1
|
Zhang HC, Yang XQ, Wang CH, Shang CY, Shi CY, Chen GW, Liu DZ. Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107310. [PMID: 40058299 DOI: 10.1016/j.aquatox.2025.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits. In the current study, the median lethal concentration (LC50) of polystyrene (PS) to planarian Dugesia japonica was determined for the first time. Based on this, multiple toxic effects of single PS and PS in combination with ANTs on planarians were explored. The results showed that PS exposure disrupted the redox homeostasis and induced oxidative damage in planarians. Also, PS stress affected the neuromorphology, aggravated cell apoptosis in planarians probably by altering neural gene expressions as well as promoting the expression of apoptosis-related genes while inhibiting stem cell marker genes. In addition, the results also suggested that co-exposure of ANTs could effectively alleviate the toxicity of PS on planarians. Particularly, long-term environmentally relevant concentration PS exposure exhibited a higher propensity for inducing toxicity on planarians than short-term high concentration acute exposure, indicating that the harm of environmental MPs to humans and wildlife exposed to them should not be underestimated. Therefore, considering the recently rising and rapid development of ecotoxicomics, more in-depth research on the toxicity mechanism of environmentally relevant concentration PS-MPs to freshwater planarians from multi-omics levels will be our future work.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Xiao-Qing Yang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Cai-Hui Wang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Chang-Yang Shang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| |
Collapse
|
2
|
Ireland D, Rabeler C, Rao S, Richardson RJ, Collins EMS. Distinguishing classes of neuroactive drugs based on computational physicochemical properties and experimental phenotypic profiling in planarians. PLoS One 2025; 20:e0315394. [PMID: 39883642 PMCID: PMC11781733 DOI: 10.1371/journal.pone.0315394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 02/01/2025] Open
Abstract
Mental illnesses put a tremendous burden on afflicted individuals and society. Identification of novel drugs to treat such conditions is intrinsically challenging due to the complexity of neuropsychiatric diseases and the need for a systems-level understanding that goes beyond single molecule-target interactions. Thus far, drug discovery approaches focused on target-based in silico or in vitro high-throughput screening (HTS) have had limited success because they cannot capture pathway interactions or predict how a compound will affect the whole organism. Organismal behavioral testing is needed to fill the gap, but mammalian studies are too time-consuming and cost-prohibitive for the early stages of drug discovery. Behavioral medium-throughput screening (MTS) in small organisms promises to address this need and complement in silico and in vitro HTS to improve the discovery of novel neuroactive compounds. Here, we used cheminformatics and MTS in the freshwater planarian Dugesia japonica-an invertebrate system used for neurotoxicant testing-to evaluate the extent to which complementary insight could be gained from the two data streams. In this pilot study, our goal was to classify 19 neuroactive compounds into their functional categories: antipsychotics, anxiolytics, and antidepressants. Drug classification was performed with the same computational methods, using either physicochemical descriptors or planarian behavioral profiling. As it was not obvious a priori which classification method was most suited to this task, we compared the performance of four classification approaches. We used principal coordinate analysis or uniform manifold approximation and projection, each coupled with linear discriminant analysis, and two types of machine learning models-artificial neural net ensembles and support vector machines. Classification based on physicochemical properties had comparable accuracy to classification based on planarian profiling, especially with the machine learning models that all had accuracies of 90-100%. Planarian behavioral MTS correctly identified drugs with multiple therapeutic uses, thus yielding additional information compared to cheminformatics. Given that planarian behavioral MTS is an inexpensive true 3R (refine, reduce, replace) alternative to vertebrate testing and requires zero a priori knowledge about a chemical, it is a promising experimental system to complement in silico cheminformatics to identify new drug candidates.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Sagar Rao
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Verma CR, Khare T, Chakraborty P, Gosavi SM, Petrtýl M, Kalous L, Kumkar P. Impact of diethyl phthalate on freshwater planarian behaviour, regeneration, and antioxidant defence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107110. [PMID: 39378734 DOI: 10.1016/j.aquatox.2024.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Diethyl phthalate (DEP) has been widely used as a plasticiser in various consumer products, including cosmetics, personal care items, and pharmaceuticals, and recent studies reported a higher abundance of this priority phthalate in the aquatic environment. DEP is a potential endocrine disruptor, affecting immune systems in humans and wildlife even at low-level chronic exposure. As concern over phthalates increases globally, regulatory bodies focus more on their environmental impact. However, limited research is available, particularly using model organisms like planarians. Planarians are ideal for toxicological studies and may provide insightful information on pollutants' neurotoxic, developmental, and ecological effects, especially in freshwater environments where planarians play a vital role in ecosystem balance. Therefore, the objective of the current study was to examine the toxicity of DEP using the freshwater Dugesia sp., as an experimental animal. The LC50 for the test organism was calculated using DEP concentrations of 800, 400, 200, 100, and 50 µM, with an estimated LC50 of 357.24 µM. Furthermore, planarians were exposed to sub-lethal DEP concentration (178.62 µM) for one day as well as eight days to evaluate the impact of DEP on planarian locomotion, feeding behaviour, and regeneration ability. At sub-lethal concentration, locomotion and feeding ability were decreased, and regeneration was delayed. Furthermore, neuro-transmittance in planaria was altered by sub-lethal DEP concentration, as indicated by a reduced acetylcholinesterase (AChE) activity. DEP exposure induced oxidative damage in the tested planarians as shown by a marked increase in stress biomarkers, including lipid peroxidation levels and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and glutathione S-transferase (GST). Our study revealed that DEP exposure may prove fatal to freshwater organisms, such as planarians. The observed alterations in behaviour and regeneration ability demonstrate the severity of the effects exerted by DEP as a toxicant in aquatic ecosystems, thereby indicating the need to restrict its usage to protect aquatic environments.
Collapse
Affiliation(s)
- Chandani R Verma
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Tushar Khare
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic; Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Sachin M Gosavi
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, Mumbai, Maharashtra, India
| | - Miloslav Petrtýl
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Pradeep Kumkar
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic.
| |
Collapse
|
4
|
Wu F, Kong Z, Ge P, Sun D, Liu D, Dong Z, Chen G. Ecotoxicological evaluation and regeneration impairment of planarians by dibutyl phthalate. ENVIRONMENTAL RESEARCH 2024; 257:119403. [PMID: 38871274 DOI: 10.1016/j.envres.2024.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Commonly utilized as a plasticizer in the food and chemical sectors, Dibutyl phthalate (DBP) poses threats to the environment and human well-being as it seeps or moves into the surroundings. Nevertheless, research on the harmfulness of DBP to aquatic organisms is limited, and its impact on stem cells and tissue regeneration remains unidentified. Planarians, recognized for their robust regenerative capabilities and sensitivity to aquatic pollutants, are emerging animal models in toxicology. This study investigated the comprehensive toxicity effects of environmentally relevant levels of DBP on planarians. It revealed potential toxicity mechanisms through the use of immunofluorescence, chromatin dispersion assay, Western blot, quantitative real-time fluorescence quantitative PCR (qRT-PCR), chromatin behavioral and histological analyses, immunofluorescence, and terminal dUTP nickel-end labeling (TUNEL). Findings illustrated that DBP caused morphological and motor abnormalities, tissue damage, regenerative inhibition, and developmental neurotoxicity. Further research revealed increased apoptosis and suppressed stem cell proliferation and differentiation, disrupting a balance of cell proliferation and death, ultimately leading to morphological defects and functional abnormalities. This was attributed to oxidative stress and DNA damage caused by excessive release of reactive oxygen species (ROS). This exploration furnishes fresh perspectives on evaluating the toxicity peril posed by DBP in aquatic organisms.
