1
|
Sarioğlu A. Growth of soybean plants under saline conditions: the role of potassium and Bradyrhizobium japonicum inoculation. BMC PLANT BIOLOGY 2025; 25:473. [PMID: 40229729 PMCID: PMC11998390 DOI: 10.1186/s12870-025-06477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
This study aimed to evaluate the effects of potassium (K) and Bradyrhizobium japonicum applications on physiological and microbial parameters in soybean plants under salt stress. The study included treatments of control, potassium (2.2 g K2SO4), bacteria (B), and their combinations (K + B), along with versions exposed to 100 mM NaCl salt stress. Key parameters such as leaf water content (RWC), chlorophyll (SPAD, Chlo a/b), oxidative stress indicators (H2O2 and MDA), proline, protein, antioxidant enzyme activities (APX, POD, and CAT), microbial biomass carbon (MBC), and CO2 release from soil were measured. Salt stress reduced RWC in plants by 15%, while H2O2 and MDA levels increased by 25% and 30%, respectively. However, potassium and bacterial applications improved plant resilience against stress by increasing proline levels by 20%, reducing protein loss by 18%, and enhancing antioxidant enzyme activities to mitigate oxidative damage. In soil microbial activities, MBC increased by up to 161%, and CO₂ release increased by up to 27.7% with K + B application. Under salt stress, MBC and CO₂ release were restored by 122% and 50.8%, respectively, demonstrating the positive effects of potassium and bacterial inoculation on microbial activity. These findings suggest that potassium and Bradyrhizobium japonicum applications could be considered effective strategies for enhancing plant tolerance and soil health under salt stress conditions.
Collapse
Affiliation(s)
- Ali Sarioğlu
- Department of Soil Science and Plant Nutrition, Harran University, Sanliurfa, Turkey.
| |
Collapse
|
2
|
Zhang X, Shao M, Peng W, Qu H, Han X, Xing H. BnDREB1 confers cadmium tolerance in ramie. Sci Rep 2025; 15:11662. [PMID: 40185939 PMCID: PMC11971442 DOI: 10.1038/s41598-025-96051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Cadmium (Cd) is a toxic heavy metal whose contamination in soil threatens food safety, agricultural production, and human health. To date, phytoremediation is a low-cost and environmentally friendly method for eliminating Cd contamination. In this study, we report a gene from ramie (Boehmeria nivea) that encodes a dehydration responsive element binding (DREB) factor associated with plant tolerance to Cd, namely BnDREB1. The open reading frame of BnDREB1 comprises 873 bp encoding 290 amino acids and includes a characteristic AP2 domain. Its cloned promoter sequence contains various hormone and stress responsive elements. Quantitative RT-PCR analysis showed that BnDREB1 is expressed in different organs of ramie. Treatments with polyethylene glycol (PEG), abscisic acid (ABA), and Cd upregulated the expression of BnDREB1. Confocal microscopic analysis revealed that BnDREB1 is mainly localized in the nucleus. Overexpression of BnDREB1 in Arabidopsis thaliana increased the tolerance of transgenic plants to Cd, thereby protecting plant growth from its toxicity. Biochemical analysis revealed that overexpression of BnDREB1 reduced the levels of Cd induced malonaldehyde and hydrogen peroxide, inhibited the reduction of Cd caused soluble protein contents, increased the Cd accumulation, and enhanced Cd translocation in transgenic plants. Taken together, these findings suggest that BnDREB1 is an appropriate candidate gene for phytoremediation of Cd-contaminated soil .
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
- Gansu Agricultural Engineering Technology Research Institute, Lanzhou, 730030, China
| | - Mingyu Shao
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
| | - Wenxian Peng
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
| | - Hongyue Qu
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
| | - Xinran Han
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
| | - Hucheng Xing
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China.
- Hunan Key Laboratory of Germplasm Resources Innovation and Resource Utilization, Changsha, 410128, China.
- Hunan Provincial Engineering Technology Research Center of Grass Crop Germplasm Innovation and Utilization, Changsha, 410128, China.
| |
Collapse
|
3
|
Hao R, Gao Z, Zhang X, Wang X, Ye W, Chen X, Ma X, Xiong X, Hu G. A large-scale gene co-expression network analysis reveals Glutamate Dehydrogenase 2 (GhGDH2_D03) as a hub regulator of salt and salt-alkali tolerance in cotton. PLANT MOLECULAR BIOLOGY 2025; 115:54. [PMID: 40175579 DOI: 10.1007/s11103-025-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Salt stress and salt-alkali stress significantly inhibit the normal growth and development of plants. Understanding the molecular mechanisms of cotton responses to these stresses is crucial for improve yield and fiber quality. In this study, we conducted a comprehensive analysis of the transcriptome dynamics under salt and salt-alkali stress conditions, utilizing 234 RNA-seq datasets compiled from 11 previous studies. After systematic evaluation and correction for batch effects, we observed that root transcriptomes clustered more consistently than leaf transcriptomes across stress treatment and time points. Weighted gene co-expression network analysis (WGCNA) on 123 root transcriptomes identified three key modules, with their hub genes significantly associated with salt and salt-alkali tolerance. Virus-induced gene silencing assay and RNA-seq analysis indicated that GhGDH2_D03 (Gohir.D03G104800), a module hub gene encoding Glutamate Dehydrogenase 2, positively regulates salt and salt-alkali tolerance in cotton by modulating multiple signaling pathways and metabolic processes, including the ethylene signaling pathway. This study underscores the pivotal role of GhGDH2_D03 in conferring tolerance to salt and salt-alkali stress, in addition to its previous reported involvement in biotic stress defense, providing valuable insights and genetic resources for cotton breeding.
Collapse
Affiliation(s)
- Rui Hao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhan Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
4
|
Yang H, Xu J, Xu C, Zhou G, Zhou T, Xiao C. Molecular insights into DaERF108-mediated regulation on asperosaponin VI biosynthesis under cold tolerance in Dipsacus asper. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109632. [PMID: 39965409 DOI: 10.1016/j.plaphy.2025.109632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Plants frequently modulate their hormonal signaling pathways in response to stress, thereby regulating the synthesis of secondary metabolites and adapting to fluctuations in their surroundings. The APETALA2/ethylene-responsive factor (AP2/ERF) domain transcription factors are important in regulating abiotic stress tolerance. The accumulation of asperosaponin VI in the root was significantly enhanced under low temperature stress, which exhibited a correlation with the AP2/ERF family. However, the involvement of AP2/ERF in regulating asperosaponin VI biosynthesis under cold stress remains ambiguous. Under cold stress conditions below 10 °C, we observed the accumulation of asperosaponin VI and an increase in jasmonic acid (JA) levels. This response was attributed to the activation of the JA synthesis pathway induced by low temperatures. Additionally, a comprehensive analysis of the full-length transcriptome of Dipsacus asper identified a total of 80 DaAP2/ERF transcription factors, which exhibited significant homology with Arabidopsis thaliana and Citrus ERFs based on phylogenetic analysis. Furthermore, qRT-PCR analysis demonstrated that both cold stress and methyl jasmonate (MeJA) induction upregulated DaERF108 expression. The expression of DaERF108 is notably upregulated in the leaves and during the early stages of growth and development of D. asper, while subcellular localization analysis confirmed its presence in the nucleus. The overexpression of DaERF108 significantly enhanced the accumulation of oleanolic acid, a precursor of asperosaponin VI, and activated the triterpenoid biosynthesis pathway in Arabidopsis roots. Additionally, the overexpression of DaERF108 induced the activation of the terpenoid synthesis pathway under cold stress conditions. Notably, there was a positive correlation between DaERF108 expression and genes involved in asperosaponin VI biosynthesis, particularly with 3-hydroxy-3-methylglutaryl coenzyme A synthase (DaHMGS). The interaction between DaERF108 and the GCC-box element in the DaHMGS promoter was demonstrated by LUC and Y1H assays, leading to enhanced activity. These findings suggest that DaERF108 specifically binds to the G-box element, thereby regulating DaHMGS gene expression, activating the JA signaling pathway, and promoting asperosaponin VI biosynthesis in response to cold stress.
Collapse
Affiliation(s)
- Huanhuan Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Jiao Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Chunyun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Guang Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
5
|
Yang Y, Liu L, Xiong H, Wang T, Yang J, Wang W, Al-Khalaf AA, Wang Z, Ahmed W. Biochar and Trehalose Co-Application: A Sustainable Strategy for Alleviating Lead Toxicity in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:878. [PMID: 40265793 PMCID: PMC11946277 DOI: 10.3390/plants14060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 04/24/2025]
Abstract
Lead (Pb) is a common contaminant that causes serious health and environmental problems. Thus, appropriate environmentally friendly and efficient techniques must be developed to remediate Pb in soils. Biochar (BC) has shown promise as an effective strategy to mitigate Pb toxicity. Trehalose (Tre) is a promising sugar that has been shown to effectively improve plant tolerance to abiotic stresses. Nonetheless, its role in alleviating Pb toxicity is unknown. The study investigated the impacts of BC and Tre co-application in alleviating Pb toxicity in rice crops. The study included the following treatments: control, Pb stress (250 mg kg-1), Pb stress (250 mg kg-1) + BC (2.5%), Pb stress (250 mg kg-1) + Tre (30 mM), and Pb stress (250 mg kg-1) + BC (2.5%) + Tre (30 mM). Results showed that Pb toxicity reduced rice yield by decreasing chlorophyll synthesis and relative water content (RWC), by increasing malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, Pb accumulation in roots and shoots, soil available Pb concentration, and by decreasing the availability of soil nutrients. BC and Tre application mitigated the adverse impacts of Pb; however, more promising results were obtained with the co-application of BC and Tre. The results indicated that co-application of BC and Tre increased the rice yield by increasing photosynthetic pigments (46-96.42%), leaf water contents (16.67%), proline and soluble protein synthesis (35.13% and 24.96%), and antioxidant activities (12.07-31.67%), by decreasing root (59.72%), shoot (76.47%), and soil (57.14%) Pb concentrations, and the Pb translocation factor (15.08%). These findings suggested that co-application of BC and Tre can be a practical approach for reducing Pb toxicity, availability, and uptake, which improves rice productivity in Pb-polluted soil.
Collapse
Affiliation(s)
- Yingfen Yang
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China; (Y.Y.)
| | - Li Liu
- College of Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Haibo Xiong
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China; (Y.Y.)
| | - Tianju Wang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| | - Jun Yang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| | - Wenpeng Wang
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China; (Y.Y.)
