1
|
Thouin H, Norini MP, Battaglia-Brunet F, Gautret P, Crampon M, Le Forestier L. Temporal evolution of surface and sub-surface geochemistry and microbial communities of Pb-rich mine tailings during phytostabilization: A one-year pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115538. [PMID: 35772273 DOI: 10.1016/j.jenvman.2022.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Old mine waste repositories can present health and/or environmental issues linked to their erosion, inducing dissemination of metals and metalloids in air and water that can be attenuated through phytostabilization. Here, the effect of this widespread phytomanagement option on the biogeochemistry of a Pb-rich mine waste was evaluated with a laboratory pilot-scale experiment giving access to the non-saturated and saturated zones below the rhizosphere compartment. Amendment of the tailings surface with biochar, manure and iron-oxide-rich ochre promoted growth of the seeded Agrostis capillaris plants. These events were accompanied by an increase of pH and a decrease of Pb concentration in pore water of the surface layer, and by a transient increase of Pb, Zn, and Ba concentrations in the deeper saturated levels. Macroscopic and microscopic observations (SEM) suggest that Pb was immobilized in A. capillaris rhizosphere through mechanical entrapment of tailing particles. Microbial taxonomic and metabolic diversities increased in the amended phytostabilized surface levels, with a rise of the proportion of heterotrophic micro-organisms. Below the surface, a transient modification of microbial communities was observed in the non-saturated and saturated levels, however 11 months after seeding, the prokaryotic community of the deepest saturated zone was close to that of the initial tailings. pH and water saturation seemed to be the main parameters driving prokaryotic communities' structures. Results obtained at pilot-scale will help to precisely evaluate the impacts of phytostabilization on the temporal evolution of reactions driving the fate of pollutants inside the tailings dumps.
Collapse
Affiliation(s)
| | - Marie-Paule Norini
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Fabienne Battaglia-Brunet
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Pascale Gautret
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| | | | - Lydie Le Forestier
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| |
Collapse
|
2
|
Picchi C, Giorgetti L, Morelli E, Landi M, Rosellini I, Grifoni M, Franchi E, Petruzzelli G, Barbafieri M. Cannabis sativa L. and Brassica juncea L. grown on arsenic-contaminated industrial soil: potentiality and limitation for phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15983-15998. [PMID: 34642886 DOI: 10.1007/s11356-021-16673-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation represents a natural method to remove contaminants from soil. The goal of this study was to investigate the potential of phosphate-assisted phytoremediation by two energy crops, Cannabis sativa L. and Brassica juncea L., for the sustainable remediation of heavily arsenic-contaminated industrial soil. The two species were investigated for uptake, translocation, and physiological effects of arsenic and phosphate in a microcosm test. Although C. sativa and B. juncea were symptomless when grown in arsenic-contaminated soil, an important reduction of biomass (50 and 25%, respectively) was observed as a stress marker. Phytotoxicity and cytotoxicity effects promoted by contaminated soils were investigated in both the species and a model plant for ecotoxicity studies, Vicia faba L., which is the most developed model to test genotoxicity effects in terms of chromosomal aberration and micronuclei presence. The higher amount of arsenic was found in C. sativa and B. juncea roots (on average 1473 and 778 mg kg-1, respectively), but both species were able to uptake and translocate arsenic in leaves and stems, up to 47.0 and 189 mg kg-1, respectively. Phosphate treatment had no effect on arsenic uptake in none of the crop, but significantly improved the plant performance. Biomass production resulted similar to that of B. juncea control plants. Antioxidant enzymatic activities and photosynthetic performance responded differently in the two crops. The present investigation provides new insight for a proficient selection of the most suitable crop species for sustainable phytomanagement of a highly polluted As-contaminated site by coupled phytoremediation-bioenergy approach.
Collapse
Affiliation(s)
- Carolina Picchi
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Lucia Giorgetti
- National Research Council - Institute of Agricultural Biology and Biotechnology, U.O.S. Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Elisabetta Morelli
- National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Irene Rosellini
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Martina Grifoni
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy.
| | - Elisabetta Franchi
- Eni S.p.A., Renewable Energy & Environmental Laboratories, Via Maritano 26, 20097, San Donato Milanese, Milan, Italy
| | - Gianniantonio Petruzzelli
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Meri Barbafieri
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| |
Collapse
|
3
|
Austruy A, Roulier M, Angeletti B, Dron J, Dauphin CE, Ambrosi JP, Keller C, Chamaret P. Concentrations and transportation of metal and organochlorine pollutants in vegetables and risk assessment of human exposure in rural, urban and industrial environments (Bouches-du-Rhône, France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64253-64267. [PMID: 34302251 DOI: 10.1007/s11356-021-14604-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation of metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sb, V, Zn, Al, Fe) and organochlorine compounds (PCDD-Fs and PCBs) was assessed in soils and vegetables of 3 sites of contrasted anthropogenic influence (rural and industrial-urban areas). Cultivated soils in industrial areas exhibited diffuse pollution in organochlorine pollutants (PCBs and PCDD-Fs). The pollutant levels encountered in vegetables were always lower than the EU regulatory or recommended values. However, the contents measured in vegetables cultivated near industrialized areas were significantly higher than those observed in rural areas. This was notably the case for Co, Cd, Cr, Ni, Pb, V, NDL- and DL-PCB, PCDD, and PCDF. The leaf pathway appeared as the main absorption pathway for many contaminants. The results suggested that population exposure to pollutants was mainly caused by vegetable ingestion. In the vegetables and soils, the toxicity was mainly caused by the V, Co, Cd, and Pb contents to which can be added As and PCDD-Fs for soils. Therefore, the proximity of vegetable crops to highly anthropised areas has led to long-term exposure of vegetables and soils to air pollutants, leading to an accumulation in the food chain and thus a risk for human health.
