1
|
Liang H, Pan CG, Peng FJ, Hu JJ, Zhu RG, Zhou CY, Liu ZZ, Yu K. Integrative transcriptomic analysis reveals a broad range of toxic effects of triclosan on coral Porites lutea. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136033. [PMID: 39368358 DOI: 10.1016/j.jhazmat.2024.136033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Triclosan (TCS) is an antimicrobial agent commonly used in personal care products. However, little is known about its toxicity to corals. Here, we examined the acute toxic effects (96 h) of TCS at different levels to the coral Porites lutea. Results showed that the bioaccumulation factors (BAFs) of TCS in Porites lutea decreased with increasing TCS exposure levels. Exposure to TCS at the level up to 100 μg/L did not induce bleaching of Porites lutea. However, by the end of the experiment, both the density and chlorophyll a content of the symbiotic zooxanthellae were 19-52 % and 19.9-45.6 % lower in the TCS treatment groups than in the control, respectively. For the coral host, its total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT) activities were all significantly lower in the TCS treatment groups than the control. Transcriptome analysis showed that 942 and 1077 differentially expressed genes (DEGs) were identified in the coral host in the 0.5 and 100 μg/L TCS treatment groups, respectively. Meanwhile, TCS can interfere with pathways related to immune system and reproductive system in coral host. Overall, our results suggest that environmentally relevant concentrations of TCS can impact both the coral host and the symbiotic zooxanthellae.
Collapse
Affiliation(s)
- Hao Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhen-Zhu Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Gambardella C, Miroglio R, Costa E, Cachot J, Morin B, Clérandeau C, Rotander A, Rocco K, d'Errico G, Almeda R, Alonso O, Grau E, Piazza V, Pittura L, Benedetti M, Regoli F, Faimali M, Garaventa F. New insights into the impact of leachates from in-field collected plastics on aquatic invertebrates and vertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124233. [PMID: 38801877 DOI: 10.1016/j.envpol.2024.124233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health.
Collapse
Affiliation(s)
- Chiara Gambardella
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| | - Roberta Miroglio
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Elisa Costa
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Jérôme Cachot
- University of Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805, F-33600, Pessac, France
| | - Bénédicte Morin
- University of Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805, F-33600, Pessac, France
| | | | - Anna Rotander
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Kevin Rocco
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Spain
| | - Olalla Alonso
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Spain
| | - Etienne Grau
- University of Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629, F-33600, Pessac, France
| | - Veronica Piazza
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Lucia Pittura
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Faimali
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Francesca Garaventa
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| |
Collapse
|
3
|
Choi HC, Lee JW, Hwang UK, Jeon HJ, Oh SY, Kim CW, Kang HS. Effects of Tributyltin-Contaminated Aquatic Environments and Remediated Water on Early Development of Sea Urchin ( Hemisentrotus pulcherrimus). Animals (Basel) 2023; 13:3078. [PMID: 37835684 PMCID: PMC10571571 DOI: 10.3390/ani13193078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
In this study, gametotoxicity and embryotoxicity experiments were performed using Hemicentrotus pulcherrimus to investigate the toxic effects of tributyltin (TBT). The effects of TBT on fertilization and embryogenesis were assessed at various concentrations (0, 0.02, 0.05, 0.09, 0.16, 0.43, 0.73, 4.68, and 9.22 ppb). The fertilization rates decreased in a concentration-dependent manner, with significant reduction following treatment with TBT at 0.05 ppb. Embryos exhibited developmental impairment after TBT exposure at each tested concentration. The frequency of developmental inhibition delay that treatment with TBT delayed embryonic development in a dose-dependent manner, with 100% of embryos exhibiting developmental impairment at 4.68 ppb. During developmental recovery tests, embryos cultured in fresh media without TBT showed advanced embryonic development. Although the observed normal development after transferring the developmentally delayed embryos to fresh media without TBT offers prospects for the restoration of contaminated environments, embryonic development remained incomplete. These results suggest that TBT adversely affects the early embryonic development of H. pulcherrimus.