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Zhuhua Wang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| | - Waqar Ahmed
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Jia Z, Zeng T, Gu L, Wang H, Zhu B, Ren M, Du X. TaWRKY17 Interacts With TaWRKY44 to Promote Expression of TaDHN7 for Salt Tolerance in Wheat. PLANT, CELL & ENVIRONMENT 2025; 48:1963-1976. [PMID: 39529360 DOI: 10.1111/pce.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Wheat is a crucial food crop, yet its production is continually threatened by abiotic stresses, particularly salt stress. Understanding the molecular mechanisms by which wheat responds to salt stress is essential for developing salt-tolerant varieties. In this study, we investigated the molecular pathway involving the wheat TaDHN7 in response to salt stress. The overexpression of TaDHN7 enhances salt tolerance and reactive oxygen species (ROS) scavenging in wheat, while the knockout of TaDHN7 significantly impairs salt tolerance. Furthermore, we identified that TaWRKY44 promotes the expression of TaDHN7 by binding to the W-box within the TaDHN7 promoter. Additionally, TaWRKY17 interacts with TaWRKY44, and this interaction enhances the protein stability of TaWRKY44 under salt stress, thereby enhancing its transcriptional regulatory capacity on TaDHN7. This study elucidates the TaWRKY17-TaWRKY44-TaDHN7 pathway in response to salt stress in wheat, providing valuable insights for the development of salt-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Zhenzhen Jia
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| |
Collapse
|
7
|
Sevgi B, Leblebici S. Exogenous sucrose alleviates salt stress in sunflower ( Helianthus annuus L.) and canola ( Brassica napus L.) by modulating osmotic adjustment and antioxidant defense system. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:405-418. [PMID: 40256277 PMCID: PMC12006602 DOI: 10.1007/s12298-025-01571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 04/22/2025]
Abstract
Salinity, a major ecological problem worldwide, adversely affects plant growth and productivity. Osmoprotectants are a possible strategy for plants to cope with and regulate their response to unfavorable environmental conditions, such as salinity. However, the role of sucrose in this process requires more precise elucidation. This study aims to investigate the ameliorative role of sucrose on growth parameters, proline content, antioxidant enzyme activity, and gene expression in sunflower and canola under salt stress. The treatments included a 3% sucrose concentration and two levels of salinity (75 and 150 mM NaCl). Salinity caused a remarkable reduction in stem-root growth, chlorophyll amounts and catalase (CAT) activity, whereas it unchanged ascorbate peroxidase (APX) activity. Furthermore, both plants grown under salt stress had considerably higher total protein, proline, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity. Exogenous sucrose increased plant growth, chlorophyll amounts and the activities of hydrogen peroxide-detoxifying antioxidant enzymes such as CAT and APX in salt-stressed plants, but dramatically depressed levels of osmoregulators such as protein and proline. Besides that, it balanced antioxidant enzyme levels by regulating SOD activity to the required level, thereby facilitating the effective operation of the antioxidant defense system. Additionally, sucrose had a different effect on gene expressions of antioxidants in sunflower and canola under salinity. These results revealed that sucrose can ameliorate the deleterious effects of salinity in sunflower and canola by modulating osmotic substance accumulation, the activity of antioxidant enzymes, and their gene expression. In conclusion, sucrose can be a potential tool for plants in salt stress alleviation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01571-9.
Collapse
Affiliation(s)
- Büşra Sevgi
- Institute of Graduate Education, Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, 11230 Türkiye
| | - Sema Leblebici
- Faculty of Science, Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, 11230 Türkiye
| |
Collapse
|
8
|
Komal L, Jahan S, Kamran A, Hashem A, Avila-Quezada GD, Abd_Allah EF. Optimizing soil health through activated acacia biochar under varying irrigation regimes and cultivars for sustainable wheat cultivation. PeerJ 2025; 13:e18748. [PMID: 39834788 PMCID: PMC11745133 DOI: 10.7717/peerj.18748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2025] [Indexed: 01/22/2025] Open
Abstract
Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity). Biochar amended soil showed improved BET surface area, pore size, and volume. Carbon recovery (45%) and carbon sequestration capacity (49%) of 10T-AAB amended soil were better than non-amended soil (0.43% and 0.13%, respectively). The 10T-AAB amendment significantly improved the soil's microporosity and water retention capacity, increasing it by 1.1 and 2.2 times, respectively. Statistical analysis showed that a reduction in IR negatively affected plant growth and yield. The 10T-AAB levels significantly increased sugar contents (14%), relative water content (10-28%), membrane stability index (27-55%), and photosynthetic pigments (18-26%) of wheat leaves under deficit irrigation among all the cultivars. Maximum stress markers (catalase, proline, peroxidase, and superoxide dismutase) were observed from Akbar under 50% irrigation with 0T-AAB, and the least were observed from 50% irrigated Dilkash-2020 with 10T-AAB amended soil. Among cultivars, Dilkash-2020 was observed to be the best for maximum yield, followed by FSD-08 and Akbar-2019, respectively. When compared to other IR levels, 10T-AAB amended soil had the highest yield enhancement (12, 11, and 9.2 times for Dilkash-2020, FSD-08, and Akbar-2019, respectively). Hence, AAB enhanced wheat production by improving soil properties, drought resilience, and yield attributes.
Collapse
Affiliation(s)
- Lubaba Komal
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Summera Jahan
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Atif Kamran
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Saha KC, Uddin MK, Shaha PK, Hossain Chowdhury MA, Hassan L, Saha BK. Application of Trichoderma harzianum enhances salt tolerance and yield of Indian mustard through increasing antioxidant enzyme activity. Heliyon 2025; 11:e41114. [PMID: 39758377 PMCID: PMC11699397 DOI: 10.1016/j.heliyon.2024.e41114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Growth and yield reduction of crops due to salt stress have become a serious issue worldwide. Trichoderma is very well known as a plant growth-promoting fungi under abiotic stress conditions. Therefore, this study was designed to investigate the effect of Trichoderma harzianum on the growth, yield, nutrient uptake, and antioxidant activity of three Indian mustard genotypes under saline condition (EC 9.28 dS m-1). A two-factorial (Trichoderma and Indian mustard genotypes) pot experiment was conducted following a completely randomized design (CRD) with four replicates. Trichoderma was applied to soil as compost and suspension. The BD-7104 genotype showed better performance than Tori-7 under saline conditions. Compared to control, application of T. harzianum showed better performance in enhancing growth and yield of all the genotypes by increasing plants' tolerance to salt stress. Again, Trichoderma application increased the chlorophyll, proline, and oil content of Indian mustard. The generation of antioxidant enzymes viz., SOD, CAT, APX, and POD was significantly increased and, synthesis of H2O2 and MDA was decreased to a variable degree under different Trichoderma treatments. On average, application of Trichoderma as compost enhanced seed yield by 23 % than control. The better growth and yield in Trichoderma treated plants were the results of better uptake and assimilation of N, P, S, Ca, Mg, and K and reduced uptake of Na with a lower Na/K. Overall, BD-7104 genotype can be grown in soil treated with Trichoderma as compost at a rate of TdC12.5 for obtaining better yield and nutritional quality under salinity stress condition.
Collapse
Affiliation(s)
- Kartik Chandra Saha
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Kafil Uddin
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Pallab Kumer Shaha
- Ramdeb Khabir Uddin College, Matinpur, Sundarganj, Gaibandha, 5721, Bangladesh
| | | | - Lutful Hassan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Biplob Kumar Saha
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
10
|
Rathinapriya P, Maharajan T, Jothi R, Prabakaran M, Lee IB, Yi PH, Jeong ST. Unlocking biochar impacts on abiotic stress dynamics: a systematic review of soil quality and crop improvement. FRONTIERS IN PLANT SCIENCE 2025; 15:1479925. [PMID: 39872204 PMCID: PMC11770001 DOI: 10.3389/fpls.2024.1479925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Global agricultural challenges, especially soil degradation caused by abiotic stresses, significantly reduce crop productivity and require innovative solutions. Biochar (BC), a biodegradable product derived from agricultural and forestry residues, has been proven to significantly enhance soil quality. Although its benefits for improving soil properties are well-documented, the potential of BC to mitigate various abiotic stresses-such as drought, salinity, and heavy metal toxicity-and its effect on plant traits need further exploration. This review aims to elucidate BC production by highlighting primary feedstock's and synthesis techniques, and examining its role in boosting soil decomposition efficiency and fertility, which are pivotal for sustainable crop growth. This review also discuss how BC can enhance the nutritional and chemical properties of soil under different abiotic stress conditions, emphasizing its capacity to foster crop growth and development in adverse environments. Furthermore, this article serves as a comprehensive resource for agricultural researchers in understanding the importance of BC in promoting sustainable agriculture, and addressing environmental challenges. Ultimately, this review highlights critical knowledge gaps and proposes future research avenues on the bio-protective properties of BC against various abiotic stresses, paving the way for the commercialization of BC applications on a large scale with cutting-edge technologies.
Collapse
Affiliation(s)
- Periyasamy Rathinapriya
- Horticultural and Herbal Crop Environment Division, Soil Management Laboratory, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, India
| | - Ravi Jothi
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Mayakrishnan Prabakaran
- Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), National University Corporation Shinshu University, Ueda, Japan
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - In-Bog Lee
- Horticultural and Herbal Crop Environment Division, Soil Management Laboratory, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Pyoung-Ho Yi
- Horticultural and Herbal Crop Environment Division, Soil Management Laboratory, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Seung Tak Jeong
- Horticultural and Herbal Crop Environment Division, Soil Management Laboratory, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| |
Collapse
|
11
|
Zhao Y, Liu W, Liu J, Shi R, Zeb A, Li X, Ge Y. Phytotoxicity of 6PPD and its uptake by Myriophyllum verticillatum: Oxidative stress and metabolic processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177248. [PMID: 39477116 DOI: 10.1016/j.scitotenv.2024.177248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely utilized antioxidant in automobile tires and rubber goods, is frequently detected in aquatic ecosystems and poses a potential threat to aquatic organisms. However, research on the impact of 6PPD on aquatic plants is still scarce. Here, we investigated the bioaccumulation of 6PPD in Myriophyllum verticillatum (M. verticillatum) (watermilfoil), and its impacts on biochemical characteristics and metabolomics. 6PPD (10,100 mg/L) significantly inhibited the growth and photosynthetic pigment content of M. verticillatum. After 14 days of exposure to 100 μg/L 6PPD, accumulation levels of 6PPD and its metabolite 6PPDQ in M. verticillatum reached 0.52 mg/kg and 0.09 mg/kg, respectively. Moreover, 6PPD significantly induced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) enzymes and glutathione (GSH), reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), thereby mitigating oxidative damage in M. verticillatum. Furthermore, metabolic pathway analysis revealed that 6PPD has remarkable effects on amino acid and sugar metabolism. This study provides data support for understanding the toxic effects of 6PPD on aquatic plants and evaluating its potential risks.
Collapse
Affiliation(s)
- Yuexing Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
12
|
Abbas HMM, Rais U, Altaf MM, Rasul F, Shah A, Tahir A, Nafees-Ur-Rehman M, Shaukat M, Sultan H, Zou R, Khan MN, Nie L. Microbial-inoculated biochar for remediation of salt and heavy metal contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176104. [PMID: 39250966 DOI: 10.1016/j.scitotenv.2024.176104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous harmful contaminants (i.e. salt and heavy metals) have become major threats to soil and are being introduced into the soil through human and geological activities. These contaminants are raising global concerns about their toxic effects on food safety, human health and reclamation mechanisms. Microbial-inoculated biochar can improve soil environment by immobilizing and transforming contaminants in soil and altering the physico-chemical and biochemical properties of soil. In this review we will discuss the positive effects of microbial-modified biochar on physicochemical properties of contaminated soil. It can decrease the pH, EC while increase CEC, OM and other biochemical properties of soil. Additionally, we discuss the efficacy of biochar as a microbial carrier for salt and heavy metals-contaminated soil and plant growth in those soils. This review provides a better understanding of the potential of microbial biochar can be used for bioremediation of contaminated soil, which will help the researcher to modify biochar in a targeted way for specific applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ummah Rais
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Mohsin Altaf
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Faisalabad, Punjab, Pakistan
| | - Asad Shah
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ashar Tahir
- Rubber Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571700, Hainan, China
| | | | - Muhammad Shaukat
- Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University Islamabad, 44310 Islamabad, Pakistan
| | - Haider Sultan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ruilong Zou
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| |
Collapse
|
13
|
Ikram M, Minhas A, Al-Huqail AA, Ghoneim AM, Mahmood S, Mahmoud E, Tahira M, Mehran M, Maqsood MFK, Rauf A, Ali W. Promoting tomato resilience: effects of ascorbic acid and sulfur-treated biochar in saline and non-saline cultivation environments. BMC PLANT BIOLOGY 2024; 24:1053. [PMID: 39511477 PMCID: PMC11545619 DOI: 10.1186/s12870-024-05734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
The resilience of tomato plants under different cultivation environments, particularly saline and non-saline conditions, was investigated by applying various treatments, including 0.5% Ascorbic Acid (AsA) and 1% Sulphur-treated Biochar (BS). The study evaluated parameters such as fruit length, diameter, yield per plant and pot, Total Soluble Solids (TSS) content, chlorophyll content, electrolyte leakage, enzyme activities (Superoxide Dismutase - SOD, Peroxidase - POD, Catalase - CAT), and nutrient content (Nitrogen - N%, Phosphorus - P%, Potassium - K%). Under saline conditions, significant enhancements were observed in fruit characteristics and yield metrics with the application of AsA and BS individually, with the combined treatment yielding the most substantial improvements. Notably, AsA and BS treatments exhibited varying effects on TSS levels, chlorophyll content, electrolyte leakage, and enzyme activities, with the combination treatment consistently demonstrating superior outcomes. Additionally, nutrient content analysis revealed notable increases, particularly under non-saline conditions, with the combined treatment showcasing the most significant enhancements. Overall, the study underscores the potential of AsA and BS treatments in promoting tomato resilience, offering insights into their synergistic effects on multiple physiological and biochemical parameters crucial for plant growth and productivity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agronomy, Faculty of Agricultural Science's and Technology, Bahauddin Zakariya University , Multan, Pakistan.