Collapse
Affiliation(s)
- Annabelle Austruy
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France.
| | - Marine Roulier
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France
| | - Bernard Angeletti
- CEREGE, Aix-Marseille Univ, CNRS, IRD, Coll de France, INRA, Technopole de l'Arbois, BP80, 13545, Aix-en-Provence, France
| | - Julien Dron
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France
| | - Charles-Enzo Dauphin
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France
| | - Jean-Paul Ambrosi
- CEREGE, Aix-Marseille Univ, CNRS, IRD, Coll de France, INRA, Technopole de l'Arbois, BP80, 13545, Aix-en-Provence, France
| | - Catherine Keller
- CEREGE, Aix-Marseille Univ, CNRS, IRD, Coll de France, INRA, Technopole de l'Arbois, BP80, 13545, Aix-en-Provence, France
| | - Philippe Chamaret
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France
| |
Collapse
|
4
|
Lebrun M, Michel C, Joulian C, Morabito D, Bourgerie S. Rehabilitation of mine soils by phytostabilization: Does soil inoculation with microbial consortia stimulate Agrostis growth and metal(loid) immobilization? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148400. [PMID: 34412406 DOI: 10.1016/j.scitotenv.2021.148400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Metal(loid) soil pollution resulting from mining activities is an important issue that has negative effects on the environment (soil acidification, lack of vegetation, groundwater pollution) and human health (cancer, chronic diseases). In the context of a phytostabilization process for the bioremediation of a mine soil highly contaminated by arsenic (As) and lead (Pb), a pot experiment was set up to study the effect of plant sowing and microbial inoculation on soil properties, metal(loid) (im)mobilization in soil and accumulation in plant, and plant growth. For this, mine soil was sown with endemic metallicolous Agrostis seeds and/or inoculated with endogenous microbial consortia previously selected for their As and Pb tolerance. Agrostis was able to develop on the contaminated mine soil and immobilized metal(loid)s through metal(loid) accumulation in the roots. Its growth was improved by microbial consortium inoculation. Moreover, microbial consortium inoculation increased soil organic content and electrical conductivity, and led to an increase in soil microbial activities (linked to C and P cycles); however, it also induced a metal(loid) mobilization. In conclusion, microbial consortium inoculation stimulated the growth of endemic Agrostis plants and thus ameliorated the phytostabilization of a former mine soil highly polluted by As and Pb. This study is thus a good example of the benefits of coupling several approaches such as phytostabilization and bioaugmentation for the bioremediation of former mine contaminated sites.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Caroline Michel
- BRGM, DEPA, Geomicrobiology and Environmental Monitoring Unit, BP 36009, 45060 Orléans Cedex 2, France
| | - Catherine Joulian
- BRGM, DEPA, Geomicrobiology and Environmental Monitoring Unit, BP 36009, 45060 Orléans Cedex 2, France
| | - Domenico Morabito
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Sylvain Bourgerie
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.
| |
Collapse
|
5
|
Grifoni M, Rosellini I, Petruzzelli G, Pedron F, Franchi E, Barbafieri M. Application of sulphate and cytokinin in assisted arsenic phytoextraction by industrial Cannabis sativa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47294-47305. [PMID: 33890221 DOI: 10.1007/s11356-021-14074-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Phytoextraction is currently investigated to effectively remediate soil contaminated by metals and provide highly competitive biomass for energy production. This research aimed to increase arsenic (As) removal from contaminated soil using industrial Cannabis sativa L., a suitable energy crop for biofuel production. Assisted phytoextraction experiments were conducted on a microcosm scale to explore the ability of two friendly treatments, sodium sulphate (SO4) and exogenous cytokinin (CK), in increasing As phytoextraction efficiency. The results showed that the treatments significantly increased As phytoextraction. Cytokinin was the most effective agent for effectively increasing translocation and the amount of As in aerial parts of C. sativa. In fact, the concentration of As in the shoots of CK-treated plants increased by 172% and 44% compared to untreated and SO4-treated plants, respectively. However, the increased As amount accumulated in C. sativa tissues due to the two treatments negatively affected plant growth. Arsenic toxicity caused a significant decrease in aerial C. sativa biomass treated with CK and SO4 of about 32.7% and 29.8% compared to untreated plants, respectively. However, for our research purposes, biomass reduction has been counterbalanced by an increase in As phytoextraction, such as to consider C. sativa and CK an effective combination for the remediation of As-contaminated soils. Considering that C. sativa has the suitable characteristics to provide valuable resources for bioenergy production, our work can help improve the implementation of a sustainable management model for As contaminated areas, such as phytoremediation coupled with bioenergy generation.