Collapse
Affiliation(s)
- Fan Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zhihong Kong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Peng Ge
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
5
|
Benita O, Nesher N, Shomrat T. Neurophysiological measurements of planarian brain activity: a unique model for neuroscience research. Biol Open 2024; 13:bio060480. [PMID: 38979914 PMCID: PMC11391828 DOI: 10.1242/bio.060480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Planarians are well-known model organisms for regeneration and developmental biology research due to their remarkable regenerative capacity. Here, we aim to advocate for the use of planaria as a valuable model for neurobiology, as well. Planarians have most of the major qualities of more developed organisms, including a primal brain. These traits combined with their exceptional regeneration capabilities, allow neurobiological experiments not possible in any other model organism, as we demonstrate by electrophysiological recording from planaria with two heads that control a shared body. To facilitate planarian neuroscience research, we developed an extracellular multi-unit recording procedure for the planarians fragile brain (Dugesia japonica). We created a semi-intact preparation restrained with fine dissection pins, enabling hours of reliable recording, via a suction electrode. Here, we demonstrate the feasibility and potential of planarian neurophysiological research by characterizing the neuronal activity during simple learning processes and responses to various stimuli. In addition, we examined the use of linalool as anesthetic agent to allows recordings from an intact, large worm and for fine electrophysiological approaches such as intracellular recording. The demonstrated ability for neurophysiological measurements, along with the inherent advantages of planarians, promotes this exceptional model organism for neuroscience research.
Collapse
Affiliation(s)
- Orel Benita
- Department of Neurobiology, Hebrew University, Jerusalem 9190401, Israel
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 4029700, Israel
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 4029700, Israel
| |
Collapse
|
6
|
Saraiva AS, dos Reis EB, Farnese FS, Oliveira MS, Ofoegbu PU, Dornelas ASP, Sarmento RA, de Souza JCP, Resende EC, Rodrigues ACM. Unveiling the Subtle Threats: The Neurobehavioral Impact of Chlorpyrifos on Girardia tigrina. TOXICS 2024; 12:512. [PMID: 39058164 PMCID: PMC11280607 DOI: 10.3390/toxics12070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Chlorpyrifos, an organophosphate insecticide widely used to control agricultural pests, poses a significant environmental threat due to its toxicity and persistence in soil and water. Our work aimed to evaluate the acute (survival) and chronic (regeneration, locomotion, and reproduction) toxicity of chlorpyrifos to the non-target freshwater planarian Girardia tigrina. The 48 h lethal concentration (LC50) of the commercial formulation, containing 480 g L-1 of chlorpyrifos, the active ingredient, was determined to be 622.8 µg a.i. L-1 for planarians. Sublethal effects were translated into a significant reduction in locomotion and delayed head regeneration (lowest observed effect concentration-LOEC = 3.88 µg a.i. L-1). Additionally, chlorpyrifos exposure did not affect planarian fecundity or fertility. Overall, this study demonstrates the potential of chlorpyrifos-based insecticides to harm natural populations of freshwater planarians at environmentally relevant concentrations. The observed toxicity emphasizes the need for stricter regulations and careful management of chlorpyrifos usage to mitigate its deleterious effects on aquatic ecosystems. By understanding the specific impacts on non-target organisms like G. tigrina, we can make more informed suggestions regarding the usage and regulation of organophosphate insecticides, ultimately promoting sustainable agricultural practices and environmental conservation.
Collapse
Affiliation(s)
- Althiéris S. Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Campos Belos (CAE Research Group—Conservação de Agroecossistemas e Ecotoxicologia), Campos Belos 73840-000, GO, Brazil
| | - Eloisa Borges dos Reis
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (E.B.d.R.); (F.S.F.); (M.S.O.)
| | - Fernanda S. Farnese
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (E.B.d.R.); (F.S.F.); (M.S.O.)
| | - Marilene S. Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (E.B.d.R.); (F.S.F.); (M.S.O.)
| | - Pearl U. Ofoegbu
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Aline S. P. Dornelas
- Programa de Apoio à Fixação de Jovens Doutores no Brasil, Estagio Pós-Doutoral—Universidade Federal do Tocantins, Campus Universitário de Gurupi, Gurupi 77402-970, TO, Brazil;
| | - Renato A. Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, Gurupi 77402-970, TO, Brazil;
| | - João C. P. de Souza
- Departamento de Química da Faculdade de Ciências da Universidade Estadual Paulista “Júlio de Mesquita Filho”—Unesp—Campus Bauru, Bauru 17033-360, SP, Brazil;
| | - Erika C. Resende
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Iporá-GO, Iporá 76200-000, GO, Brazil;
| | - Andreia C. M. Rodrigues
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
7
|
Bjedov D, Barbosa RS, de Oliveira DP, Dorta DJ, Sarmento MI, Sarmento RA, Silva ALP, Gravato C. A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina. BIOLOGY 2024; 13:337. [PMID: 38785819 PMCID: PMC11117760 DOI: 10.3390/biology13050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of 10 mg L-1 flame-retardant aluminium diethylphosphinate (ALPI), 10 μg mg-1liver microplastics polyurethane (PU), and the combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained unaffected. Despite this fact, it was possible to observe that the range of physiological responses in exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount of energy allocated for the planarian activity. By examining the physiological, behavioural, and ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-level effects and inform strategies for mitigating environmental risks associated with OPFRs and microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Dora Bjedov
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Rone S. Barbosa
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences, University of São Paulo, Campus de Ribeirão Preto, Ribeirão Preto 77402-970, SP, Brazil;
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara 14800-060, SP, Brazil;
| | - Daniel Junqueira Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara 14800-060, SP, Brazil;
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Maíra Ignacio Sarmento
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Renato Almeida Sarmento
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Ana L. Patrício Silva
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
8
|
Huang J, Zhang J, Sun J, Gong M, Yuan Z. Exposure to polystyrene microplastics and perfluorooctane sulfonate disrupt the homeostasis of intact planarians and the growth of regenerating planarians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171653. [PMID: 38485023 DOI: 10.1016/j.scitotenv.2024.171653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Microplastics (MPs) and perfluorinated compounds (PFAS) are widespread in the global ecosystem. MPs have the ability to adsorb organic contaminants such as perfluorooctane sulfonate (PFOS), leading to combined effects. The current work aims to explore the individual and combined toxicological effects of polystyrene (PS) and PFOS on the growth and nerves of the freshwater planarian (Dugesia japonica). The results showed that PS particles could adsorb PFOS. PS and PFOS impeded the regeneration of decapitated planarians eyespots, whereas the combined treatment increased the locomotor speed of intact planarians. PS and PFOS caused significant DNA damage, while co-treatment with different PS concentrations aggravated and attenuated DNA damage, respectively. Further studies at the molecular level have shown that PS and PFOS affect the proliferation and differentiation of neoblasts in both intact and regenerating planarians, alter the expression levels of neuronal genes, and impede the development of the nervous system. PS and PFOS not only disrupted the homeostasis of intact planarians, but also inhibited the regeneration of decapitated planarians. This study is the first to assess the multiple toxicity of PS and PFOS to planarians after combined exposure. It provides a basis for the environmental and human health risks of MPs and PFAS.
Collapse
Affiliation(s)
- Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
9
|
Leynen N, Tytgat JS, Bijnens K, Jaenen V, Verleysen E, Artois T, Van Belleghem F, Saenen ND, Smeets K. Assessing the in vivo toxicity of titanium dioxide nanoparticles in Schmidtea mediterranea: uptake pathways and (neuro)developmental outcomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106895. [PMID: 38554681 DOI: 10.1016/j.aquatox.2024.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) in aquatic environments, originating from urban run-off, product use and post-consumer degradation, interact with aquatic organisms through water and sediments. Thorough toxicity assessment requires comprehensive data across all ecosystem compartments especially the benthic zone, which is currently lacking. Moreover, a proper physicochemical characterization of the particles is needed before and during toxicity assessment. In the present work, we used the planarian Schmidtea mediterranea to investigate the effects of TiO2-NPs (5 mg/L and 50 mg/L). Planarians are benthic organisms that play an important role in the food chain as predators. Our study integrated particle characterization with toxicokinetic and toxicodynamic parameters and showed that the uptake of TiO2-NPs of 21 nm occurred through the epidermis and intestine. Epidermal irritation and mucus production occurred immediately after exposure, and TiO2-NPs induced stronger effects in regenerating organisms. More specifically, TiO2-NPs interfered with neuroregeneration, inducing behavioral effects. A delay in the formation of the anterior commissure between the two brain lobes after seven and nine days of exposure to 50 mg/L was observed, probably as a result of a decrease in stem cell proliferation. Our findings underscore the need to incorporate multiple exposure routes in toxicity screenings. Additionally, we highlight the vulnerability of developing organisms and recommend their inclusion in future risk assessment strategies.