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Asif Minhas
- Department of Agronomy, Faculty of Agricultural Science's and Technology, Bahauddin Zakariya University , Multan, Pakistan
| | - Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Adel M Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Giza, 12112, Egypt.
| | - Sammina Mahmood
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Esawy Mahmoud
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta, 31511, Egypt
| | - Maryam Tahira
- National Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, 430070, China
| | - Muhammad Mehran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Abdul Rauf
- National Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, 430070, China
| | - Waqar Ali
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China
| |
Collapse
|
14
|
Zhang K, Han X, Fu Y, Khan Z, Zhang B, Bi J, Hu L, Luo L. Biochar coating promoted rice growth under drought stress through modulating photosynthetic apparatus, chloroplast ultrastructure, stomatal traits and ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109145. [PMID: 39321623 DOI: 10.1016/j.plaphy.2024.109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Drought hampers agricultural production by constraining crop growth and development. Nevertheless, there has been limited exploration regarding the effect of biochar coating in enhancing seed germination under drought conditions and understanding its underlying mechanisms. To fill this gap and clarify the pathway to drought resistance, the current research investigated the protective effectiveness of BC on seedling establishment and subsequent growth of rice under drought conditions. Results showed that BC notably elevated emergence rate (5.5%), shoot length (27.4%), root length (33.4%), plant height (19.6/10.3%), leaf area (69.8/71.7%), and plant biomass (85.7/67.9%) after 15/30 days under drought conditions compared to the control. Biochar coating facilitated the maintenance of a stable chloroplast structure, reduced chlorophyll degradation, and sustained cell expansion. This contributed to the improvement of stomatal characteristics on both adaxial and abaxial leaf surfaces during drought stress, encompassing enhancements in stomatal density and aperture. The preservation of stomatal opening led to an increased photosynthetic capacity, thereby fostering elevated photosynthetic activity and heightened plant biomass under stressful conditions. Simultaneously, BC treatment significantly diminished the production of reactive oxygen species, preserved cell membrane integrity, and augmented the accumulation of osmotic protectants. These outcomes signify that biochar coating mitigates the deleterious impacts of drought stress on photosynthesis, stomatal aperture, chloroplast ultrastructure, osmotic regulation, and redox homeostasis in plants through specific water and nutrient regulation. Consequently, this enhances the tolerance and growth of rice under drought stress.
Collapse
Affiliation(s)
- Kangkang Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xiaomeng Han
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanfeng Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Biaojin Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Liyong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Lijun Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Agrobiological Gene Center, Shanghai, China.
| |
Collapse
|
15
|
Gong M, Han W, Jiang Y, Yang X, He J, Kong M, Huo Q, Lv G. Physiological and transcriptomic analysis reveals the coating of microcapsules embedded with bacteria can enhance wheat salt tolerance. BMC PLANT BIOLOGY 2024; 24:1004. [PMID: 39448914 PMCID: PMC11515405 DOI: 10.1186/s12870-024-05718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Salt stress is one of the most important abiotic stress factors limiting crop production. Therefore, improving the stress resistance of seeds is very important for crop growth. Our previous studies have shown that using microcapsules encapsulating bacteria (Pontibacter actiniarum DSM 19842) as seed coating for wheat can alleviate salt stress. In this study, the genes and pathways involved in the response of wheat to salt stress were researched further. The results showed that compared with the control, the coating can improve osmotic stress and decrease oxidative damage by increasing the content of proline (29.1%), the activity of superoxide dismutase (SOD) (94.2%), peroxidase (POD) (45.7%) and catalase (CAT) (3.3%), reducing the content of hydrogen peroxide (H2O2) (39.8%) and malondialdehyde (MDA) (45.9%). In addition, ribonucleic acid (RNA) sequencing data showed that 7628 differentially expressed genes (DEGs) were identified, and 4426 DEGs up-regulated, 3202 down-regulated in the coated treatment. Many DEGs related to antioxidant enzymes were up-regulated, indicating that coating can promote the expression of antioxidant enzyme-related genes and alleviate oxidative damage under salt stress. The differential gene expression analysis demonstrated up-regulation of 27 genes and down-regulation of 20 genes. Transcription factor families, mostly belonging to bHLH, MYB, B3, NAC, and WRKY. Overall, this seed coating can promote the development of sustainable agriculture in saline soil.
Collapse
Affiliation(s)
- Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jinan, 250013, China
| | - Yawen Jiang
- College of Resources and Environmental Sciences, Shanxi Agricultural University, Taiyuan, 030801, China
| | - Xi Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China.
- National Saline-alkali Soil Comprehensive Utilization Technology Innovation Center, Dongying, 257000, China.
| |
Collapse
|
16
|
Wang S, Zhang X, Wang Y, Wu J, Lee YW, Xu J, Yang R. NaCl Stress Stimulates Phenolics Biosynthesis and Antioxidant System Enhancement of Quinoa Germinated after Magnetic Field Pretreatment. Foods 2024; 13:3278. [PMID: 39456340 PMCID: PMC11507989 DOI: 10.3390/foods13203278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Our previous study showed that magnetic field pretreatment promoted germination and phenolic enrichment in quinoa. In this study, we further investigated the effects of NaCl stress on the growth and phenolic synthesis of germinated quinoa after magnetic field pretreatment (MGQ). The results showed that NaCl stress inhibited the growth of MGQ, reduced the moisture content and weight of a single plant, but increased the fresh/dry weight. The higher the NaCl concentration, the more obvious the inhibition effect. In addition, NaCl stress inhibited the hydrolysis of MGQ starch, protein, and fat but increased the ash content. Moreover, lower concentrations (50 and 100 mM) of NaCl stress increased the content of MGQ flavonoids and other phenolic compounds. This was due to the fact that NaCl stress further increased the enzyme activities of PAL, C4H, 4CL, CHS, CHI, and CHR and up-regulated the gene expression of the above enzymes. NaCl stress at 50 and 100 mM increased the DPPH and ABTS scavenging capacity of MGQ and increased the activities of antioxidant enzymes, including SOD, POD, CAT, APX, and GSH-Px, further enhancing the antioxidant system. Furthermore, principal component analysis showed that NaCl stress at 100 mM had the greatest combined effect on MGQ. Taken together, NaCl stress inhibited the growth of MGQ, but appropriate concentrations of NaCl stress, especially 100 mM, helped to further increase the phenolic content of MGQ and enhance its antioxidant system.
Collapse
Affiliation(s)
- Shufang Wang
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (J.W.); (Y.-W.L.)
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (Y.W.)
| | - Xuejiao Zhang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (Y.W.)
| | - Yiting Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (Y.W.)
| | - Jirong Wu
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (J.W.); (Y.-W.L.)
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (J.W.); (Y.-W.L.)
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (J.W.); (Y.-W.L.)
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (Y.W.)
| |
Collapse
|
17
|
Lentini M, Ciriello M, Rouphael Y, Carillo P, Fusco GM, Pagliaro L, Vaccari FP, De Pascale S. Mitigating Salt Stress with Biochar: Effects on Yield and Quality of Dwarf Tomato Irrigated with Brackish Water. PLANTS (BASEL, SWITZERLAND) 2024; 13:2801. [PMID: 39409671 PMCID: PMC11478744 DOI: 10.3390/plants13192801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The increase in the frequency and magnitude of environmental stresses poses a significant risk to the stability of food supplies. In coastal areas of the Mediterranean, brackish water has long been considered a limitation on horticultural production. In this scenario, the use of biochar in agriculture could be considered a valuable tool to cope with the deleterious effects of salt stress. This work aimed to investigate, in a protected environment, the effects of different concentrations of biochar (0, 1, and 2% v/v) obtained from poplar (Populus L.) biomass on the yield and quality of dwarf San Marzano ecotype tomatoes irrigated with saline water at different concentrations of NaCl (0, 40 and 80 mM). The increase in salt concentration from 0 to 80 mM NaCl reduced the total yield (-63%) and the number of fruits (-25%), but improved the main quality parameters such as dry matter (+75%), total soluble solids (+56%), and polyphenol content (+43%). Compared to control conditions, biochar supplementation improved the total yield (+23%) and number of fruits (+26%) without altering the functional and organoleptic characteristics of the fruits. The promising results underscore the potential of biochar as a sustainable solution to amend soils in order to improve tomato production under unfavorable conditions such as high salinity. However, there is a need to clarify which adaptation mechanisms triggered by biochar amending improve production responses even and especially under suboptimal growing conditions.
Collapse
Affiliation(s)
- Matteo Lentini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Letizia Pagliaro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Francesco Primo Vaccari
- Institute of BioEconomy—Biology, Agriculture and Food Sciences Department, National Research Council of Italy, Via Caproni 8, 50144 Firenze, Italy;
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| |
Collapse
|
18
|
Feng ZQ, Li T, Li XY, Luo LX, Li Z, Liu CL, Ge SF, Zhu ZL, Li YY, Jiang H, Jiang YM. Enhancement of Apple Stress Resistance via Proline Elevation by Sugar Substitutes. Int J Mol Sci 2024; 25:9548. [PMID: 39273495 PMCID: PMC11395137 DOI: 10.3390/ijms25179548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Plants encounter numerous adversities during growth, necessitating the identification of common stress activators to bolster their resistance. However, the current understanding of these activators' mechanisms remains limited. This study identified three anti-stress activators applicable to apple trees, all of which elevate plant proline content to enhance resistance against various adversities. The results showed that the application of these sugar substitutes increased apple proline content by two to three times compared to the untreated group. Even at a lower concentration, these activators triggered plant stress resistance without compromising apple fruit quality. Therefore, these three sugar substitutes can be exogenously sprayed on apple trees to augment proline content and fortify stress resistance. Given their effectiveness and low production cost, these activators possess significant application value. Since they have been widely used in the food industry, they hold potential for broader application in plants, fostering apple industry development.