Collapse
Affiliation(s)
- Martina Grifoni
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy.
| | - Irene Rosellini
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Gianniantonio Petruzzelli
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Francesca Pedron
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Elisabetta Franchi
- Eni S.p.A., Renewable Energy & Environmental Laboratories, S. Donato Milanese, MI, Italy
| | - Meri Barbafieri
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| |
Collapse
|
6
|
Lebrun M, Nandillon R, Miard F, Le Forestier L, Morabito D, Bourgerie S. Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1491-1505. [PMID: 32424789 DOI: 10.1007/s10653-020-00592-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Metal(loid) soil pollution is a major environmental and health issue, requiring these areas to be remediated, for example through phytoremediation processes. In order to allow proper plant establishment and growth, amendments must be applied to highly contaminated and poorly fertile soils. Amendments are diverse, but many studies have shown the beneficial effects of biochar, manure and ochre, although studies on their combined use are scarce. Moreover, no studies have evaluated the effect of these combined amendments on endemic plant growth. Endemic plants growing on contaminated soils showed higher tolerance toward pollutants compared to plants coming from unpolluted areas. Therefore, the aim of the present study was to evaluate both the effect of amendments (single or combined) on the physicochemical properties of a former mining technosol, and the growth and metal(loid) accumulation ability of endemic Agrostis capillaris plants. This study revealed an improvement in the soil physicochemical properties following the application of amendments, with combined amendments showing better results than the application of just one. On top of this, Agrostis plants performed better on the amended technosols, especially the ones receiving manure, due to its high nutrient content. Finally, based on soil properties, plant growth and the metal(loid) accumulation profile, the use of biochar combined with manure seems to be the most appropriate treatment. Indeed, this treatment showed an improvement in both soil fertility and plant growth. Moreover, Agrostis plants grown in these conditions were among those showing higher root metal(loid) concentration associated with a lower translocation toward aerial parts.
Collapse
Affiliation(s)
- Manhattan Lebrun
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Romain Nandillon
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
- ISTO, UMR 7327, BRGM, BP 36009, 45060, Orléans, France
| | - Florie Miard
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Lydie Le Forestier
- CNRS, BRGM, ISTO, UMR 7327, Université d'Orléans, 45071, Orléans, France
| | - Domenico Morabito
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
7
|
Nandillon R, Lebrun M, Miard F, Gaillard M, Sabatier S, Morabito D, Bourgerie S. Contrasted tolerance of Agrostis capillaris metallicolous and non-metallicolous ecotypes in the context of a mining technosol amended by biochar, compost and iron sulfate. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1457-1475. [PMID: 31673918 DOI: 10.1007/s10653-019-00447-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Metal(loid) contamination of soil, resulting from the mining activities, is a major issue worldwide, due to its negative effects on the environment and health. Therefore, these contaminated soils need to be remediated. One realistic method is the assisted phytostabilization, which aims at establishing a vegetation cover on the soil that will reduce metal(loid) bioavailability and spreading through the prevention of wind erosion and water leaching. In addition, amendments are applied to improve soil conditions and ameliorate plant growth. In this goal, biochar and compost showed good results in terms of amelioration of soil fertility and reduction in lead bioavailability. However, they usually have a negative effect on arsenic. On the contrary, iron sulfate showed capacity to reduce arsenic mobility through interaction with its iron hydroxides. Finally, the choice of the appropriate plant species is crucial for the success of assisted phytostabilization. One good option is to use endemic species, adapted to the metal(loid) stress, with a fast growth and large shoot and root systems. The aims of this study were to (1) evaluate the effects of applying biochar, compost and iron sulfate, alone or combined, to a former mine soil on the soil properties and Agrostis capillaris growth, and (2) assess the difference between two Agrostis capillaris ecotypes, an endemic metallicolous ecotype and a non-metallicolous ecotype. Results of the mesocosm experiment showed that amendment application improved soil properties, i.e., reduced soil acidity, increased nutrient availability and lower metal(loid) stress, the best being the combination biochar-compost-iron sulfate. These ameliorations allowed a better plant growth. Finally, the metallicolous ecotype performed better in terms of growth than the non-metallicolous one and could thus be used in an assisted phytostabilization process on the former mine site.
Collapse
Affiliation(s)
- Romain Nandillon
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
- ISTO, UMR 7327, BRGM, BP 36009, 45060, Orléans, France
| | - Manhattan Lebrun
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090, Pesche, Italy
| | - Florie Miard
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Marie Gaillard
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
| | | | - Domenico Morabito
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
8
|
Dradrach A, Karczewska A, Szopka K. Arsenic Uptake by Two Tolerant Grass Species: Holcus lanatus and Agrostis capillaris Growing in Soils Contaminated by Historical Mining. PLANTS (BASEL, SWITZERLAND) 2020; 9:E980. [PMID: 32752240 PMCID: PMC7464124 DOI: 10.3390/plants9080980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/03/2022]
Abstract
The study focused on two grass species Holcus lanatus and Agrostis capillaris abundant in the sites of former As mining and processing in the Sudetes. Arsenic uptake from soils was examined to assess a risk associated with its accumulation in grass shoots and to check its dependence on soil fertilization. The research involved a field study and greenhouse experiment. In the field study, soil and plant samples were collected from 33 sites with 72-98,400 mg/kg total soil As. Arsenic uptake by grasses differed widely. Both species indicated a strategy typical for eliminators, although As concentrations in more than 50% of the shoot samples exceeded 4 mg/kg, a maximum permissible value for fodder. In the greenhouse experiment, commercial cultivars of both species were grown in five soils containing 394-19,600 mg/kg, untreated and fertilized. All seedlings died in the soil with highest total As, and considerable phytotoxicity was observed in other soils, particularly in nonfertilized ones. Fertilization resulted in the improvement of plant growth and reduction of As uptake except for Agrostis capillaris fertilized with manure. Further research should focus on identifying tolerant genotypes growing in extremely enriched sites and analysis of factors that will efficiently reduce As phytoaccumulation.