Collapse
Affiliation(s)
- N Leynen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - J S Tytgat
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - K Bijnens
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - V Jaenen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - E Verleysen
- Trace Elements and Nanomaterials, Sciensano, Groeselenbergstraat 99, 1180 Uccle, Belgium
| | - T Artois
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - F Van Belleghem
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium; Department of Environmental Sciences, Faculty of Science, Open Universiteit, Heerlen, the Netherlands
| | - N D Saenen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - K Smeets
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
10
|
Reho G, Menger Y, Goumon Y, Lelièvre V, Cadiou H. Behavioral and pharmacological characterization of planarian nociception. Front Mol Neurosci 2024; 17:1368009. [PMID: 38751713 PMCID: PMC11094297 DOI: 10.3389/fnmol.2024.1368009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Pain mostly arises because specialized cells called nociceptors detect harmful or potentially harmful stimuli. In lower animals with less convoluted nervous system, these responses are believed to be purely nociceptive. Amongst invertebrate animal models, planarians are becoming popular in a wide range of pharmacological and behavioral studies beyond the field of regeneration. Recent publications led the way on pain studies by focusing on nociceptive behaviors such as the 'scrunching' gait displayed under various noxious stimuli, as opposed to the 'gliding' gait planarians usually adopt in normal conditions. Methods In this study, we adapted commonly used nociceptive tests to further explore nociception in planarians of the species Girardia dorotocephala. By using behavioral analysis in open fields and place preferences, we managed to set up chemical, thermal and mechanical nociceptive tests. We also adapted RNA interference protocols and explored the effects of knocking down TRPA1 ion channels, one of the main effectors of chemically and thermally-induced nociceptive responses in vertebrates. Results Consequently, we demonstrated the reliability of the scrunching gait in this planarian species, which they displayed in a dose-dependent manner when exposed to the irritant AITC. We also showed that suppressing the expression of TRPA1 ion channels completely suppressed the scrunching gait, demonstrating the involvement of TRPA1 nociceptors in this nociceptive reaction. Besides, we also explored the effects of two common analgesics that both displayed strong antinociceptive properties. First, morphine reduced the chemically-induced nociceptive scrunching gaits by more than 20% and shifted the E C 50 of the dose-response curve by approximately 10 μM. Secondly, the NSAID meloxicam drastically reduced chemically-induced scrunching by up to 60% and reduced heat avoidance in place preference tests. Discussion Thus, we managed to characterize both behavioral and pharmacological aspects of G. dorotocephala's nociception, further developing the use of planarians as a replacement model in pain studies and more globally the study of invertebrate nociception.
Collapse
Affiliation(s)
| | | | | | | | - Hervé Cadiou
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Pérez-Pereira A, Carrola JS, Tiritan ME, Ribeiro C. Enantioselectivity in ecotoxicity of pharmaceuticals, illicit drugs, and industrial persistent pollutants in aquatic and terrestrial environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169573. [PMID: 38151122 DOI: 10.1016/j.scitotenv.2023.169573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
At present, there is a serious concern about the alarming number of recalcitrant contaminants that can negatively affect biodiversity threatening the ecological status of marine, estuarine, freshwater, and terrestrial ecosystems (e.g., agricultural soils and forests). Contaminants of emerging concern (CEC) such as pharmaceuticals (PHAR), illicit drugs (ID), industrial persistent pollutants, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chiral ionic solvents are globally spread and potentially toxic to non-target organisms. More than half of these contaminants are chiral and have been measured at different enantiomeric proportions in diverse ecosystems. Enantiomers can exhibit different toxicodynamics and toxicokinetics, and thus, can cause different toxic effects. Therefore, the enantiomeric distribution in occurrence cannot be neglected as the toxicity and other adverse biological effects are expected to be enantioselective. Hence, this review aims to reinforce the recognition of the stereochemistry in environmental risk assessment (ERA) of chiral CEC and gather up-to-date information about the current knowledge regarding the enantioselectivity in ecotoxicity of PHAR, ID, persistent pollutants (PCBs and PBDEs) and chiral ionic solvents present in freshwater and agricultural soil ecosystems. We performed an online literature search to obtain state-of-the-art research about enantioselective studies available for assessing the impact of these classes of CEC. Ecotoxicity assays have been carried out using organisms belonging to different trophic levels such as microorganisms, plants, invertebrates, and vertebrates, and considering ecologically relevant aquatic and terrestrial species or models organisms recommended by regulatory entities. A battery of ecotoxicity assays was also reported encompassing standard acute toxicity to sub-chronic and chronic assays and different endpoints as biomarkers of toxicity (e.g., biochemical, morphological alterations, reproduction, behavior, etc.). Nevertheless, we call attention to the lack of knowledge about the potential enantioselective toxicity of many PHAR, ID, and several classes of industrial compounds. Additionally, several questions regarding key species, selection of most appropriate toxicological assays and ERA of chiral CEC are addressed and critically discussed.
Collapse
Affiliation(s)
- A Pérez-Pereira
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal
| | - J S Carrola
- University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| | - M E Tiritan
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.
| | - C Ribeiro
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
| |
Collapse
|
12
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
13
|
Zhao WJ, Yang XQ, Shi CY, Zhang HC, Chen GW, Liu DZ. Neurotoxicity of Glyphosate to Planarian Dugesia japonica. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:66. [PMID: 37904018 DOI: 10.1007/s00128-023-03826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As one of the most widely used herbicides in agricultural industry, the residues of glyphosate (GLY) are frequent environmental pollutants. Freshwater planarian Dugesia japonica has been developed as a model for neurotoxicology. In this study, the effects of GLY on locomotion and feeding behavior, as well as neuroenzyme activities and mRNA expressions of D. japonica were determined. Additionally, histochemical localization was executed to explore the damage to the central nervous system (CNS) of planarians stressed by GLY. The results showed that the locomotor velocity, ingestion rate and the neuroenzyme activity were inhibited and the gene expressions were altered. Also, histo-architecture injury to CNS of planarians upon GLY exposure in a time-dependent manner was observed. Collectively, our results indicate that GLY can cause neurotoxicity to freshwater planarians representing as reduction in locomotor velocity and feeding rate by disturbing the neurotransmission systems and damaging the structure of CNS.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - Xiao-Qing Yang
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - He-Cai Zhang
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China.
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| |
Collapse
|
14
|
Viana TS, Campos D, Bartilotti M, Leite FG, Zanoni MVB, Dorta DJ, Oliveira DP, Pestana JLT. Magnetized vermiculite as a tool for the treatment of produced water generated by oil companies: Effects on aquatic organisms before and after treatment. J Appl Toxicol 2023; 43:1393-1405. [PMID: 37055923 DOI: 10.1002/jat.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Produced water (PW) generated by oil companies is a highly impacting waste that contains chemicals such as metals and organic and inorganic compounds. Given its polluting potential, PW requires effective treatment before being discharged into the environment. Conventional treatments have limited efficiency in removing PW toxicity, so alternative approaches must be developed and standardized. In this context, treatment with adsorbent materials like magnetized vermiculite (VMT-mag) is highlighted. This work aimed to evaluate the efficiency of treatment with VMT-mag in reducing PW toxicity to aquatic biota. For this purpose, three aquatic species (the midge Chironomus riparius, the planarian Girardia tigrina, and the crustacean Daphnia magna) were exposed to untreated PW and to PW treated with VMT-mag at laboratory conditions. The assessed endpoints included mortality, growth, emergence, and developmental time of C. riparius; mortality, locomotion, feeding, and head regeneration of G. tigrina; and intrinsic population growth rate (r) and reproductive output of D. magna. The results showed that all the species exposed to raw PW were impaired: C. riparius had delayed development, G. tigrina had reduced locomotor activity and delayed head regeneration, and D. magna had reduced reproduction and delayed intrinsic population growth rate (r). Most of the analyzed parameters showed that treatment with VMT-mag diminished PW toxicity. Therefore, using VMT-mag to treat PW may be the key to reducing the PW effects on aquatic organisms.
