1
|
Peña SVDF, Brodeur JC. Effects of anthranilic diamide insecticides on metamorphosis in the common toad Rhinella arenarum (Hensel, 1867) at concentrations found in aquatic environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:1015-1029. [PMID: 39340788 DOI: 10.1080/15287394.2024.2407479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Anthranilic diamides (AD) are a modern class of insecticides used as alternatives to pyrethroids and neonicotinoids, particularly against lepidopteran pests. Despite their widespread use and presence in surface waters, little is known regarding their effects on amphibians. The aim of this study was to examine the effects of environmentally-relevant concentrations of AD insecticides chlorantraniliprole (CHLO) and cyantraniliprole (CYAN) on metamorphosis of the toad Rhinella arenarum. Tadpoles were exposed to CHLO or CYAN at concentrations ranging from 5 and 5000 µg/L from stage 27 until metamorphosis completion. Both insecticides produced a non-monotonic acceleration of the time required for individuals to progress through development and a decrease in the proportion of individuals completing metamorphosis, although a delay in metamorphosis was also observed at 5 µg/L of CHLO. Snout-vent length and body weight of metamorphosed toads were not markedly affected by either insecticide. CHLO was more toxic than CYAN, with a lowest observed effect concentration (LOEC) for CHLO on time to metamorphosis defined as 5 µg/L compared to 5000 µg/L for CYAN. The LOEC for reduced metamorphic success defined as 50 µg/L for CHLO compared to 500 µg/L for CYAN. As most effects occurred after stage 39, when metamorphosis depends upon thyroid hormones, it is conceivable that that AD insecticides act as endocrine disruptors. These findings suggest that contamination of surface waters with CHLO and CYAN may disrupt amphibian development in the wild and warrant further research to investigate the possibility of endocrine-disruption by ADs.
Collapse
Affiliation(s)
- Shirley Vivian Daniela Fonseca Peña
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julie Céline Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Oliveira WDL, Mota TFM, da Silva AP, Oliveira RDDL, Comelli CL, Orlandini ND, Zimmer DF, de Oliveira EC, Ghisi NDC. Does the atrazine increase animal mortality: Unraveling through a meta-analytic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175553. [PMID: 39153636 DOI: 10.1016/j.scitotenv.2024.175553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Atrazine is one of the most used herbicides in the world, although it is banned in several countries. Pollution of terrestrial and aquatic ecosystems represents a threat to non-target organisms, with various damages already reported in different species. However, there is controversy in studies on atrazine. The question of whether atrazine increases animal mortality is not yet clearly resolved. In this context, this study aimed to carry out a meta-analytic review, focusing on studies on environmental concentrations of the herbicide atrazine to evaluate its lethal effects on various animal species. We identified and analyzed 107 datasets through a selection process that used the Scopus, PubMed, and Web of Science (WoS) databases. A significant increase in the mortality rate of animals exposed to environmental concentrations of atrazine was observed. Nematodes, amphibians, molluscs, insects, and fish showed increased mortality after exposure to atrazine. Animals in the larval and juvenile stages showed greater susceptibility when exposed to different concentrations of atrazine. Furthermore, both commercial and pure formulations resulted in high mortality rates for exposed animals. Atrazine and other pesticides had a synergistic effect, increasing the risk of mortality in animals. There are still many gaps to be filled, and this study can serve as a basis for future regulations involving atrazine.
Collapse
Affiliation(s)
- Wesley de Lima Oliveira
- Graduate Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Thais Fernandes Mendonça Mota
- Universidade Estadual do Paraná - Unespar e Rede Estadual de Educação Básica do Paraná, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Ana Paula da Silva
- Programa de Pós-Graduação em Agroecossistemas (PPGSIS), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil; Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Rangel David de Lima Oliveira
- Pontifícia Universidade Católica de Campinas, Rua Professor Dr. Euryclides de Jesus Zerbini, 1516 - Parque Rural Fazenda Santa Cândida, Campinas, SP 13087-571, Brazil
| | - Camila Luiza Comelli
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | | | - Douglas Fernando Zimmer
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Elton Celton de Oliveira
- Programa de Pós-Graduação em Agroecossistemas (PPGSIS), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil.
| |
Collapse
|
3
|
Aguzie IO, Oriaku CU, Agbo FI, Ukwueze VO, Asogwa CN, Ikele CB, Aguzie IJ, Ossai NI, Eyo JE, Nwani CD. Single and mixture exposure to atrazine and ciprofloxacin on Clarias gariepinus antioxidant defense status, hepatic condition and immune response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104523. [PMID: 39089401 DOI: 10.1016/j.etap.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Atrazine (ATRA) and ciprofloxacin (CPRO) are widely detected, persistent and co-existing aquatic pollutants. This study investigated effects of 14-day single and joint ATRA and CPRO exposure on juvenile Clarias gariepinus. Standard bioassay methods were used to determine responses of oxidative stress, hepatic condition, and immunological biomarkers on days 7 and 14. Seven groups were used: Control, CPROEC, CPROSubl, ATRAEC, ATRASubl, CPROEC+ATRAEC, and CPROSubl+ATRASubl. The test substances caused decreased activity of superoxide dismutase, catalase, and glutathione peroxidase. Lipid peroxidation was elevated, especially in CPRO-ATRA mixtures. Serum aminotransferases (ALT, and AST), and alkaline phosphatase activity increased significantly. Total protein, albumin, total immunoglobulin, and respiratory burst decreased significantly. Therefore, single and joint exposure to CPRO and ATRA poses adverse consequences on aquatic life.
Collapse
Affiliation(s)
- Ifeanyi O Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria.
| | | | - Faith I Agbo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Vera O Ukwueze
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chinweike N Asogwa
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chika B Ikele
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Ijeoma J Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Nelson I Ossai
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Joseph E Eyo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Christopher D Nwani
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| |
Collapse
|
4
|
Khoshnamvand M, You D, Xie Y, Feng Y, Sultan M, Pei DS, Fu A. Alleviating binary toxicity of polystyrene nanoplastics and atrazine to Chlorella vulgaris through humic acid interaction: Long-term toxicity using environmentally relevant concentrations. CHEMOSPHERE 2024; 358:142111. [PMID: 38663677 DOI: 10.1016/j.chemosphere.2024.142111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
In this study, microalgae Chlorella vulgaris (C. vulgaris) were simultaneously exposed to environmental concentrations of amino-functionalized polystyrene nanoplastics (PS-NH2; 0.05, 0.1, 0.2, 0.3 and 0.4 mg/L) and the world's second most used pesticide, the herbicide atrazine (ATZ; 10 μg/L), in the absence and presence of humic acid (HA; 1 mg/L) for 21 days. Due to the low concentrations of PS-NH2, the majority of them could not cause a significant difference in the end-points of biomass, chlorophylls a and b, total antioxidant, total protein, and superoxide dismutase and malondialdehyde compared to the control group (p > 0.05). On the other hand, by adding ATZ to the PS-NH2, all the mentioned end-point values showed a considerable difference from the control (p < 0.05). The exposure of PS-NH2+ATZ treatments to the HA could remarkably reduce their toxicity, additionally, HA was able to decrease the changes in the expression of genes related to oxidative stress (e.g., superoxide dismutase, glutathione reductase, and catalase) in the C. vulgaris in the most toxic treatment group (e.g., PS-NH2+ATZ). The synergistic toxicity of the PS-NH2+ATZ group could be due to their enhanced bioavailability for algal cells. Nevertheless, the toxicity alleviation in the PS-NH2+ATZ treatment group after the addition of HA could be due to the eco-corona formation, and changes in their zeta potential from positive to negative value, which would increase their electrostatic repulsion with the C. vulgaris cells, in such a way that HA also caused a decrease in the formation of C. vulgaris-NPs hetero-aggregates. This research underscores the complex interplay between PS-NH2, ATZ, and HA in aquatic environments and their collective impact on microalgal communities.
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Dongmei You
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yixiao Feng
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
5
|
Khoshnamvand M, You D, Xie Y, Feng Y, Sultan M, Wei X, Li J, Fu A, Pei DS. Presence of humic acid in the environment holds promise as a potential mitigating factor for the joint toxicity of polystyrene nanoplastics and herbicide atrazine to Chlorella vulgaris: 96-H acute toxicity. CHEMOSPHERE 2024; 357:142061. [PMID: 38642775 DOI: 10.1016/j.chemosphere.2024.142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Dongmei You
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yixiao Feng
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xingyi Wei
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jingli Li
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Acquaroni M, Cresto FN, Pérez Coll C, Svartz G. Toxicity assessment of a tebuconazole-based fungicide on the embryo-larval development of the common south American toad Rhinella arenarum. ENVIRONMENTAL TOXICOLOGY 2024; 39:1968-1977. [PMID: 38069580 DOI: 10.1002/tox.24081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/01/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
Agrochemicals cause diverse effects on aquatic communities, and amphibian species are particularly threatened due the high susceptibility to contamination. Present study evaluates the toxicity of a widely used fungicide tebuconazole (Trigal®) by the assessment of mortality and developmental alterations at acute, subchronic, and chronic exposure during the embryo-larval development of the South American toad Rhinella arenarum. Also, the sensitivity of the different embryonic stages was evaluated with 24-h pulse exposure treatments. The results demonstrated that larvae were more sensitive than embryos at acute exposure (LC50-24 and 96 h = 74.62, 31.92 mg/L and 24.27, 16.81 mg/L for embryos and larvae, respectively). Nevertheless, embryos toxicity increased significantly achieving a sensitivity very similar to larvae at chronic exposure (LC50-168 and 504 h = 13.31, 4.35 mg/L and 14.47, 6.83 mg/L for embryos and larvae, respectively). Embryos exhibited several sublethal effects from 5 mg/L at 96 h onwards, such as delayed development, reduce body size, edemas, tail/axial flexures, weakness, and absence of movements. The teratogenic index at 96 h was 10.13, indicating the severe teratogenic potential of the fungicide. 24-h pulse exposure treatments showed an increased sensitivity in intermediate stages as S.11, S.18, S20, and S.23 (NOEC-96 h = 100, 200, 75, and 20 mg/L, respectively), while stage S.25 was the most sensitive to the fungicide (NOEC-96 h = 5 mg/L). About metamorphic process, tebuconazole caused an acceleration of metamorphosis at the lowest concentration (0.001 mg/L), but also an increase in mortality and in addition, significant differences in the weight in all treatments. The results obtained throughout this work indicate that tebuconazole cause several adverse effects in Rhinella arenarum embryo-larval development.