Collapse
Affiliation(s)
- Agnieszka Dradrach
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
| | - Anna Karczewska
- Institute of Soil Science and Environmental Protection, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland
| | - Katarzyna Szopka
- Institute of Soil Science and Environmental Protection, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland
| |
Collapse
|
9
|
Teodoro M, Hejcman M, Vítková M, Wu S, Komárek M. Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134710. [PMID: 31731151 DOI: 10.1016/j.scitotenv.2019.134710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 05/04/2023]
Abstract
Phytostabilization aims to immobilize contaminants at the rhizosphere level using the root system of adapted plants. In order to exploit wild grasses with potential for phytostabilization, a screening throughout the year was conducted at a site contaminated by Pb and Zn. Three plant species were chosen: Agrostis capillaris, Arrhenatherum elatius and Calamagrostis epigeios. Rhizospheric soil and biomass was used for chemical characterization. Above- and below-ground was analyzed. For each sample, arbuscular mycorrhiza fungi colonization was determined. The highest concentrations of Pb were found in the A. capillaris rhizosphere (3417 mg kg-1), and in A. elatius for Zn (3876 mg kg-1). CaCl2-extractable Zn in the rhizosphere of C. epigeios was the lowest and Pb was lower for A. elatius. CaCl2-extractable Cd was neither species-dependent nor time-dependent. Arsenic was not species-dependent. The fractionation of target elements did not show differences between separate sampling campaigns and Pb was the only element that showed differences during the year. A. capillaris showed the best capacity to take up elements. The colonization by AMF did not show significant differences for different sampling times, or interactions between time and species, however differences were found for different species, i.e., C. epigeios showed significantly lower colonization by arbuscular mycorrhiza fungi. Our results indicate that A. capillaris appears to be a good indigenous candidate for phytostabilization.
Collapse
Affiliation(s)
- Manuel Teodoro
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Michal Hejcman
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Songlin Wu
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic.
| |
Collapse
|
10
|
Ibañez S, Medina MI, Agostini E. Vicia: a green bridge to clean up polluted environments. Appl Microbiol Biotechnol 2019; 104:13-21. [PMID: 31735983 DOI: 10.1007/s00253-019-10222-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 01/06/2023]
Abstract
Vicia species, commonly known as vetches, include legume plants which nowadays can be found in many countries around the world. Their use to improve soil health and productivity is crucial in management schemes that make sustainable agriculture possible, but they can also play a part in the phytoremediation of polluted environments. Furthermore, they harbor a large community of rhizospheric microorganisms, such as biodegradative bacteria and plant growth-promoting rhizobacteria, which can help to increase phytoremediation efficiency. Their mutualistic association with Rhizobium sp. has also been proposed as an attractive bioremediation tool. Thus, Vicia species could make a remarkable difference in the ecological restoration of polluted soils, thanks to their dual role as cover crops and phytoremediator plants. This mini-review discusses recent advances in the use of Vicia. Challenges and opportunities connect with the application of these species will also be revised, as well as aspects that remain to be explored.
Collapse
Affiliation(s)
- Sabrina Ibañez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.,CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC, Río Cuarto, Córdoba, Argentina
| | - María I Medina
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.,CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina. .,CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
11
|
Arsenic accumulation in lettuce ( Lactuca sativa L.) and broad bean ( Vicia faba L.) crops and its potential risk for human consumption. Heliyon 2019; 5:e01152. [PMID: 30723830 PMCID: PMC6351573 DOI: 10.1016/j.heliyon.2019.e01152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/23/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
Exposure to arsenic (As) is considered one of the primary health risks humans face worldwide. This study was conducted to determine As absorption by broad beans and lettuce crops grown in soil with As contents and irrigated with water contaminated with this toxic element, in Pastos Chicos, Jujuy (Argentina). Total dry biomass (TDB) and total As were determined in soils, roots, leaves, pods and seeds. These data were used to determine several parameters, such as translocation (TF) and bioconcentration (BCF) factors, target hazard quotient (THQ), and carcinogenic risk (CR). Broad bean plants had the lowest biomass production when exposed to As in irrigation water and soil. Lettuce plants presented TDB reductions of 33.3 and 42.8% when grown in soil polluted with As, and in control soil under irrigation with contaminated water, respectively. The presence of this toxicant in broad bean seeds and lettuce leaves (edible parts) exceeded the limits established by Código Alimentario Argentino, i.e. 0.10 and 0.30 mg/kg, respectively. THQ values for lettuce leaves were higher than 1, the same as those for broad bean seeds when grown in soil with As contents and irrigated with arsenic-contaminated water, thus suggesting that consumers would run significant risks when consuming these vegetables. Furthermore, this type of exposure to As implied a CR that exceeded the acceptable 1 × 10-4 risk level. Hence, we may conclude that consuming lettuce and broad beans grown at the evaluated site brings about considerable health risks for local residents.
