marly, France.
| | - Alain Geffard
- UMR-I 02 (INERIS, URCA, ULH) SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, B.P. 1039, 51687 Reims, France.
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Centre de Cadarache, Bât 186, B.P. 3, 13115 Saint-Paul-lez-Durance, France.
| | - Cyril Turies
- UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Jean-Marc Porcher
- UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Wilfried Sanchez
- UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Stéphane Betoulle
- UMR-I 02 (INERIS, URCA, ULH) SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, B.P. 1039, 51687 Reims, France.
| |
Collapse
|
13
|
Bado-Nilles A, Diallo AO, Marlair G, Pandard P, Chabot L, Geffard A, Len C, Porcher JM, Sanchez W. Coupling of OECD standardized test and immunomarkers to select the most environmentally benign ionic liquids option--towards an innovative "safety by design" approach. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:202-210. [PMID: 25278158 DOI: 10.1016/j.jhazmat.2014.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/01/2014] [Accepted: 09/14/2014] [Indexed: 06/03/2023]
Abstract
This paper proposed a potential industrial accompaniment to reduce ionic liquid harmfulness by a novel combination of OECD Daphnia magna standardized test and fish immunomarkers. The combination of these two tests allowed multicriteria examination of ILs impacts in different organisms and trophic levels. The work provided new data for legislation and opened a door towards an integrative environmental evaluation due to direct implications of immune system in fish and ecosystem health. Whatever the species, each IL tested induced deleterious effects suggesting that toxic impact was especially due to IL lipophilicity properties. Nevertheless, cation moieties of ILs seemed to draw overall toxicity of ILs to significant extent as supported by lower cell mortality shown with imidazolium-based ILs compared to phosphonium-based ILs. However, the anions moieties have some additional effect, as revealed by quite dissimilar toxicity within same IL family. Concerning the more integrative biomarkers, the cationic-based ILs tested possessed also dissimilar effect on immune system of fish, especially on leucocyte distribution, lysosomal membrane integrity and phagocytosis activity. These results confirm that ILs toxicity could be influenced by design and that chemical engineering processes can integrate ecological footprint reduction strategies for successful IL utilization in the future.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, B.P. 2, 60550 Verneuil-en-Halatte, France; Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, Campus Moulin de la Housse, B.P. 1039, 51687 REIMS cedex, France.
| | - Alpha-Oumar Diallo
- INERIS, Pôle Substances et Procédés, B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Guy Marlair
- INERIS, Pôle Substances et Procédés, B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Pascal Pandard
- INERIS, Unité Expertise et essais en écotoxicologie, B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Laure Chabot
- INERIS, Unité Expertise et essais en écotoxicologie, B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, Campus Moulin de la Housse, B.P. 1039, 51687 REIMS cedex, France.
| | - Christophe Len
- Université Technologique de Compiègne/ESCOM, EA 4297, Transformations Intégrées de la Matière Renouvelable, Centre de Recherches de Royallieu, B.P. 20529, F-60205 Compiègne Cedex, France; Department of Chemistry, University of Hull, Hull HU6 7RX, England.
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Wilfried Sanchez
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, B.P. 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
14
|
Bado-Nilles A, Techer R, Porcher JM, Geffard A, Gagnaire B, Betoulle S, Sanchez W. Detection of immunotoxic effects of estrogenic and androgenic endocrine disrupting compounds using splenic immune cells of the female three-spined stickleback, Gasterosteus aculeatus (L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:672-683. [PMID: 25238107 DOI: 10.1016/j.etap.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Today, the list of endocrine disrupting compounds (EDCs) in freshwater and marine environments that mimic or block endogenous hormones is expanding at an alarming rate. As immune and reproductive systems may interact in a bidirectional way, some authors proposed the immune capacities as attractive markers to evaluate the hormonal potential of environmental samples. Thus, the present work proposed to gain more knowledge on direct biological effects of natural and EDCs on female fish splenic leucocyte non-specific immune activities by using ex vivo assays. After determining the optimal required conditions to analyze splenic immune responses, seven different EDCs were tested ex vivo at 0.01, 1 and 100nM over 12h on the leucocyte functions of female three-spined stickleback, Gasterosteus aculeatus. In summary, we found that natural hormones acted as immunostimulants, whilst EDCs were immunosuppressive.