Collapse
Affiliation(s)
- Mercedes Acquaroni
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Nuñez Cresto
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristina Pérez Coll
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriela Svartz
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Atteia HH. A combination of silymarin and garlic extract enhances thyroid hormone activation and body metabolism in orally intoxicated male rats with atrazine: Impact on hepatic iodothyronine deiodinase type 1. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105801. [PMID: 38458692 DOI: 10.1016/j.pestbp.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Atrazine is a widely applied herbicide to improve crop yield and maintain general health. It has been reported to impair thyroid function and architecture in experimental animals. Alterations in thyroid hormones disrupt normal body function and metabolism. Silymarin, a hepatoprotective flavonolignan, was found to improve thyroid function and body metabolism. Additionally, garlic displays several protective effects on body organs. Therefore, this study explored the prophylactic impact of natural compounds comprising silymarin and garlic extract on disrupted thyroid function, hepatic iodothyronine deiodinase type 1, and metabolic parameters in atrazine-intoxicated male rats. We found that daily pre- and co-treatment of atrazine-intoxicated male rats with silymarin (100 mg/kg, p.o) and/or garlic extract (10 mg/kg, p.o) significantly improved thyroid activation and hepatic functionality as evidenced by the re-establishment of T3, T3/T4, and TSH values as well as ALT and AST activities. Interestingly, individual or concurrent supplementation of the atrazine group with silymarin and garlic extract prevented the down-regulation in hepatic iodothyronine deiodinase type 1. These effects were coupled with the repletion of serum and hepatic antioxidants and the amelioration of lipid peroxidation. In addition, current natural products markedly alleviated weight gain, dyslipidemia, hyperglycemia, glucose intolerance, and insulin resistance. Notably, a cocktail of silymarin and garlic extract exerted superior protection against atrazine-triggered deterioration of thyroid, hepatic, and metabolic functioning to individual treatments. Present findings pinpoint the prophylactic and synergistic influence of silymarin and garlic extract combinatorial regimen on thyroid activation and body metabolism via enhancing antioxidant potential, maintaining hepatic function, and iodothyronine deiodinase type 1.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Sharkia Gov., Egypt.
| |
Collapse
|
8
|
da Silva JA, Martins MDF, Guedes TDA, Collares GL, Primel EG, Corrêa MG, Martins CDMG. The use of integrative tools and multiple models for aquatic environmental quality assessment: a case study of the Mirim Lagoon, Southern Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:200. [PMID: 38270819 DOI: 10.1007/s10661-024-12336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
This study performed toxicity assays with microalgae, microcrustaceans, and fish as well as evaluated biochemical and behavioral biomarkers in fish and microcrustaceans to assess the quality of the surface water of Mirim Lagoon, which belongs to one of the largest hydrographic basins in the world, located in southern Brazil. Three distinct sampling periods were chosen (January, March, and June 2022) based on the rice plantation dynamics which is the main activity surrounding the lagoon. In January, the plantation is irrigated; in March, the water is drained into the Mirim Lagoon, and July is the off-season. Concerning toxicity tests, there was significant inhibition in microalgae growth when exposed to water collected in March, but no mortality was observed for Ceriodaphia dubia, Daphnia magna, and Danio rerio. Regarding biomarkers, behavioral variables contributed more to the higher values of the Integrated Biomarker Response (IBR) index for both D. magna and D. rerio, in March. The Redundancy Analysis (RDA) indicated a correlation between the biomarkers for both organisms and abiotic parameters, mainly nutrients (total phosphorus and total nitrogen), thermotolerant coliforms, total solids, and turbidity. Spatially, there was no difference during monitoring, but the most significant ecotoxicological effects were observed in March. Multivariate analysis and the IBR index proved to be useful tools for monitoring of water bodies such as Mirim Lagoon.
Collapse
Affiliation(s)
- Josiane Araujo da Silva
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Av, Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Mariana da Fountoura Martins
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Thays de Andrade Guedes
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Gilberto Loguercio Collares
- Centro de Desenvolvimento Tecnológico, Núcleo de Ensino, Pesquisa e Extensão em Hidrometria e Sedimentologia para o Manejo de Bacias Hidrográficas (NEPE-HIDROSEDI), Universidade Federal de Pelotas, Rua Gomes Carneiro 01, Pelotas, RS, 96010-610, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Programa de Pós Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Marília Guidotti Corrêa
- Centro de Desenvolvimento Tecnológico, Núcleo de Ensino, Pesquisa e Extensão em Hidrometria e Sedimentologia para o Manejo de Bacias Hidrográficas (NEPE-HIDROSEDI), Universidade Federal de Pelotas, Rua Gomes Carneiro 01, Pelotas, RS, 96010-610, Brazil
- Escola de Química e Alimentos, Programa de Pós Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Camila de Martinez Gaspar Martins
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Av, Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
9
|
da Silva PR, Borges-Martins M, Oliveira GT. Impacts of isolated or mixed Roundup® Original DI and Boral® 500 SC herbicides on the survival and metamorphosis of Melanophryniscus admirabilis tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106715. [PMID: 37820410 DOI: 10.1016/j.aquatox.2023.106715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
The bufonid species Melanophryniscus admirabilis is restricted to a single location in the southern Atlantic Forest, Brazil. Although the site of occurrence of M. admirabilis is covered with native forest and it is not directly exposed to pesticides application, the area is surrounded by agricultural activity. Our objectives were to evaluate possible alterations in morphological parameters (body mass, snout-vent length, and body index), metamorphosis (time to reach Gosner stages 42, 46 and to complete metamorphosis), and survival of M. admirabilis exposed to isolated Roundup® Original DI (R1: 234 and R2: 2340 µg.L-1 of glyphosate) and Boral® 500 SC, (B1: 130 and B2: 980 µg.L-1 of sulfentrazone) or mixed (R1+B1, R2+B1, R1+B2, R2+B2). Spawns of M. admirabilis were collected in natural lakes in the municipality of Arvorezinha and taken to laboratory cultivation. After the tadpoles acquired free swimming, the animals were acclimated for five days and fed ad libitum. The aquariums were contaminated with herbicides on the sixth day of cultivation, and the animals stayed in these aquariums for four days. Afterwards, the tadpoles were transferred to aquariums with clean water and monitored until metamorphosis (Gosner stage 46), when they were weighed, measured (snout-cloacal length) and cryoeuthanized. We observed no alterations in morphological parameters; however, survival was reduced in exposed groups (mortality index: 71 % in R2 and 29-64 % in mixed groups), suggesting energy allocation for metamorphosis at the expense of survival. Boral did not alter metamorphosis time. Roundup isolated and mixed with Boral altered the timing of Gosner stages 42 and 46 and reduced metamorphosis time, suggesting endocrine disruption. Thus, monitoring the presence and limiting the use of these pesticides in the area where M. admirabilis occurs can be crucial for conservation strategies.
Collapse
Affiliation(s)
- Patrícia Rodrigues da Silva
- Conservation Physiology Laboratory, Morphological Sciences Department, Postgraduate Program in Ecology and Evolution of Biodiversity, School of Health Sciences and Life, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Ipiranga ave. 6681 Building 12 C, Porto Alegre, Brazil
| | - Márcio Borges-Martins
- Herpetology Laboratory, Zoology Department, Postgraduate Program in Animal Biology, Biological Sciences Institute, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Guendalina Turcato Oliveira
- Conservation Physiology Laboratory, Morphological Sciences Department, Postgraduate Program in Ecology and Evolution of Biodiversity, School of Health Sciences and Life, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Ipiranga ave. 6681 Building 12 C, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Zhang X, Sai L, Zhang W, Kan X, Jia Q, Bo C, Yin W, Shao H, Han M, Peng C. M 6A transcriptome-wide map of circRNAs identified in the testis of normal and AZ-treated Xenopus laevis. Genes Environ 2023; 45:23. [PMID: 37658417 PMCID: PMC10472591 DOI: 10.1186/s41021-023-00279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Evidence showed that N6-methyladenosine (m6A) is strongly associated with male germline development. However, the role of m6A methylation on circRNAs in amphibians remains unknown. In this study, we conducted m6A sequencing analysis to explore the m6A transcriptome-wide profile of circRNAs in testis tissues of Xenopus laevis (X. laevis) with and without treatment with 100 µg/L atrazine (AZ). RESULTS The analysis showed that m6A modification of circRNAs enriched in sense overlapping in testes of X. laevis. We identified the differential m6A modification sites within circRNAs in testes of AZ-exposed X. laevis and compared that with animals from control group. The results showed that a total of 1507 methylated m6A sites was induced by AZ (760 up-methylated and 747 down-methylated). The cross-analysis exhibited a negative correlation of differentially methylated m6A peaks and circRNAs expression level. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that 20 key pathways may be involved in the mechanism of testis damage of AZ-exposed X. laevis. CONCLUSIONS These findings indicated that differentially m6A-methylated circRNAs may play important roles in abnormal testis development of AZ-exposed X. laevis. This study is the first report about a map of m6A modification of circRNAs in male X. laevis and provides a basis for further studying on the function and mechanism of m6A methylation of circRNAs in the testis development of amphibian.
Collapse
Affiliation(s)
- Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Xingzheng Kan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Eusyn Institute of Health Science, Brisbane, QLD, 4102, Australia
| |
Collapse
|
11
|
Gagneten AM, Regaldo L, Carriquiriborde P, Reno U, Kergaravat SV, Butinof M, Agostini H, Alvarez M, Harte A. Atrazine characterization: An update on uses, monitoring, effects, and environmental impact, for the development of regulatory policies in Argentina. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:684-697. [PMID: 36165001 DOI: 10.1002/ieam.4690] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATZ) is the third most widely used herbicide in Argentina (10 000 t year-1 ) and is approved for sugar cane, flax, corn, sorghum, and tea. An assessment of the ATZ environmental impacts was conducted at the request of the Ministry of Environment and Sustainable Development of Argentina. A review of 541 national and international technical and scientific reports and a survey among agricultural technicians, applicators, and producers was done. The survey revealed that 94% of ATZ applications are terrestrial and use diversion exists, associated mainly with soybean cultivation. Atrazine was reported at high frequencies (50%-100%) in surface and groundwater, sediments, and soils, sometimes exceeding permitted limits. Several sublethal effects induced by ATZ on invertebrate and vertebrate species were found, sometimes at concentrations lower than those in water quality guidelines (<3 µg L-1 ) or the environmental concentrations found in Argentina. Available epidemiological or human health studies of local populations are extremely scarce. This assessment also demonstrated that herbicides are ubiquitous in the environment. The investigation highlights the need for further studies assessing the adverse effects of ATZ on local species, ecosystems, and human health. Therefore, the precautionary principle is recommended to promote better application standards and product traceability to reduce volumes entering the environment and to avoid use deviation. In addition, this work concluded that there is a need for reviewing the toxicological classification, establishing buffer zones for ATZ application, introducing specific management guidelines, and expanding local studies of toxicity, ecotoxicity, and human epidemiology for environmental and health risk assessments. This study could also serve as a preliminary risk evaluation for establishing a final regulatory action and for considering ATZ inclusion in Annex III of the Rotterdam Convention. Finally, the requirements to consider its inclusion in Annex A (Elimination) or B (Restriction) of the Stockholm Convention were evaluated and discussed, and information on the potential of long-range transport was the only criterion with no information to consider. Integr Environ Assess Manag 2023;19:684-697. © 2022 SETAC.