Collapse
|
12
|
Wang K, Qiao Y, Zhang H, Yue S, Li H, Ji X, Liu L. Influence of metal-contamination on distribution in subcellular fractions of the earthworm (Metaphire californica) from Hunan Province, China. J Environ Sci (China) 2018; 73:127-137. [PMID: 30290861 DOI: 10.1016/j.jes.2018.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Earthworms have the ability to accumulate of heavy metals, however, there was few studies that addressed the metals in earthworm at subcellular levels in fields. The distributions of metals (Cd, Cu, Zn, and Pb) in subcellular fractions (cytosol, debris, and granules) of earthworm Metaphire californica were investigated. The relationship between soil metals and earthworms were analyzed to explain its high plasticity to inhabit in situ contaminated soil of Hunan Province, south China. The concentration of Cd in subcellular compartments showed the same pattern as Cu in the order of cytosol > debris > granules. The distribution of Zn and Pb in earthworms indicated a similar propensity for different subcellular fractions that ranked as granules > debris > cytosol for Zn, and granules > cytosol > debris for Pb. The internal metal concentrations in earthworms increased with the soil metals (p<0.05). Significant positive correlations were found between soil Cd and Cd concentrations in cytosol and debris (p<0.01). Moreover, the soil Pb concentration significantly influenced the Pb concentrations in cytosol and debris (p<0.01), similar to that of Cd. The soil Cu concentrations was only associated with the Cu in granules (p<0.05). Soil Zn concentrations correlated with the Zn concentrations in each subcellular fraction (p<0.05). Our results provide insights into the variations of metals partitioning in earthworms at subcellular levels and the relationships of soil metals, which could be one of the detoxification strategies to adapt the long-term contaminated environment.
Collapse
Affiliation(s)
- Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Huiqi Zhang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shizhong Yue
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huafen Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xionghui Ji
- Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Longsheng Liu
- Hengyang Academy of Agricultural Sciences, Hengyang 421151, China
| |
Collapse
|
13
|
Wang K, Qiao Y, Li H, Zhang H, Yue S, Ji X, Liu L. Structural equation model of the relationship between metals in contaminated soil and in earthworm (Metaphire californica) in Hunan Province, subtropical China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:443-451. [PMID: 29605664 DOI: 10.1016/j.ecoenv.2018.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
Earthworms have the ability to take up heavy metals in soil and partition them in different subcellular compartments. In this study, we used a structural equation model (SEM) to investigate the two-step causal relationship between environmental availability (EA) and environmental bioavailability (EB) of heavy metals (Cd, Cu, Zn, and Pb), as reflected by their levels in soil fractions and in earthworms from field-contaminated areas in Southern China. In the SEM, the correlation between EA and EB reflected the bioavailability of Cd, Zn, and Pb. For Cd, the causal relationship between the latent variables EA and EB was reflected by DTPA fractions in soil as well as by earthworm internal and subcellular cytosol fractions. The extractable and oxidizable fractions of Zn in soil influenced Zn concentrations in the cytosol and debris. The DTPA and reducible Pb fractions were bioavailable to earthworm internal Pb concentrations and those in cytosol fractions. These results implied that the DTPA, extractable, oxidizable, or reducible fractions of different metals could be the bioavailable sources to earthworm internal metals and partitioned in their subcellular compartments.
Collapse
Affiliation(s)
- Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Huafen Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huiqi Zhang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shizhong Yue
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xionghui Ji
- Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Longsheng Liu
- Hengyang Academy of Agricultural Sciences, Hengyang 421151, China
| |
Collapse
|
14
|
Kofroňová M, Mašková P, Lipavská H. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. PLANTA 2018; 248:19-35. [PMID: 29736625 DOI: 10.1007/s00425-018-2906-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Monika Kofroňová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic.
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| |
Collapse
|
15
|
Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A. An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Sci Rep 2018; 8:6979. [PMID: 29725058 PMCID: PMC5934359 DOI: 10.1038/s41598-018-25306-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Endophytic microbes isolated from plants growing in contaminated habitats possess specialized properties that help their host detoxify the contaminant/s. The possibility of using microbe-assisted phytoremediation for the clean-up of Arsenic (As) contaminated soils of the Ganga-Brahmaputra delta of India, was explored using As-tolerant endophytic microbes from an As-tolerant plant Lantana camara collected from the contaminated site and an intermediate As-accumulator plant Solanum nigrum. Endophytes from L. camara established within S. nigrum as a surrogate host. The microbes most effectively improved plant growth besides increasing bioaccumulation and root-to-shoot transport of As when applied as a consortium. Better phosphate nutrition, photosynthetic performance, and elevated glutathione levels were observed in consortium-treated plants particularly under As-stress. The consortium maintained heightened ROS levels in the plant without any deleterious effect and concomitantly boosted distinct antioxidant defense mechanisms in the shoot and root of As-treated plants. Increased consortium-mediated As(V) to As(III) conversion appeared to be a crucial step in As-detoxification/translocation. Four aquaporins were differentially regulated by the endophytes and/or As. The most interesting finding was the strong upregulation of an MRP transporter in the root by the As + endophytes, which suggested a major alteration of As-detoxification/accumulation pattern upon endophyte treatment that improved As-phytoremediation.
Collapse
Affiliation(s)
- Gairik Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chinmay Saha
- Department of Endocrinology & Metabolism, Institute Of Post Graduate Medical Education & Research and SSKM Hospital, Room No. 9A, 4th Floor, Ronald Ross Building, 244, AJC Bose Road, Kolkata, 700020, India
| | - Nabanita Naskar
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
| | - Abhishek Mukherjee
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arghya Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Susanta Lahiri
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Anindita Seal
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
16
|
Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E59. [PMID: 29301332 PMCID: PMC5800158 DOI: 10.3390/ijerph15010059] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 11/16/2022]
Abstract
Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems.