Collapse
Affiliation(s)
- Hee-Chan Choi
- Marine Environment Impact Assessment Center, National Institute of Fisheries Science, Busan 46083, Republic of Korea;
| | - Ju-Wook Lee
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Republic of Korea;
| | - Un-Ki Hwang
- Tidal Flat Research Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Gunsan 54001, Republic of Korea
| | - Ha-Jeong Jeon
- Department of Marine Environment, MS BioLab, Daejeon 34576, Republic of Korea
| | - Sung-Yong Oh
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Chul-Won Kim
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Kongjwipatjwi-ro 1515, Wansan-gu, Jeonju 54874, Republic of Korea
| | - Han-Seung Kang
- Department of Marine Environment, MS BioLab, Daejeon 34576, Republic of Korea
| |
Collapse
|
4
|
Gambardella C, Marcellini F, Falugi C, Varrella S, Corinaldesi C. Early-stage anomalies in the sea urchin (Paracentrotus lividus) as bioindicators of multiple stressors in the marine environment: Overview and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117608. [PMID: 34182396 DOI: 10.1016/j.envpol.2021.117608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The morphological anomalies of the early development stages of the sea urchin Paracentrotus lividus, caused by exposure to environmental stressors, are used as biomarker in ecotoxicological and ecological investigations. Here, we reviewed the available literature and classified the embryo and larval anomalies identified so far, to highlight potential commonalities or differences related to the biological action of the different stressors and their ecological impact. Morphological anomalies are influenced by a) the developmental stage of exposure to stressors; b) the intensity of the stress; c) the intra- and inter-cellular mechanisms affected by the exposure to environmental agents. The classification and analysis of embryo and larvae anomalies, either observed by the authors of this review and reported in literature, indicate that sea urchin abnormalities, caused by exposure to different stressors, can be very similar among them and classified into 18 main types, which can occur individually or mixed. All anomalies can be used to calculate an Index of Contaminant Impact to assess the impact of multiple stressors and to identify relationships between morphological anomalies and compromised biological mechanisms. This approach could be useful for a first screening of the presence of potential stressors impairing the growth and development of the early life stages of marine organisms, thus providing a relevant advancement for in future monitoring activities devoted to assess the health status in coastal marine ecosystems.
Collapse
Affiliation(s)
- Chiara Gambardella
- Consiglio Nazionale Delle Ricerche - Istituto per Lo Studio Degli Impatti Antropici e Sostenibilità in Ambiente Marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | | | - Carla Falugi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefano Varrella
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente e Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Cinzia Corinaldesi
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente e Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
5
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
6
|
Radwan P, Wielgomas B, Radwan M, Krasiński R, Klimowska A, Zajdel R, Kaleta D, Jurewicz J. Triclosan exposure and in vitro fertilization treatment outcomes in women undergoing in vitro fertilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12993-12999. [PMID: 33097990 PMCID: PMC7921062 DOI: 10.1007/s11356-020-11287-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) is a widespread environmental endocrine-disrupting chemical. Animal and in vitro studies suggested that triclosan may affect homesostasis of sex and thyroid hormones and impact on reproduction. Due to limited data derived from human epidemiological studies, this study was performed to examine the association between urinary concentration of triclosan and in vitro reproductive outcomes (methaphase II (MII) oocyte yield, top quality embryo, fertilization rate, implantation rate, and clinical pregnancy) among women from infertility clinic. The study participants were enrolled in an Infertility Center in Poland. A total of 450 women aged 25-45 (n = 674 IVF cycles) provided urine samples. The urinary concentrations of triclosan were evaluated using validated gas chromatography ion-tap mass spectrometry method. Clinical outcomes of IVF treatment were abstracted from patients electronic chart records. Triclosan was detected in urine of 82% of women with geometric mean 2.56 ± 6.13 ng/mL. Urinary concentrations of triclosan were associated with decrease implantation rate (p = 0.03). There were no association between other examined IVF outcomes: MII oocytes, embryo quality, fertilization rate, and exposure to triclosan. As this is one of the first study on this topic, studies among larger and more diverse population are needed to confirm the results.
Collapse
Affiliation(s)
- Paweł Radwan
- Department of Gynecology and Reproduction, "Gameta" , 7 Cybernetyki St, 02-677, Warsaw, Poland.
- Department of Gynecology and Reproduction, "Gameta" Kielce-Regional Science-Technology Centre, 45 Podzamcze St Chęciny, 26-060, Kielce, Poland.