Collapse
Affiliation(s)
- Ana M Gagneten
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luciana Regaldo
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Pedro Carriquiriborde
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Centro de Investigaciones del Medioambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata-CONICET, La Plata, Argentina
| | - Ulises Reno
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina V Kergaravat
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Butinof
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernan Agostini
- Dirección Nacional de Sustancias y Productos Químicos, Secretaría de Control y Monitoreo Ambiental, Ministerio de Ambiente y Desarrollo Sostenible de la Nación (MAyDS), Ciudad Autónoma de Buenos Aires, Argentina
| | - Melina Alvarez
- Dirección Nacional de Sustancias y Productos Químicos, Secretaría de Control y Monitoreo Ambiental, Ministerio de Ambiente y Desarrollo Sostenible de la Nación (MAyDS), Ciudad Autónoma de Buenos Aires, Argentina
| | - Agustin Harte
- Dirección Nacional de Sustancias y Productos Químicos, Secretaría de Control y Monitoreo Ambiental, Ministerio de Ambiente y Desarrollo Sostenible de la Nación (MAyDS), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
12
|
Carriquiriborde P, Fernandino JI, López CG, Benito EDS, Gutierrez-Villagomez JM, Cristos D, Trudeau VL, Somoza GM. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106366. [PMID: 36459853 DOI: 10.1016/j.aquatox.2022.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a frequent contaminant in freshwater ecosystems within agricultural regions. The capacity of this herbicide to interfere with the vertebrate endocrine system is broadly recognized, but the mechanisms and responses usually differ among species. In this study, ATZ effects on hypothalamus-pituitary-gonadal (HPG) axis key genes expression and early gonadal development were evaluated in Odontesthes bonariensis larvae waterborne exposed during the gonadal differentiation period. Fish were treated to 0, 0.7, 7.0, and 70 µg ATZ/L at 25 °C from the 2nd to 6th week after hatching (wah), and a group was kept in clean water until the 12th wah. Parallelly, a group was submitted to 0.05 µg/L of ethinylestradiol (EE2) as a positive estrogenic control. From each treatment, eight larvae were sampled at 6 wah for gene expression analysis and twelve larvae at 12 wah for phenotypic sex histological determination. The expression of gnrh1, lhb, fshb, and cyp19a1b was assessed in the head, and the ones of amha, 11βhsd2, and cyp19a1a in the trunk. Fish growth was significantly higher in fish exposed to 7 and 70 µg ATZ/L in the 6 wah, but the effect vanished at the 12 wah. The expression of lhb was upregulated in both sex larvae exposed from 7 µg ATZ/L. However, a dimorphic effect was induced on cyp19a1a expression at 70 µg ATZ/L, up or downregulating mRNA transcription in males and females, respectively. Delayed ovarian development and increased number of testicular germ cells were histologically observed from 7 to 70 µg ATZ/L, respectively, and a sex inversion (genotypic male to phenotypic female) was found in one larva at 70 µg ATZ/L. The lhb expression was also upregulated by EE2, but the cyp19a1a expression was not affected, and a complete male-to-female reversal was induced. Further, EE2 upregulated gnrh1 in females and cyp19a1b in both sexes, but it did not alter any assessed gene in the trunk. In conclusion, ATZ disrupted HPG axis physiology and normal gonadal development in O. bonariensis larvae at environmentally relevant concentrations. The responses to ATZ only partially overlapped and were less active when compared to the model estrogenic compound EE2.
Collapse
Affiliation(s)
- Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Carina G López
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Eduardo de San Benito
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | | | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Castelar, Buenos Aires Argentina
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, K1S 6N5, Canada
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina.
| |
Collapse
|
13
|
Souza VVD, Souza TDS, Campos JMSD, Oliveira LAD, Ribeiro YM, Hoyos DCDM, Xavier RMP, Charlie-Silva I, Lacerda SMDSN. Ecogenotoxicity of environmentally relevant atrazine concentrations: A threat to aquatic bioindicators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105297. [PMID: 36549823 DOI: 10.1016/j.pestbp.2022.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a herbicide that is frequently present in surface waters and may result in damage to the health of various organisms, including humans. However, most scientific literature reports injuries caused by ATZ at high concentrations, which are not found in the environment. Therefore, the scope of this study was to investigate the impacts of realistic concentrations of ATZ found in surface waters (1, 2, 5, 10, 15 and 20 μg/L) using the bioindicators Allium cepa, Daphnia magna and zebrafish (Danio rerio). ATZ elicited a genotoxic effect in A. cepa, manifested by the induction of chromosomal aberrations, and a mutagenic effect with increased incidence of micronuclei formation, promotion of cell death and reduction in nuclear size revealed by flow cytometry analysis. D. magna exposed to 10, 15 and 20 μg/L of ATZ showed significant reduction in body size after 21 days, delayed first-brood release, decreased egg production and total offspring, as well as swimming behavioral changes. ATZ exposure promoted physiological and developmental alterations in zebrafish embryos, including an increased spontaneous movement rate, which led to premature hatching at all concentrations investigated. Increase in total body length, decrease of the yolk sac area, pericardial edema and higher heart rate were also detected in ATZ-treated zebrafish. In summary, environmentally relevant concentrations of ATZ can induce substantial alterations in the three bioindicators investigated. This study evidences the deleterious effects of ATZ on three aquatic bioindicators employing established and current techniques, and may contribute to elucidate the risks caused by this widely used herbicide even at low concentrations and short-to-medium-term exposure.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana da Silva Souza
- Laboratory of Ecotoxicology, Department of Biology, Federal University of Espírito Santo, Alegre, Brazil
| | | | - Luiza Araújo de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves Moreira Ribeiro
- Laboratory of Ichthyohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
14
|
Fonseca Peña SVD, Natale GS, Brodeur JC. Toxicity of the neonicotinoid insecticides thiamethoxam and imidacloprid to tadpoles of three species of South American amphibians and effects of thiamethoxam on the metamorphosis of Rhinella arenarum. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1019-1039. [PMID: 36424857 DOI: 10.1080/15287394.2022.2147113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study examined the acute and chronic toxicity of the neonicotinoid insecticides imidacloprid (IMI) and thiamethoxam (TIA) on the neotropical amphibian species Rhinella arenarum, Rhinella fernandezae and Scinax granulatus. The median lethal concentration after 96 hr exposure (96 hr-LC50) ranged between 11.28 and >71.2 mg/L amongst all species and development stages tested, indicating that these pesticides are not likely to produce acute toxicity in the wild. The subchronic toxicity was also low, with 21 day-LC50 values ranging between 27.15 and >71.2 mg/L. However, tadpoles of Rhinella arenarum exposed to thiamethoxam from stage 27 until completion of metamorphosis presented a significantly lower metamorphic success rate together with a smaller size at metamorphosis, starting from the lowest concentration tested. Although a number of studies previously examined the effects of neonicotinoids on amphibian tadpoles, these investigations focused on the time to metamorphosis and reported a variety of results including retardation, acceleration or lack of effect. Here, data demonstrated that thiamethoxam predominantly impacts metamorphosis through reduction of the transformation success and body weight, rather than by affecting the timings of metamorphosis. By closely monitoring progression of tadpoles through the different stages, impairment of metamorphosis was demonstrated to occur during the transition from stage 39 to 42, suggesting an effect on the thyroid system. An asymmetry in the length of the arms was also observed in metamorphs treated with thiamethoxam. Overall, these results indicate that thiamethoxam, and conceivably other neonicotinoids, have the potential to significantly impair metamorphosis of amphibians and diminish their performance and survival in the wild.
Collapse
Affiliation(s)
- Shirley Vivian Daniela Fonseca Peña
- Instituto de Recursos Biológicos Centro de Investigaciones de Recursos Naturales (CIRN) Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Guillermo Sebastián Natale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Centro de Investigaciones del Medio Ambiente (CIM) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Julie Céline Brodeur
- Instituto de Recursos Biológicos Centro de Investigaciones de Recursos Naturales (CIRN) Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
15
|
Horzmann KA, Lin LF, Taslakjian B, Yuan C, Freeman JL. Anxiety-related behavior and associated brain transcriptome and epigenome alterations in adult female zebrafish exposed to atrazine during embryogenesis. CHEMOSPHERE 2022; 308:136431. [PMID: 36126741 DOI: 10.1016/j.chemosphere.2022.136431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/08/2023]
Abstract
Atrazine often contaminates drinking water sources, exceeding the maximum contaminant level established by the US Environmental Protection Agency at 3 parts per billion (ppb; μg/L). Atrazine is linked to endocrine disruption, neurotoxicity, and cancer, with delayed health effects observed after developmental exposure in line with the developmental origins of health and disease (DOHaD) hypothesis. To test the hypothesis that embryonic atrazine exposure induces delayed neurotoxicity in adult female zebrafish (Danio rerio), embryos were exposed to 0, 0.3, 3, or 30 ppb atrazine during embryogenesis (1-72 h post fertilization (hpf)) and raised to adults with no additional atrazine exposure. Behavioral outcomes were tested through a novel tank test, light-dark box, and open field test and indicated female zebrafish had more anxious phenotypes at 9 months post fertilization (mpf). Female brain transcriptomic analysis at 9 mpf found altered gene expression pathways related to organismal injury and cancer with beta-estradiol and estrogen receptor as top upstream regulators. These results were compared to 9 mpf male and 6 mpf female groups with the same atrazine embryonic exposures and showed differences in specific genes that were altered, but similarities in top molecular pathways. Molecular pathways associated with behavior were observed only in the 6 mpf transcriptomic profiles, suggesting prediction of observed behavioral outcomes at 9 mpf. The expression of genes associated with serotonin neurotransmission was also evaluated at 14 mpf to determine persistence; however, no significant changes were observed. Brain global methylation in 12 mpf zebrafish observed an increased percent 5 mC in females with embryonic 0.3 ppb atrazine exposure. Finally, the body length, body weight, and brain weight were determined at 14 mpf and were altered in all treatment groups. These results indicate that embryonic atrazine exposure does cause delayed neurotoxicity within the DOHaD framework, which is significant given atrazine's presence and persistence in the environment.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn AL, 36849, USA.
| | - Li F Lin
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Boghos Taslakjian
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Windle S, McMurry S, Brain R, Maul J, Wolf J, Belden J. Atrazine and estradiol effects on development of Acris blanchardi (Blanchard's cricket frog) exposed in outdoor enclosures. PEST MANAGEMENT SCIENCE 2022; 78:4963-4974. [PMID: 36054315 DOI: 10.1002/ps.7119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The herbicide atrazine has been proposed as a potential endocrine disrupting compound (EDC) for amphibians. Using atrazine concentrations below or at those typically found in surface waters (0.5, 5.0, 50 μg/L), we exposed Acris blanchardi (Blanchard's cricket frog) larvae throughout development until metamorphosis (i.e. Gosner stages 26-45). An additional 50 μg/L treatment (50s μg/L) was utilized where supplemented algae was added to control for indirect atrazine effects from reduced food sources. In addition to atrazine, experimental groups also included a negative control and two positive controls, 17β-estradiol (E2) at 2.3 and 25 μg/L. At 60 days post-metamorphosis, A. blanchardi metamorphs were euthanized for analysis of gross and histopathological development. RESULTS Atrazine did not significantly influence mortality (mean recovery of 54% across treatments), sex ratio, body mass (BM), snout-vent length (SVL), gonad size, nor gonad development of A. blanchardi. Females exposed to 50s μg/L atrazine had 29% less mass, were 10% shorter, and had a 29% lower mean ovary area (mm2 ) as compared to negative controls, suggesting algae enrichment had a significant negative effect. Males exposed to estradiol (25 μg/L) showed an increased level of oviduct development. Ovary area was also significantly influenced by estradiol treatment at 2.3 and 25 μg/L. CONCLUSION Overall, estradiol had much less effect than predicted based on other model species (e.g. Xenopus laevis). Development of A. blanchardi, overall, was not affected by long-term exposure to environmentally relevant concentrations of atrazine. However, this species also was largely insensitive to exogenous estradiol in this test system. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shauni Windle
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Scott McMurry
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | | | | | - Jeffrey Wolf
- Experimental Pathology Laboratories, Inc., Sterling, VA, USA
| | - Jason Belden
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
17
|
Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, Mohapatra A, Pandey V, Rana N, Cunill JM. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front Microbiol 2022; 13:962619. [PMID: 36060785 PMCID: PMC9428564 DOI: 10.3389/fmicb.2022.962619] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Pesticides are either natural or chemically synthesized compounds that are used to control a variety of pests. These chemical compounds are used in a variety of sectors like food, forestry, agriculture and aquaculture. Pesticides shows their toxicity into the living systems. The World Health Organization (WHO) categorizes them based on their detrimental effects, emphasizing the relevance of public health. The usage can be minimized to a least level by using them sparingly with a complete grasp of their categorization, which is beneficial to both human health and the environment. In this review, we have discussed pesticides with respect to their global scenarios, such as worldwide distribution and environmental impacts. Major literature focused on potential uses of pesticides, classification according to their properties and toxicity and their adverse effect on natural system (soil and aquatic), water, plants (growth, metabolism, genotypic and phenotypic changes and impact on plants defense system), human health (genetic alteration, cancer, allergies, and asthma), and preserve food products. We have also described eco-friendly management strategies for pesticides as a green solution, including bacterial degradation, myco-remediation, phytoremediation, and microalgae-based bioremediation. The microbes, using catabolic enzymes for degradation of pesticides and clean-up from the environment. This review shows the importance of finding potent microbes, novel genes, and biotechnological applications for pesticide waste management to create a sustainable environment.