Collapse
Affiliation(s)
- Zi-Quan Feng
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Tong Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xin-Yi Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Long-Xin Luo
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chun-Ling Liu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shun-Feng Ge
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhan-Ling Zhu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuan-Yuan Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Han Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuan-Mao Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
19
|
Shahzadi A, Noreen Z, Alamery S, Zafar F, Haroon A, Rashid M, Aslam M, Younas A, Attia KA, Mohammed AA, Ercisli S, Fiaz S. Effects of biochar on growth and yield of Wheat (Triticum aestivum L.) under salt stress. Sci Rep 2024; 14:20024. [PMID: 39198538 PMCID: PMC11358134 DOI: 10.1038/s41598-024-70917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Globally from abiotic stresses, salt stress is the major stress that limits crop production. One of them is wheat that has been utilized by more than 1/3 of the world population as staple food due to its nutritive value. Biochar is an activated carbon that can ameliorate the negative impacts on plants under saline conditions. The present study was conducted to examine the ameliorative impact of "Biochar application" to Triticum aestivum L. plant grown under salinity stress and evaluated on the basis of various growth, yield, physiological, biochemical attributes. Preliminary experiment was done to select the Triticum aestivum L. varieties with 90% germination rate for further experiment. The selected varieties, FSD08 and PUNJAB-11 of wheat were treated with two levels of sodium chloride (0 mM and 120 mM). Two varieties of wheat included FSD08 and PUNJAB-11 were treated with two levels of sodium chloride (0 mM and 120 mM). To address the impact of salt stress two levels of biochar 0% and 5% was used as exogenous application. A three way completely randomized experimentation was done in 24 pots of two wheat varieties with three replicates. The results demonstrated that salt stress affected growth, physiological attributes, yield and inorganic mineral ions (Ca2+ and K+) in roots and shoots parameters of wheat negatively while biochar overall improved the performance of plant. SOD, CAT, APX and POD activities enhanced during salt stress as the plant self-defense mechanism against salinity to minimize the damaging effect. Salt stress also significantly increased the membrane permeability, and levels of H2O2, MDA, Cl and Na ions. Biochar treatment nullified negative impacts of NaCl and improved the plant growth and yield significantly. Hence, biochar amendment can be suggested as suitable supplement for sustainable crop production under salinization.
Collapse
Affiliation(s)
- Aqsa Shahzadi
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Riyadh, Saudi Arabia
| | - Fizza Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adeela Haroon
- Department of Botany, The Women University Multan, Multan, 66000, Pakistan
| | - Madiha Rashid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Afifa Younas
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 59540, Lahore, Pakistan.
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| |
Collapse
|
20
|
Che W, Li X, Piao J, Zhang Y, Miao S, Wang H, Xie L, Jin F. Biochar Improves Yield by Reducing Saline-Alkaline Stress, Enhancing Filling Rate of Rice in Soda Saline-Alkaline Paddy Fields. PLANTS (BASEL, SWITZERLAND) 2024; 13:2237. [PMID: 39204674 PMCID: PMC11360614 DOI: 10.3390/plants13162237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Soda saline-alkaline stress significantly impedes the rice grain filling process and ultimately impacts rice yield. Biochar has been shown to mitigate the negative impacts of saline-alkaline stress on plants. However, the exact mechanism by which biochar influences the rice grain-filling rate in soda saline-alkaline soil is still not fully understood. A two-year field experiment was conducted with two nitrogen fertilizer levels (0 and 225 kg ha-1) and five biochar application rates [0% (B0), 0.5% (B1), 1.5% (B2), 3.0% (B3), and 4.5% (B4) biochar, w/w]. The results demonstrated that biochar had a significant impact on reducing the Na+ concentration and Na+/K+ ratio in rice grown in soda saline-alkaline lands, while also improving its stress physiological conditions. B1, B2, B3, and B4 showed a notable increase in the average grain-filling rate by 5.76%, 6.59%, 9.80%, and 10.79%, respectively, compared to B0; the time to reach the maximum grain-filling rate and the maximum grain weight saw increases ranging from 6.02% to 12.47% and from 7.85% to 14.68%, respectively. Meanwhile, biochar, particularly when used in conjunction with nitrogen fertilizer, notably enhanced the activities of sucrose synthase (SuSase), ADPG pyrophosphorylase (AGPase), starch synthase (StSase), and starch branching enzyme (SBE) of rice grains in soda saline-alkaline lands. Furthermore, rice yield increased by 11.95-42.74% in the B1, B2, B3, and B4 treatments compared to the B0 treatment. These findings showed that biochar improves yield by regulating ionic balance, physiological indicators, starch synthesis key enzyme activities, and the grain-filling rate in soda saline-alkaline paddy fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng Jin
- Agronomy College, Jilin Agricultural University, Changchun 130118, China; (W.C.); (X.L.); (J.P.); (Y.Z.); (S.M.); (H.W.); (L.X.)
| |
Collapse
|
21
|
Gao ZW, Ding J, Ali B, Nawaz M, Hassan MU, Ali A, Rasheed A, Khan MN, Ozdemir FA, Iqbal R, Çiğ A, Ercisli S, Sabagh AE. Putting Biochar in Action: A Black Gold for Efficient Mitigation of Salinity Stress in Plants. Review and Future Directions. ACS OMEGA 2024; 9:31237-31253. [PMID: 39072056 PMCID: PMC11270719 DOI: 10.1021/acsomega.3c07921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 07/30/2024]
Abstract
Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.
Collapse
Affiliation(s)
- Zhan-Wu Gao
- Tourism
and Geographical Science Institute, Baicheng
Normal University, Baicheng, Jilin 137000, China
| | - Jianjun Ding
- Jiaxiang
Vocational Secondary Technical School, Jiaxiang, Shandong 272400, China
| | - Basharat Ali
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Umair Hassan
- Research
Center of Ecological Sciences, Jiangxi Agricultural
University, Nanchang, Jiangxi 330029, China
| | - Abid Ali
- Department
of Agricultural and Food Sciences-DISTAL, University of Bologna, 40127 Bologna, Italy
| | - Adnan Rasheed
- College
of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Fethi Ahmet Ozdemir
- Department
of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol, Turkey
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Arzu Çiğ
- Faculty
of Agriculture, Department of Horticulture, Siirt University, 56100 Siirt, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Ayman El Sabagh
- Faculty
of Agriculture, Department of Field Crops, Siirt University, 56100 Siirt, Turkey
- Department
of Agronomy, Faculty of Agriculture, Kafrelsheikh
University, Kafr al-Sheik 6860404, Egypt
| |
Collapse
|
22
|
Sousa B, Soares C, Sousa F, Martins M, Mateus P, Rodrigues F, Azenha M, Moutinho-Pereira J, Lino-Neto T, Fidalgo F. Enhancing tomato plants' tolerance to combined heat and salt stress - The role of arbuscular mycorrhizae and biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174860. [PMID: 39038668 DOI: 10.1016/j.scitotenv.2024.174860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The Mediterranean basin is highly susceptible to climate change, with soil salinization and the increase in average temperatures being two of the main factors affecting crop productivity in this region. Following our previous studies on describing the detrimental effects of heat and salt stress co-exposure on tomato plants, this study aimed to understand if substrate supplementation with a combination of arbuscular mycorrhizal fungi (AMF) and biochar could mitigate the negative consequences of these stresses. Upon 21 days of exposure, stressed tomato plants grown under supplemented substrates showed increased tolerance to heat (42 °C for 4 h/day), salt (100 mM NaCl), and their combination, presenting increased biomass and flowering rate. The beneficial effects of AMF and biochar were associated with a better ionic balance (i.e. lower sodium accumulation and higher uptake of calcium and magnesium) and increased photosynthetic efficiency. Indeed, these plants presented higher chlorophyll content and improved CO2 assimilation rates. Biochemical data further supported that tomato plants grown with AMF and biochar were capable of efficiently modulating their defence pathways, evidenced by the accumulation of proline, ascorbate, and glutathione, coupled with a lower dependency on energy-costly enzymatic antioxidant players. In summary, the obtained data strongly point towards a beneficial role of combined AMF and biochar as sustainable tools to improve plant growth and development under a climate change scenario, where soil salinization and heat peaks often occur together.
Collapse
Affiliation(s)
- Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/INOV4AGRO, Department of Biology, Faculty of Sciences of University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV/REQUIMTE, Department of Biology, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre/INOV4AGRO, Department of Biology, Faculty of Sciences of University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Filipa Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/INOV4AGRO, Department of Biology, Faculty of Sciences of University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre/INOV4AGRO, Department of Biology, Faculty of Sciences of University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Mateus
- GreenUPorto - Sustainable Agrifood Production Research Centre/INOV4AGRO, Department of Biology, Faculty of Sciences of University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Francisca Rodrigues
- Department of Biology, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Manuel Azenha
- CIQ-UP, Institute of Molecular Sciences (IMS), Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Moutinho-Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences and INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre/INOV4AGRO, Department of Biology, Faculty of Sciences of University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
23
|
Yao H, Li G, Gao Z, Guo F, Feng J, Xiao G, Shen H, Li H. Alternative splicing responses to salt stress in Glycyrrhiza uralensis revealed by global profiling of transcriptome RNA-seq datasets. Front Genet 2024; 15:1397502. [PMID: 39045328 PMCID: PMC11263197 DOI: 10.3389/fgene.2024.1397502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Excessive reactive oxygen species stress due to salinity poses a significant threat to the growth of Glycyrrhiza uralensis Fisch. To adapt to salt stress, G. uralensis engages in alternative splicing (AS) to generate a variety of proteins that help it withstand the effects of salt stress. While several studies have investigated the impact of alternative splicing on plants stress responses, the mechanisms by which AS interacts with transcriptional regulation to modulate the salt stress response in G. uralensis remain poorly understood. In this study, we utilized high-throughput RNA sequencing data to perform a comprehensive analysis of AS events at various time points in G. uralensis under salt stress, with exon skipping (SE) being the predominant AS type. KEGG enrichment analysis was performed on the different splicing genes (DSG), and pathways associated with AS were significantly enriched, including RNA transport, mRNA surveillance, and spliceosome. This indicated splicing regulation of genes, resulting in AS events under salt stress conditions. Moreover, plant response to salt stress pathways were also enriched, such as mitogen-activated protein kinase signaling pathway - plant, flavonoid biosynthesis, and oxidative phosphorylation. We focused on four differentially significant genes in the MAPK pathway by AS and qRT-PCR analysis. The alternative splicing type of MPK4 and SnRK2 was skipped exon (SE). ETR2 and RbohD were retained intron (RI) and alternative 5'splice site (A5SS), respectively. The expression levels of isoform1 of these four genes displayed different but significant increases in different tissue sites and salt stress treatment times. These findings suggest that MPK4, SnRK2, ETR2, and RbohD in G. uralensis activate the expression of isoform1, leading to the production of more isoform1 protein and thereby enhancing resistance to salt stress. These findings suggest that salt-responsive AS directly and indirectly governs G. uralensis salt response. Further investigations into AS function and mechanism during abiotic stresses may offer novel references for bolstering plant stress tolerance.
Collapse
Affiliation(s)
- Hua Yao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Guozhi Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Zhuanzhuan Gao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Fei Guo
- Zhuhai College of Science and Technology, Zhuhai, China
| | - Jianghua Feng
- Business School of Xinjiang Normal University, Urumqi, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
24
|
El-Ghamry AM, El-Sherpiny MA, Alkharpotly AEA, Ghazi DA, Helmy AA, Siddiqui MH, Pessarakli M, Hossain MA, Elghareeb EM. The synergistic effects of organic composts and microelements co-application in enhancing potato productivity in saline soils. Heliyon 2024; 10:e32694. [PMID: 38988530 PMCID: PMC11233941 DOI: 10.1016/j.heliyon.2024.e32694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Soil salinity is a major threat hindering the optimum growth, yield, and nutritional value of potato. The application of organic composts and micronutrients can effectively ameliorate the salinity-deleterious effects on potato growth and productivity. Herein, the combined effect of banana and soybean composts (BCo and SCo) application alongside foliar supplementation of boron (B), selenium (Se), cobalt (Co), and titanium (Ti) were investigated for improving growth, physiology, and agronomical attributes of potato plants grown in saline alluvial soil. Salinity stress significantly reduced biomass accumulation, chlorophyll content, NPK concentrations, yield attributes, and tuber quality, while inducing malondialdehyde and antioxidant enzymes. Co-application of either BCo or SCo with trace elements markedly alleviated salinity-adverse effects on potato growth and productivity. These promotive effects were also associated with a significant reduction in malondialdehyde content and activities of peroxidase and superoxide dismutase enzymes. The co-application of BCo and B/Se was the most effective among other treatments. Principle component analysis and heatmap also highlighted the efficacy of the co-application of organic composts and micronutrients in improving the salinity tolerance of potato plants. In essence, the co-application of BCo with B and Se can be adopted as a promising strategy for enhancing the productivity of potato crops in salt-affected soils.