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St, Gdańsk, Poland
| | - Michał Radwan
- Department of Gynecology and Reproduction, "Gameta" Hospital, 34/36 Rudzka St, 95-030, Rzgów, Poland
- Faculty of Health Sciences, Mazovian State University in Plock, 2 Dabrowskiego Sq, 09-402, Plock, Poland
| | - Rafał Krasiński
- Department of Gynecology and Reproduction, "Gameta" Hospital, 34/36 Rudzka St, 95-030, Rzgów, Poland
| | - Anna Klimowska
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St, Gdańsk, Poland
| | - Radosław Zajdel
- Chair of Business and Informatics, University of Łódź, 3/5 POW St., 90-255, Łódź, Poland
| | - Dorota Kaleta
- Department of Hygiene and Epidemiology, Medical University of Lodz, Zeligowskiego 7/9 St, 90-752, Łódź, Poland
| | - Joanna Jurewicz
- Department of Hygiene and Epidemiology, Medical University of Lodz, Zeligowskiego 7/9 St, 90-752, Łódź, Poland
| |
Collapse
|
7
|
Juksu K, Zhao JL, Liu YS, Yao L, Sarin C, Sreesai S, Klomjek P, Jiang YX, Ying GG. Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1110-1119. [PMID: 31470474 DOI: 10.1016/j.scitotenv.2019.07.097] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 05/05/2023]
Abstract
This study investigated the occurrence and fate of 19 biocides in 8 wastewater treatment plants and receiving aquatic environments (both freshwater and estuarine systems) in Thailand. The predominant compound in wastewater and surface water was methylparaben with the maximum concentration of 15.2 μg/L detected in the receiving river, while in sludge and sediment was triclocarban with the maximum concentration of 8.47 μg/g in sludge. Triclosan was the main contaminants in the fish samples with the maximum concentration of 1.20 μg/g. Similar results of biocides were found in the estuarine system in Pattaya city, with the maximum concentration of 185 ng/L in sea water for methylparaben, and 242 ng/g in estuarine sediment for triclocarban. The aqueous removal rates for the biocides ranged from 15% to 95% in average. The back estimated-usage and total estimated emission of Ʃ19 biocides in Thailand was 279 and 202 tons/year, respectively. Preliminary ecological risk assessment showed that clotrimazole and triclosan could pose high risks to aquatic organisms in the receiving aquatic environments.
Collapse
Affiliation(s)
- Kanokthip Juksu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Li Yao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Charoon Sarin
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Siranee Sreesai
- Department of Environmental Health Science, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Pantip Klomjek
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Maulvault AL, Camacho C, Barbosa V, Alves R, Anacleto P, Cunha SC, Fernandes JO, Pousão-Ferreira P, Paula JR, Rosa R, Diniz M, Marques A. Bioaccumulation and ecotoxicological responses of juvenile white seabream (Diplodus sargus) exposed to triclosan, warming and acidification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:427-442. [PMID: 30458373 DOI: 10.1016/j.envpol.2018.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/28/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS) is a synthetic microbial compound widely used in the formulation of various personal care products. Its frequent detection in marine ecosystems, along with its physical and chemical properties, suggest that TCS can be highly persistent, being easily bioaccumulated by biota and, therefore, eliciting various toxicological responses. Yet, TCS's mechanisms of bioaccumulation and toxicity still deserve further research, particularly focusing on the interactive effects with climate change-related stressors (e.g. warming and acidification), as both TCS chemical behaviour and marine species metabolism/physiology can be strongly influenced by the surrounding abiotic conditions. Hence, the aim of this study was to assess TCS bioaccumulation and ecotoxicological effects (i.e. animal fitness indexes, antioxidant activity, protein chaperoning and degradation, neurotoxicity and endocrine disruption) in three tissues (i.e. brain, liver and muscle) of juvenile Diplodus sargus exposed to the interactive effects of TCS dietary exposure (15.9 μg kg-1 dw), seawater warming (ΔTºC = +5 °C) and acidification (ΔpCO2 ∼ +1000 μatm, equivalent to ΔpH = -0.4 units). Muscle was the primary organ of TCS bioaccumulation, and climate change stressors, particularly warming, significantly reduced TCS bioaccumulation in all fish tissues. Furthermore, the negative ecotoxicological responses elicited by TCS were significantly altered by the co-exposure to acidification and/or warming, through either the enhancement (e.g. vitellogenin content) or counteraction/inhibition (e.g. heat shock proteins HSP70/HSC70 content) of molecular biomarker responses, with the combination of TCS plus acidification resulting in more severe alterations. Thus, the distinct patterns of TCS tissue bioaccumulation and ecotoxicological responses induced by the different scenarios emphasized the need to further understand the interactive effects between pollutants and abiotic conditions, as such knowledge enables a better estimation and mitigation of the toxicological impacts of climate change in marine ecosystems.