Collapse
Affiliation(s)
- A Bado-Nilles
- Université Reims Champagne-Ardenne, EA 4689 Unité Interactions Animal-Environnement, Moulin de la Housse, B.P. 1039, 51687 Reims, France; Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - R Techer
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, B.P. 2, 60550 Verneuil-en-Halatte, France
| | - J M Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - A Geffard
- Université Reims Champagne-Ardenne, EA 4689 Unité Interactions Animal-Environnement, Moulin de la Housse, B.P. 1039, 51687 Reims, France.
| | - B Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire d'Ecotoxicologie des Radionucléides, Centre de Cadarache, Bât 186, B.P. 3, 13115 Saint-Paul-lez-Durance, France.
| | - S Betoulle
- Université Reims Champagne-Ardenne, EA 4689 Unité Interactions Animal-Environnement, Moulin de la Housse, B.P. 1039, 51687 Reims, France.
| | - W Sanchez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, B.P. 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
15
|
Bado-Nilles A, Jolly S, Porcher JM, Palluel O, Geffard A, Gagnaire B, Betoulle S, Sanchez W. Applications in environmental risk assessment of leucocyte apoptosis, necrosis and respiratory burst analysis on the European bullhead, Cottus sp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:9-17. [PMID: 24012786 DOI: 10.1016/j.envpol.2013.07.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
The use of a biochemical multi-biomarker approach proved insufficient to obtain clear information about ecosystem health. The fish immune system is considered as an attractive non-specific marker for environmental biomonitoring which has direct implications in individual fitness and population growth. Thus, the present work proposes the use of fish immunomarkers together with more common biochemical biomarkers in sampling conditions optimized to reduce biomarker variability and increase parameter robustness. European bullheads (Cottus sp.) from 11 stations in the Artois-Picardie watershed (France) were sampled. In the multiple discriminant analysis, the sites were highly correlated with apoptosis, respiratory burst, GST and EROD activities. Moreover, the use together of biochemical and immune markers increased the percentage of fish correctly classed at each site and enhanced site separation. This study argues in favor of the utilization of apoptosis, necrosis and respiratory burst for the determination of environmental risk assessment in addition to the set of biochemical biomarkers commonly used in fish.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- Université Reims Champagne-Ardenne, EA 4689 Unité Interactions Animal-Environnement, Moulin de la Housse, B.P. 1039, 51687 Reims, France; Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, B.P. 2, 60550 Verneuil-en-Halatte, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gagnaire B, Cavalie I, Camilleri V, Adam-Guillermin C. Effects of depleted uranium on oxidative stress, detoxification, and defence parameters of zebrafish Danio rerio. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:140-150. [PMID: 23052361 DOI: 10.1007/s00244-012-9814-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
In this study, we investigated the effects of depleted uranium (DU), the by-product of nuclear enrichment of uranium, on several parameters related to oxidative stress, detoxification, and the defence system in the zebrafish Danio rerio. Several parameters were recorded: phenoloxidase-like (PO) activity, reactive oxygen species (ROS) production, and 7-ethoxyresrufin-O-deethylase (EROD) activity. Experiments were performed on adult and larvae D. rerio. Adult fish were exposed for 28 days at 20 μg U/L followed by a 27-day depuration period. Eggs of D. rerio were exposed for 4 days at 0, 20, 100, 250, 500, and 1,000 μg U/L. Results showed that DU increased ROS production both in adult and in larvae even at the low concentrations tested and even during the depuration period for adult D. rerio. DU also modified PO-like activity, both in the D. rerio adult and larvae experiments, but in a more transient manner. EROD activity was not modified by DU, but sex effects were shown. Results are discussed by way of comparison with other known effects of uranium in fish. Overall, these results show that the mechanisms of action of DU in fish tend to be similar to the ones existing for mammals. These results encourage the development and use of innate immune biomarkers to understand the effects of uranium and, more generally, radionuclides on the fish immune system.