Collapse
Affiliation(s)
- Ayman M. El-Ghamry
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Mohamed A. El-Sherpiny
- Soil, Water and Environment Research Institute, Agriculture Research Center, El-Gama St., Giza, 12619, Egypt
| | - Abd-Elbaset A. Alkharpotly
- Horticulture Department, Faculty of Agriculture and Natural Resources, Aswan University, 81528, Egypt
- Horticulture Department, Faculty of desert and environmental agricultural, Matrouh University, 51511, Egypt
| | - Dina A. Ghazi
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Amal A. Helmy
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Eman M. Elghareeb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
25
|
Khalifa AM, Safhi FA, Elsherif DE. Green synthesis of a dual-functional sulfur nanofertilizer to promote growth and enhance salt stress resilience in faba bean. BMC PLANT BIOLOGY 2024; 24:607. [PMID: 38926889 PMCID: PMC11202339 DOI: 10.1186/s12870-024-05270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Salinity is a major abiotic stress, and the use of saline water in the agricultural sector will incur greater demand under the current and future climate changing scenarios. The objective of this study was to develop a dual-functional nanofertilizer capable of releasing a micronutrient that nourishes plant growth while enhancing salt stress resilience in faba bean (Vicia faba L.). RESULTS Moringa oleifera leaf extract was used to synthesize sulfur nanoparticles (SNPs), which were applied as a foliar spray at different concentrations (0, 25, 50, and 100 mg/l) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. The SNPs were characterized and found to be spherical in shape with an average size of 10.98 ± 2.91 nm. The results showed that salt stress had detrimental effects on the growth and photosynthetic performance (Fv/Fm) of faba bean compared with control, while foliar spraying with SNPs improved these parameters under salinity stress. SNPs application also increased the levels of osmolytes (soluble sugars, amino acids, proline, and glycine betaine) and nonenzymatic antioxidants, while reducing the levels of oxidative stress biomarkers (MDA and H2O2). Moreover, SNPs treatment under salinity stress stimulated the activity of antioxidant enzymes (ascorbate peroxidase (APX), and peroxidase (POD), polyphenol oxidase (PPO)) and upregulated the expression of stress-responsive genes: chlorophyll a-b binding protein of LHCII type 1-like (Lhcb1), ribulose bisphosphate carboxylase large chain-like (RbcL), cell wall invertase I (CWINV1), ornithine aminotransferase (OAT), and ethylene-responsive transcription factor 1 (ERF1), with the greatest upregulation observed at 50 mg/l SNPs. CONCLUSION Overall, foliar application of sulfur nanofertilizers in agriculture could improve productivity while minimizing the deleterious effects of salt stress on plants. Therefore, this study provides a strong foundation for future research focused on evaluating the replacement of conventional sulfur-containing fertilizers with their nanoforms to reduce the harmful effects of salinity stress and enhance the productivity of faba beans.
Collapse
Affiliation(s)
- Asmaa M Khalifa
- Botany and Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, Egypt
| | - Fatmah A Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Doaa E Elsherif
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
26
|
Mohammadi Kabari SF, Asadi-Gharneh HA, Tavallali V, Rowshan V. Differential response of biochar in mitigating salinity stress in periwinkle ( Catharanthus roseus L.) as an ornamental-medicinal plant species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1181-1192. [PMID: 38189302 DOI: 10.1080/15226514.2023.2300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To investigate the effect of various levels of salinity and biochar on the growth and biochemical traits of Catharanthus roseus L., a medicinal plant, a factorial experiment with three levels of biochar (0, 2, and 4%) and four levels of salinity (0, 1,000, 2,000, and 3,000 mg/kg soil) was conducted in pots under greenhouse conditions, in three replications, 36 pots, and 6 plants/plot. Salinity reduced the vegetative and reproductive growth and Ca and K uptake, and chlorophyll content of the plants, and increased the Na+, Cl-, electrolyte leakage, and antioxidant enzyme (SOD, CAT, GPX) activities. Biochar improved all the vegetative and reproductive growth and biochemical traits of Catharanthus roseus L. and enhanced soil fertility. The application of biochar at the rate of 2% at all four levels of NaCl reduced the activity of antioxidants and decreased electrolyte leakage, reflecting the alleviation of salinity effects and the retention of cell health for survival. The application of biochar 2% was more effective than biochar 4% in alleviating salinity stress. Therefore, by using 2% biochar, it is possible to improve saline soils (soils containing 1,000 or 2,000 mg/kg NaCl) and grow periwinkle ornamental-medicinal plant in it. The plants showed acceptable performance at salinity levels of 1,000 or 2,000 mg/kg with biochar 2%.
Collapse
Affiliation(s)
| | - Hossein Ali Asadi-Gharneh
- Department of Horticulture, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Vahid Tavallali
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | - Vahid Rowshan
- Department of Natural Resources, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
27
|
Malakar P, Gupta SK, Chattopadhyay D. Role of plant neurotransmitters in salt stress: A critical review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108601. [PMID: 38696867 DOI: 10.1016/j.plaphy.2024.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.
Collapse
Affiliation(s)
- Paheli Malakar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Santosh K Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
28
|
Gao G, Yan L, Tong K, Yu H, Lu M, Wang L, Niu Y. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169618. [PMID: 38157902 DOI: 10.1016/j.scitotenv.2023.169618] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Soil salinization has become a global problem that threatens farmland health and restricts crop production. Salt-affected soils seriously restrict the development of agricultural, mainly because of sodium ion (Na+) toxicity, nutrient deficiency, and structural changes in the soil. Biochar is a carbon (C)-based substance produced by heating typical biomass waste at high temperatures in anaerobic circumstances. It has high cation exchange capacity (CEC), adsorption capacity, and C content, which is often used as a soil amendment. Biochar generally reduces the concentration of Na+ in soil colloids through its strong adsorption, or uses the calcium (Ca) or magnesium (Mg) rich on its surface to exchange sodium ions (Ex-Na) from soil colloids through cation exchange to accelerate salt leaching during irrigation. Nowadays, biochar is widely used for acidic soils improvement due to its alkaline properties. Although the fact that biochar has gained increasing attention for its significant role in saline alkali soil remediation, there is currently a lack of systematic research on biochar improvers and their potential mechanisms for identifying physical, chemical, and biological indicators of soil eco-environment assessment and plant growth conditions affected by salt stress. This paper reviews the preparation, modification, and activation of biochar, the effects of biochar and its combination with beneficial salt-tolerant strains on salt-affected soils and plant growth. Finally, the limitations, benefits, and future needs of biochar-based soil health assessment technology in salt-affected soils and plant were discussed. This article elaborates on the future opportunities and challenges of biochar in the treatment of saline land, and a green method was provided for the integrate control to salt-affected soils.
Collapse
Affiliation(s)
- Guang Gao
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
29
|
Yang L, Shen P, Liang H, Wu Q. Biochar relieves the toxic effects of microplastics on the root-rhizosphere soil system by altering root expression profiles and microbial diversity and functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115935. [PMID: 38211514 DOI: 10.1016/j.ecoenv.2024.115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
The accumulation of microplastics in agricultural soil brings unexpected adverse effects on crop growth and soil quality, which is threatening the sustainability of agriculture. Biochar is an emerging soil amendment material of interest as it can remediate soil pollutants. However, the mechanisms underlying biochar alleviated the toxic effects of microplastics in crops and soil were largely unknown. Using a common economic crop, peanut as targeted species, the present study evaluated the plant physiologica and molecular response and rhizosphere microbiome when facing microplastic contamination and biochar amendment. Transcriptome and microbiome analyses were conducted on peanut root and rhizosphere soil treated with CK (no microplastic and no biochar addition), MP (1.5% polystyrene microplastic addition) and MB (1.5% polystyrene microplastic+2% peanut shell biochar addition). The results indicated that microplastics had inhibitory effects on plant root development and rhizosphere bacterial diversity and function. However, biochar application could significantly promote the expressions of key genes associated with antioxidant activities, lignin synthesis, nitrogen transport and energy metabolism to alleviate the reactive oxygen species stress, root structure damage, nutrient transport limitation, and energy metabolism inhibition induced by microplastic contamination on the root. In addition, the peanut rhizosphere microbiome results showed that biochar application could restore the diversity and richness of microbial communities inhibited by microplastic contamination and promote nutrient availability of rhizosphere soil by regulating the abundance of nitrogen cycling-related and organic matter decomposition-related microbial communities. Consequently, the application of biochar could enhance root development by promoting oxidative stress resistance, nitrogen transport and energy metabolism and benefit the rhizosphere microecological environment for root development, thereby improved the plant-soil system health of microplastic-contaminated agroecosystem.
Collapse
Affiliation(s)
- Liyu Yang
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Pu Shen
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Haiyan Liang
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wu
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
30
|
Dengxiao Z, Hongbin J, Wenjing Z, Qingsong Y, Zhihang M, Haizhong W, Wei R, Shiliang L, Daichang W. Combined biochar and water-retaining agent application increased soil water retention capacity and maize seedling drought resistance in Fluvisols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167885. [PMID: 37863232 DOI: 10.1016/j.scitotenv.2023.167885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Global climate change has accelerated the occurrence of agricultural drought events, which threaten food security. Therefore, improvements in the soil water retention capacity (WRC) and crop drought resistance are crucial for promoting the sustainability of the agricultural environment. In this study, we explored the effects of applying biochar and water-retaining agent (WRA) on soil WRC and crop drought resistance in a Fluvisols, along with their potential mechanisms. We applied two types of biochar (based on wheat and maize straw) and two WRAs (polyacrylamide and starch-grafted sodium acrylate) to Fluvisols with different textures, and then evaluated soil water retention and crop drought physiological resistance. The combined biochar and WRA treatment increased the WRC in both the sandy loam and clay loam Fluvisols. Biochar and WRA increased the relative content of soil hydrophilic functional groups. Compared with the control (CK), the combined application of biochar and WRA increased the field capacity, reduced soil water volatilization under drought conditions, and slowed water infiltration into the Fluvisols. The soil WRC was higher with the wheat straw biochar (WBC) treatment than with the maize straw biochar (MBC) treatment. It was also higher with polyacrylamide treatment than with the starch-grafted sodium acrylate treatment. The combined application of biochar and WRA improved crop drought physiological resistance by significantly increasing the maize seedling potassium (K) and soluble sugar contents, increasing antioxidant enzyme activity, and reducing the malondialdehyde (MDA) content. The results indicate that the application of biochar and WRA alleviated drought stress by increasing the soil WRC and improving crop drought resistance in Fluvisols.