Collapse
Affiliation(s)
- Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho 6, Lisboa, 1495-006, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, Matosinhos, 4450-208, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, Cascais, 2750-374, Portugal.
| | - Carolina Camacho
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho 6, Lisboa, 1495-006, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, Matosinhos, 4450-208, Portugal
| | - Vera Barbosa
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho 6, Lisboa, 1495-006, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, Matosinhos, 4450-208, Portugal
| | - Ricardo Alves
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho 6, Lisboa, 1495-006, Portugal
| | - Patrícia Anacleto
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho 6, Lisboa, 1495-006, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, Matosinhos, 4450-208, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, Cascais, 2750-374, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho 6, Lisboa, 1495-006, Portugal
| | - José Ricardo Paula
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, Cascais, 2750-374, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, Cascais, 2750-374, Portugal
| | - Mário Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho 6, Lisboa, 1495-006, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, Matosinhos, 4450-208, Portugal
| |
Collapse
|
9
|
Chen L, Wang Z, Qian C, He Y. Effects of inorganic anions on the photolysis of triclosan under UV irradiation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1476-1480. [PMID: 30427787 DOI: 10.2166/wst.2018.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Triclosan is a widely used antimicrobial agent and may pose health risks to many aquatic organisms. Photodegradation is an important transformation pathway for triclosan, but studies on the effects of inorganic anions on photodegradation of triclosan are limited. In the present study, the single and combined effects of NO3 -, Cl- and HCO3 - on the photolysis of triclosan in aqueous solutions under UV irradiation was evaluated. The results showed that photodegradation of triclosan was inhibited by NO3 - and promoted by HCO3 -, while no significant effect was observed with Cl-. When Cl- was added to NO3 -, no effect was observed, but the addition of Cl- hindered the promotion effect of HCO3 -. The coexistence of NO3 -, Cl- and HCO3 - inhibited the photolysis of triclosan. These results showed the complex effects of inorganic anions in the photolysis of triclosan and provide useful information for an accurate ecological risk assessment of triclosan in natural waters. It will also help to develop appropriate treatment ways of triclosan.
Collapse
Affiliation(s)
- Lei Chen
- School of Civil Engineering of Nanjing Forestry University, Nanjing 210037, China E-mail:
| | - Zhipeng Wang
- School of Civil Engineering of Nanjing Forestry University, Nanjing 210037, China E-mail:
| | - Cheng Qian
- School of Civil Engineering of Nanjing Forestry University, Nanjing 210037, China E-mail:
| | - Yuchen He
- School of Civil Engineering of Nanjing Forestry University, Nanjing 210037, China E-mail:
| |
Collapse
|
10
|
Rehman S, Usman Z, Rehman S, AlDraihem M, Rehman N, Rehman I, Ahmad G. Endocrine disrupting chemicals and impact on male reproductive health. Transl Androl Urol 2018; 7:490-503. [PMID: 30050807 PMCID: PMC6043754 DOI: 10.21037/tau.2018.05.17] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) have been known to adversely affect the endocrine system leading to compromised functions of hormones. The presence of these compounds in everyday products such as canned food, water bottles, plastics, cosmetics, fertilizers, kid’s toys and many others goods is a greater concern for general population. The persistent and long-term use of EDCs has deleterious effects on human reproductive health by interfering with the synthesis and mechanism of action of sex hormones. Any change during the synthesis or action of the sex hormones may result in abnormal reproductive functions which includes developmental anomalies in the reproductive tract and decline in semen quality. The present paper provides an overview of the EDCs and their possible impact on male reproductive health with major focus on semen quality which leads to male infertility.
Collapse
Affiliation(s)
- Saba Rehman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Zeenat Usman
- Department of Physiology, University of Health Sciences, Lahore, Pakistan
| | - Sabeen Rehman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Noor Rehman
- Department of Biological Sciences, Binghamton University, NY, USA
| | - Ibraheem Rehman
- Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Gulfam Ahmad
- Department of Physiology, University of Health Sciences, Lahore, Pakistan.,Human Reproduction Unit, Kolling Institute, Sydney Medical School, Sydney University, Sydney, Australia
| |
Collapse
|
11
|
Li C, Qu R, Chen J, Zhang S, Allam AA, Ajarem J, Wang Z. The pH-dependent toxicity of triclosan to five aquatic organisms (Daphnia magna, Photobacterium phosphoreum, Danio rerio, Limnodrilus hoffmeisteri, and Carassius auratus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9636-9646. [PMID: 29363032 DOI: 10.1007/s11356-018-1284-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is an antibacterial and antifungal agent widely used in personal care products, and it has been frequently detected in the aquatic environment. In the present study, the acute toxicity of TCS to Daphnia magna, Photobacterium phosphoreum, Danio rerio, and Limnodrilus hoffmeisteri was assessed under different pH conditions. Generally, TCS was more toxic to the four aquatic organisms in acidic medium. The LC50 values for D. magna and D. rerio were smaller among the selected species, suggesting that D. magna and D. rerio were more sensitive to TCS. In addition, the oxidative stress-inducing potential of TCS was evaluated in Carassius auratus at three pH values. Changes of superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH) level, and malondialdehyde (MDA) content were commonly observed in all TCS exposure groups, indicating the occurrence of oxidative stress in the liver of C. auratus. The integrated biomarker response (IBR) index revealed that a high concentration of TCS induced great oxidative stress in goldfish under acidic condition. This work supplements the presently available data on the toxicity data of TCS, which would provide some useful information for the environmental risk assessment of this compound.