Collapse
Affiliation(s)
- Beatrice Gagnaire
- Institut de Radioprotection et Sûreté Nucléaire, PRP-ENV/SERIS/LECO, Laboratoire d'Ecotoxicologie des Radionucléides, 13115, St-Paul-lez-Durance Cedex, France.
| | | | | | | |
Collapse
|
17
|
Pérez-Casanova JC, Hamoutene D, Hobbs K, Lee K. Effects of chronic exposure to the aqueous fraction of produced water on growth, detoxification and immune factors of Atlantic cod. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 86:239-249. [PMID: 23084021 DOI: 10.1016/j.ecoenv.2012.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
The biggest discharge from the offshore oil industry is produced water (PW). As new technologies emerge to remove oil from such discharges, the question remains as to the effect that the water soluble fraction of contaminants present in PW may have on the biota surrounding the areas of discharge. We investigated the effects of 8 weeks of intermittent exposure to environmentally relevant concentrations (100 or 1000mg/L) of the aqueous fraction of PW (AFPW) on growth parameters, food consumption, respiratory burst activity of head kidney leukocytes (RB), activity of antioxidant enzymes and mRNA expression of immune- and detoxification-related genes of Atlantic cod. No significant effects of AFPW were seen on growth parameters, food consumption and/or RB. Furthermore, the activity of antioxidant enzymes and the expression of CYP1A, GST and UGT were not impacted by AFPW treatment. The mRNA expression of some immune related genes was affected in a similar manner as what has been described in Atlantic cod exposed to full PW suggesting that short chain soluble compounds present in PW might be responsible for its immunomodulatory effect. Traditionally used biomarkers of toxicant exposure such as phase I (CYP1A) and phase II (GST, UGT) genes do not seem to be reliable indicators of exposure to AFPW. This study confirms the fact that some immune related genes are affected by soluble components of PW and that further investigation on potential increased disease susceptibility is warranted.
Collapse
Affiliation(s)
- Juan C Pérez-Casanova
- Aquaculture, Biotechnology and Aquatic Animal Health Section, Northwest Atlantic Fisheries Centre, Department of Fisheries and Oceans, PO Box 5667, St. John's, NL, Canada.
| | | | | | | |
Collapse
|
18
|
Song JY, Ohta S, Nakayama K, Murakami Y, Kitamura SI. A time-course study of immune response in Japanese flounder Paralichthys olivaceus exposed to heavy oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:2300-2304. [PMID: 22246643 DOI: 10.1007/s11356-012-0737-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/02/2012] [Indexed: 05/31/2023]
Abstract
PURPOSE The immunotoxicities of oil and its components on fish immunities have been investigated, but there is little literature on the recovery of the fish from the immune suppression. Therefore, the recovery of Japanese flounder Paralichthys olivaceus from an immunosuppressive effect due to heavy oil (HO) exposure was investigated in this study. METHODS Fish were exposed to HO at a concentration of 0.385 g/L for 2 days, while control fish received no exposure. Seven fish were sampled at 0, 3, 7, and 14 days post-exposure. The respiratory rate was measured everyday as an indicator of the acute effect of HO exposure. Fish serum was collected and used for antibacterial activity assay against Edwardsiella tarda. Expression changes of respiratory and immune-related genes were evaluated by real-time PCR. RESULTS AND DISCUSSION The respiratory rate was significantly increased in the HO-exposed group until 4 days post-exposure. A respiratory-related gene, β-hemoglobin, was also significantly downregulated in the spleen both at 0 and 7 days post-exposure and kidney at 3 days post-exposure in HO-exposed fish. Immunotoxicity, including suppression of antibacterial activities and downregulation of the IgM gene, was observed in HO-exposed fish until 3 days post-exposure, but not after that time. From these results, we conclude that the fish likely return to normal status around 1 week.