Collapse
Affiliation(s)
- Zhang Dengxiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Hongbin
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhang Wenjing
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuan Qingsong
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Ma Zhihang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Wu Haizhong
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Rao Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Liu Shiliang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Wang Daichang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
31
|
Geng Z, Dou H, Liu J, Zhao G, An Z, Liu L, Zhao N, Zhang H, Wang Y. GhFB15 is an F-box protein that modulates the response to salinity by regulating flavonoid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111899. [PMID: 37865208 DOI: 10.1016/j.plantsci.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
An exposure to extremely saline conditions can lead to significant oxidative damage in plants. Flavonoids, which are potent antioxidants, are critical for the scavenging of reactive oxygen species caused by abiotic stress. In the present study, the cotton F-box gene GhFB15 was isolated and characterized. The expression of GhFB15 was rapidly induced by salt as well as by exogenous hormones (ETH, MeJA, ABA, and GA). An analysis of subcellular localization revealed GhFB15 is mainly distributed in nuclei. Overexpression of GhFB15 adversely affected the salt tolerance of transgenic Arabidopsis plants as evidenced by decreased seed germination and seedling growth, whereas the silencing of GhFB15 improved the salt tolerance of cotton plants. Furthermore, we analyzed the gene expression profiles of VIGS-GhFB15 and TRV:00 plants. Many of the differentially expressed genes were associated with the flavonoid biosynthesis pathway. Moreover, lower flavonoid contents and higher levels of H2O2 and O2- were observed in the transgenic Arabidopsis plants. Conversely, the VIGS-GhFB15 cotton plants had relatively higher flavonoid contents, but lower H2O2 and O2- levels. These results suggest that GhFB15 negatively regulates salt tolerance, and silencing GhFB15 results in increased flavonoid accumulation and improved ROS scavenging.
Collapse
Affiliation(s)
- Zhao Geng
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Haikuan Dou
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Jianguang Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Guiyuan Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Zetong An
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Linlin Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Ning Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, PR China
| | - Hanshuang Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China.
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
32
|
Derbali I, Derbali W, Gharred J, Manaa A, Slama I, Koyro HW. Mitigating Salinity Stress in Quinoa ( Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments. PLANTS (BASEL, SWITZERLAND) 2023; 13:92. [PMID: 38202399 PMCID: PMC10780479 DOI: 10.3390/plants13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In agriculture, soil amendments are applied to improve soil quality by increasing the water retention capacity and regulating the pH and ion exchange. Our study was carried out to investigate the impact of a commercial biochar (Bc) and a superabsorbent polymer (SAP) on the physiological and biochemical processes and the growth performance of Chenopodium quinoa (variety ICBA-5) when exposed to high salinity. Plants were grown for 25 days under controlled greenhouse conditions in pots filled with a soil mixture with or without 3% Bc or 0.2% SAP by volume before the initiation of 27 days of growth in hypersaline conditions, following the addition of 300 mM NaCl. Without the Bc or soil amendments, multiple negative effects of hypersalinity were detected on photosynthetic CO2 assimilation (Anet minus 70%) and on the production of fresh matter from the whole plant, leaves, stems and roots (respectively, 55, 46, 64 and 66%). Moreover, increased generation of reactive oxygen species (ROS) was indicated by higher levels of MDA (plus 142%), antioxidant activities and high proline levels (plus 311%). In the pots treated with 300 mM NaCl, the amendments Bc or SAP improved the plant growth parameters, including fresh matter production (by 10 and 17%), an increased chlorophyll content by 9 and 13% and Anet in plants (by 98 and 115%). Both amendments (Bc and SAP) resulted in significant salinity mitigation effects, decreasing proline and malondialdehyde (MDA) levels whilst increasing both the activity of enzymatic antioxidants and non-enzymatic antioxidants that reduce the levels of ROS. This study confirms how soil amendments can help to improve plant performance and expand the productive range into saline areas.
Collapse
Affiliation(s)
- Imed Derbali
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Walid Derbali
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Jihed Gharred
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
| | - Inès Slama
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
| |
Collapse
|
33
|
Khan FS, Goher F, Paulsmeyer MN, Hu CG, Zhang JZ. Calcium (Ca 2+ ) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1025-1034. [PMID: 37422725 DOI: 10.1111/plb.13560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Plants evolve stress-specific responses that sense changes in their external environmental conditions and develop various mechanisms for acclimatization and survival. Calcium (Ca2+ ) is an essential stress-sensing secondary messenger in plants. Ca2+ sensors, including calcium-dependent protein kinases (CDPKs), calmodulins (CaMs), CaM-like proteins (CMLs), and calcineurin B-like proteins (CBLs), are involved in jasmonates (JAs) signalling and biosynthesis. Moreover, JAs are phospholipid-derived phytohormones that control plant response to abiotic stresses. The JAs signalling pathway affects hormone-receptor gene transcription by binding to the basic helix-loop-helix (bHLH) transcription factor. MYC2 acts as a master regulator of JAs signalling module assimilated through various genes. The Ca2+ sensor CML regulates MYC2 and is involved in a distinct mechanism mediating JAs signalling during abiotic stresses. This review highlights the pivotal role of the Ca2+ sensors in JAs biosynthesis and MYC2-mediated JAs signalling during abiotic stresses in plants.
Collapse
Affiliation(s)
- F S Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - F Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - M N Paulsmeyer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Vegetable Crops Research Unit, Madison, Wisconsin, USA
| | - C-G Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J-Z Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Yu T, Zhang J, Cao J, Li S, Cai Q, Li X, Li S, Li Y, He C, Ma X. Identification of Multiple Genetic Loci Related to Low-Temperature Tolerance during Germination in Maize ( Zea maize L.) through a Genome-Wide Association Study. Curr Issues Mol Biol 2023; 45:9634-9655. [PMID: 38132448 PMCID: PMC10742315 DOI: 10.3390/cimb45120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Low-temperature stress during the germination stage is an important abiotic stress that affects the growth and development of northern spring maize and seriously restricts maize yield and quality. Although some quantitative trait locis (QTLs) related to low-temperature tolerance in maize have been detected, only a few can be commonly detected, and the QTL intervals are large, indicating that low-temperature tolerance is a complex trait that requires more in-depth research. In this study, 296 excellent inbred lines from domestic and foreign origins (America and Europe) were used as the study materials, and a low-coverage resequencing method was employed for genome sequencing. Five phenotypic traits related to low-temperature tolerance were used to assess the genetic diversity of maize through a genome-wide association study (GWAS). A total of 14 SNPs significantly associated with low-temperature tolerance were detected (-log10(P) > 4), and an SNP consistently linked to low-temperature tolerance in the field and indoors during germination was utilized as a marker. This SNP, 14,070, was located on chromosome 5 at position 2,205,723, which explained 4.84-9.68% of the phenotypic variation. The aim of this study was to enrich the genetic theory of low-temperature tolerance in maize and provide support for the innovation of low-temperature tolerance resources and the breeding of new varieties.
Collapse
Affiliation(s)
- Tao Yu
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Jianguo Zhang
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Jingsheng Cao
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Shujun Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Quan Cai
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Xin Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Sinan Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Yunlong Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Changan He
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihaer 161000, China
| | - Xuena Ma
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (J.C.); (Q.C.); (X.L.); (X.M.)
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
35
|
Gholami F, Amerian MR, Asghari HR, Ebrahimi A. Assessing the effects of 24-epibrassinolide and yeast extract at various levels on cowpea's morphophysiological and biochemical responses under water deficit stress. BMC PLANT BIOLOGY 2023; 23:593. [PMID: 38008746 PMCID: PMC10680335 DOI: 10.1186/s12870-023-04548-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Due to the factor of water deficit, which has placed human food security at risk by causing a 20% annual reduction in agricultural products, addressing this growing peril necessitates the adoption of inventive strategies aimed at enhancing plant tolerance. One such promising approach is employing elicitors such as 24-epibrassinolide (EBR) and yeast extract, which are potent agents capable of triggering robust defense responses in plants. By employing these elicitors, crops can develop enhanced adaptive mechanisms to combat water deficit and improve their ability to withstand drought condition. This study investigates the impact of different levels of EBR (0, 5, 10 µm) and yeast extract (0 and 12 g/l) on enhancing the tolerance of cowpea to water deficit stress over two growing seasons. RESULTS The findings of this study demonstrate that, the combined application of EBR (especially 10 µm) and yeast extract (12 g/l) can increase seed yield (18%), 20-pod weight (16%), the number of pods per plant (18%), total chlorophyll content (90%), and decrease malondialdehyde content (45%) in cowpea, compared to plants grown under water deficit stress without these treatments. Upon implementing these treatments, impressive results were obtained, with the highest recorded values observed for the seed yield (1867.55 kg/ha), 20-pod weight (16.29 g), pods number per plant (9), and total chlorophyll content (19.88 mg g-1 FW). The correlation analysis indicated a significant relationship between the seed yield, and total chlorophyll (0.74**), carotenoids (0.82**), weight of 20 seeds (0.67**), and number of pods (0.90**). These traits should be prioritized in cowpea breeding programs focusing on water deficit stress. CONCLUSIONS The comprehensive exploration of the effects of EBR and yeast extract across various levels on cowpea plants facing water deficit stress presents a pivotal contribution to the agricultural domain. This research illuminates a promising trajectory for future agricultural practices and users seeking sustainable solutions to enhance crops tolerance. Overall, the implications drawn from this study contribute significantly towards advancing our understanding of plant responses to water deficit stress while providing actionable recommendations for optimizing crop production under challenging environmental conditions.
Collapse
Affiliation(s)
- Faride Gholami
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Hamid Reza Asghari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
36
|
Zhao HM, Zheng DF, Feng NJ, Zhou GS, Khan A, Lu XT, Deng P, Zhou H, Du YW. Regulatory effects of Hemin on prevention and rescue of salt stress in rapeseed (Brassica napus L.) seedlings. BMC PLANT BIOLOGY 2023; 23:558. [PMID: 37957575 PMCID: PMC10644511 DOI: 10.1186/s12870-023-04595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Salt stress severely restricts rapeseed growth and productivity. Hemin can effectively alleviate salt stress in plants. However, the regulatory effect of Hemin on rapeseed in salt stress is unclear. Here, we analyzed the response and remediation mechanism of Hemin application to rapeseed before and after 0.6% (m salt: m soil) NaCl stress. Experiment using two Brassica napus (AACC, 2n = 38) rapeseed varieties Huayouza 158R (moderately salt-tolerant) and Huayouza 62 (strongly salt-tolerant). To explore the best optional ways to improve salt stress resistance in rapeseed. RESULTS Our findings revealed that exogenous application of Hemin enhanced morph-physiological traits of rapeseed and significantly attenuate the inhibition of NaCl stress. Compared to Hemin (SH) treatment, Hemin (HS) significantly improved seedlings root length, seedlings height, stem diameter and accumulated more dry matter biomass under NaCl stress. Moreover, Hemin (HS) significantly improved photosynthetic efficiency, activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and decreased electrolyte leakage (EL) and malondialdehyde (MDA) content, thus resulting in the alleviation of oxidative membrane damage. Hemin (HS) showed better performance than Hemin (SH) under NaCl stress. CONCLUSION Hemin could effectively mitigate the adverse impacts of salt stress by regulating the morph-physiological, photosynthetic and antioxidants traits of rapeseed. This study may provide a basis for Hemin to regulate cultivated rapeseed salt tolerance and explore a better way to alleviate salt stress.
Collapse
Affiliation(s)
- Hui-Min Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Guang-Sheng Zhou
- College of Plant Science & Technology of Hua Zhong Agricultural University, Wuhan, 430070, China.