Collapse
Affiliation(s)
- Tais S Viana
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Diana Campos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Mariana Bartilotti
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Fernanda G Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Valnice Boldrin Zanoni
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - Daniel J Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danielle P Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - João L T Pestana
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Feng M, Xu Z, Yin D, Zhao Z, Zhou X, Song L. Toxic effects of sodium dodecyl sulfate on planarian Dugesia japonica. PeerJ 2023; 11:e15660. [PMID: 37456884 PMCID: PMC10340106 DOI: 10.7717/peerj.15660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Sodium dodecyl sulfate (SDS) is an anionic surfactant, which is widely used in various fields in human life. However, SDS discharged into the water environment has a certain impact on aquatic organisms. In this study, planarian Dugesia japonica (D. japonica) was used to identify the toxic effects of SDS. A series of SDS solutions with different concentrations were used to treat planarians for the acute toxicity test , and the results showed that the semi-lethal concentration (LC50) of SDS to D. japonica at 24 h, 48 h, 72 h, and 96 h were 4.29 mg/L, 3.76 mg/L, 3.45 mg/L, and 3.20 mg/L respectively. After the planarians were exposed to 0.5 mg/L and 1.0 mg/L SDS solutions for 1, 3, and 5 days, the activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content were measured to detect the oxidative stress and lipid peroxidation in planarians. Random amplified polymorphic DNA (RAPD) analysis was performed to detect the genotoxicity caused by SDS to planarians. The results showed that the activities of SOD, CAT, and MDA content increased after the treatment, indicating that SDS induced oxidative stress in planarians. RAPD analysis showed that the genomic template stability (GTS) values of planarians treated by 0.5 mg/L and 1.0 mg/L SDS for 1, 3, and 5 days were 67.86%, 64.29%, 58.93%, and 64.29%, 60.71%, 48.21%, respectively. GTS values decreased with the increasing of SDS concentration and exposure time, indicating that SDS had genotoxicity to planarians in a time and dose-related manner. Fluorescent quantitative PCR (qPCR) was used to investigate the effects of SDS on gene expression of planarians. After the planarians were exposed to 1.0 mg/L SDS solution for 1, 3, and 5 days, the expression of caspase3 was upregulated, and that of piwiA, piwiB, PCNA, cyclinB, and RAD51 were downregulated. These results suggested that SDS might induce apoptosis, affect cell proliferation, differentiation, and DNA repair ability of planarian cells and cause toxic effects on planarian D. japonica.
Collapse
Affiliation(s)
- Minmin Feng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhenbiao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dandan Yin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zelong Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiuyuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Linxia Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
16
|
Fuselier SG, Ireland D, Fu N, Rabeler C, Collins EMS. Comparative toxicity assessment of glyphosate and two commercial formulations in the planarian Dugesia japonica. FRONTIERS IN TOXICOLOGY 2023; 5:1200881. [PMID: 37435546 PMCID: PMC10332155 DOI: 10.3389/ftox.2023.1200881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction: Glyphosate is a widely used, non-selective herbicide. Glyphosate and glyphosate-based herbicides (GBHs) are considered safe for non-target organisms and environmentally benign at currently allowed environmental exposure levels. However, their increased use in recent years has triggered questions about possible adverse outcomes due to low dose chronic exposure in animals and humans. While the toxicity of GBHs has primarily been attributed to glyphosate, other largely unstudied components of GBHs may be inherently toxic or could act synergistically with glyphosate. Thus, comparative studies of glyphosate and GBHs are needed to parse out their respective toxicity. Methods: We performed such a comparative screen using pure glyphosate and two popular GBHs at the same glyphosate acid equivalent concentrations in the freshwater planarian Dugesia japonica. This planarian has been shown to be a useful model for both ecotoxicology and neurotoxicity/developmental neurotoxicity studies. Effects on morphology and various behavioral readouts were obtained using an automated screening platform, with assessments on day 7 and day 12 of exposure. Adult and regenerating planarians were screened to allow for detection of developmentally selective effects. Results: Both GBHs were more toxic than pure glyphosate. While pure glyphosate induced lethality at 1 mM and no other effects, both GBHs induced lethality at 316 μM and sublethal behavioral effects starting at 31.6 μM in adult planarians. These data suggest that glyphosate alone is not responsible for the observed toxicity of the GBHs. Because these two GBHs also include other active ingredients, namely diquat dibromide and pelargonic acid, respectively, we tested whether these compounds were responsible for the observed effects. Screening of the equivalent concentrations of pure diquat dibromide and pure pelargonic acid revealed that the toxicity of either GBH could not be explained by the active ingredients alone. Discussion: Because all compounds induced toxicity at concentrations above allowed exposure levels, our data indicates that glyphosate/GBH exposure is not an ecotoxicological concern for D. japonica planarians. Developmentally selective effects were not observed for all compounds. Together, these data demonstrate the usefulness of high throughput screening in D. japonica planarians for assessing various types of toxicity, especially for comparative studies of several chemicals across different developmental stages.
Collapse
Affiliation(s)
- S. Grace Fuselier
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Nicholas Fu
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Cesarini G, Coppola F, Campos D, Venditti I, Battocchio C, Di Giulio A, Muzzi M, Pestana JLT, Scalici M. Nanoplastic exposure inhibits feeding and delays regeneration in a freshwater planarian. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121959. [PMID: 37271363 DOI: 10.1016/j.envpol.2023.121959] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
The concentration of nanoplastics (NPs) is expected to increase in aquatic environments thus potentially threatening freshwater organisms through interactions with plastic particles that variously float, circulate in the water column or sink into the benthos. Studies into the mechanisms of any NP effects are still scarce, particularly with respect to the regenerative ability of biota for which there is no recognised model organism. The present study therefore aimed to investigate behavioural and regeneration responses of the freshwater planarian Girardia tigrina after 10 days exposed to along a gradient 0.01-10 mg/L of poly (styrene-co-methyl methacrylate) NPs (∼426 ± 175 nm). Exposure to NPs induced a significant reduction in planarian feeding rate even at low concentrations (LOEC of 0.01 mg/L), while head regeneration was delayed in a clear dose response way (LOEC of 0.1 mg/L for blastema length). Planaria locomotion assessed was not affected. Our results highlight the potential adverse effects of exposure to poly (styrene-co-methyl methacrylate) NPs and show that feeding behaviour and regeneration of a freshwater benthic organism can be indicators of the resulting toxicity. Planarians are becoming widely used model organisms in ecotoxicology and can help to address potential effects of plastic polymers on regeneration.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| | - Francesca Coppola
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Diana Campos
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Iole Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - Chiara Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - Andrea Di Giulio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - Maurizio Muzzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - João L T Pestana
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| |
Collapse
|
18
|
Suzzi AL, Huggett MJ, Gaston TF, MacFarlane GR, Alam MR, Gibb J, Stat M. eDNA metabarcoding reveals shifts in sediment eukaryote communities in a metal contaminated estuary. MARINE POLLUTION BULLETIN 2023; 191:114896. [PMID: 37058833 DOI: 10.1016/j.marpolbul.2023.114896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Metal contamination is a global issue impacting biodiversity in urbanised estuaries. Traditional methods to assess biodiversity are time consuming, costly and often exclude small or cryptic organisms due to difficulties with morphological identification. Metabarcoding approaches have been increasingly recognised for their utility in monitoring, however studies have focused on freshwater and marine systems despite the ecological significance of estuaries. We targeted estuarine eukaryote communities within the sediments of Australia's largest urbanised estuary, where a history of industrial activity has resulted in a metal contamination gradient. We identified specific eukaryote families with significant correlations with bioavailable metal concentrations, indicating sensitivity or tolerance to specific metals. While polychaete families Terebellidae and Syllidae demonstrated tolerance to the contamination gradient, members of the meio- and microfaunal communities including diatoms, dinoflagellates and nematodes displayed sensitivities. These may have high value as indicators but are frequently missed in traditional surveys due to sampling limitations.
Collapse
Affiliation(s)
- Alessandra L Suzzi
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Megan J Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Jodie Gibb
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Michael Stat
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| |
Collapse
|
19
|
Campillo N, Ireland D, Patel Y, Collins EMS. A Simple Method for Quantifying Blastema Growth in Regenerating Planarians. Curr Protoc 2023; 3:e684. [PMID: 36877155 PMCID: PMC10558012 DOI: 10.1002/cpz1.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their strong regenerative capabilities, freshwater planarians are a well-suited model system for studying the effects of chemicals on stem cell biology and regeneration. After amputation, a planarian will regenerate the missing body parts within 1 to 2 weeks. Because planarians have a distinct head morphology that can be easily identified, head and eye regeneration has been a popular qualitative measure of toxicity. However, qualitative measures can only detect strong defects. Here, we present protocols for quantifying the rate of blastema growth to measure regeneration defects for assessment of chemical toxicity. Following amputation, a regenerative blastema forms at the wound site. Over the course of several days, the blastema grows and subsequently re-forms the missing anatomical structures. This growth can be measured by imaging the regenerating planarian. As the blastema tissue is unpigmented, it can be easily distinguished from the remaining pigmented body using standard image analysis techniques. Basic Protocol 1 provides a step-by-step guide for imaging regenerating planarians over several days of regeneration. Basic Protocol 2 describes the necessary steps for the quantification of blastema size using freeware. It is accompanied by video tutorials to facilitate adaptation. Basic Protocol 3 shows how to calculate the growth rate using linear curve fitting in a spreadsheet. The ease of implementation and low cost make this procedure suitable for an undergraduate laboratory teaching setting, in addition to typical research settings. Although we focus on head regeneration in Dugesia japonica, these protocols are adaptable to other wound sites and planarian species. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Imaging planarians during regeneration Basic Protocol 2: Quantitative analysis of blastema size with ImageJ Basic Protocol 3: Quantification of blastema growth rate.