Collapse
Affiliation(s)
- Jun-Young Song
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | |
Collapse
|
19
|
Danion M, Le Floch S, Kanan R, Lamour F, Quentel C. Effects of in vivo chronic exposure to pendimethalin/Prowl 400® on sanitary status and the immune system in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:143-152. [PMID: 22444063 DOI: 10.1016/j.scitotenv.2012.02.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
The in vivo effects of the herbicide active substance (AS) pendimethalin (alone and with Prowl 400® adjuvant) were evaluated on sanitary status i.e. the health status with regard to chemical pollution and on the physiological state via the immune system in rainbow trout, Oncorhynchus mykiss. Four nominal exposure conditions were tested: i) control (C), ii) AS at 500 ng L(-1) (P500), iii) AS at 800 ng L(-1) (P800) and iv) Prowl 400® at 500 ng L(-1) (Pw). After a 28 day exposure period (D28), 10 fish were sampled for each condition and 10 other after a 15 day recovery period in clean fresh water (D43). Pendimethalin concentrations in the exposure water and muscles were followed. White blood cell counts, differential leucocyte counts, cell mortality and phagocytosis activity were measured. Haemolytic alternative complement activity, lysozyme concentration and stress parameters were analyzed. The resulting concentration of pendimethalin in the exposure water was lower than the expected concentration. At D28, the concentration quantified in the contaminated fish was negligible in comparison with the Reference Dose for Oral Exposure estimated by US-EPA's Integrated Risk Information System. Leucopenia was noted in all contaminated fish. A decrease in phagocytosis activity and ACH(50) was also observed in contaminated fish by P800 and Pw. Disturbed lysozyme activity was noted only in fish exposed to Pw. Furthermore, during exposure to a similar concentration of pendimethalin, the commercial product seemed to be more immunotoxic than the AS alone. Finally, at D43, the effects proved reversible for sanitary status while immunity was still disturbed in contaminated fish by P800 and Pw.
Collapse
Affiliation(s)
- Morgane Danion
- Anses, Ploufragan-Plouzané Laboratory, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
20
|
Song JY, Nakayama K, Kokushi E, Ito K, Uno S, Koyama J, Rahman MH, Murakami Y, Kitamura SI. Effect of heavy oil exposure on antibacterial activity and expression of immune-related genes in Japanese flounder Paralichthys olivaceus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:828-835. [PMID: 22228536 DOI: 10.1002/etc.1743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/24/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
Heavy oil (HO) pollution is one of the most important environmental issues globally. However, little is known about the immunotoxicity of HO in fish. We therefore investigated the effects of HO exposure on immunocompetence and expression of immune-related genes in Japanese flounder, Paralichthys olivaceus. To test immunocompetency, serum collected from the fish was mixed with Edwardsiella tarda, plated, and the resultant numbers of bacterial colonies were counted. Plates with serum from HO-exposed fish (5 d postexposure [dpe]) had significantly higher numbers of colonies than those of the untreated control group, suggesting that HO exposure suppresses immunocompetency. Downregulation of the immunoglobulin light chain (IgM) gene in HO-exposed fish at 5 dpe was detected by real-time polymerase chain reaction. These results suggest that IgM-mediated immunity is suppressed by HO exposure. We measured polycyclic aromatic hydrocarbon (PAH) concentrations in the liver of the fish. Low molecular weight PAHs were found to be taken up at high concentrations in fish liver; therefore, they are likely the cause of immune suppression in the fish.
Collapse
Affiliation(s)
- Jun-Young Song
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Danion M, Le Floch S, Lamour F, Guyomarch J, Quentel C. Bioconcentration and immunotoxicity of an experimental oil spill in European sea bass (Dicentrarchus labrax L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2167-74. [PMID: 21835465 DOI: 10.1016/j.ecoenv.2011.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/09/2011] [Accepted: 07/23/2011] [Indexed: 05/06/2023]
Abstract
The effects of Polycyclic Aromatic Hydrocarbons (PAHs) resulting from a water soluble fraction (WSF) of an Arabian crude oil were tested in vivo on the bioconcentration in muscles and on immune parameters in sea bass, Dicentrarchus labrax. After 15 days of acclimation, fish were acutely exposed (48 h) to the WSF of 25 g of oil, and then returned to clean sea water for a 15 day recovery period. PAH concentration in the WSF at the beginning of the exposure was estimated to 773±187 ng L⁻¹ similar to that observed in the marine environment after an oil spill. The WSF in the experimental system was composed by lightest PAH compounds and did not remain constant during the two days of exposure. Just after exposure to the WSF, a total mean concentration of 148±46 μg kg⁻¹ of PAHs was found in contaminated fish muscle, composed of parent and alkylated naphthalene compounds (86.5%), benzo[a]pyrene (10.1%) and benzo[b+k]fluoranthene (3.4%). In addition, a decrease of leucocytes counts due to a lymphopenia and granulopenia and an increase of the haemolytic activity of the alternative pathway (ACH₅₀) were noted. After a 15 day recovery period, haematocrit was decreased whereas effects on the blood granulocytes of fish seemed to be reversible, contrary to the specific immune system and quality of flesh. In fact, contaminated fish had still less lymphocyte cells compared to controls fish and their flesh were still contaminated by naphthalene and benzo[a]pyrene creating a risk for human consumers.