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xu-Tong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| |
Collapse
|
37
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
38
|
Senousy HH, Hamoud YA, Abu-Elsaoud AM, Mahmoud Al zoubi O, Abdelbaky NF, Zia-ur-Rehman M, Usman M, Soliman MH. Algal Bio-Stimulants Enhance Salt Tolerance in Common Bean: Dissecting Morphological, Physiological, and Genetic Mechanisms for Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3714. [PMID: 37960071 PMCID: PMC10648064 DOI: 10.3390/plants12213714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Salinity adversely affects the plant's morphological characteristics, but the utilization of aqueous algal extracts (AE) ameliorates this negative impact. In this study, the application of AE derived from Chlorella vulgaris and Dunaliella salina strains effectively reversed the decline in biomass allocation and water relations, both in normal and salt-stressed conditions. The simultaneous application of both extracts in salt-affected soil notably enhanced key parameters, such as chlorophyll content (15%), carotene content (1%), photosynthesis (25%), stomatal conductance (7%), and transpiration rate (23%), surpassing those observed in the application of both AE in salt-affected as compared to salinity stress control. Moreover, the AE treatments effectively mitigated lipid peroxidation and electrolyte leakage induced by salinity stress. The application of AE led to an increase in GB (6%) and the total concentration of free amino acids (47%) by comparing with salt-affected control. Additionally, salinity stress resulted in an elevation of antioxidant enzyme activities, including superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase. Notably, the AE treatments significantly boosted the activity of these antioxidant enzymes under salinity conditions. Furthermore, salinity reduced mineral contents, but the application of AE effectively counteracted this decline, leading to increased mineral levels. In conclusion, the application of aqueous algal extracts, specifically those obtained from Chlorella vulgaris and Dunaliella salina strains, demonstrated significant efficacy in alleviating salinity-induced stress in Phaseolus vulgaris plants.
Collapse
Affiliation(s)
- Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.S.)
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Recourses, Hohai University, Nanjing 210098, China
| | - Abdelghafar M. Abu-Elsaoud
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Omar Mahmoud Al zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
| | - Nessreen F. Abdelbaky
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| | - Muhammad Zia-ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.S.)
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| |
Collapse
|
39
|
Liu H, Chong P, Yan S, Liu Z, Bao X, Tan B. Transcriptome and Proteome Association Analysis to Screen Candidate Genes Related to Salt Tolerance in Reaumuria soongorica Leaves under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3542. [PMID: 37896006 PMCID: PMC10609793 DOI: 10.3390/plants12203542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
This work aims at studying the molecular mechanisms underlying the response of Reaumuria soongorica to salt stress. We used RNA sequencing (RNA-Seq) and Tandem Mass Tag (TMT) techniques to identify differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in R. soongorica leaves treated with 0, 200, and 500 mM NaCl for 72 h. The results indicated that compared with the 0 mM NaCl treatment group, 2391 and 6400 DEGs were identified in the 200 and 500 mM NaCl treatment groups, respectively, while 47 and 177 DEPs were also identified. Transcriptome and proteome association analysis was further performed on R. soongorica leaves in the 0/500 mM NaCl treatment group, and 32 genes with consistent mRNA and protein expression trends were identified. SYP71, CS, PCC13-62, PASN, ZIFL1, CHS2, and other differential genes are involved in photosynthesis, vesicle transport, auxin transport, and other functions of plants, and might play a key role in the salt tolerance of R. soongorica. In this study, transcriptome and proteome association techniques were used to screen candidate genes associated with salt tolerance in R. soongorica, which provides an important theoretical basis for understanding the molecular mechanism of salt tolerance in R. soongorica and breeding high-quality germplasm resources.
Collapse
Affiliation(s)
- Hanghang Liu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Peifang Chong
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Shipeng Yan
- School of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Zehua Liu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Xinguang Bao
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Bingbing Tan
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| |
Collapse
|
40
|
Yang W, Chen Y, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. MicroRNA2871b of Dongxiang Wild Rice ( Oryza rufipogon Griff.) Negatively Regulates Cold and Salt Stress Tolerance in Transgenic Rice Plants. Int J Mol Sci 2023; 24:14502. [PMID: 37833950 PMCID: PMC10572564 DOI: 10.3390/ijms241914502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cold and salt stresses are major environmental factors that constrain rice production. Understanding their mechanisms is important to enhance cold and salt stress tolerance in rice. MicroRNAs (miRNAs) are a class of non-coding RNAs with only 21-24 nucleotides that are gene regulators in plants and animals. Previously, miR2871b expression was suppressed by cold stress in Dongxiang wild rice (DXWR, Oryza rufipogon Griff.). However, its biological functions in abiotic stress responses remain elusive. In the present study, miR2871b of DWXR was overexpressed to investigate its function under stress conditions. When miR2871b of DWXR was introduced into rice plants, the transgenic lines were more sensitive to cold and salt stresses, and their tolerance to cold and salt stress decreased. The increased expression of miR2871b in rice plants also increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA); however, it markedly decreased the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) and the contents of proline (Pro) and soluble sugar (SS). These data suggested that miR2871b of DXWR has negative regulatory effects on cold and salt stress tolerance. Meanwhile, 412 differentially expressed genes (DEGs) were found in rice transgenic plants using transcriptome sequencing, among which 266 genes were up-regulated and 146 genes were down-regulated. Furthermore, the upstream cis-acting elements and downstream targets of miR2871b were predicted and analyzed, and several critical acting elements (ABRE and TC-rich repeats) and potential target genes (LOC_Os03g41200, LOC_Os07g47620, and LOC_Os04g30260) were obtained. Collectively, these results generated herein further elucidate the vital roles of miR2871b in regulating cold and salt responses of DXWR.
Collapse
Affiliation(s)
- Wanling Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Rifang Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yaling Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
41
|
Wei Y, Yang H, Hu J, Li H, Zhao Z, Wu Y, Li J, Zhou Y, Yang K, Yang H. Trichoderma harzianum inoculation promotes sweet sorghum growth in the saline soil by modulating rhizosphere available nutrients and bacterial community. FRONTIERS IN PLANT SCIENCE 2023; 14:1258131. [PMID: 37771481 PMCID: PMC10523306 DOI: 10.3389/fpls.2023.1258131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
As one of the major abiotic stresses, salinity can affect crop growth and plant productivity worldwide. The inoculation of rhizosphere or endophytic microorganisms can enhance plant tolerance to salt stresses, but the potential mechanism is not clear. In this study, Trichoderma harzianum ST02 was applied on sweet sorghum [Sorghum bicolor (L.) Moench] in a field trial to investigate the effects on microbiome community and physiochemical properties in the rhizosphere soil. Compared with the non-inoculated control, Trichoderma inoculation significantly increased the stem yield, plant height, stem diameter, and total sugar content in stem by 35.52%, 32.68%, 32.09%, and 36.82%, respectively. In addition, Trichoderma inoculation improved the nutrient availability (e.g., N, P, and K) and organic matter in the rhizosphere soil and changed the bacterial community structure and function in both bulk and rhizosphere soil by particularly increasing the relative abundance of Actinobacter and N-cycling genes (nifH, archaeal and bacterial amoA). We proposed that T. harzianum ST02 could promote sweet sorghum growth under saline conditions by regulating available nutrients and the bacterial community in the rhizosphere soil.
Collapse
Affiliation(s)
- Yanli Wei
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Han Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jindong Hu
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongmei Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhongjuan Zhao
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuanzheng Wu
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jishun Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yi Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Kai Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hetong Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
42
|
Algethami JS, Irshad MK, Javed W, Alhamami MAM, Ibrahim M. Iron-modified biochar improves plant physiology, soil nutritional status and mitigates Pb and Cd-hazard in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1221434. [PMID: 37662164 PMCID: PMC10470012 DOI: 10.3389/fpls.2023.1221434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status.
Collapse
Affiliation(s)
- Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wasim Javed
- Punjab Bioenergy Institute (PBI), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsen A. M. Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
43
|
Shumaila, Ullah S, Shah W, Hafeez A, Ali B, Khan S, Ercisli S, Al-Ghamdi AA, Elshikh MS. Biochar and Seed Priming Technique with Gallic Acid: An Approach toward Improving Morpho-Anatomical and Physiological Features of Solanum melongena L. under Induced NaCl and Boron Stresses. ACS OMEGA 2023; 8:28207-28232. [PMID: 38173954 PMCID: PMC10763624 DOI: 10.1021/acsomega.3c01720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024]
Abstract
Dynamic shifts in climatic patterns increase soil salinity and boron levels, which are the major abiotic factors that affect plant growth and secondary metabolism. The present study assessed the role of growth regulators, including biochar (5 g kg-1) and gallic acid (GA, 2 mM), in altering leaf morpho-anatomical and physiological responses of Solanum melongena L. exposed to boron (25 mg kg-1) and salinity stresses (150 mM NaCl). These growth regulators enhanced leaf fresh weight (LFW) (70%), leaf dry weight (LDW) (20%), leaf area (LA), leaf area index (LAI) (85%), leaf moisture content (LMC) (98%), and relative water content (RWC) (115%) under salinity and boron stresses. Physiological attributes were analyzed to determine the stress levels and antioxidant protection. Photosynthetic pigments were negatively affected by salinity and boron stresses along with a nonsignificant reduction in trehalose, GA, osmoprotectant, and catalase (CAT) and ascorbate peroxidase (APX) activity. These parameters were improved by biochar application to soil and presoaking seeds in GA (p < 0.05) in both varieties of S. melongena L. Scanning electron microscopy (SEM) and light microscopy revealed that application of biochar and GA improved the stomatal regulation, trichome density, epidermal vigor, stomata size (SS) (13 381 μm), stomata index (SI) (354 mm2), upper epidermis thickness (UET) (123 μm), lower epidermis thickness (LET) (153 μm), cuticle thickness (CT) (11.4 μm), trichome density (TD) (23 per mm2), vein islet number (VIN) (14 per mm2), vein termination number (VTN) (19 per mm2), midrib thickness (MT) (5546 μm), and TD (27.4 mm2) under salinity and boron stresses. These results indicate that the use of inexpensive and easily available biochar and seed priming with GA can improve morpho-anatomical and physiological responses of S. melongena L. under oxidative stress conditions.
Collapse
Affiliation(s)
- Shumaila
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Sami Ullah
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Wadood Shah
- Biological
Sciences Research Division, Pakistan Forest
Institute, Peshawar 25120, Pakistan
| | - Aqsa Hafeez
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Khan
- Crops,
Environment and Land Use Programme, Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Sezai Ercisli
- Department
of Horticulture, Agricultural Faculty, Ataturk
Universitesi, 25240 Erzurum, Turkey
- HGF
Agro, Ata Teknokent, 25240 Erzurum, Turkey
| | - Abdullah Ahmed Al-Ghamdi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S. Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
44
|
Levett A, Gagen EJ, Levett I, Erskine PD. Integrating microalgae production into mine closure plans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117736. [PMID: 36933531 DOI: 10.1016/j.jenvman.2023.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/18/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Examples of successful mine closure and acceptable regional transitioning of mining areas are scarce. The recent changes to the environmental, social and governance (ESG) obligations of mining companies should help to ensure that water and land resources as well as post-mining employment opportunities are considered as a part of mine closure. Integrating microalgae production into mine closure plans is a potential opportunity for mining companies to improve many ESG outcomes. Mine sites with sufficient suitable land and water resources in high solar radiation geographies may be able to economically grow microalgae to capture atmospheric CO2, re-purpose saline mine waters, treat acidic and near-neutral pH metalliferous waters as well as produce soil ameliorants (biofertiliser, biostimulants and/or biochar) to improve mine rehabilitation outcomes. Microalgae production facilities may also provide an alternative industry and employment opportunities to help transition regional mining towns that have become reliant on mining activities. The potential economic, environmental and social benefits of using mine-influenced water for microalgae production may offer an opportunity to successfully close and transition some mining landscapes.