Collapse
Affiliation(s)
| | - Vijay K. Verma
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Balwant Singh Rawat
- Department of Pharmaceutical Sciences, Gurukul Kangri Deemed to be University, Haridwar, India
| | - Baljinder Kaur
- Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Sudhowala, India
| | - Akansha Sharma
- Allergy and Immunology Section, CSIR-IGIB, New Delhi, India
| | - Seeta Dewali
- Laboratory of Alternative Protocols in Zoology and Biotechnology Research Laboratory, Department of Zoology, Kumaun University, Nainital, India
| | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Reshma Kumari
- Department of Botany & Microbiology, Gurukul Kangri Deemed to be University, Haridwar, India
| | - Sevaram Singh
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Asutosh Mohapatra
- Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Varsha Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Newai Tonk, India
| | - Nitika Rana
- Department of Environmental Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, India
| | - Jose Maria Cunill
- Biotechnology Engineering, Universidad Politécnica Metropolitana de Puebla, Mexico, Mexico
| |
Collapse
|
18
|
Zhao Q, Huang M, Liu Y, Wan Y, Duan R, Wu L. Effects of atrazine short-term exposure on jumping ability and intestinal microbiota diversity in male Pelophylax nigromaculatus adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36122-36132. [PMID: 33683588 DOI: 10.1007/s11356-021-13234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Atrazine, a common chemical pesticide, has toxicity to adult and juvenile amphibians in natural ecosystems; however, it is more common to study its effects on larvae instead of adults. This study assessed the impacts of atrazine in water through short-term exposure (7 days) on male black spotted frog (Pelophylax nigromaculatus) adults fed every day. The jumping ability, including jumping height, distance, time, and speed, was measured by 3D motion analysis software, and the intestinal content microbiota was determined by 16S rRNA amplicon sequencing with QIIME software. The results showed that male P. nigromaculatus exposure to 200 and 500 μg/L atrazine significantly increased jumping distance and jumping time compared to control groups. Conversely, 500 μg/L atrazine treatments significantly decreased the diversity and changed the composition and structure of intestinal content microflora in male P. nigromaculatus compared to control groups. At the phylum level, Chlamydiae was only detected in the control group, and Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria were the dominant microflora in the atrazine treatment groups. At the genus level, the abundance of Lactobacillus and Weissella significantly increased in atrazine treatment groups compared to control groups. This study can provide a new framework based on movement behavior and intestinal microbiota to evaluate the response of amphibians to short-term exposure to environmental pollution.
Collapse
Affiliation(s)
- Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Lianfu Wu
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province, Anqing, 246011, Anhui, China
| |
Collapse
|
19
|
Farag MR, Alagawany M, Bilal RM, Gewida AGA, Dhama K, Abdel-Latif HMR, Amer MS, Rivero-Perez N, Zaragoza-Bastida A, Binnaser YS, Batiha GES, Naiel MAE. An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals (Basel) 2021; 11:ani11071880. [PMID: 34201914 PMCID: PMC8300353 DOI: 10.3390/ani11071880] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Pyrethroid insecticides are extensively used in controlling agricultural insects and treatment of ectoparasitic infestation in farm animals. However, the unhygienic disposable and seepage of pyrethroids from the agricultural runoff will lead to contamination of the aquatic ecosystems, which will, in turn, induce harmful toxic effects in the exposed living aquatic organisms, including fish. Cypermethrin (CYP) is a commonly and widely used type II pyrethroid insecticide with known dangerous toxic effects on the exposed organisms. Serious hazardous effects of these toxicants have been reported in several fish species leading to high mortalities and economic losses of the exposed fish. Abstract Pesticides are chemicals used to control pests, such as aquatic weeds, insects, aquatic snails, and plant diseases. They are extensively used in forestry, agriculture, veterinary practices, and of great public health importance. Pesticides can be categorized according to their use into three major types (namely insecticides, herbicides, and fungicides). Water contamination by pesticides is known to induce harmful impacts on the production, reproduction, and survivability of living aquatic organisms, such as algae, aquatic plants, and fish (shellfish and finfish species). The literature and information present in this review article facilitate evaluating the toxic effects from exposure to various fish species to different concentrations of pesticides. Moreover, a brief overview of sources, classification, mechanisms of action, and toxicity signs of pyrethroid insecticides in several fish species will be illustrated with special emphasis on Cypermethrin toxicity.
Collapse
Affiliation(s)
- Mayada R. Farag
- Department of Forensic Medicine and Toxicology, Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Rana M. Bilal
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, Baghdad ul Jadeed Campus, IUB, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ahmed G. A. Gewida
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India;
| | - Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Mahmoud S. Amer
- Laser Application in Biotechnology Department, National Institute of Laser-Enhanced Science, Cairo University, Giza 12613, Egypt;
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico;
- Correspondence: (N.R.-P.); (M.A.E.N.)
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico;
| | - Yaser S. Binnaser
- Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (N.R.-P.); (M.A.E.N.)
| |
Collapse
|
20
|
Rohr JR. The Atrazine Saga and its Importance to the Future of Toxicology, Science, and Environmental and Human Health. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1544-1558. [PMID: 33999476 DOI: 10.1002/etc.5037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The herbicide atrazine is one of the most commonly used, well studied, and controversial pesticides on the planet. Much of the controversy involves the effects of atrazine on wildlife, particularly amphibians, and the ethically questionable decision making of members of industry, government, the legal system, and institutions of higher education, in most cases in an effort to "bend science," defined as manipulating research to advance economic, political, or ideological ends. In this Critical Perspective I provide a timeline of the most salient events in the history of the atrazine saga, which includes a multimillion-dollar smear campaign, lawsuits, investigative reporting, accusation of impropriety against the US Environmental Protection Agency, and a multibillion-dollar transaction. I argue that the atrazine controversy must be more than just a true story of cover-ups, bias, and vengeance. It must be used as an example of how manufacturing uncertainty and bending science can be exploited to delay undesired regulatory decisions and how greed and conflicts of interest-situations where personal or organizational considerations have compromised or biased professional judgment and objectivity-can affect environmental and public health and erode trust in the discipline of toxicology, science in general, and the honorable functioning of societies. Most importantly, I offer several recommendations that should help to 1) prevent the history of atrazine from repeating itself, 2) enhance the credibility and integrity of science, and 3) enrich human and environmental health. Environ Toxicol Chem 2021;40:1544-1558. © 2021 SETAC.
Collapse
Affiliation(s)
- Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
21
|
Duan R, Huang M, Yi M, Zhao Q, Wan Y, Liu Y. Effect of Lead Exposure on Jumping Ability in Pelophylax nigromaculata. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:652-657. [PMID: 33599785 DOI: 10.1007/s00128-021-03150-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Jumping ability determines the likelihood of survival and reproduction of amphibians. To study the toxic effect of lead (Pb) on the jumping ability of amphibians, Pelophylax nigromaculata were treated with 0, 1 and 10 mg/L Pb for 10 days and 20 days each. The results showed that for both treatment time (10 days and 20 days), compared to the control group, the 1 mg/L Pb treatment had no significant effect on jumping parameters. Compared to the control group, the maximum jumping height, distance, speed and acceleration in the 10-day 10 mg/L Pb treatment group increased significantly, but after 20 days the jumping parameters decreased significantly. With an increase in duration and concentration, the correlation coefficient and the correlation between these jumping parameters decreased. Our results indicate that an exposure to 10 mg/L Pb for 20 days has a significant negative effect on the jumping ability of amphibians.
Collapse
Affiliation(s)
- Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Hunan, 417000, Loudi, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Hunan, 417000, Loudi, China.
| | - Minghui Yi
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Hunan, 417000, Loudi, China
| | - Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Hunan, 417000, Loudi, China
| | - Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Hunan, 417000, Loudi, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Hunan, 417000, Loudi, China
| |
Collapse
|
22
|
Tavalieri YE, Galoppo GH, Canesini G, Luque EH, Muñoz-de-Toro MM. Effects of agricultural pesticides on the reproductive system of aquatic wildlife species, with crocodilians as sentinel species. Mol Cell Endocrinol 2020; 518:110918. [PMID: 32619582 DOI: 10.1016/j.mce.2020.110918] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/15/2022]
Abstract
Agricultural pesticides represent a significant class of endocrine-disrupting chemicals (EDCs) to which non-target organisms around the world are constantly exposed. Laboratory studies have found strong evidence showing the endocrine-disruptive potential of these pesticides at environmentally relevant exposure levels. Since the field of endocrine disruption continues to grow in richness and complexity, this review aims to provide an update on the effects of two agricultural pesticides that act as EDCs: atrazine and endosulfan. We will focus mainly on the effects on crocodilians due to their worldwide occurrence in tropical and sub-tropical wetland ecosystems and their ecological and physiological features, which render them vulnerable to exposure to pesticides with endocrine-disrupting action at all life stages. The results here reviewed provide important insights into the effects of hormonally active agricultural pesticides at cellular, tissue, and organ levels in the reproductive system of crocodiles. A better understanding of the effects of exposure to environmentally relevant doses of EDCs on the reproductive system of crocodilians will contribute to protect and improve the health of both wildlife species and humans.
Collapse
Affiliation(s)
- Y E Tavalieri
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G H Galoppo
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G Canesini
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - E H Luque
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M M Muñoz-de-Toro
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
23
|
Embryonic atrazine exposure and later in life behavioral and brain transcriptomic, epigenetic, and pathological alterations in adult male zebrafish. Cell Biol Toxicol 2020; 37:421-439. [PMID: 32737625 DOI: 10.1007/s10565-020-09548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Atrazine (ATZ), a commonly used pesticide linked to endocrine disruption, cancer, and altered neurochemistry, frequently contaminates water sources at levels above the US Environmental Protection Agency's 3 parts per billion (ppb; μg/L) maximum contaminant level. Adult male zebrafish behavior, brain transcriptome, brain methylation status, and neuropathology were examined to test the hypothesis that embryonic ATZ exposure causes delayed neurotoxicity, according to the developmental origins of health and disease paradigm. Zebrafish (Danio rerio) embryos were exposed to 0 ppb, 0.3 ppb, 3 ppb, or 30 ppb ATZ during embryogenesis (1-72 h post fertilization (hpf)), then rinsed and raised to maturity. At 9 months post fertilization (mpf), males had decreased locomotor parameters during a battery of behavioral tests. Transcriptomic analysis identified altered gene expression in organismal development, cancer, and nervous and reproductive system development and function pathways and networks. The brain was evaluated histopathologically for morphometric differences, and decreased numbers of cells were identified in raphe populations. Global methylation levels were evaluated at 12 mpf, and the body length, body weight, and brain weight were measured at 14 mpf to evaluate effects of ATZ on mature brain size. No significant difference in genome methylation or brain size was observed. The results demonstrate that developmental exposure to ATZ does affect neurodevelopment and neural function in adult male zebrafish and raises concern for possible health effects in humans due to ATZ's environmental presence and persistence. Graphical abstract.