Collapse
Affiliation(s)
- Natali Campillo
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- These authors contributed equally to this work
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- These authors contributed equally to this work
| | - Yashvi Patel
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Physics, University of California San Diego, La Jolla, California
| |
Collapse
|
20
|
Bayingana K, Ireland D, Rosenthal E, Rabeler C, Collins EMS. Adult and regenerating planarians respond differentially to chronic drug exposure. Neurotoxicol Teratol 2023; 96:107148. [PMID: 36539103 DOI: 10.1016/j.ntt.2022.107148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
There is a lack of data on the effects of chronic exposure to common drugs and stimulants on the developing nervous system. Freshwater planarians have emerged as a useful invertebrate model amenable to high-throughput behavioral phenotyping to assay chemical safety in adult and developing brains. Here, we leverage the unique strength of the system to test in parallel for effects on the adult and developing nervous system, by screening ten common drugs and stimulants (forskolin, clenbuterol, LRE-1, MDL-12,330A, adenosine, caffeine, histamine, mianserin, fluoxetine and sertraline) using the asexual freshwater planarian Dugesia japonica. The compounds were tested up to 100 μM nominal concentration for their effects on planarian morphology and behavior. Quantitative phenotypic assessments were performed on days 7 and 12 of exposure using an automated screening platform. The antidepressants sertraline and fluoxetine were the most potent to induce lethality, with significant lethality observed at 10 μM. All ten compounds caused sublethal morphological and/or behavioral effects, with the most effects, in terms of potency and breadth of endpoints affected, seen with mianserin and fluoxetine. Four of the compounds (forskolin, clenbuterol, mianserin, and fluoxetine) were developmentally selective, causing effects at lower concentrations in regenerating planarians. Of these, fluoxetine showed the greatest differences between the two developmental stages, inducing many behavioral endpoints in regenerating planarians but only a few in adult planarians. While some of these behavioral effects may be due to neuroefficacy, these results substantiate the need for better evaluation of the safety of these common drugs on the developing nervous system.
Collapse
Affiliation(s)
- Kevin Bayingana
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Elizabeth Rosenthal
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America; Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, United States of America; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Physics, University of California San Diego, La Jolla, CA, United States of America.
| |
Collapse
|
21
|
Zhang HC, Shi CY, Zhao WJ, Chen GW, Liu DZ. Toxicity of herbicide glyphosate to planarian Dugesia japonica and its potential molecular mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106425. [PMID: 36805197 DOI: 10.1016/j.aquatox.2023.106425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate (GLY) is one of the most widely used agrochemicals in the world, and its exposure has become a public health concern. The freshwater planarian is an ideal test organism for detecting the toxicity of pollutants and has been an emerging animal model in toxicological studies. Nevertheless, the underlying toxicity mechanism of GLY to planarians has not been thoroughly explored. To elucidate the toxicity effects and molecular mechanism involved in GLY exposure of planarians, we studied the acute toxicity, histological change, and transcriptional response of Dugesia japonica subjected to GLY. Significant morphological malformations and histopathological changes were observed in planarians after GLY exposure for different times. Also, a number of differentially expressed genes (DEGs) were obtained at 1, 3 and 5 d after exposure; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these DEGs were performed, and a global and dynamic view was obtained in planarians upon GLY exposure at the transcriptomic level. Furthermore, real-time quantitative PCR (qRT-PCR) was conducted on nine DEGs associated with detoxification, apoptosis, stress response, DNA repair, etc. The expression patterns were well consistent with the RNA sequencing (RNA-seq) results at different time points, which confirmed the reliability and accuracy of the transcriptome data. Collectively, our results established that GLY could pose adverse effects on the morphology and histo-architecture of D. japonica, and the planarians are capable of responding to the disadvantageous stress by dysregulating the related genes and pathways concerning immune response, detoxification, energy metabolism, DNA damage repair, etc. To the best of our knowledge, this is the first report of transcriptomic analyses of freshwater planarians exposed to environmental pollutants, and it provided detailed sequencing data deriving from transcriptome profiling to deepen our understanding the molecular toxicity mechanism of GLY to planarians.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wen-Jing Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
22
|
Yang Y, Wang L, Zhao Y, Ma F, Lin Z, Liu Y, Dong Z, Chen G, Liu D. PBDEs disrupt homeostasis maintenance and regeneration of planarians due to DNA damage, proliferation and apoptosis anomaly. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114287. [PMID: 36371889 DOI: 10.1016/j.ecoenv.2022.114287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants in the manufacturing industry, belonging to persistent organic pollutants in the environment. Planarians are the freshwater worms, with strong regenerative ability and extreme sensitivity to environmental toxicants. This study aimed to evaluate the potential acute comprehensive effects of PBDE-47/-209 on freshwater planarians. Methods to detect the effects include: detection of oxidative stress, observation of morphology and histology, detection of DNA fragmentation, and detection of cell proliferation and apoptosis. In the PBDE-47 treatment group, planarians showed increased oxidative stress intensity, severe tissue damage, increased DNA fragmentation level, and increased cell proliferation and apoptosis. In the PBDE-209 treatment group, planarians showed decreased oxidative stress intensity, slight tissue damage, almost unchanged DNA fragmentation level and apoptosis, proliferation increased only on the first day after treatment. In conclusion, both PBDE-47 and PBDE-209 are dangerous environmental hazardous material that can disrupt planarians homeostasis, while the toxicity of PBDE-47 is sever than PBDE-209 that PBDE-47 can lead to the death of planarians.
Collapse
Affiliation(s)
- Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Lei Wang
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Yuhao Zhao
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Fuhao Ma
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Ziyi Lin
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Yingyu Liu
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| |
Collapse
|
23
|
Abstract
Traditional mammalian testing is too time- and cost-intensive to keep up with the large number of environmental chemicals needing assessment. This has led to a dearth of information about the potential adverse effects of these chemicals, especially on the developing brain. Thus, there is an urgent need for rapid and cost-effective neurotoxicity and developmental neurotoxicity testing. Because of the complexity of the brain, metabolically competent organismal models are necessary to understand the effects of chemicals on nervous system development and function on a systems level. In this overview, we showcase asexual freshwater planarians as an alternative invertebrate ("non-animal") organismal model for neurotoxicology research. Planarians have long been used to study the effects of chemicals on regeneration and behavior. But they have only recently moved back into the spotlight because modern molecular and computational approaches now enable quantitative high-content and high-throughput toxicity studies. Here, we present a short history of the use of planarians in toxicology research, highlight current techniques to measure toxicity qualitatively and quantitatively in planarians, and discuss how to further promote this non-animal organismal system into mainstream toxicology research. The articles in this collection will help work towards this goal by providing detailed protocols that can be adopted by the community to standardize planarian toxicity testing. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
24
|
Reho G, Lelièvre V, Cadiou H. Planarian nociception: Lessons from a scrunching flatworm. Front Mol Neurosci 2022; 15:935918. [PMID: 35959107 PMCID: PMC9362985 DOI: 10.3389/fnmol.2022.935918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
In addition to being studied for their exceptional regeneration abilities, planarians (i.e., flatworms) have also been extensively used in the context of pharmacological experiments during the past century. Many researchers used planarians as a model system for the study of drug abuse because they display high similarities with the nervous system of vertebrates at cellular and molecular levels (e.g., neuronal morphology, neurotransmitter ligands, and receptor function). This research field recently led to the discovery of causal relationships between the expression of Transient Receptor Potential ion channels in planarians and their behavioral responses to noxious stimuli such as heat, cold or pharmacological analogs such as TRP agonists, among others. It has also been shown that some antinociceptive drugs modulate these behaviors. However, among the few authors that tried to implement a full behavior analysis, none reached a consensual use of the terms used to describe planarian gaits yet, nor did they establish a comprehensive description of a potential planarian nociceptive system. The aim of this review is therefore to aggregate the ancient and the most recent evidence for a true nociceptive behavior in planarians. It also highlights the convenience and relevance of this invertebrate model for nociceptive tests and suggests further lines of research. In regards to past pharmacological studies, this review finally discusses the opportunities given by the model to extensively screen for novel antinociceptive drugs.