Collapse
Affiliation(s)
- Ghulam Abbas
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (I.B.); (M.I.K.); (M.H.)
- MARUM and Department of Geosciences, University of Bremen, D-28359 Bremen, Germany
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (I.B.); (M.I.K.); (M.H.)
- MARUM and Department of Geosciences, University of Bremen, D-28359 Bremen, Germany
- Southern Cross GeoScience, Southern Cross University, Lismore 2480, Australia
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (I.B.); (M.I.K.); (M.H.)
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| | - Munawar Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (I.B.); (M.I.K.); (M.H.)
| | - Natasha
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| |
Collapse
|
17
|
Rehman MZU, Rizwan M, Ali S, Ok YS, Ishaque W, Nawaz MF, Akmal F, Waqar M. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:236-248. [PMID: 28551581 DOI: 10.1016/j.ecoenv.2017.05.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 05/20/2023]
Abstract
Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils.
Collapse
Affiliation(s)
- Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Wajid Ishaque
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fatima Akmal
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Maqsooda Waqar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
18
|
Muszyńska E, Hanus-Fajerska E, Piwowarczyk B, Augustynowicz J, Ciarkowska K, Czech T. From laboratory to field studies - The assessment of Biscutella laevigata suitability to biological reclamation of areas contaminated with lead and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:266-273. [PMID: 28432885 DOI: 10.1016/j.ecoenv.2017.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 05/13/2023]
Abstract
The aim of the work was to evaluate the usefulness of the in vitro multiplication of Biscutella laevigata calamine ecotype for in situ reclamation of post-flotation wastes polluted with Pb and Cd. The experiment was conducted on three steps: (i) plant shoots' production under in vitro condition, (ii) establishment of the material in greenhouse experiment, and finally (iii) field cultivation directly on the mining-waste heap of Olkusz Ore-Bearing Region, Poland. This region is known to be one of the most chemically-degraded area in central Europe. The laboratory-set in vitro analysis enabled to obtain the high-quality plant shoots, which multiply the most effectively (with growth tolerance index 130-150%) on medium containing 5.0μM CdCl2 and 0.5mM Pb(NO3)2. These plants were used for the next two ex vitro experiments. Several biometric and physiological analysis (i.e. of photosystem II activity Fv/Fm and PI, photosynthetic pigment contents) were done to indicate plant physiological status during these experiments. The main novelty of the work was to prove that in vitro-multiplied shoots of B. laevigata - the representative of native flora from Olkusz Ore-Bearing Region - can be successfully implemented in situ for the restoration of these degraded area. Moreover, the addition of sewage sludge as a source of organic compounds significantly improved plants' growth and development what is especially important due to the lack of other legal solutions for the management of the sewage sludge in some countries.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Warsaw University of Life Sciences (SGGW), Faculty of Agriculture and Biology, Department of Botany, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland.
| | - Ewa Hanus-Fajerska
- University of Agriculture, Faculty of Biotechnology and Horticulture, Institute of Plant Biology and Biotechnology, Unit of Botany and Plant Physiology, Al. 29-Listopada 54, 31-425 Krakow, Poland
| | - Barbara Piwowarczyk
- University of Agriculture, Faculty of Biotechnology and Horticulture, Institute of Plant Biology and Biotechnology, Unit of Botany and Plant Physiology, Al. 29-Listopada 54, 31-425 Krakow, Poland
| | - Joanna Augustynowicz
- University of Agriculture, Faculty of Biotechnology and Horticulture, Institute of Plant Biology and Biotechnology, Unit of Botany and Plant Physiology, Al. 29-Listopada 54, 31-425 Krakow, Poland
| | - Krystyna Ciarkowska
- University of Agriculture, Faculty of Agriculture and Economics, Institute of Soil Science and Agrophysics, Department of Soil Science and Soil Protection, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Tomasz Czech
- University of Agriculture, Center for Technology Transfer, Al. Mickiewicza 21, 31-120 Krakow, Poland
| |
Collapse
|
19
|
Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci (China) 2016; 46:16-27. [PMID: 27521932 DOI: 10.1016/j.jes.2015.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 05/23/2023]
Abstract
At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.
Collapse
Affiliation(s)
- TianTian Xiong
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique de Toulouse (INP-ENSAT), 31326 Castanet-Tolosan, France; Centre National de la Recherche Scientifique, EcoLab, 31326 Castanet-Tolosan, France.
| | - Annabelle Austruy
- Institut Ecocitoyen, Centre de Vie la Fossette RD 268, 13270 Fos-sur-Mer, France
| | - Antoine Pierart
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique de Toulouse (INP-ENSAT), 31326 Castanet-Tolosan, France; Centre National de la Recherche Scientifique, EcoLab, 31326 Castanet-Tolosan, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, F-31400 Toulouse, France
| | - Stéphane Mombo
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique de Toulouse (INP-ENSAT), 31326 Castanet-Tolosan, France; Centre National de la Recherche Scientifique, EcoLab, 31326 Castanet-Tolosan, France
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Universite J. Jaurès - Toulouse II, 31058 Toulouse Cedex 9, France.