Collapse
|
24
|
Galoppo GH, Tavalieri YE, Schierano-Marotti G, Osti MR, Luque EH, Muñoz-de-Toro MM. Long-term effects of in ovo exposure to an environmentally relevant dose of atrazine on the thyroid gland of Caiman latirostris. ENVIRONMENTAL RESEARCH 2020; 186:109410. [PMID: 32283336 DOI: 10.1016/j.envres.2020.109410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The increased incidence of human thyroid disorders, particularly in women, suggests that the exposure to endocrine-disrupting compounds (EDCs) together with sex-related factors could play a role in thyroid dysregulation. Since the herbicide atrazine (ATZ) is an environmental EDC suspected to behave as a thyroid disruptor, and Caiman latirostris is a crocodilian species highly sensitive to endocrine disruption that can be exposed to ATZ, this study aimed to describe the histoarchitecture and sexually dimorphic features of the thyroid gland of C. latirostris, and to determine the long-term effects of in ovo exposure to an environmentally relevant dose of ATZ (0.2 ppm) on its thyroid gland and growth. Control caimans showed no sexual dimorphisms. In contrast, ATZ-exposed caimans showed altered embryo growth but an unaltered temporal pattern of development and a sexually dimorphic response in the body condition index growth curves postnatally, which suggests a female-related increase in fat storage. Besides, both male and female exposed caimans showed increases in the size of the thyroid stromal compartment, content of interstitial collagen, and follicular hyperplasia, and decreases in the expression of androgen receptor in the follicular epithelium. ATZ-exposed females, but not males, also showed evidences of thyroid enlargement, colloid depletion, increased follicular epithelial height and increased presence of microfollicular structures. Our results demonstrate that prenatal exposure of caimans to ATZ causes thyroid disruption and that females were more vulnerable to ATZ than males. The effects were organizational and observed long after exposure ended. These findings alert on ATZ side-effects on the growth, metabolism, reproduction and development of non-target exposed organisms, particularly females.
Collapse
Affiliation(s)
- Germán Hugo Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Yamil Ezequiel Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Mario Raúl Osti
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Mónica Milagros Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| |
Collapse
|
25
|
Lamb SD, Chia JHZ, Johnson SL. Paternal exposure to a common herbicide alters the behavior and serotonergic system of zebrafish offspring. PLoS One 2020; 15:e0228357. [PMID: 32275662 PMCID: PMC7147785 DOI: 10.1371/journal.pone.0228357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Increasingly, studies are revealing that endocrine disrupting chemicals (EDCs) can alter animal behavior. Early life exposure to EDCs may permanently alter phenotypes through to adulthood. In addition, the effects of EDCs may not be isolated to a single generation − offspring may indirectly be impacted, via non-genetic processes. Here, we analyzed the effects of paternal atrazine exposure on behavioral traits (distance moved, exploration, bottom-dwelling time, latency to enter the top zone, and interaction with a mirror) and whole-brain mRNA of genes involved in the serotonergic system regulation (slc6a4a, slc6a4b, htr1Aa, htr1B, htr2B) of zebrafish (Danio rerio). F0 male zebraFIsh were exposed to atrazine at 0.3, 3 or 30 part per billion (ppb) during early juvenile development, the behavior of F1 progeny was tested at adulthood, and the effect of 0.3 ppb atrazine treatment on mRNA transcription was quantified. Paternal exposure to atrazine significantly reduced interactions with a mirror (a proxy for aggression) and altered the latency to enter the top zone of a tank in unexposed F1 offspring. Bottom-dwelling time (a proxy for anxiety) also appeared to be somewhat affected, and activity (distance moved) was reduced in the context of aggression. slc6a4a and htr1Aa mRNA transcript levels were found to correlate positively with anxiety levels in controls, but we found that this relationship was disrupted in the 0.3 ppb atrazine treatment group. Overall, paternal atrazine exposure resulted in alterations across a variety of behavioral traits and showed signs of serotonergic system dysregulation, demonstrating intergenerational effects. Further research is needed to explore transgenerational effects on behavior and possible mechanisms underpinning behavioral effects.
Collapse
Affiliation(s)
- Simon D. Lamb
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (SDL); (SLJ)
| | - Jolyn H. Z. Chia
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| | - Sheri L. Johnson
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (SDL); (SLJ)
| |
Collapse
|
26
|
Weeks DM, Parris MJ. A Bacillus thuringiensis kurstaki Biopesticide Does Not Reduce Hatching Success or Tadpole Survival at Environmentally Relevant Concentrations in Southern Leopard Frogs (Lithobates sphenocephalus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:155-161. [PMID: 31499575 DOI: 10.1002/etc.4588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Amphibians are in global decline, and anthropogenic activities are known leading causes of their demise. Thus the interaction between agriculture and amphibian health has been examined for decades. Many facets of amphibian physiology and ecology place them at high risk among the nontarget organisms affected by agricultural byproducts. Research has shown that many chemicals and fertilizers affect amphibian growth, reproduction, and survival. The impacts differ based on the type of agricultural byproduct (e.g., chemical pesticide or nutrient-heavy fertilizer) and amphibian species, but the effects are usually negative. However, minimal research exists on how organic biopesticides interact with amphibian populations. Biopesticides utilize insecticidal bacteria as the active ingredient in lieu of synthetic chemicals. The inert ingredients present in biopesticide commercial products are considered safe to nontarget organisms. The present study tested the impacts of a commercial biopesticide on the survival of amphibian embryos and larvae. We found that expected environmental concentrations of the microbial biopesticide Monterrey B.t. did not significantly reduce survival in embryos or larvae. However, the higher doses used to assess threshold toxicity levels caused significant mortality. Our data suggest that biopesticides are not directly harmful to amphibian embryos or larvae in concentrations regularly applied for pest control. Environ Toxicol Chem 2019;39:155-161. © 2019 SETAC.
Collapse
Affiliation(s)
- Denita Mychele Weeks
- Department of Biological Sciences, Colorado Mesa University, Grand Junction, Colorado, USA
| | - Matthew James Parris
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
27
|
Hu YC, Tang Y, Chen ZQ, Chen JY, Ding GH. Evaluation of the sensitivity of Microhyla fissipes tadpoles to aqueous cadmium. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1150-1159. [PMID: 31620949 DOI: 10.1007/s10646-019-02117-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) exposure is harmful to amphibians in natural environments and the Cd concentration is a key parameter in water monitoring. Cd pollution has been a severe issue in the Yangtze River and its southern reaches in recent years. Acute toxicity assays were employed to determine the tolerance limits of Cd for Microhyla fissipes tadpoles and five different concentrations of Cd (0, 50, 100, 200 and 300 μg/L) were involved to detect its chronic effects on metamorphosis, growth, locomotion, genotoxicity and enzymatic activities of M. fissipes tadpoles. The results showed that the 24-h and 48-h LC50 values of Cd on M. fissipes tadpoles were 2591.3 μg/L and 1567.9 μg/L, respectively, and the presumable non-lethal concentration obtained was 172.2 μg/L. During the 70-day chronic toxicity assays, Cd showed negative impacts on survival, growth, metamorphosis and the frequency of erythrocytes nuclear abnormality of M. fissipes tadpoles. However, the Cd exposure caused the increased body size and condition of tadpoles at complete metamorphosis (GS46). The tadpoles exposed to 200 μg/L of Cd exhibited degraded locomotor performance at GS46. Weight increments of tadpoles were inhibited at Day 14 and massive deaths were observed over the next 14 days. The enzymatic activities of tadpoles experienced a shock response stage (GS30-GS35) and a complete recovery stage (GS36-GS41) in all treatments. However, the enzymatic activities (except alkaline phosphatase) of tadpoles at GS46 increased after Cd exposure, especially at high concentrations. In summary, Cd is a threat to M. fissipes tadpoles as that causes reduced fitness.
Collapse
Affiliation(s)
- Ying-Chao Hu
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China
| | - Yun Tang
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China
| | - Zhi-Qiang Chen
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China
| | - Jing-Yi Chen
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China
| | - Guo-Hua Ding
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Gonçalves MW, de Campos CBM, Godoy FR, Gambale PG, Nunes HF, Nomura F, Bastos RP, da Cruz AD, de Melo E Silva D. Assessing Genotoxicity and Mutagenicity of Three Common Amphibian Species Inhabiting Agroecosystem Environment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:409-420. [PMID: 31236619 DOI: 10.1007/s00244-019-00647-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/14/2019] [Indexed: 05/24/2023]
Abstract
Amphibians are constantly exposed to pollutants and the stress of agricultural activities. We selected three anuran amphibian species Dendropsophus minutus, Boana albopunctata, and Physalaemus cuvieri, totaling 309 individuals. We collected tadpoles in 15 permanent ponds: 5 soybean crops, 3 corn crops, and 7 nonagricultural lands. Our study provides the first comparative data on the genotoxicity and mutagenicity of three common amphibian anurans. Dendropsophus minutus was the most vulnerable species compared with B. albopunctata and P. cuvieri for comet assay and micronuclei test. However, the more significant amount of DNA damage seen in D. minutus does not mean that their populations are threatened once such species adapt well to anthropogenic disturbances. Despite, P. cuvieri was less sensitive than the other two species; the DNA damage was significantly higher in soybean crops. Physalaemus cuvieri is a leptodactylidae species that deposit their eggs in foam nests, which are essential to protect eggs from dehydration. Moreover, the foam reduces the contact of eggs with water; thus, P. cuvieri eggs could be less exposed to contaminants present in pounds, compared with D. minutus and B. albopunctata, which deposit their eggs directly in the water. Therefore, this study was sufficiently sensitive to detect genotoxic and mutagenic effects in tadpoles exposed to agroecosystems. We strongly suggest D. minutus in future biomonitoring studies that involve the comparison of anthropized versus not anthropized environments. Overall, we recommend the comet assay and micronucleus test as effective methods for the detection of genotoxic damage in amphibian anurans to the environmental disturbance, especially in agricultural sites.
Collapse
Affiliation(s)
- Macks Wendhell Gonçalves
- Campus II, Itatiaia, Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Ciências Biológicas 1, Universidade Federal de Goiás, Goiânia, Goiás, Cep: 74001-970, Brazil
- Departamento de Biologia, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Calebe Bertolino Marins de Campos
- Campus II, Itatiaia, Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Ciências Biológicas 1, Universidade Federal de Goiás, Goiânia, Goiás, Cep: 74001-970, Brazil
- Departamento de Biologia, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Fernanda Ribeiro Godoy
- Departamento de Biologia, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Priscilla Guedes Gambale
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Hugo Freire Nunes
- Campus II, Itatiaia, Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Ciências Biológicas 1, Universidade Federal de Goiás, Goiânia, Goiás, Cep: 74001-970, Brazil
| | - Fausto Nomura
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rogério Pereira Bastos
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Aparecido Divino da Cruz
- Departamento de Biologia, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Campus II, Itatiaia, Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Ciências Biológicas 1, Universidade Federal de Goiás, Goiânia, Goiás, Cep: 74001-970, Brazil.
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
- Departamento de Biologia, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
29
|
Robinson S, Richardson S, Dalton R, Maisonneuve F, Bartlett A, de Solla S, Trudeau V, Waltho N. Assessment of Sublethal Effects of Neonicotinoid Insecticides on the Life-History Traits of 2 Frog Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1967-1977. [PMID: 31386781 PMCID: PMC7322800 DOI: 10.1002/etc.4511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Abstract
Neonicotinoid insecticides are used extensively in agriculture and, as a consequence, are now detectable in nearby aquatic environments. Few studies have evaluated the effects of neonicotinoids on amphibians in these aquatic environments. In the present study, we examined the effects of 2 commercial formulations of neonicotinoids (active ingredients clothianidin and thiamethoxam) on survival and life-history traits of wood frogs (Lithobates sylvaticus) and northern leopard frogs (Lithobates pipiens). We used artificial pond mesocosms to assess the effects of these neonicotinoids, at nominal concentrations of 2.5 and 250 µg/L, on amphibian larval development through metamorphosis. We found no differences between controls and neonicotinoid exposure for any of the endpoints assessed for either wood frogs or leopard frogs. The present study suggests that concentrations meeting or exceeding observed levels of clothianidin and thiamethoxam in surface waters will not directly affect metamorphosis in 2 amphibians. Environ Toxicol Chem 2019;38:1967-1977. © 2019 SETAC.