Collapse
|
25
|
Liang A, Wu F, Li C, Yu Y, Dong Z, Chen G, Yu F, Yuwen Y, Liu D. Aspirin inhibits stem cell proliferation during freshwater Dugesia japonica regeneration by STAT3/SOX2/OCT4 signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106158. [PMID: 35429915 DOI: 10.1016/j.aquatox.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
As a widely used drug in clinical practice, aspirin has a large number of residual drugs and metabolites discharged into the environment during the pharmaceutical process or after taking the drug. Aspirin content and its metabolite, salicylic acid, have been reported and detected in several river water samples and municipal wastewaters. However, little is known about the toxicity mechanisms of this drug in aquatic invertebrates. In this study, we examine the toxic effect and investigate the toxicity mechanism of aspirin in planarian, which own the excellent regeneration and sensitive toxicity detection ability. Planarian is treated with 0.7 mM aspirin for 6 h, 48 h, 3 d and 5 d, and the mRNA and protein expression levels of the stem cells markers, in parallel with the target genes of the signaling pathway are analyzed by RT-qPCR, whole-mount immunofluorescence, and Western blot. The results show that aspirin strongly inhibits stem cell proliferation and causes retarded blastemas growth in planarians. Furthermore, the mRNA and protein expression levels of stem cells markers and the target genes dramatically decrease after the aspirin treatment. Meanwhile, the expression level of apoptotic cells also shows a downward trend. Their significant and coincident downregulations after the aspirin treatment suggest that aspirin regulates planarian regeneration via STAT3/SOX2/OCT4 signaling pathway. Our work reveals the toxicological effect and the mechanism of aspirin to the planarian, and provides basic data for therapeutic applications of aspirin in regeneration and warns about the ecological damage of aspirin abuse.
Collapse
Affiliation(s)
- Ang Liang
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China; School of Nursing, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Fan Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Chaojie Li
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Yiyang Yu
- University of California, San Diego, La Jolla, CA, United States
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China.
| | - Fei Yu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Yanqing Yuwen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| |
Collapse
|
26
|
Silva PV, Pinheiro C, Morgado RG, Verweij RA, van Gestel CAM, Loureiro S. Bioaccumulation but no biomagnification of silver sulfide nanoparticles in freshwater snails and planarians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151956. [PMID: 34843767 DOI: 10.1016/j.scitotenv.2021.151956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Bioaccumulation studies are critical in regulatory decision making on the potential environmental risks of engineered nanoparticles (NPs). The present study evaluated the toxicokinetics of silver, taken up from sulfide nanoparticles (Ag2S NPs; simulating an aged Ag NP form) and AgNO3 (ionic counterpart), in the pulmonate snail Physa acuta and the planarian Girardia tigrina. The snails were first exposed for 7 days to Ag-spiked water, along with the microalgae Raphidocelis subcapitata upon which they fed setting up a double route exposure, and subsequently provided as pre-exposed food to the planarians. Ag toxicokinetics and bioaccumulation were assessed in planarians and snails, and potential biomagnification from snail to planarian was evaluated. Gut depuration was also explored to understand whether it constitutes a factor likely to influence Ag toxicokinetics and internal concentrations in the test species. Both species revealed Ag uptake in Ag2S NP and AgNO3 treatments, with higher uptake from the latter. Uptake by the snails was probably via a combination of water exposure and ingested algae provided as food, but ingestion of algae possibly had higher relevance for Ag uptake from the Ag2S NPs compared to AgNO3. For planarians, diet probably was the most important exposure route since no Ag uptake was observed in previous waterborne exposures to Ag2S NPs. Kinetics and internal Ag concentrations did not significantly differ between depurated and non-depurated snails or planarians. The planarians fed on snails revealed no biomagnification. To the best of our knowledge this is the first study investigating the toxicokinetics and biomagnification of NPs in planarians, and with that providing important data on the kinetics and bioaccumulation of NPs in a relevant benthic species.
Collapse
Affiliation(s)
- Patrícia V Silva
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carlos Pinheiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui G Morgado
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Silva LCR, Dornelas ASP, de Souza Saraiva A, Gravato C, Pestana JLT, da Maia Soares AMV, Sarmento RA. Do bio-insecticides affect only insect species? Behavior, regeneration, and sexual reproduction of a non-target freshwater planarian. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10665-10674. [PMID: 34528200 DOI: 10.1007/s11356-021-16493-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Bio-insecticides have been increasingly used worldwide as ecofriendly alternatives to pesticides, but data on their effects in non-target freshwater organisms is still scarce and limited to insects. The aim of this study was to determine the lethal and sub-lethal effects of the bio-insecticides Bac Control (based on Bacillus thuringiensis kurstaki-Btk) and Boveril (based on Beauveria bassiana-Bb) on regeneration, behavioral, and reproductive endpoints of the freshwater planarian Girardia tigrina. The estimated LC50-48h were > 800 mg a.i./L for Btk and 60.74 mg a.i./L for Bb. In addition, exposure to Btk significantly decreased locomotion and feeding activities of planarians (lowest observed effect concentration (LOEC) of 12.5 mg a.i./L Btk) and fecundity rate (LOEC = 3.12 mg a.i./L Btk), whereas exposure to Bb significantly delayed regeneration (LOEC = 0.75 mg a.i./L Bb) and decreased fecundity rate (1.5 mg a.i./L Bb) of planarians. Thus, both bio-insecticides induced deleterious sub-lethal effects on a non-insect freshwater invertebrate species. However, only Bb-based formulation affected the survival, fecundity rate, and regeneration at concentrations below the maximum predicted environmental concentration (PEC = 247 mg/L). Thus, care should be taken when using such formulations as alternatives to chemical insecticides near aquatic ecosystems.
Collapse
Affiliation(s)
- Laila Cristina Rezende Silva
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Aline Silvestre Pereira Dornelas
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Althiéris de Souza Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano-Campus Campos Belos (Laboratório de Conservação de Agroecossistemas e Ecotoxicologia), 73840-000, Campos Belos, Goiás, Brazil
| | - Carlos Gravato
- Faculdade de Ciências and CESAM, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João Luís Teixeira Pestana
- Departamento de Biologia and CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu Mortágua Velho da Maia Soares
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
- Departamento de Biologia and CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Renato Almeida Sarmento
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil.