Collapse
Affiliation(s)
- Morgane Danion
- ANSES, Laboratoire Ploufragan-Plouzané, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
22
|
Danion M, Deschamps MH, Thomas-Guyon H, Bado-Nilles A, Le Floch S, Quentel C, Sire JY. Effect of an experimental oil spill on vertebral bone tissue quality in European sea bass (Dicentrarchus labrax L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1888-1895. [PMID: 21831432 DOI: 10.1016/j.ecoenv.2011.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/17/2011] [Accepted: 07/23/2011] [Indexed: 05/31/2023]
Abstract
In order to identify biomarkers of oil pollution in fish we tested the effects of an experimental Light Cycle Oil (LCO) exposure on vertebral bone of sea bass, Dicentrarchus labrax L. A total of 60 adult fish were acclimated for fifteen days, then twenty were collected as controls (Day 0) while 40 were exposed to a soluble fraction of LCO (1136 ng L(-1) of ten Polycyclic Aromatic Hydrocarbons, PAHs) for seven days. Twenty of them were sampled at the end of the exposure period and the twenty last after a recovery period of fourteen days in clean seawater. Vertebral abnormalities were counted and bone mineralization, total bone area and bone density profiles were established for several post-cranial and caudal vertebrae. In sea bass, seven days of LCO exposure did not affect the frequency and severity of the vertebral abnormalities. No significant differences were observed in bone density and bone repartition (parameters of bone area profiles) between unexposed (Day 0), exposed (D7) and decontaminated (D21) fish. In contrast, bone mineralization of the vertebrae decreased in contaminated sea bass, but in a reversible way, which confirms a previous study in trout showing that this parameter is an early stress indicator. Our results suggest that vertebral bone mineralization could be used as a biomarker of PAH pollution in sea bass. It would be interesting to check this new biomarker in other teleost species exposed to various xenobiotics.
Collapse
Affiliation(s)
- Morgane Danion
- Evolution et Développement du Squelette, UMR7138, Université Pierre & Marie Curie, 7 quai St-Bernard, 75252 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bado-Nilles A, Quentel C, Mazurais D, Zambonino-Infante JL, Auffret M, Thomas-Guyon H, Le Floch S. In vivo effects of the soluble fraction of light cycle oil on immune functions in the European sea bass, Dicentrarchus labrax (Linné). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1896-1904. [PMID: 21764455 DOI: 10.1016/j.ecoenv.2011.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Hydrocarbons are major contaminants that may affect biota at various trophic levels in estuaries and coastal ecosystems. The effects of accidental pollution by light cycle oil (LCO), a refined product of heavy fuel oil, on bioaccumulation, depuration processes and immune-related parameters in the European sea bass, Dicentrarchus labrax, were investigated in the laboratory after 7 days of exposure and a 2-week recovery period. Exposure of fish to the soluble fraction of LCO (1600ngL(-1)) for 7 days led to the bioaccumulation of some polycyclic aromatic hydrocarbons (PAHs) in muscles: naphthalene, acenaphthene, fluorene, phenanthrene and anthracene. After 7 days of recovery period, half-elimination of naphthalene was reported in fish muscles due to facilitated diffusive loss by the epithelium and a faster elimination rate proven by the presence of a high level of naphthalene biliary metabolites. The other bioaccumulated molecules displayed a slower depuration rate due to their elimination by the formation of hydrophobic metabolites excreted through bile or urine. Three days after the beginning of the recovery period, each contaminated fish showed severe external lesions (tissue necrosis, suppurative exudates, haemorrhagic area). The hypothesis of a possible link with inflammatory phenomenon was supported by (i) an inversion of the leucocyte sub-population percentage, (ii) a significant up-expression in the spleen of the tumour necrosis factor alpha gene, (iii) a significant increase in ACH(50). Moreover, the lack of C3 gene regulation in the spleen suggested a non-renewal of this component. The reduction of phagocytic activity and lysozyme concentration reflected immune suppression. Finally, LCO toxicity in this fish was clearly demonstrated to be related to inflammatory reaction and immune depletion.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- Anses Laboratoire de Ploufragan-Plouzané, Agence nationale de sécurité sanitaire des aliments, de l'environnement et du travail, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Danion M, Le Floch S, Kanan R, Lamour F, Quentel C. Effects of in vivo chronic hydrocarbons pollution on sanitary status and immune system in sea bass (Dicentrarchus labrax L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:300-311. [PMID: 21781655 DOI: 10.1016/j.aquatox.2011.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/15/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