Collapse
Affiliation(s)
- Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, 65211, Egypt
| | - Jamaan Ajarem
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Tato T, Salgueiro-González N, León VM, González S, Beiras R. Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:173-182. [PMID: 28951039 DOI: 10.1016/j.envpol.2017.09.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 05/04/2023]
Abstract
This study assessed the environmental risk on coastal ecosystems posed by three phenolic compounds of special environmental and human health concern used in plastics and household products: bisphenol A (BPA), triclosan (TCS) and 4-nonylphenol (4-NP). These three chemicals are among the organic contaminants most frequently detected in wastewater. The most toxic compound tested was 4-NP, with 10% effective concentration at 11.1 μg L-1 for Isochrysis galbana, 110.5 μg L-1 for Mytilus galloprovincialis, 53.8 μg L-1 for Paracentrotus lividus, and 29.0 μg L-1 for Acartia clausi, followed by TCS (14.6 μg L-1 for I. galbana, 149.8 μg L-1 for M. galloprovincialis, 129.9 μg L-1 for P. lividus, and 64.8 μg L-1 for A. clausi). For all species tested, BPA was the less toxic chemical, with toxicity thresholds ranging between 400 and 1200 μg L-1 except for A. clausi nauplii (186 μg L-1). The relatively narrow range of variation in toxicity considering the broad physiological differences among the biological models used point at non-selective mechanisms of toxicity for these aromatic organics. Microalgae, the main primary producers in pelagic ecosystems, showed particularly high susceptibility to the chemicals tested. When the toxicity thresholds experimentally obtained were compared to the maximum environmental concentrations reported in coastal waters, the risk quotients obtained correspond to very low or low risk for BPA and TCS, and from low to high for 4-NP.
Collapse
Affiliation(s)
- Tania Tato
- Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain; Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36200 Vigo, Galicia, Spain
| | - Noelia Salgueiro-González
- Grupo Química Analítica Aplicada, Departamento de Química, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071 A Coruña, Galicia, Spain
| | - Víctor M León
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Apdo. 22, C/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Sergio González
- Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain; Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36200 Vigo, Galicia, Spain
| | - Ricardo Beiras
- Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain; Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36200 Vigo, Galicia, Spain.
| |
Collapse
|
13
|
Hua R, Zhou Y, Wu B, Huang Z, Zhu Y, Song Y, Yu Y, Li H, Quan S. Urinary triclosan concentrations and early outcomes of in vitro fertilization-embryo transfer. Reproduction 2017; 153:319-325. [PMID: 28073982 DOI: 10.1530/rep-16-0501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Triclosan (TCS) exists ubiquitously in the environment. Several in vitro and in vivo studies have demonstrated that TCS exerts endocrine disruptive effects on reproduction, but data from human populations are limited and conflicting. The objective of our study was to investigate whether high urinary TCS concentration is adversely associated with early reproductive outcomes in women undergoing in vitro fertilization-embryo transfer (IVF-ET). This prospective cohort study was conducted from September 2015 to June 2016, including 156 infertile women undergoing their first IVF-ET cycle. Two spot urine samples were collected prior to oocyte retrieval for TCS detection using solid-phase extraction (SPE) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Linear regression model and binary logistic regression model were used to evaluate the association between urinary TCS concentrations and IVF outcomes. The intake of aquaculture food may have positive influences on urinary TCS concentrations. After adjustment for age, body mass index (BMI), baseline follicle-stimulating hormone (FSH), antral follicle count (AFC) and smoking status, a significant decrease of top quality embryo formation and implantation rate was observed in patients with urinary TCS concentration greater than or equal to the median level (0.045 μmol/mol Cr). We concluded that TCS exposure may exert negative effects during early stages of human reproduction.