Collapse
Affiliation(s)
- S.A. Robinson
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health DivisionOttawaOntarioCanada
| | | | - R.L. Dalton
- Department of BiologyCarleton UniversityOttawaOntarioCanada
- Environment and Climate Change Canada, Ecological Assessment DivisionGatineauQuebecCanada
| | - F. Maisonneuve
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health DivisionOttawaOntarioCanada
| | - A.J. Bartlett
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, BurlingtonOntarioCanada
| | - S.R. de Solla
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, BurlingtonOntarioCanada
| | - V.L. Trudeau
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - N. Waltho
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| |
Collapse
|
30
|
Cleary JA, Tillitt DE, Vom Saal FS, Nicks DK, Claunch RA, Bhandari RK. Atrazine induced transgenerational reproductive effects in medaka (Oryzias latipes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:639-650. [PMID: 31108297 DOI: 10.1016/j.envpol.2019.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is presently one of the most abundantly used herbicides in the United States, and a common contaminant of natural water bodies and drinking waters in high-use areas. Dysregulation of reproductive processes has been demonstrated in atrazine exposed fish, including alteration of key endocrine pathways on hypothalamic-pituitary-gonadal (HPG) axis. However, the potential for atrazine-induced transgenerational inheritance of reproductive effects in fish has not been investigated. The present study examined the effects of early developmental atrazine exposure on transgenerational reproductive dysregulation in Japanese medaka (Oryzias latipes). F0 medaka were exposed to atrazine (ATZ, 5 or 50 μg/L), 17α-ethinylestradiol (EE2, 0.002 or 0.05 μg/L), or solvent control during the first twelve days of development with no subsequent exposure over three generations. This exposure overlapped with the critical developmental window for embryonic germ cell development, gonadogenesis, and sex determination. Exposed males and females of the F0 generation were bred to produce an F1 generation, and this was continued until the F2 generation. Sperm count and motility were not affected in F0 males; however, both parameters were significantly reduced in the males from F2 Low EE2 (0.002 μg/L), Low ATZ (5 μg/L), and High ATZ (50 μg/L) lineages. Fecundity was unaffected by atrazine or EE2 in F0 through F2 generations; however, fertilization rate was decreased in low atrazine and EE2 exposure lineages in the F2 generation. There were significant transgenerational differences in expression of the genes involved in steroidogenesis and DNA methylation. These results suggest that although early life exposure to atrazine did not cause significant phenotypes in the directly exposed F0 generation, subsequent generations of fish were at greater risk of reproductive dysfunction.
Collapse
Affiliation(s)
- Jacob A Cleary
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Frederick S Vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Diane K Nicks
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Rachel A Claunch
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
31
|
Xie L, Zhang Y, Li X, Chai L, Wang H. Exposure to nitrate alters the histopathology and gene expression in the liver of Bufo gargarizans tadpoles. CHEMOSPHERE 2019; 217:308-319. [PMID: 30419385 DOI: 10.1016/j.chemosphere.2018.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/17/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Nitrate is a ubiquitous component in aquatic environment and the concentrations of anthropogenic nitrate-nitrogen (NO3N) can exceed 25 mg/L in surface waters and 100 mg/L in ground waters. The exceed nitrate has adverse effects on survival, development, and metamorphosis of amphibian. Liver is the hub of many biological processes, including lipid metabolism and bile salts secretion. However, there is little information about the effects of nitrate on the liver in amphibians during metamorphosis. In this study, B. gargarizans was exposed to different concentrations of nitrate from embryo to metamorphosis climax to investigate the effects of nitrate on the liver. The survival rate, metamorphosis percent, body mass, total length, and hind-limb length were measured. The histopathological changes and transcriptome responses in the liver of B. gargarizans to nitrate were examined. Results indicated exposure to 50 and 100 mg/L NO3N delayed the metamorphosis and decreased the metamorphosis percent of B. gargarizans. The body size of B. gargarizans at 10 and 50 mg/L NO3N groups were decreased while it was increased at 100 mg/L NO3N group. In addition, exposure to 100 mg/L NO3N caused severe histopathological changes, including cellular atrophy, increased intercellular areas, degraded lipid droplets, hepatic fibrosis, bile canaliculus contraction and degraded mitochondria in liver. The results of RNA-seq and qRT-PCR interpreted the molecular responses, which might be the factors to induce histopathological changes in the liver of B. gargarizans under the pressure of nitrate exposure.
Collapse
Affiliation(s)
- Lei Xie
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
32
|
Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE. Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:1-13. [PMID: 30414561 PMCID: PMC6464817 DOI: 10.1016/j.aquatox.2018.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/05/2023]
Abstract
Altered transcription of calcium-dependent signaling cascades involving the ryanodine receptor (RyR) and mechanistic target of rapamycin (mTOR) in response to environmental exposures have been described in model vertebrates, including zebrafish, while the relevance for wild fishes remains unknown. To address this knowledge gap, we exposed the euryhaline model species Menidia beryllina (inland silversides) to the insecticide bifenthrin, a known modulator of calcium signaling. The main objectives of this study were to determine: (1) whether exposure of developing silversides to environmentally relevant concentrations of bifenthrin alters their behavior; and (2) whether behavioral changes correlate with altered expression of genes involved in RyR and mTOR-dependent signaling pathways. At six hours post fertilization (hpf), inland silversides were exposed to bifenthrin at 3, 27 and 122 ng/L until 7 days post fertilization (dpf, larvae hatched at 6dpf), followed by a 14-day recovery period in uncontaminated water. Transcriptional responses were measured at 5, 7 and 21 dpf; locomotor behavior following external stimuli and response to an olfactory predator cue were assessed at 7 and 21 dpf. Bifenthrin elicited significant non-monotonic transcriptional responses in the majority of genes examined at 5 dpf and at 21 dpf. Bifenthrin also significantly altered predator avoidance behavior via olfactory mechanisms with main effects identified for animals exposed to 3 and 27 ng/L. Behavioral effects were not detected in response to visual stimuli during acute exposure, but were significant in the predator-cue assessment following the recovery period, suggesting delayed and long-term effects of early developmental exposures to bifenthrin. Our findings demonstrate that at picomolar (pM) concentrations, which are often not represented in ecotoxicological studies, bifenthrin perturbs early development of inland silversides. These developmental impacts are manifested behaviorally at later life stages, specifically as altered patterns of predator avoidance behavior, which have been correlated with population decline. Collectively, these data suggest that bifenthrin may be negatively impacting wild fish populations.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Simone Hasenbein
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
33
|
Pérez-Iglesias JM, Franco-Belussi L, Natale GS, de Oliveira C. Biomarkers at different levels of organisation after atrazine formulation (SIPTRAN 500SC ®) exposure in Rhinella schineideri (Anura: Bufonidae) Neotropical tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:733-746. [PMID: 30384079 DOI: 10.1016/j.envpol.2018.10.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Brazil is an important consumer of herbicides. In sugarcane cultivation-the country's most extensive agricultural crop-atrazine-based formulations are the principal form of weed control. Several studies have investigated adverse effects of atrazine or their formulations on anurans, but not specifically on Brazilian species. Our aim was therefore to investigate the lethal and sublethal effects of an atrazine-based herbicide in Rhinella schneideri tadpoles and, in particular, effects on the pigmentation system as a new endpoint in ecotoxicological studies. Rhinella schneideri tadpoles at the Gosner-30 stage were exposed to the atrazine-based herbicide formulation, SIPTRAN 500 SC®, in acute bioassays at concentrations of 1.5-25 mg/L. The lethal and sublethal effects induced were analysed at different ecotoxicological levels: organismal level (alterations in behaviour, growth, development, and body mass; morphologic abnormalities), histological level (liver histopathology), the pigmentation system (melanomacrophages and dermal-melanophores), and cellular level (erythrocyte micronucleus formation and other nuclear-abnormalities). This herbicide induced sublethal effects at the organismal level with alterations in swimming and growth and morphologic abnormalities. These results demonstrated that, in anuran tadpoles, the atrazine-based agrochemical increased the frequency of micronucleus formation and other nuclear-abnormalities in erythrocytes and caused liver damage. In addition, we demonstrated for the first time effects of an atrazine-based formulation on the pigmentation system of anuran tadpoles, specifically an increase in the number of melanomacrophages and dermal melanophores. This study is the first to use several widely differing endpoints at different ecotoxicological levels in a comprehensive manner for assessment of the effects of environmental stressors in order to determine the health status of Neotropical anuran species. In doing so, this study establishes a foundation for future ecological assessments.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Instituto de Química de San Luis, INQUISAL (UNSL-CONICET), Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina; UNESP - Universidade Estadual Paulista, Departamento de Biologia, São José do Rio Preto, São Paulo, Brazil
| | - Lilian Franco-Belussi
- UNESP - Universidade Estadual Paulista, Departamento de Biologia, São José do Rio Preto, São Paulo, Brazil; Instituto de Biociências (InBio), Universidade Federal de Mato Grosso do Sul, UFMS, Brazil.
| | - Guillermo Sebastián Natale
- Centro de Investigaciones del Medio Ambiente, CIM (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 Buenos Aires, Argentina
| | - Classius de Oliveira
- UNESP - Universidade Estadual Paulista, Departamento de Biologia, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
34
|
Horzmann KA, Reidenbach LS, Thanki DH, Winchester AE, Qualizza BA, Ryan GA, Egan KE, Hedrick VE, Sobreira TJP, Peterson SM, Weber GJ, Wirbisky-Hershberger SE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure elicits proteomic, behavioral, and brain abnormalities with developmental time specific gene expression signatures. J Proteomics 2018; 186:71-82. [PMID: 30012420 PMCID: PMC6193558 DOI: 10.1016/j.jprot.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Leeah S Reidenbach
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Devang H Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Anna E Winchester
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Brad A Qualizza
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Geoffrey A Ryan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kaitlyn E Egan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Victoria E Hedrick
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | | | - Maria S Sepúlveda
- Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
35
|
Babini MS, de Lourdes Bionda C, Salinas ZA, Salas NE, Martino AL. Reproductive endpoints of Rhinella arenarum (Anura, Bufonidae): Populations that persist in agroecosystems and their use for the environmental health assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:294-301. [PMID: 29477919 DOI: 10.1016/j.ecoenv.2018.02.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 05/24/2023]
Abstract
Degradation of the environment by agriculture affects the persistence and health of the amphibian populations. Characteristics related to reproduction of anuran can be used to evaluate the status of populations and as endpoints in environmental health assessment. In this in situ study the aspects related to the amplexus and ovipositions of the bioindicator species Rhinella arenarum that inhabits agroecosystems were analyzed. The hypothesis of this study is that perturbations of agroecosystems have a negative impact on the size of reproductive adults, on the size of ovipositions and eggs, and on the survival of eggs and embryos. Study area is located in the rural landscape of central Argentina. Four sampling sites were selected: C1, C2 and C3 are ponds on agroecosystems; and SM is a reference site that is not affected by agriculture or livestock. Abundance of amplexus pairs, oviposition and tadpoles per site was recorded. Individuals´ snout-vent length (SVL) in amplexus was measured. The fecundity was calculated like number of eggs per oviposition. The eggs' Gosner stage, the diameter eggs and the frequency of dead and abnormal eggs were recorded by oviposition. Killing-power between egg-embryo and egg-tadpole was calculated. The higher phosphate concentration was detected in all agroecosystems and nitrate was detected in C1 and C2. Conductivity, salinity and SDT were higher in C1 site Male SVL from the SM site was lower than the other sites while the largest SVL was of female from the C3 site. The higher frequencies of sprouted eggs and of dead eggs were recorded in the C2 site. Egg diameter was associated with SM and correlated negatively to SVL of the male and female. No correlation between female SVL and oviposition size was recorded. Killing-power in the passage from egg to tadpole classes was higher in the three agroecosystems. The hypothesis of this study was corroborated in part. Reproductive adults in agroecosystems did not have smaller body size. However, in the agroecosystem ponds, the eggs with smaller diameter were registered, the oviposition had higher frequency of abnormal eggs and the higher mortality was registered. This confirms the high sensitivity of the early stages to environmental disturbances and sustains their use as endpoints for the environmental health assessment.