Following the development of an experimental system to expose adult fish to low and stable concentration of pollutant over a prolonged period, the in vivo effects of hydrocarbons on sanitary status, i.e. the health status of fish with regard to chemical pollution, and immune system in sea bass, Dicentrarchus labrax were assessed. A total of 90 fish were acclimated for 15 days, then 45 fish were exposed to the water soluble fraction (WSF) of Arabian crude oil, similar to a complex pollution by hydrocarbons chronically observed in situ in estuaries, while the 45 other control fish sustained the same experimental conditions in clean seawater. After 21 days of exposure, 30 contaminated and control fish were sampled, then 30 other fish were collected after a 15 day recovery period in clean sea water. PAH concentrations in crude oil, WSF, muscles and bile were measured by gas chromatography coupled with mass spectrometry analysis. White blood cell counts and differential leucocyte counts were determined by classical haematology methods. Cell mortality and phagocytosis activity of leucocytes were analyzed by flow cytometry. Haemolytic alternative complement activity and stress parameters were analyzed in blood plasma by spectrophotometry. After a 21 day exposure period to a mixture of 41 parent/alkylated-PAHs (835 ± 52/85 ± 1 5 ng L(-1)). Fish flesh was contaminated by a bioconcentration of naphthalene very closed to the Reference Dose for Oral Exposure estimated by US-EPA's Integrated Risk Information System, causing a potential risk for human consumers. A leucopenia due to a lymphopenia, a rise in leucocyte mortality and a decrease in phagocytosis activity were noted in contaminated fish compared to controls. All these results may be explained by the damage to membrane cells integrity by uptake of PAHs and suggested an impairment of specific and nonspecific immune systems. After a 15 day recovery period, effects were reversible for sanitary status and an offset in immunity was noted by a significant increase in leucocytes in contaminated fish compared to controls.
Collapse
Affiliation(s)
- Morgane Danion
- Anses, Ploufragan-Plouzané Laboratory, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
25
|
Luna-Acosta A, Kanan R, Le Floch S, Huet V, Pineau P, Bustamante P, Thomas-Guyon H. Enhanced immunological and detoxification responses in Pacific oysters, Crassostrea gigas, exposed to chemically dispersed oil. WATER RESEARCH 2011; 45:4103-4118. [PMID: 21665240 DOI: 10.1016/j.watres.2011.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/06/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
The aim of this study was to evaluate the effects of chemically dispersed oil on an economically and ecologically important species inhabiting coasts and estuaries, the Pacific oyster Crassostrea gigas. Studies were carried out with juveniles, known to generally be more sensitive to environmental stress than adults. A set of enzyme activities involved in immune defence mechanisms and detoxification processes, i.e. superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), catecholase-type phenoloxidase (PO), laccase-type PO and lysozyme were analysed in different oyster tissues, i.e. the gills, digestive gland and mantle, and in the plasma and the haemoycte lysate supernatant (HLS) of the haemolymph. Results indicated that total PAH body burdens were 2.7 times higher in the presence than in the absence of the chemical dispersant. After 2 days of exposure to chemically dispersed oil, alkylated naphthalenes accounted for 55% of the total PAH body burden, whereas alkylated fluorenes and alkylated dibenzothiophenes accounted for 80% when the chemical dispersant was absent. Importantly, a higher number of enzyme activities were modified when oil was chemically dispersed, especially in the plasma and gills. Moreover, independently of the presence or absence of chemical dispersant, oil exposure generally inhibited enzyme activities in the gills and plasma, while they were generally activated in the mantle and haemocytes. These results suggest that the gills and plasma constitute sensitive compartments in C. gigas, and that the mantle and haemocytes may play an important role in protection against xenobiotics. Among the six enzyme activities that were analysed in these body compartments, five were modulated in the chemical dispersion (CD) treatment while only half of the enzyme activities were modulated in the mechanical dispersion treatment. Furthermore, CD treatment effects were often observed following exposure, but also during depuration periods. These results suggest that immune and/or detoxification responses are likely to be affected when dispersants are used to treat oil spills in shallow waters.