Collapse
Affiliation(s)
- Alan Levett
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Emma J Gagen
- Environmental Microbiology for Mining and Agriculture, Queensland, 4054, Australia
| | - Ian Levett
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
| | - Peter D Erskine
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
45
|
Cong M, Hu Y, Sun X, Yan H, Yu G, Tang G, Chen S, Xu W, Jia H. Long-term effects of biochar application on the growth and physiological characteristics of maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1172425. [PMID: 37409290 PMCID: PMC10319354 DOI: 10.3389/fpls.2023.1172425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023]
Abstract
Biochar, as a soil conditioner, has been widely used to promote the growth of maize, but most of the current research is short-term experiments, which limits the research on the long-term effects of biochar, especially the physiological mechanism of biochar on maize growth in aeolian sandy soil is still unclear. Here, we set up two groups of pot experiments, respectively after the new biochar application and one-time biochar application seven years ago (CK: 0 t ha-1, C1: 15.75 t ha-1, C2: 31.50 t ha-1, C3: 63.00 t ha-1, C4: 126.00 t ha-1), and planted with maize. Subsequently, samples were collected at different periods to explore the effect of biochar on maize growth physiology and its after-effect. Results showed that the plant height, biomass, and yield of maize showed the highest rates of increase at the application rate of 31.50 t ha-1 biochar, with 22.22% increase in biomass and 8.46% increase in yield compared with control under the new application treatment. Meanwhile, the plant height and biomass of maize increased gradually with the increase of biochar application under the one-time biochar application seven years ago treatment (increased by 4.13%-14.91% and 13.83%-58.39% compared with control). Interestingly, the changes in SPAD value (leaf greenness), soluble sugar and soluble protein contents in maize leaves corresponded with the trend of maize growth. Conversely, the changes of malondialdehyde (MDA), proline (PRO), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) manifested an opposite trend to the growth of maize. In conclusion, 31.50 t ha-1 biochar application can promote the growth of maize by inducing changes in its physiological and biochemical characteristics, but excessive biochar application rates ranging from 63.00-126.00 t ha-1 inhibited the growth of maize. After seven years of field aging, the inhibitory effect of 63.00-126.00 t ha-1 biochar amount on maize growth disappeared and changed to promoting effect.
Collapse
Affiliation(s)
- Mengfei Cong
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Yang Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Xia Sun
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi, China
| | - Han Yan
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Guangling Yu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Guangmu Tang
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Shuhuang Chen
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Wanli Xu
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| |
Collapse
|
46
|
Wu Y, Wang X, Zhang L, Zheng Y, Liu X, Zhang Y. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1163451. [PMID: 37223815 PMCID: PMC10200947 DOI: 10.3389/fpls.2023.1163451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 05/25/2023]
Abstract
Drought stress (DS) is a potential abiotic stress that is substantially reducing crop productivity across the globe. Likewise, salinity stress (SS) is another serious abiotic stress that is also a major threat to global crop productivity. The rapid climate change increased the intensity of both stresses which pose a serious threat to global food security; therefore, it is urgently needed to tackle both stresses to ensure better crop production. Globally, different measures are being used to improve crop productivity under stress conditions. Among these measures, biochar (BC) has been widely used to improve soil health and promote crop yield under stress conditions. The application of BC improves soil organic matter, soil structure, soil aggregate stability, water and nutrient holding capacity, and the activity of both beneficial microbes and fungi, which leads to an appreciable increase in tolerance to both damaging and abiotic stresses. BC biochar protects membrane stability, improves water uptake, maintains nutrient homeostasis, and reduces reactive oxygen species production (ROS) through enhanced antioxidant activities, thereby substantially improving tolerance to both stresses. Moreover, BC-mediated improvements in soil properties also substantially improve photosynthetic activity, chlorophyll synthesis, gene expression, the activity of stress-responsive proteins, and maintain the osmolytes and hormonal balance, which in turn improve tolerance against osmotic and ionic stresses. In conclusion, BC could be a promising amendment to bring tolerance against both drought and salinity stresses. Therefore, in the present review, we have discussed various mechanisms through which BC improves drought and salt tolerance. This review will help readers to learn more about the role of biochar in causing drought and salinity stress in plants, and it will also provide new suggestions on how this current knowledge about biochar can be used to develop drought and salinity tolerance.
Collapse
Affiliation(s)
- Yanfang Wu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xiaodong Wang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Zheng
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xinliang Liu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Yueting Zhang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| |
Collapse
|
47
|
Li C, Lu X, Liu Y, Xu J, Yu W. Strigolactone Alleviates the Adverse Effects of Salt Stress on Seed Germination in Cucumber by Enhancing Antioxidant Capacity. Antioxidants (Basel) 2023; 12:antiox12051043. [PMID: 37237909 DOI: 10.3390/antiox12051043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Strigolactones (SLs), as a new phytohormone, regulate various physiological and biochemical processes, and a number of stress responses, in plants. In this study, cucumber 'Xinchun NO. 4' is used to study the roles of SLs in seed germination under salt stress. The results show that the seed germination significantly decreases with the increase in the NaCl concentrations (0, 1, 10, 50, and 100 mM), and 50 mM NaCl as a moderate stress is used for further analysis. The different concentrations of SLs synthetic analogs GR24 (1, 5, 10, and 20 μM) significantly promote cucumber seed germination under NaCl stress, with a maximal biological response at 10 μM. An inhibitor of strigolactone (SL) synthesis TIS108 suppresses the positive roles of GR24 in cucumber seed germination under salt stress, suggesting that SL can alleviate the inhibition of seed germination caused by salt stress. To explore the regulatory mechanism of SL-alleviated salt stress, some contents, activities, and genes related to the antioxidant system are measured. The malondialdehyde (MDA), H2O2, O2-, and proline contents are increased, and the levels of ascorbic acid (AsA) and glutathione (GSH) are decreased under salt stress conditions, while GR24 treatment reduces MDA, H2O2, O2-, and proline contents, and increases AsA and GSH contents during seed germination under salt stress. Meanwhile, GR24 treatment enhances the decrease in the activities of antioxidant enzymes caused by salt stress [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)], following which antioxidant-related genes SOD, POD, CAT, APX, and GRX2 are up-regulated by GR24 under salt stress. However, TIS108 reversed the positive effects of GR24 on cucumber seed germination under salt stress. Together, the results of this study revealed that GR24 regulates the expression levels of genes related to antioxidants and, therefore, regulates enzymatic activity and non-enzymatic substances and enhances antioxidant capacity, alleviating salt toxicity during seed germination in cucumber.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
48
|
Overexpression of a Fragaria vesca 1R-MYB Transcription Factor Gene (FvMYB114) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24065261. [PMID: 36982335 PMCID: PMC10048884 DOI: 10.3390/ijms24065261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The MYB (v-MYB avian myeloblastosis viral oncogene homolog) transcription factor (TF) family has numerous members with complex and diverse functions, which play an indispensable role in regulating the response of plants to stress. In this study, a new 1R-MYB TF gene was obtained from Fragaria vesca (a diploid strawberry) by cloning technology and given a new name, FvMYB114. According to the subcellular localization results, FvMYB114 protein was a nuclear localization protein. Overexpression of FvMYB114 greatly enhanced the adaptability and tolerance of Arabidopsis thaliana to salt and low temperature. Under salt and cold stress, the transgenic plants had greater proline and chlorophyll contents and higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than the wild-type (WT) and unloaded-line (UL) A. thaliana. However, malondialdehyde (MDA) was higher in the WT and UL lines. These results suggested that FvMYB114 may be involved in regulating the response of A. thaliana to salt stress and cold stress. FvMYB114 can also promote the expression of genes, such as the genes AtSOS1/3, AtNHX1 and AtLEA3 related to salt stress and the genes AtCCA1, AtCOR4 and AtCBF1/3 related to cold stress, further improving the tolerance of transgenic plants to salt and cold stress.
Collapse
|
49
|
Ullah A, Ali I, Noor J, Zeng F, Bawazeer S, Eldin SM, Asghar MA, Javed HH, Saleem K, Ullah S, Ali H. Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential. FRONTIERS IN PLANT SCIENCE 2023; 13:1081188. [PMID: 36743556 PMCID: PMC9897288 DOI: 10.3389/fpls.2022.1081188] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Increasing soil salinization has a detrimental effect on agricultural productivity.Therefore, strategies are needed to induce salinity-tolerance in crop species for sustainable foodproduction. γ-aminobutyric acid (GABA) plays a key role in regulating plant salinity stresstolerance. However, it remains largely unknown how mungbean plants (Vigna radiata L.) respondto exogenous GABA under salinity stress. METHODS Thus, we evaluated the effect of exogenous GABA (1.5 mM) on the growth and physiobiochemicalresponse mechanism of mungbean plants to saline stress (0-, 50-, and 100 mM [NaCland Na2SO4, at a 1:1 molar ratio]). RESULTS Increased saline stress adversely affected mungbean plants' growth and metabolism. Forinstance, leaf-stem-root biomass (34- and 56%, 31- and 53%, and 27- and 56% under 50- and 100mM, respectively]) and chlorophyll concentrations declined. The carotenoid level increased (10%)at 50 mM and remained unaffected at 100 mM. Hydrogen peroxide (H2O2), malondialdehyde(MDA), osmolytes (soluble sugars, soluble proteins, proline), total phenolic content, andenzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase(POD), glutathione reductase (GTR), and polyphenol oxidation (PPO) were significantlyincreased. In leaves, salinity caused a significant increase in Na+ concentration but a decrease inK+ concentration, resulting in a low K+/Na+ concentration (51- and 71% under 50- and 100- mMstress). Additionally, nitrogen concentration and the activities of nitrate reductase (NR) andglutamine synthetase (GS) decreased significantly. The reduction in glutamate synthase (GOGAT)activity was only significant (65%) at 100 mM stress. Exogenous GABA decreased Na+, H2O2,and MDA concentrations but enhanced photosynthetic pigments, K+ and K+/Na+ ratio, Nmetabolism, osmolytes, and enzymatic antioxidant activities, thus reducing salinity-associatedstress damages, resulting in improved growth and biomass. CONCLUSION Exogenous GABA may have improved the salinity tolerance of mungbean plants by maintaining their morpho-physiological responses and reducing the accumulation of harmfulsubstances under salinity. Future molecular studies can contribute to a better understanding of themolecular mechanisms by which GABA regulates mungbean salinity tolerance.
Collapse
Affiliation(s)
- Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Iftikhar Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh Swat, Pakistan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Javaria Noor
- Department of Botany, Islamia College University, Peshawar, Pakistan
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sami Bawazeer
- Umm Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St. Martonvásár, Hungary
| | | | - Khansa Saleem
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Haider Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh Swat, Pakistan
| |
Collapse
|
50
|
Liang S, Wang SN, Zhou LL, Sun S, Zhang J, Zhuang LL. Combination of Biochar and Functional Bacteria Drives the Ecological Improvement of Saline-Alkali Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:284. [PMID: 36678996 PMCID: PMC9864812 DOI: 10.3390/plants12020284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The addition of functional bacteria (FB) is low-cost and is widely applied in saline-alkali soil remediation, which may gradually become ineffective due to inter-specific competition with indigenous bacteria. To improve the adaptability of FB, the target FB strains were isolated from local saline-alkali soil, and the combined effects of FB and biochar were explored. The results showed that FB isolated from local soil showed better growth than the purchased strains under high saline-alkali conditions. However, the indigenous community still weakened the function of added FB. Biochar addition provided a specific niche and increased the relative abundance of FB, especially for Proteobacteria and Bacteroidota. As a result, the co-addition of 10% biochar and FB significantly increased the soil available phosphorus (AP) by 74.85% and available nitrogen (AN) by 114.53%. Zea Mays's growth (in terms of height) was enhanced by 87.92% due to the decreased salinity stress and extra nutrients provided.
Collapse
Affiliation(s)
- Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Sheng-Nan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lu-Lu Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuo Sun
- Baiyangdian Basin Eco-environmental Support Center, Shijiazhuang 050000, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|