Collapse
Affiliation(s)
- María Selene Babini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Ruta Nacional N° 36-km 601, Río Cuarto, Córdoba, Argentina.
| | - Clarisa de Lourdes Bionda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Ruta Nacional N° 36-km 601, Río Cuarto, Córdoba, Argentina.
| | - Zulma Anahí Salinas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Ruta Nacional N° 36-km 601, Río Cuarto, Córdoba, Argentina.
| | - Nancy Edith Salas
- Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Ruta Nacional N° 36-km 601, Río Cuarto, Córdoba, Argentina.
| | - Adolfo Ludovico Martino
- Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Ruta Nacional N° 36-km 601, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
36
|
Gonçalves MW, Marins de Campos CB, Batista VG, da Cruz AD, de Marco Junior P, Bastos RP, de Melo E Silva D. Genotoxic and mutagenic effects of Atrazine Atanor 50 SC on Dendropsophus minutus Peters, 1872 (Anura: Hylidae) developmental larval stages. CHEMOSPHERE 2017; 182:730-737. [PMID: 28531839 DOI: 10.1016/j.chemosphere.2017.05.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The potential mutagenic and genotoxic effects of the herbicide atrazine were investigated in different developmental stages of Dendropsophus minutus tadpoles. These animals were exposed to 4 nominal concentrations of atrazine (2.25, 4.5, 9, and 18 mg/L) and 40 mg/L of Cyclophosphamide as a positive control, for 96 h. Negative controls were also added to the experiment. The tadpoles were divided into three groups according to Gosner's developmental stages, namely GS 25-33 as premetamorphic, GS 36-39 as prometamorphic, and GS 42-43 as metamorphic climax. Our results showed that the premetamorphic and metamorphic stages were more sensitive than the prometamorphic stage to the herbicide. A comet assay and micronucleus test for the sensitive stages demonstrated DNA damage in a concentration-dependent curve. Although a dose-response effect was not observed for the prometamorphic stage, a statistically significant difference was found between the treatment of 18 mg/L and the negative control. Moreover, the highest concentration of atrazine showed both the largest amount of DNA damage and the highest micronucleus frequency regardless of the developmental stage of D. minutus. In conclusion, atrazine was genotoxic and mutagenic for D. minutus in a dose-sensitive manner, dependent on larval developmental stages. Considering the prometamorphic stages showed no dose-response effect to atrazine, we suggest caution when using this stage in biomonitoring studies in order to avoid false negative results. Amphibians have been proven to be useful bioindicators, and we suggest replicating biomonitoring studies using different species to represent ecosystems' environmental impacts.
Collapse
Affiliation(s)
- Macks Wendhell Gonçalves
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | | | - Vinícius Guerra Batista
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Paraná, Brazil
| | - Aparecido Divino da Cruz
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Paulo de Marco Junior
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rogério Pereira Bastos
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Paraná, Brazil
| | - Daniela de Melo E Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
37
|
Shuman-Goodier ME, Propper CR. A meta-analysis synthesizing the effects of pesticides on swim speed and activity of aquatic vertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:758-766. [PMID: 27261557 DOI: 10.1016/j.scitotenv.2016.04.205] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 04/15/2023]
Abstract
Pesticide contaminants are ubiquitous in aquatic environments and pose a threat to biodiversity. Pesticides also have diverse mechanisms of action that make it difficult to identify impacts on exposed wildlife. Behavioral measures represent an important link between physiological and ecological processes, and are often used to generalize sub-lethal effects of pesticide exposure. In order to bridge the toxicological and behavioral literature, and identify chemical classes that denote the largest threat, we conducted a meta-analysis summarizing the effects of pesticides on swim speed and activity of aquatic vertebrates. We found that exposure to environmentally relevant concentrations of pesticides reduced the swim speed of exposed amphibians and fish by 35%, and reduced overall activity by 72%. There were also differences in the magnitude of this effect across chemical classes, which likely reflect underlying physiological processes. Pyrethroids, carbamates, and organophosphates all produced a large decrease in swim speed, where as phosphonoglycines and triazines showed no overall effect. Pyrethroids, carbamates, organophosphates, organochlorines, and organotins also produced a large decrease in activity, while phosphonoglycines had no overall effect, and triazines had the opposite effect of increasing activity. Our results indicate that even sub-lethal concentrations of pesticides have a strong effect on critical behaviors of aquatic vertebrates, which can affect fitness and alter species interactions. We expect our synthesis can be used to identify chemical classes producing the largest sub-lethal effects for further research and management.
Collapse
Affiliation(s)
- Molly E Shuman-Goodier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, United States.
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, United States
| |
Collapse
|
38
|
Mac Loughlin C, Canosa IS, Silveyra GR, López Greco LS, Rodríguez EM. Effects of atrazine on growth and sex differentiation, in juveniles of the freshwater crayfish Cherax quadricarinatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 131:96-103. [PMID: 27213565 DOI: 10.1016/j.ecoenv.2016.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
The effect of the herbicide atrazine was assayed in early juveniles of the redclaw crayfish Cherax quadricarinatus. Four cohorts of juveniles (a total of 280 animals) were exposed for 4 wk to each one of three atrazine concentrations (0.1, 0.5 and 2.5mg/L) or a control (0mg/L), from a commercial formulation having 90% of active principle. At the end of the exposure, no significant (p>0.05) differences in either mortality or molting were noted. However, the weight gain and the protein content of abdominal muscle decreased significantly (p<0.05) in the highest atrazine concentration as compared to control, indicating that atrazine acted as a relevant stressor, although at a concentration higher than those reported in the environment. Besides, the proportion of females increased progressively as the atrazine concentration increases, being significantly (p<0.05) higher than that of controls at the highest concentration assayed. Both macroscopic and histological analysis revealed a normal architecture of gonopores and gonads in both control and exposed animals. The obtained results strongly suggest that atrazine could be causing an endocrine disruption on the hormonal system responsible for the sexual differentiation of the studied species, increasing the proportion of female proportion without disturbing the gonad structure.
Collapse
Affiliation(s)
- Camila Mac Loughlin
- Lab. of Crustacean Physiology, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Ivana S Canosa
- Lab. of Crustacean Physiology, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Gabriela R Silveyra
- Lab. of Crustacean Physiology, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Laura S López Greco
- Lab. of Biology of Reproduction and Growth of Crustaceans, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Enrique M Rodríguez
- Lab. of Crustacean Physiology, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Sai L, Dong Z, Li L, Guo Q, Jia Q, Xie L, Bo C, Liu Y, Qu B, Li X, Shao H, Ng JC, Peng C. Gene expression profiles in testis of developing male Xenopus laevis damaged by chronic exposure of atrazine. CHEMOSPHERE 2016; 159:145-152. [PMID: 27288644 DOI: 10.1016/j.chemosphere.2016.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 06/06/2023]
Abstract
As a widely used herbicide, atrazine (AZ) has been extensively studied for its adverse effects on the reproductive system, especially feminization in male animals. However, the relationship of gene expression changes and associated toxicological endpoints remains unclear. In this study, developing Xenopus laevis tadpoles were exposed to concentration of AZ at 0.1, 1, 10 or 100 μg/L continuously. Compared with froglets in the control group, there were no significant differences in body length, body weight, liver weight and hepatosomatic index (HSI) of males in groups treated with AZ for 90 d. At 100 μg/L AZ treatment caused a significant reduction of gonad weight and gonadosomatic index (GSI) of males (p < 0.01). In addition, AZ at all dose levels caused testicular degeneration, especially in froglets from the groups with 0.1 and 100 μg/L which exhibited U-shaped dose-response trend. We further investigated the gene expression changes associated with the testicular degeneration induced by AZ. We found that the expression of 1165 genes was significantly altered with 616 upregulated and 549 downregulated compared to the expression profile of the control animals. KEGG analysis showed that genes which were significantly affected by AZ are mainly involved in arginine and proline metabolism, cell cycle, riboflavin metabolism, spliceosome, base excision repair and progesterone-mediated oocyte maturation pathway. Our results show that AZ may affect reproductive and immune systems by interference with the related gene expression changes during the male X. laevis development. The findings may help to clarify the feminization mechanisms of AZ in male X. laevis.
Collapse
Affiliation(s)
- Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Zhihua Dong
- The 404th Hospital of PLA, Weihai, Shandong, China
| | - Ling Li
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Qiming Guo
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Lin Xie
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Yanzhong Liu
- Weihai Wendeng Center Hospital, Weihai, Shandong, China
| | - Binpeng Qu
- Shandong Medical College, Ji'nan, Shandong, China
| | - Xiangxin Li
- Heze Center for Disease Control and Prevention, Heze, Shandong, China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China.
| | - Jack C Ng
- The University of Queensland, National Research Centre for Environmental Toxicology-Entox, Brisbane, Australia
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China; The University of Queensland, National Research Centre for Environmental Toxicology-Entox, Brisbane, Australia
| |
Collapse
|
40
|
Wegner S, Browne P, Dix D. Identifying reference chemicals for thyroid bioactivity screening. Reprod Toxicol 2016; 65:402-413. [PMID: 27589887 DOI: 10.1016/j.reprotox.2016.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
Abstract
Reference chemicals were selected based on thyroid bioactivity in 'Tier 1' screening assays used by the U.S. EPA's Endocrine Disruptor Screening Program. Active reference chemicals had significant effects on thyroid-responsive endpoints in the amphibian metamorphosis assay, and the male and female pubertal rat assays. In the absence of thyroid weight or histopathological effects, additional published studies providing mechanistic data on thyroid activity were required for active chemicals. Inactive reference chemicals had no significant effects on thyroid-responsive endpoints in Tier 1 assays, or in amphibian or rodent studies from several online databases. The 34 reference chemicals (29 active and five inactive) will be useful for performance-based validation of alternative, high throughput screening assays for thyroid bioactivity.