Collapse
Affiliation(s)
- Rui Hua
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Zhou
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wu
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongwei Huang
- Department of Obstetrics and GynaecologyYong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yongtong Zhu
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yali Song
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanhong Yu
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Li
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Song Quan
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Macedo S, Torres T, Santos MM. Methyl-triclosan and triclosan impact embryonic development of Danio rerio and Paracentrotus lividus. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:482-489. [PMID: 28236114 DOI: 10.1007/s10646-017-1778-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 05/23/2023]
Abstract
The presence of emerging pollutants in the environment is of major concern not only because of the potential negative impact in human health, but also due to the potential toxicity to non-target organisms. Within the personal and care products (PCPs), the disinfectant Triclosan (TCS) is one of the most concerning compounds. Once in the wastewater treatment plants (WWTPs), a small part of TCS can be biotransformed into a more persistent by-product: methyl-triclosan (M-TCS). Although several studies have focused on the occurrence of this compound in the water systems, the information on its toxicity to aquatic organisms is very limited. Here, we used embryo bioassays with two aquatic model animals to improve risk assessment of M-TCS; zebrafish (Danio rerio) embryo bioassays run up to 144 h post fertilization (hpf) and sea urchin (Paracentrotus lividus) up to 48 hpf, following established protocols. M-TCS and TCS exhibited similar toxicity to zebrafish with a NOEC of 160 µg/L. In contrast, M-TCS induced a delay in the development of the sea urchin larvae at all tested concentrations (1-1000 µg/L), whereas NOEC of TCS for P. lividus embryos was 40 µg/L. Overall, given the reported effects of M-TCS in the close range of environmentally relevant concentrations, and considering the low degradation rate and tendency to bioaccumulation (logKow: 5.2), further studies are warrant to better characterize the risk of this TCS metabolite to aquatic organisms.
Collapse
Affiliation(s)
- Sofia Macedo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine disruptors and Emerging contaminants, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Tiago Torres
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine disruptors and Emerging contaminants, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine disruptors and Emerging contaminants, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal.
| |
Collapse
|
15
|
Durán I, Beiras R. Acute water quality criteria for polycyclic aromatic hydrocarbons, pesticides, plastic additives, and 4-Nonylphenol in seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:384-391. [PMID: 28222980 DOI: 10.1016/j.envpol.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Probabilistic environmental quality criteria for Naphthalene (Nap), Phenanthrene (Phe), Fluoranthene (Flu), Pyrene (Pyr), Triclosan (TCS), Tributyltin (TBT), Chlorpyrifos (CPY), Diuron (DUR), γ-Hexaclorocyclohexane (γ-HCH), Bisphenol A (BPA) and 4-Nonylphenol (4-NP) were derived from acute toxicity data using saltwater species representative of marine ecosystems, including algae, mollusks, crustaceans, echinoderms and chordates. Preferably, data concerns sublethal endpoints and early life stages from bioassays conducted in our laboratory, but the data set was completed with a broad literature survey. The Water Quality Criteria (WQC) obtained for TBT (7.1·10-3 μg L-1) and CPY (6.6· 10-3 μg L-1) were orders of magnitude lower than those obtained for PAHs (ranging from 3.75 to 45.2 μg L-1), BPA (27.7 μg L-1), TCS (8.66 μg L-1) and 4-NP (1.52 μg L-1). Critical values for DUR and HCH were 0.1 and 0.057 μg L-1 respectively. Within this context, non-selective toxicants could be quantitatively defined as those showing a maximum variability in toxicity thresholds (TT) of 3 orders of magnitude across the whole range of marine diversity, and a cumulative distribution of the TT fitting to a single log-logistic curve, while for selective toxicants variability was consistently found to span 5 orders of magnitude and the TT distribution showed a bimodal pattern. For the latter, protective WQC must be derived taking into account the SSD of the sensitive taxa only.