| |
Collapse
|
20
|
Zouari M, Ben Ahmed C, Elloumi N, Bellassoued K, Delmail D, Labrousse P, Ben Abdallah F, Ben Rouina B. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:195-205. [PMID: 26946284 DOI: 10.1016/j.ecoenv.2016.02.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 05/22/2023]
Abstract
Proline plays an important role in plant response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effectiveness of exogenous proline (10 and 20 mM) in alleviating cadmium induced inhibitory effects in young olive plants (Olea europaea L. cv. Chemlali) exposed to two Cd levels (10 and 30 mg CdCl2 kg(-1) soil). The Cd treatment induced substantial accumulation of Cd in both root and leaf tissues and a decrease in gas exchange, photosynthetic pigments contents, uptake of essential elements (Ca, Mg and K) and plant biomass. Furthermore, an elevation of antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxydase) and proline content in association with relatively high amounts of hydrogen peroxide, thiobarbituric acid reactive substances and electrolyte leakage were observed. Interestingly, the application of exogenous proline alleviated the oxidative damage induced by Cd accumulation. In fact, Cd-stressed olive plants treated with proline showed an increase of antioxidant enzymes activities, photosynthetic activity, nutritional status, plant growth and oil content of olive fruit. Generally, it seems that proline supplementation alleviated the deleterious effects of young olive plants exposed to Cd stress.
Collapse
Affiliation(s)
- Mohamed Zouari
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Area, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia; Laboratory of Improvement of Olive Productivity and Fruit Trees, Olive Tree Institute of Sfax, Sfax, Tunisia; University of Limoges, Laboratory of Botany and Cryptogamy, Faculty of Pharmacy of Limoges, Limoges, France.
| | - Chedlia Ben Ahmed
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Area, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia; Laboratory of Improvement of Olive Productivity and Fruit Trees, Olive Tree Institute of Sfax, Sfax, Tunisia
| | - Nada Elloumi
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Area, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Khaled Bellassoued
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - David Delmail
- Institute of Chemical Sciences of Rennes, University of Rennes 1, Rennes, France
| | - Pascal Labrousse
- University of Limoges, Laboratory of Botany and Cryptogamy, Faculty of Pharmacy of Limoges, Limoges, France
| | - Ferjani Ben Abdallah
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Area, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Bechir Ben Rouina
- Laboratory of Improvement of Olive Productivity and Fruit Trees, Olive Tree Institute of Sfax, Sfax, Tunisia
| |
Collapse
|
21
|
Sadee BA, Foulkes ME, Hill SJ. A study of arsenic speciation in soil, irrigation water and plant tissue: A case study of the broad bean plant, Vicia faba. Food Chem 2016; 210:362-70. [PMID: 27211659 DOI: 10.1016/j.foodchem.2016.04.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022]
Abstract
Samples of soil, the broad bean plant, Vicia faba and irrigation water were collected from the same agricultural site in Dokan, in the Kurdistan region of Iraq. Total arsenic and arsenic speciation were determined in all materials by ICP-MS and HPLC-ICP-MS, respectively. Available arsenic (11%) was also determined within the soil, together with Cd, Cr, Cu, Ni, Zn, Fe and Mn. The concentrations of total arsenic were: soil (5.32μgg(-1)), irrigation water (1.06μgL(-1)), roots (2.065μgg(-1)) and bean (0.133μgg(-1)). Stems, leaves and pods were also measured. Inorganic As(V) dominated soil (90%) and root (78%) samples. However, organo-arsenic (MMA, 48% and DMA, 19%) was the more dominant species in the edible bean. The study provides an insight into the uptake, preferred disposal route, speciation changes and loss mechanism involved for arsenic with this food source.
Collapse
Affiliation(s)
- Bashdar A Sadee
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Mike E Foulkes
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Steve J Hill
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK.
| |
Collapse
|
22
|
Farooq MA, Gill RA, Ali B, Wang J, Islam F, Ali S, Zhou W. Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:350-66. [PMID: 26597736 DOI: 10.1007/s10646-015-1594-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 05/07/2023]
Abstract
Arsenic (As) is an environmental toxin pollutant that affects the numerous physiological processes of plants. In present study, two Brassica napus L. cultivars were subjected to various concentrations (0, 50, 100, and 200 µM) of As for 14 days, plants were examined for As subcellular distribution, photosynthesis parameters, oxidative stress, and ultrastructural changes under As-stress. Differential fraction analysis showed that significant amount of As was accumulated in the cell wall as compared to other organelles. Decline in photosynthetic efficiency under As stress was observed in term of reduced pigment contents and gas exchange parameters. Differential responses of antioxidants at both enzymatic and gene levels to higher As stress were more pronounced in cultivar ZS 758 as compared to Zheda 622. The qRT-PCR analysis showed that heat shock protein 90 (Hsp90) and metallothionein were over-expressed in As stressed B. napus plants. Disorganization of cell structure and the damages in different organelles were some of the obvious variations in cultivar Zheda 622 as compared to ZS 758.