Collapse
Affiliation(s)
- Susanna Wegner
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States.
| | - Patience Browne
- Office of Science Coordination and Policy (OSCP), Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, D.C., United States
| | - David Dix
- Office of Science Coordination and Policy (OSCP), Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, D.C., United States
| |
Collapse
|
41
|
Bernabò I, Guardia A, Macirella R, Sesti S, Crescente A, Brunelli E. Effects of long-term exposure to two fungicides, pyrimethanil and tebuconazole, on survival and life history traits of Italian tree frog (Hyla intermedia). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:56-66. [PMID: 26771902 DOI: 10.1016/j.aquatox.2015.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/14/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
Over the last few years, the hazards associated with the extensive use of fungicides have become an issue of great concern but, at present, the effects of these substances on amphibians remain poorly understood. The goal of the present study was to assess the effects of two commonly used fungicides, tebuconazole and pyrimethanil, on Italian Tree Frog (Hyla intermedia), a species frequently found in agricultural areas. Tadpoles were exposed to fungicides from developmental Gosner stage 25 (GS 25) to completion of metamorphosis (GS 46) and the whole exposure period lasted 78 days. For both tested fungicides we used two concentrations (5 and 50μg/L) that are comparable to those detected in surface waters, near agricultural fields. A variety of sublethal effects-on growth, development, behavior, and physiology-may be used for evaluating alterations induced by pollutants in amphibians. We estimated whether pyrimethanil and tebuconazole exposure impacted on H. intermedia life history traits. For this purpose, survival, growth, development, initiation of metamorphosis, success and size at metamorphosis, time to metamorphosis, and frequency of morphological abnormalities were evaluated. We showed, for all considered endpoints, that the exposure to tebuconazole exerts more harmful effects on H. intermedia than does exposure to pyrimethanil. Before the onset of metamorphic climax we showed, for both fungicides, that the low concentrations (5μg/L) induced significantly greater effects than the higher ones (50μg/L) on survival and deformity incidence. During the metamorphic climax, a complete reversal of this nonlinear trend takes place, and the percentage of animals initiating metamorphosis was reduced in fungicide-exposed groups in a concentration-dependent manner. Furthermore, a strong correlation emerged between fungicide exposure and the incidence of morphological abnormalities such as tail malformations, scoliosis, edema, mouth and limb deformities. Exposure to tested fungicides also caused a reduction in developmental rates just prior to the onset of metamorphic climax, which translated to a significant delay in timing of metamorphosis. We detected a drastic decrease in the success at metamorphosis in all exposed groups, compared to control group (86.25%). In fact, the percentage of survived larvae to GS 46, in the high and low concentrations, respectively, was only 22.5% and 36.25% in tebuconazole-exposed groups and 43.75% (50μg/L) and 56.25% (5μg/L) in pyrimethanil-exposed groups. Our findings underscore the hazardous properties of these two fungicides for non-target species in the context of ecotoxicological risk assessment. No published studies have addressed the long-term effects of tebuconazole and pyrimethanil on amphibians. To date, this is one of only a few studies documenting the effects of fungicide exposure over the whole larval development.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Antonio Crescente
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy.
| |
Collapse
|
42
|
Su LQ, Gao Y, Qin SL, Li JJ. Determination of Atrazine in Vegetables with Extraction by a Magnetite–Chitosan Molecularly Imprinted Polymer and Gas Chromatography. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1140771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Wang M, Chai L, Zhao H, Wu M, Wang H. Effects of nitrate on metamorphosis, thyroid and iodothyronine deiodinases expression in Bufo gargarizans larvae. CHEMOSPHERE 2015; 139:402-9. [PMID: 26210189 DOI: 10.1016/j.chemosphere.2015.07.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2023]
Abstract
Chinese toad (Bufo gargarizans) tadpoles were exposed to nitrate (10, 50 and 100mg/L NO3-N) from the beginning of the larval period through metamorphic climax. We examined the effects of chronic nitrate exposure on metamorphosis, mortality, body size and thyroid gland. In addition, thyroid hormone (TH) levels, type II iodothyronine deiodinase (Dio2) and type III iodothyronine deiodinase (Dio3) mRNA levels were also measured to assess disruption of TH synthesis. Results showed that significant metamorphic delay and mortality increased were caused in larvae exposed to 100mg/L NO3-N. The larvae exposed to 100mg/L NO3-N clearly exhibited a greater reduction in thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels. Moreover, treatment with NO3-N induced down-regulation of Dio2 mRNA levels and up-regulation of Dio3 mRNA levels, reflecting the disruption of thyroid endocrine. It seems that increased mass and body size may be correlated with prolonged metamorphosis. Interestingly, we observed an exception that exposure to 100mg/L NO3-N did not exhibit remarkable alterations of thyroid gland size. Compared with control groups, 100mg/L NO3-N caused partial colloid depletion in the thyroid gland follicles. These results suggest that nitrate can act as a chemical stressor inducing retardation in development and metamorphosis. Therefore, we concluded that the presence of high concentrations nitrate can influence the growth, decline the survival, impair TH synthesis and induce metamorphosis retardation of B. gargarizans larvae.
Collapse
Affiliation(s)
- Ming Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710062, China
| | - Hongfeng Zhao
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
44
|
Bulaeva E, Lanctôt C, Reynolds L, Trudeau VL, Navarro-Martín L. Sodium perchlorate disrupts development and affects metamorphosis- and growth-related gene expression in tadpoles of the wood frog (Lithobates sylvaticus). Gen Comp Endocrinol 2015; 222:33-43. [PMID: 25623150 DOI: 10.1016/j.ygcen.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 11/20/2022]
Abstract
Numerous endocrine disrupting chemicals can affect the growth and development of amphibians. We investigated the effects of a targeted disruption of the endocrine axes modulating development and somatic growth. Wood frog (Lithobates sylvaticus) tadpoles were exposed for 2weeks (from developmental Gosner stage (Gs) 25 to Gs30) to sodium perchlorate (SP, thyroid inhibitor, 14mg/L), estradiol (E2, known to alter growth and development, 200nM) and a reduced feeding regime (RF, to affect growth and development in a chemically-independent manner). All treatments experienced developmental delay, and animals exposed to SP or subjected to RF respectively reached metamorphic climax (Gs42) approximately 11(±3) and 17(±3) days later than controls. At Gs42, only SP-treated animals showed increased weight and snout-vent length (P<0.05) relative to controls. Tadpoles treated with SP had 10-times higher levels of liver igf1 mRNA after 4days of exposure (Gs28) compared to controls. Tadpoles in the RF treatment expressed 6-times lower levels of liver igf1 mRNA and 2-times higher liver igf1r mRNA (P<0.05) at Gs30. Tadpoles treated with E2 exhibited similar developmental and growth patterns as controls, but had increased liver igf1 mRNA levels at Gs28, and tail igf1r at Gs42. Effects on tail trβ mRNA levels were detected in SP-treated tadpoles at Gs42, 40days post-exposure, suggesting that the chemical inhibition of thyroid hormone production early in development can have long-lasting effects. The growth effects observed in the SP-exposed animals suggest a relationship between TH-dependent development and somatic growth in L. sylvaticus tadpoles.
Collapse
Affiliation(s)
- Elizabeth Bulaeva
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Chantal Lanctôt
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Leslie Reynolds
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Laia Navarro-Martín
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
45
|
Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR. Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 2015; 44 Suppl 5:1-66. [PMID: 25375889 DOI: 10.3109/10408444.2014.967836] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quantitative weight of evidence (WoE) approach was developed to evaluate studies used for regulatory purposes, as well as those in the open literature, that report the effects of the herbicide atrazine on fish, amphibians, and reptiles. The methodology for WoE analysis incorporated a detailed assessment of the relevance of the responses observed to apical endpoints directly related to survival, growth, development, and reproduction, as well as the strength and appropriateness of the experimental methods employed. Numerical scores were assigned for strength and relevance. The means of the scores for relevance and strength were then used to summarize and weigh the evidence for atrazine contributing to ecologically significant responses in the organisms of interest. The summary was presented graphically in a two-dimensional graph which showed the distributions of all the reports for a response. Over 1290 individual responses from studies in 31 species of fish, 32 amphibians, and 8 reptiles were evaluated. Overall, the WoE showed that atrazine might affect biomarker-type responses, such as expression of genes and/or associated proteins, concentrations of hormones, and biochemical processes (e.g. induction of detoxification responses), at concentrations sometimes found in the environment. However, these effects were not translated to adverse outcomes in terms of apical endpoints. The WoE approach provided a quantitative, transparent, reproducible, and robust framework that can be used to assist the decision-making process when assessing environmental chemicals. In addition, the process allowed easy identification of uncertainty and inconsistency in observations, and thus clearly identified areas where future investigations can be best directed.
Collapse
|
46
|
Wood L, Welch AM. Assessment of interactive effects of elevated salinity and three pesticides on life history and behavior of southern toad (Anaxyrus terrestris) tadpoles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:667-76. [PMID: 25523942 DOI: 10.1002/etc.2861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/12/2014] [Accepted: 12/13/2014] [Indexed: 06/04/2023]
Abstract
Because habitats are increasingly exposed to multiple stressors simultaneously, assessing the interactive effects of stressors is crucial for understanding how populations respond to human-altered habitats. Salinization of freshwater habitats is increasing and has the potential to interact with other stressors. Chemical pollutants also contribute to habitat degradation in freshwater environments, and both salinity and various pesticides can harm amphibians. The present study used a factorial experiment to investigate the effect of elevated salinity alone and in combination with each of 3 pesticides-atrazine, carbaryl, and glyphosate-on life history and behavior of southern toad larvae (Anaxyrus terrestris). Tadpoles were negatively affected by elevated salinity and by exposure to the insecticide carbaryl, with the most deleterious outcomes associated with both stressors combined. Carbaryl exposure led to reduced survival as well as sublethal effects on growth, activity and feeding behavior, escape response swimming, and time to metamorphosis. Tadpoles reared at elevated salinity were also smaller and less active, and ultimately metamorphosed later and at smaller size. Together, carbaryl and elevated salinity had a synergistic effect, resulting in particularly poor growth, depressed activity and feeding, and sluggish escape swimming among tadpoles exposed to both stressors simultaneously. These results suggest that both elevated salinity and carbaryl represent threats for amphibian populations and that pesticide exposure in salinized habitats may pose a particularly high risk.
Collapse
Affiliation(s)
- Liza Wood
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | | |
Collapse
|
47
|
Huang Y, Liu Z, He Y, Li Y. Impact of soil primary size fractions on sorption and desorption of atrazine on organo-mineral fractions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4396-4405. [PMID: 25300187 DOI: 10.1007/s11356-014-3684-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
In the current study, a mechanical dispersion method was employed to separate clay (<2 μm), silt (2-20 μm), and sand (20-50 μm) fraction in six bulk soils. Batch equilibrium method was used to conduct atrazine sorption and desorption experiments on soil organo-mineral fractions with bulk soils and their contrasting size fractions separately. The potential contribution of total organic carbon (TOC) for atrazine retention in different fractions was further investigated. It was found that clay fraction had the highest adsorption but the least desorption capacities for atrazine, while sand fraction had the lowest adsorption but the highest desorption capacities for atrazine. The adsorption percentage of atrazine, as compared with adsorption by the corresponding bulk soils, ranged from 53.6 to 80.5%, 35.7 to 56.4%, and 0.2 to 4.5% on the clay, silt, and sand fractions, respectively. TOC was one of the key factors affecting atrazine retention in soils, with the exact contribution dependent on varying degree of coating with mineral component in different soil size fractions. The current study may be useful to predict the bioavailability of atrazine in different soil size fractions.
Collapse
Affiliation(s)
- Yufen Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | | | | | | |
Collapse
|
48
|
Sai L, Wu Q, Qu B, Bo C, Yu G, Jia Q, Xie L, Li Y, Guo Q, Ng JC, Peng C. Assessing atrazine-induced toxicities in Bufo bufo gargarizans Cantor. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 94:152-157. [PMID: 25533566 DOI: 10.1007/s00128-014-1441-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Atrazine (AZ), a widely used herbicide has drawn attentions for its potential impacts on amphibians. This study aims to investigate the toxicity of AZ in Bufo bufo gargarizans Cantor (B. bufo gargarizans), a species of toad commonly found in China and countries in East Asia. We treated tadpoles with 0.1, 1, 10 and 100 μg/L AZ for 85 days and examined related parameters. The results showed that the mortality of the toads in the treatment group increased dramatically in a U-shaped dose-response relationship. The hindlimb extension and metamorphosis rate of the toads were significantly inhibited by AZ at 10 and 100 μg/L. Under the same condition, there were significant progressive changes in the testicular structures. Moreover, we found that AZ has no significant effects on growth, sex ratios, gonadal morphology, forelimb emergence and histology in the ovaries. Our results support the idea that environmental contaminants including AZ may be relevant to global amphibian decline.
Collapse
Affiliation(s)
- Linlin Sai
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Orton F, Tyler CR. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Biol Rev Camb Philos Soc 2014; 90:1100-17. [DOI: 10.1111/brv.12147] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Frances Orton
- Biosciences; College of Life and Environmental Sciences, University of Exeter; Stocker Road Exeter EX4 4QD U.K
| | - Charles R. Tyler
- Biosciences; College of Life and Environmental Sciences, University of Exeter; Stocker Road Exeter EX4 4QD U.K
| |
Collapse
|