| |
Collapse
|
28
|
Xiao J, Li Y. Screening of benzophenone ultraviolet absorbers with high-efficiency light absorption capacity, low-permeability and low-toxicity by 3D-QSAR model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Nam SH, An YJ. Perspectives on microalgae as model organisms toward the standardization of soil algal toxicity test methods. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109144. [PMID: 34302981 DOI: 10.1016/j.cbpc.2021.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
When considering test species for soil ecotoxicity, the development of new model organisms is often suggested to increase the reliability of ecological risk assessments. Ubiquitous soil algae could offer potential test species for assessing various soil pollution levels. Currently, there are few reviews offering comprehensive perspectives on stressors-based toxicological studies using microalgae in soil media, with the majority of scholarly attention paid to the toxicological effects of freshwater algae or marine algae in aquatic ecosystems. In this review, we focus on current toxicological studies of microalgae assessed in soil-related media and suggest considerations for using microalgae in soil toxicity tests based on 22 publications (1998-2021). In addition, we analyzed characteristics of soil algae based on criteria for selecting test species and suggest that future research should be directed toward the standardization of soil algal toxicity test methods. This review discusses a promising method using soil algae as new test species for soil toxicity assessment as cost-effective and environmentally sound soil quality bioindicators. The review also addresses the lack of understanding behind how soil algae can serve as important test species for soil ecotoxicity.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
30
|
Ge Q, Cao W, Zhu F, Yuan Y, Chen L, Xu J, Li J, Chen H, Ma S, Sun L, Pan H, Taha RH, Yao Q, Chen K. Genomics and proteomics combined analysis revealed the toxicity response of silkworm Bombyx mori to the environmental pathogen Bacillus cereus ZJ-4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112467. [PMID: 34217115 DOI: 10.1016/j.ecoenv.2021.112467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bacterial contamination has caused a major public health problem worldwide. Bacillus cereus is a conditional environmental pathogenic bacteria that can cause food poisoning. Whether environmental pathogens can cause widespread transmission in the insect kingdom is unclear. In this study, a Bacillus cereus ZJ-4 was isolated from the hospital environment of Zhenjiang City, Jiangsu Province, China. It was fatal by injection into the silkworm hemolymph. To investigated the potential toxic factors of ZJ-4 and clarified the toxicity response mechanism of silkworm by the ZJ-4 infection. Then, the whole genome of ZJ-4 was sequenced, and the immune mechanism of silkworm fat body to ZJ-4 pathogen was studied by HE pathological section and proteomics. Bacterial genome sequencing indicated that ZJ-4 had 352 drug resistance genes and 6 virulence genes. After 36 h of subcutaneous puncture with ZJ-4 suspension, the pathological changes were obviously found in HE pathological sections of fat body tissue. Comparative proteomic results indicated that differentially expressed proteins are mainly involved in stress reactions, biological regulation, and innate immunity. The qRT-PCR analysis showed that the expressions of β-GRP, Spaetzle, MyD88, Tube and Dorsal genes in Toll pathway were up-regulated, while Pell and Cactus genes were down-regulated; in the antimicrobial peptide pathway, Glv2, Lzm, Mor, and Leb3 genes were up-regulated, while attacin1 and defensin genes were down-regulated; Sod gene was up-regulated, while Cat gene was down-regulated in the antioxidant pathway; Ldh, Sdh, and Mdh genes were down-regulated in glucose metabolism pathway. These results indicated that ZJ-4 can damage the innate immune pathway of silkworm, and also affect the normal immune function of fat body cells.
Collapse
Affiliation(s)
- Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Weiping Cao
- The Fourth People's Hospital of Zhenjiang, Zhenjiang, Jiangsu 212001, PR China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yi Yuan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jun Li
- Instrumental Analysis and Testing Center, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Han Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Huiwen Pan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Zhenjiang First People's Hospital, Zhenjiang, Jiangsu 212002, PR China
| | - Rehab Hosny Taha
- Plant Protection Research Institute, Agricultural Research Center, Egypt
| | - Qin Yao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
31
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
32
|
Irfan M, Liu X, Hussain K, Mushtaq S, Cabrera J, Zhang P. The global research trend on cadmium in freshwater: a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-13894-7. [PMID: 33877520 DOI: 10.1007/s11356-021-13894-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Cadmium pollution turns out to be a global environmental problem. This study conducted a quantitative and qualitative bibliometric analysis based on 9188 research items from the Web of Science Core Collection published in the last 20 years (2000-2020), presenting an in-depth statistical investigation of global freshwater cadmium research progress and developing trend. Our results demonstrated that the researchers from China, the USA, and India contribute the most to this field. The primary sources of cadmium are mining, industry, wastewater, sedimentation, and agricultural activities. In developing countries, cadmium exposure occurs mainly through the air, freshwater, and food. Fish and vegetables are the main food sources of cadmium for humans because of their high accumulation capability. Source evaluation, detection, and remediation represent the main technologies used to clean up cadmium-contaminated sites. To mitigate the risk of cadmium contamination in freshwater, biomarker-based cadmium monitoring methods and integrated policies/strategies to reduce cadmium exposure merit further concern.
Collapse
Affiliation(s)
- Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China.
| | - Khalid Hussain
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Suraya Mushtaq
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| |
Collapse
|
33
|
Dornelas ASP, Sarmento RA, Saraiva AS, Barbosa RS, Vieira MM, Gravato C, Soares AMVM. Effects of two biopesticides and salt on behaviour, regeneration and sexual reproduction of the freshwater planarian Girardia tigrina. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124089. [PMID: 33049628 DOI: 10.1016/j.jhazmat.2020.124089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Microbial insecticides are being used as ecologically-friendly alternatives to traditional insecticides. However, their effects have been poorly investigated on non-target freshwater species, with exception of a few insect species. Moreover, combined effects of microbial insecticides with other environmental stressors, such as salinity, have never been investigated. Thus, our goal was to assess the effects of Bac-Control® (based in Bacillus thuringiensis - Btk) and Boveril® (based in Beauveria bassiana - Bb) with increasing salinities (NaCl) on freshwater planarian Girardia tigrina. It has been reported that increased salinity levels affect freshwater organisms compromising their survival by triggering adaptation processes to cope with osmotic stress. Our results showed delayed regeneration, decreased locomotion and feeding on planarians exposed to NaCl, whereas their sexual reproduction was not affected. Both microbial insecticides impaired feeding, locomotor activity, regeneration, and sexual reproduction of planarians. Planarians exposed to microbial insecticides compromised their progeny. Therefore, microbial insecticides might not be ecologically friendly alternatives to chemical insecticides. Interestingly, harmful effects of microbial insecticides with increasing salinities showed an inadequate response of planarians to cope with induction of their immune response and osmoregulation.
Collapse
Affiliation(s)
- Aline S P Dornelas
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Renato A Sarmento
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Althiéris S Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Campos Belos (Laboratório de Conservação de Agroecossistemas e Ecotoxicologia), Campos Belos, 73840-000 Goiás, Brazil
| | - Rone S Barbosa
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Mayane M Vieira
- Curso de Química Ambiental, Universidade Federal do Tocantins, 77410-530 Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Amadeu M V M Soares
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil; Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Simão FCP, Gravato C, Machado AL, Soares AMVM, Pestana JLT. Effects of pyrene and benzo[a]pyrene on the reproduction and newborn morphology and behavior of the freshwater planarian Girardia tigrina. CHEMOSPHERE 2021; 264:128448. [PMID: 33032223 DOI: 10.1016/j.chemosphere.2020.128448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of aquatic ecosystems. Because they are persistent, there is great potential for chronic toxicity to aquatic species, and the evaluation of reproductive effects is fundamental. In this context, planarians are interesting experimental animals, since they can be sensitive to environmental pollutants, and a wide range of reproductive-related endpoints can be assessed. In this work we evaluated fecundity (number of cocoons), fertility (number of newborns), newborn anomalies, adult weight, regenerative abilities and PAH-residues in tissues of the freshwater planarian Girardia tigrina, exposed to either pyrene or benzo[a]pyrene (B[a]P). Pyrene reduced planarian fecundity and fertility at 18.75 μg L-1 and 75.00 μg L-1, while B[a]P reduced planarian fecundity at the 37.50 μg L-1 treatment, which was accompanied by a 33.7% reduction in fertility. Cocoons were kept in clean media and newborns were evaluated for behavioral and morphological anomalies. Many of the newborns resulting from the B[a]P experiment revealed behavioral anomalies, such as spasms and uncoordinated movements. These behavioral anomalies were observed in 12.9% and 38.2% of newborns resulting from the exposure of adult planarians to 9.38 μg L-1 and 37.50 μg L-1 of B[a]P, respectively. This study is the first report on the effects of PAHs in freshwater planarians' sexual reproduction and a decreased reproductive output was evidenced. Moreover, the exposure of adults to B[a]P lead to defects in newborns, raising concern on the possible long-term consequences of these compounds for natural planarian populations.