Collapse
Affiliation(s)
- Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Bartoli G, Bottega S, Spanò C. Morpho-anatomical and physiological traits of Agrostis castellana living in an active geothermal alteration field. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Tripathi DK, Singh VP, Prasad SM, Dubey NK, Chauhan DK, Rai AK. LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 154:89-98. [PMID: 26700425 DOI: 10.1016/j.jphotobiol.2015.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022]
Abstract
The responses of wheat seedling treated with silicon (Si; 10 μM) and lead (Pb; 100 μM) for 7 days have been investigated by analyzing growth, Pb uptake, chlorophyll fluorescence, oxidative stress, antioxidants and nutrients regulation. Results indicated that, Pb significantly (P<0.05) declined growth of seedlings which was accompanied by uptake of Pb. Under Pb stress, fluorescence parameters: Fv/Fm ratio and qP were significantly (P<0.05) decreased while NPQ was increased. Si addition alleviated Pb-induced decrease in growth and alterations in photosynthesis, and also significantly (P<0.05) lowered Pb uptake. Under Pb treatment, oxidative stress markers: hydrogen peroxide and lipid peroxidation were enhanced while DPPH(•) scavenging capacity and total phenolic compounds (TPCs) were decreased significantly, however, Si addition improved the status of antioxidants. The non-protein thiols (NP-SH) showed enhanced level under Pb stress. Pb stress considerably disturbed status of the nutrients as decrease in Ca, P, Mg, Zn and Ni contents while an increase in K, S, B, Cu, Fe, Mn and Na contents were noticed. Si addition maintained status of all the nutrients remarkably. The quickest method of element analysis: LIBS spectra revealed significantly lower uptake of Pb in seedlings grown under Si and Pb combination and same was correlated with the data of AAS. Overall results pointed out that excess Pb uptake disturbed status of nutrients, photosynthetic performance, antioxidant capacity, hence severe oxidative damage to lipids occurred. Further, Si supplementation successfully regulated these parameters by inhibiting Pb uptake hence maintained growth of wheat seedlings. Similar pattern of data recorded by the LIBS, AAS and ICAP-AES confirmed that LIBS may be one of the promising and authentic tools to monitor the mineral and metal distribution in the plants without hampering or disturbing the environment due to its eco-friendly and non-invasive nature.
Collapse
Affiliation(s)
| | - Vijay Pratap Singh
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, Korea-497335, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| | - Nawal Kishore Dubey
- Center of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| | - Awadesh Kumar Rai
- Laser Spectroscopy Lab, Department of Physics, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
25
|
Lévêque T, Capowiez Y, Schreck E, Mombo S, Mazzia C, Foucault Y, Dumat C. Effects of historic metal(loid) pollution on earthworm communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:738-746. [PMID: 25616191 DOI: 10.1016/j.scitotenv.2014.11.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
The effects of metal(loid)s (Pb, Cd, Cu, Zn, As and Sb) from atmospheric fallout on earthworm communities were investigated in a fallow meadow located close to a 60-year-old lead recycling factory. We examined abundance and species diversity as well as the ratio of adult-to-juvenile earthworms, along five 140 m parallel transects. The influence of soil pollution on the earthworm community at the plot scale was put in context by measuring some physico-chemical soil characteristics (OM content, N content, pH), as well as total and bioavailable metal(loid) concentrations. Earthworms were absent in the highly polluted area (concentration from 30,000 to 5000 mg Pb·kg(-1) of dried soil), just near the factory (0-30 m area). A clear and almost linear relationship was observed between the proportion of juvenile versus mature earthworms and the pollution gradient, with a greater proportion of adults in the most polluted zones (only adult earthworms were observed from 30 to 50 m). Apporectodea longa was the main species present just near the smelter (80% of the earthworms were A. longa from 30 to 50 m). The earthworm density was found to increase progressively from five individuals·m(-2) at 30 m to 135 individuals·m(-2) at 140 m from the factory. On average, metal(loid) accumulation in earthworm tissues decreased linearly with distance from the factory. The concentration of exchangeable metal(loid)s in earthworm surface casts was higher than that of the overall soil. Finally, our field study clearly demonstrated that metal(loid) pollution has a direct impact on earthworm communities (abundance, diversity and proportion of juveniles) especially when Pb concentrations in soil were higher than 2050 mg·kg(-1).
Collapse
Affiliation(s)
- Thibaut Lévêque
- Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan, France; UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d'écologie fonctionnelle), Avenue de l'Agrobiopôle, BP 32607, 31326 Castanet-Tolosan, France; ADEME (French Agency for Environment and Energy Management), 20 avenue du Grésillé, BP 90406, 49004 Angers Cedex 01, France
| | - Yvan Capowiez
- INRA, UR 1115, Plantes et Systèmes Horticoles, Site Agroparc, 84914 Avignon cedex 09, France
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - Stéphane Mombo
- Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan, France; UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d'écologie fonctionnelle), Avenue de l'Agrobiopôle, BP 32607, 31326 Castanet-Tolosan, France
| | | | - Yann Foucault
- STCM, Société de Traitements Chimiques des Métaux, 30 Avenue Fondeyre, 31200 Toulouse, France
| | - Camille Dumat
- Certop, CNRS UMR 5044, Université Toulouse J. Jaurès, Toulouse, France
| |
Collapse
|
26
|
Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 2014; 5:4617. [PMID: 25099865 DOI: 10.1038/ncomms5617] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/08/2014] [Indexed: 11/08/2022] Open
Abstract
The enormous amount of environmental arsenic was a major factor in determining the biochemistry of incipient life forms early in the Earth's history. The most abundant chemical form in the reducing atmosphere was arsenite, which forced organisms to evolve strategies to manage this chemical species. Following the great oxygenation event, arsenite oxidized to arsenate and the action of arsenate reductases became a central survival requirement. The identity of a biologically relevant arsenate reductase in plants nonetheless continues to be debated. Here we identify a quantitative trait locus that encodes a novel arsenate reductase critical for arsenic tolerance in plants. Functional analyses indicate that several non-additive polymorphisms affect protein structure and account for the natural variation in arsenate reductase activity in Arabidopsis thaliana accessions. This study shows that arsenate reductases are an essential component for natural plant variation in As(V) tolerance.
Collapse
|