Collapse
Affiliation(s)
- I Durán
- ECIMAT, Universidade de Vigo, Illa de Toralla, E-36331, Galicia, Spain
| | - R Beiras
- ECIMAT, Universidade de Vigo, Illa de Toralla, E-36331, Galicia, Spain.
| |
Collapse
|
16
|
Hwang J, Suh SS, Park M, Park SY, Lee S, Lee TK. Differential gene expression patterns during embryonic development of sea urchin exposed to triclosan. ENVIRONMENTAL TOXICOLOGY 2017; 32:426-433. [PMID: 26880682 DOI: 10.1002/tox.22246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Triclosan (TCS; 2,4,4'-trichloro-2'-hydroxydiphenyl ether) is a broad-spectrum antibacterial agent used in common industrial, personal care and household products which are eventually rinsed down the drain and discharged with wastewater effluent. It is therefore commonly found in the aquatic environment, leading to the continual exposure of aquatic organisms to TCS and the accumulation of the antimicrobial and its harmful degradation products in their bodies. Toxic effects of TCS on reproductive and developmental progression of some aquatic organisms have been suggested but the underlying molecular mechanisms have not been defined. We investigated the expression patterns of genes involved in the early development of TCS-treated sea urchin Strongylocentrotus nudus using cDNA microarrays. We observed that the predominant consequence of TCS treatment in this model system was the widespread repression of TCS-modulated genes. In particular, empty spiracles homeobox 1 (EMX-1), bone morphogenic protein, and chromosomal binding protein genes showed a significant decrease in expression in response to TCS. These results suggest that TCS can induce abnormal development of sea urchin embryos through the concomitant suppression of a number of genes that are necessary for embryonic differentiation in the blastula stage. Our data provide new insight into the crucial role of genes associated with embryonic development in response to TCS. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 426-433, 2017.
Collapse
Affiliation(s)
- Jinik Hwang
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
- Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 305-350, Republic of Korea
| | - Sung-Suk Suh
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
| | - Mirye Park
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
- Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 305-350, Republic of Korea
| | - So Yun Park
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Taek-Kyun Lee
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
- Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 305-350, Republic of Korea
| |
Collapse
|
17
|
Gharred T, Jebali J, Belgacem M, Mannai R, Achour S. Assessment of the individual and mixture toxicity of cadmium, copper and oxytetracycline, on the embryo-larval development of the sea urchin Paracentrotus lividus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18064-18072. [PMID: 27259955 DOI: 10.1007/s11356-016-6988-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 06/05/2023]
Abstract
Multiple pollutions by trace metals and pharmaceuticals have become one of the most important problems in marine coastal areas because of its excessive toxicity on organisms living in this area. This study aimed to assess the individual and mixture toxicity of Cu, Cd, and oxytetracycline frequently existing in the contaminated marine areas and the embryo-larval development of the sea urchin Paracentrotus lividus. The individual contamination of the spermatozoid for 1 h with the increasing concentrations of Cd, Cu, and OTC decreases the fertility rate and increases larvae anomalies in the order Cu > Cd > OTC. Moreover, the normal larva frequency and the length of spicules were more sensitive than the fertilization rate and normal gastrula frequency endpoints. The mixture toxicity assessed by multiple experimental designs showed clearly that concentrations of Cd, Cu, and OTC superior to 338 μg/L, 0.56 μg/L, and 0.83 mg/L, respectively, cause significant larva malformations.
Collapse
Affiliation(s)
- Tahar Gharred
- Research Laboratory "Bioresources: Integrative Biology andValorisation", High Institute of Biotechnology of Monastir, Monastir, Tunisia.
| | - Jamel Jebali
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomic Sciences of Chott-Mariem, Sousse, Tunisia
| | - Mariem Belgacem
- Research Laboratory "Bioresources: Integrative Biology andValorisation", High Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Rabeb Mannai
- Research Laboratory "Bioresources: Integrative Biology andValorisation", High Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Sami Achour
- Research Laboratory "Bioresources: Integrative Biology andValorisation", High Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|
18
|
Huang SSY, Benskin JP, Chandramouli B, Butler H, Helbing CC, Cosgrove JR. Xenobiotics Produce Distinct Metabolomic Responses in Zebrafish Larvae (Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6526-6535. [PMID: 27232715 DOI: 10.1021/acs.est.6b01128] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sensitive and quantitative protocols for characterizing low-dose effects are needed to meet the demands of 21st century chemical hazard assessment. To test the hypothesis that xenobiotic exposure at environmentally relevant concentrations produces specific biochemical fingerprints in organisms, metabolomic perturbations in zebrafish (Danio rerio) embryo/larvae were measured following 24 h exposures to 13 individual chemicals covering a wide range of contaminant classes. Measured metabolites (208 in total) included amino acids, biogenic amines, fatty acids, bile acids, sugars, and lipids. The 96-120 h post-fertilization developmental stage was the most appropriate model for detecting xenobiotic-induced metabolomic perturbations. Metabolomic fingerprints were largely chemical- and dose-specific and were reproducible in multiple exposures over a 16-month period. Furthermore, chemical-specific responses were detected in the presence of an effluent matrix; importantly, in the absence of morphological response. In addition to improving sensitivity for detecting biological responses to low-level xenobiotic exposures, these data can aid the classification of novel contaminants based on the similarity of metabolomic responses to well-characterized "model" compounds. This approach is clearly of use for rapid, sensitive, and specific analyses of chemical effect on organisms, and can supplement existing methods, such as the Zebrafish Embryo Toxicity assay (OECD TG236), with molecular-level information.