Collapse
Affiliation(s)
- A Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Milinkovitch T, Ndiaye A, Sanchez W, Le Floch S, Thomas-Guyon H. Liver antioxidant and plasma immune responses in juvenile golden grey mullet (Liza aurata) exposed to dispersed crude oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:155-164. [PMID: 20970861 DOI: 10.1016/j.aquatox.2010.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 05/30/2023]
Abstract
Dispersants are often used after oil spills. To evaluate the environmental cost of this operation in nearshore habitats, the experimental approach conducted in this study exposed juvenile golden grey mullets (Liza aurata) for 48 h to chemically dispersed oil (simulating, in vivo, dispersant application), to dispersant alone in seawater (as an internal control of chemically dispersed oil), to mechanically dispersed oil (simulating, in vivo, natural dispersion), to the water-soluble fraction of oil (simulating, in vivo, an oil slick confinement response technique) and to seawater alone (control condition). Biomarkers such as fluorescence of biliary polycyclic aromatic hydrocarbon (PAH) metabolites, total glutathione liver content, EROD (7-ethoxy-resorufin-O-deethylase) activity, liver antioxidant enzyme activities, liver lipid peroxidation and an innate immune parameter (haemolytic activity of the alternative complement pathway) were measured to assess the toxicity of dispersant application. Significant responses of PAH metabolites and total glutathione content of liver to chemically dispersed oil were found, when compared to water-soluble fraction of oil. As was suggested in other studies, these results highlight that priority must be given to oil slick confinement instead of dispersant application. However, since the same patterns of biomarker responses were observed for both chemically and mechanically dispersed oil, the results also suggest that dispersant application is no more toxic than the natural dispersion occurring in nearshore areas (due to, e.g. waves). The results of this study must, nevertheless, be interpreted cautiously since other components of nearshore habitats must be considered to establish a framework for dispersant use in nearshore areas.
Collapse
Affiliation(s)
- Thomas Milinkovitch
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, La Rochelle, France.
| | | | | | | | | |
Collapse
|
27
|
Bado-Nilles A, Renault T, Faury N, Le Floch S, Quentel C, Auffret M, Thomas-Guyon H. In vivo effects of LCO soluble fraction on immune-related functions and gene transcription in the Pacific oyster, Crassostrea gigas (Thunberg). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:196-203. [PMID: 19800699 DOI: 10.1016/j.aquatox.2009.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 05/28/2023]
Abstract
The effects of a soluble fraction of light cycle oil (LCO) on haemocyte parameters, phenoloxidase (PO) activity and mRNA expression of immune-related genes, in the Pacific oyster, Crassostrea gigas, were tested after seven days of exposure and two weeks of recovery period. Five polycyclic aromatic hydrocarbons (PAHs) out of ten detected in tank water had bioaccumulated at the end of the contamination period. The concentration of PAHs in oyster tissues decreased during the recovery period and 14 days after the exposure, 69% of bioaccumulated PAHs were detected in contaminated oysters. The exposure induced severe oyster mortality (21%), external and internal green colouration of the shell and a significant decrease of PO activity. The mRNA expression of several genes was altered. As a conclusion, a modulation of immune-related parameters was demonstrated using three different approaches, namely cellular (flow cytometry), biochemical (spectrophotometry) and genomics (gene transcription) in oysters after contact with soluble fraction of LCO.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- LIENSs Littoral ENvironnement et Sociétés UMR 6250 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, France.
| | | | | | | | | | | | | |
Collapse
|