Collapse
Affiliation(s)
- Susie S Y Huang
- AXYS Analytical Services Ltd., Sidney, British Columbia, Canada
| | - Jonathan P Benskin
- AXYS Analytical Services Ltd., Sidney, British Columbia, Canada
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Stockholm, Sweden
| | | | - Heather Butler
- AXYS Analytical Services Ltd., Sidney, British Columbia, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria , Victoria, British Columbia, Canada
| | - John R Cosgrove
- AXYS Analytical Services Ltd., Sidney, British Columbia, Canada
| |
Collapse
|
19
|
Gao L, Yuan T, Cheng P, Bai Q, Zhou C, Ao J, Wang W, Zhang H. Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of Tetrahymena thermophila. CHEMOSPHERE 2015; 139:434-440. [PMID: 26246462 DOI: 10.1016/j.chemosphere.2015.07.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
The information about adverse effects of emerging contaminants on aquatic protozoa is very scarce. The growth inhibition effect, cell viability, genotoxicity and multixenobiotic resistance (MXR) responses of two commonly used antimicrobial agents, triclosan (TCS) and triclocarban (TCC) to protozoan Tetrahymena thermophila were investigated in this study. The results revealed that TCS and TCC can inhibit the growth of T. thermophila with 24h EC50 values of 1063 and 295μgL(-1), respectively. The impairment of plasma membrane was observed after 2h exposure of TCS or TCC at the level of mg/L. Furthermore, it is noticeable that at environmentally relevant concentration (1.0μgL(-1)), both TCS and TCC can lead to statistically significant DNA damage in T. thermophila, while the inhibition of growth and change of cell viability cannot be observed. Our results firstly provide the evidence for genotoxic effects of TCS and TCC on the freshwater protozoan. Additionally, both TCS and TCC were found to inhibit the efflux transporter activities, with the inhibitory potencies of 39% and 40% (using verapamil as a model inhibitor), respectively. Particularly, TCC could significantly down-regulate the expression of MXR related gene Abcb15, which encodes the membrane efflux protein that acting as P-gp in T. thermophila. The results raise the awareness of potential aquatic ecological and human health risks from the exposure of TCS and TCC, as they might potentiate the toxic effects by chemosensitizing with co-existing toxicants.
Collapse
Affiliation(s)
- Li Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Resource and Environment, Ningxia University, Yinchuan 750021, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Peng Cheng
- School of Life Science, Hubei University, Wuhan 430062, China
| | - Qifeng Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjie Ao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenhua Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haimou Zhang
- School of Life Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
20
|
Chen L, Wang Z, Jing Z, Wang Z, Cao S, Yu T. Accumulation and Risk of Triclosan in Surface Sediments Near the Outfalls of Municipal Wastewater Treatment Plants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:525-9. [PMID: 26271613 DOI: 10.1007/s00128-015-1630-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/11/2015] [Indexed: 05/05/2023]
Abstract
Triclosan is an antimicrobial agent which is widely used in many personal care products. This toxic chemical is frequently found in the aquatic environment. The municipal wastewater treatment plant (WWTP) effluent has been reported to be one of the major sources for triclosan in the aquatic system. The aim of the present study was to investigate the accumulation of triclosan in the surface sediments near the outfalls of the five major municipal WWTPs of Nanjing, China, as well as to evaluate its potential ecological risk. The concentration of triclosan in the sediment samples ranged from 48.3 to 226 ng/g dry weight, which was well correlated with the acute and genetic toxicity by bioassay. The results suggested that triclosan released from municipal WWTPs could accumulate in the surface sediments nearby and may pose undetermined risk to aquatic organisms.
Collapse
Affiliation(s)
- Lei Chen
- School of Civil Engineering of Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Zheng Wang
- School of Civil Engineering of Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhaoqian Jing
- School of Civil Engineering of Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhulai Wang
- School of Civil Engineering of Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shiwei Cao
- School of Civil Engineering of Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ting Yu
- School of Civil Engineering of Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| |
Collapse
|