Collapse
Affiliation(s)
- Fátima C P Simão
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Luísa Machado
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
35
|
Bijnens K, Thijs S, Leynen N, Stevens V, McAmmond B, Van Hamme J, Vangronsveld J, Artois T, Smeets K. Differential effect of silver nanoparticles on the microbiome of adult and developing planaria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105672. [PMID: 33227667 DOI: 10.1016/j.aquatox.2020.105672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/04/2020] [Accepted: 10/27/2020] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (AgNPs) are widely incorporated in household, consumer and medical products. Their unintentional release via wastewaters raises concerns on their environmental impact, particularly for aquatic organisms and their associated bacterial communities. It is known that the microbiome plays an important role in its host's health and physiology, e.g. by producing essential nutrients and providing protection against pathogens. A thorough understanding of the effects of AgNPs on bacterial communities and on their interactions with the host is crucial to fully assess AgNP toxicity on aquatic organisms. Our results indicate that the microbiome of the invertebrate Schmidtea mediterranea, a freshwater planarian, is affected by AgNP exposure at the tested 10 μg/ml concentration. Using targeted amplification of the bacterial 16S rRNA gene V3-V4 region, two independent experiments on the microbiomes of adult worms revealed a consistent decrease in Betaproteobacteriales after AgNP exposure, mainly attributed to a decrease in Curvibacter and Undibacterium. Although developing tissues and organisms are known to be more sensitive to toxic compounds, three independent experiments in regenerating worms showed a less pronounced effect of AgNP exposure on the microbiome, possibly because underlying bacterial community changes during development mask the AgNP induced effect. The presence of a polyvinyl-pyrrolidone (PVP) coating did not significantly alter the outcome of the experiments compared to those with uncoated particles. The observed variation between the different experiments underlines the highly variable nature of microbiomes and emphasises the need to repeat microbiome experiments, within and between physiological states of the animal.
Collapse
Affiliation(s)
- Karolien Bijnens
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Hasselt, Belgium
| | - Nathalie Leynen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - Vincent Stevens
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Hasselt, Belgium
| | - Breanne McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Hasselt, Belgium; Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Skłodowska-Curie University, Lublin, Poland
| | - Tom Artois
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
36
|
Martinez O, Sire S, Saunier A, Malgouyres JM, Fournier A, Vignet C. Behavioral responses of three freshwater planaria species to light, visual and olfactory stimuli: Setting the stage for further ecotoxicological studies. Behav Processes 2020; 183:104295. [PMID: 33383124 DOI: 10.1016/j.beproc.2020.104295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
Planarians are freshwater flatworms commonly used as environmental bioindicator due to their sensitivity of response and their ease of culturing in lab. Nevertheless, to date, very few studies describing their behavior have been led. This work aims to fill the literature gap by providing preliminary results through six behavioral challenges (locomotion, exploration, light stress, planarian light/dark test, shoaling and foraging) conducted with three different species Dugesia tigrina, Schmidtea mediterranea and Schmidtea polychroa. The behavioral responses of every species in each of these six assays were recorded and differences between species were highlighted, depending on the assays and conditions. Schmidtea polychroa is less active than the two others and had the highest light aversion. Reactions observed in response to diverse and realistic stimuli helped us to select the most suitable tests and choose the species that seem the most appropriate for future ecotoxicological and neurophysiological tests. Four tests - out of the six tested- seem reliable in order to standardize planarian behavioral tests.
Collapse
Affiliation(s)
- Odile Martinez
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Sacha Sire
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Alice Saunier
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Alice Fournier
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France.
| |
Collapse
|
37
|
Liu Y, Chen J, Dong Z, Chen G, Liu D. Antioxidant responses and lipid peroxidation can be used as sensitive indicators for the heavy metals risk assessment of the Wei River: a case study of planarian Dugesia Japonica. Biomarkers 2020; 26:55-64. [PMID: 33225756 DOI: 10.1080/1354750x.2020.1854347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To verify antioxidant responses and lipid peroxidation can be used as sensitive indicators for the risk assessment of the Wei River. MATERIAL AND METHODS We investigate the effects of the Wei River on oxidative stress of planarian Dugesia japonica by antioxidant parameters, and use ICP-MS to measure the heavy metals in the Wei River. Then, we observe the effects of three common heavy metal ions (Cr3+, Hg2+, Pb2+) on the regeneration of planarians on morphological and histological levels. RESULTS The significant changes of antioxidant parameters (SOD, CAT, GPx, GST, T-AOC) and MDA content indicate that oxidative stress is induced after the Wei River exposure on planarians, though the heavy metals in the Wei River are not exceeding the standards. Then, the regeneration of planarians shows different degree of morphological and histological damage after Cr3+, Hg2+ and Pb2+ exposure. CONCLUSION We speculate that the heavy metal ions in the Wei River, especially Cr3+, Hg2+ and Pb2+, may give rise to oxidative damage on planarians. These findings illustrate that planarian can serve as an indicator of aquatic ecosystem pollution, antioxidant responses and lipid peroxidation can also be used as sensitive indicators and provide an excellent opportunity for urban river risk assessment.
Collapse
Affiliation(s)
- Yingyu Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Jinzi Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
38
|
Orso R, Gonçalves IL, Navarini Bampi E, Saorin Puton BM, Hepp LU, Dartora N, Souza Roman S, Valduga AT. Analysis of Polysaccharide Fraction from Yerba Mate (
Ilex paraguariensis
St. Hil.) on Regeneration of Planarian (
Girardia tigrina
). STARCH-STARKE 2020. [DOI: 10.1002/star.202000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Regina Orso
- Programa de de Pós‐Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões 1621 Sete de Setembro Avenue Erechim Rio Grande do Sul 99709‐910 Brazil
| | - Itamar Luís Gonçalves
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul 2752 Ipiranga Avenue Porto Alegre Rio Grande do Sul 90610‐000 Brazil
| | - Edivania Navarini Bampi
- Departamento de Ciências Biológicas Universidade Regional Integrada do Alto Uruguai e das Missões 1621 Sete de Setembro Avenue Erechim Rio Grande do Sul 99709‐910 Brazil
| | - Bruna Maria Saorin Puton
- Programa de Pós‐Graduação em Engenharia de Alimentos Universidade Regional Integrada do Alto Uruguai e das Missões 1621 Sete de Setembro Avenue Erechim Rio Grande do Sul 99709‐910 Brazil
| | - Luiz Ubiratan Hepp
- Programa de de Pós‐Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões 1621 Sete de Setembro Avenue Erechim Rio Grande do Sul 99709‐910 Brazil
| | - Nessana Dartora
- Departamento de Ciências Biológicas Universidade Federal da Fronteira Sul Campus Cerro Largo, Cerro Largo 1850 Jacob Reinaldo Haupentha Avenue Cerro Largo Rio Grande do Sul 97900‐000 Brazil
| | - Silvane Souza Roman
- Programa de de Pós‐Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões 1621 Sete de Setembro Avenue Erechim Rio Grande do Sul 99709‐910 Brazil
| | - Alice Teresa Valduga
- Programa de de Pós‐Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões 1621 Sete de Setembro Avenue Erechim Rio Grande do Sul 99709‐910 Brazil
| |
Collapse
|
39
|
Simão FCP, Gravato C, Machado AL, Soares AMVM, Pestana JLT. Toxicity of different polycyclic aromatic hydrocarbons (PAHs) to the freshwater planarian Girardia tigrina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115185. [PMID: 32777698 DOI: 10.1016/j.envpol.2020.115185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Freshwater planarians have been gaining relevance as experimental animals for numerous research areas given their interesting features, such as high regeneration potential, shared features with the vertebrates' nervous system or the range of endpoints that can be easily evaluated in response to contaminants. Ecotoxicological research using these animals has been steadily increasing in the past decades, as planarians' potentialities for this research area are being recognized. In this work, we used polycyclic aromatic hydrocarbons (PAHs) as model contaminants and evaluated effects of exposure to phenanthrene, pyrene and benzo[a]pyrene (B[a]P) in planarians. The freshwater planarian Girardia tigrina was chosen and mortality, cephalic regeneration (during and post-exposure), behavioral endpoints and presence of PAHs in tissues, were evaluated. Mortality was only observed in planarians exposed to phenanthrene, with an estimated LC50 of 830 μg L-1. Results indicate that planarian behavioral endpoints were very sensitive in response to sub-lethal concentrations of PAHs, showing a greater sensitivity towards B[a]P and pyrene. Briefly, post-exposure locomotion and post-exposure feeding were significantly impaired by sub-lethal concentrations of all compounds, whereas regeneration of photoreceptors was only significantly delayed in planarians exposed to pyrene. Moreover, levels of PAH-type compounds in planarian tissues followed a concentration-dependent increase, showing uptake of compounds from experimental solutions. The present results highlight the importance of studying alternative and complementary endpoints, such as behavior, not only because these may be able to detect effects at lower levels of contamination, but also due to their ecological relevance. The simplicity of evaluating a wide range of responses to contaminants further demonstrates the utility of freshwater planarians for ecotoxicological research.
Collapse
Affiliation(s)
- Fátima C P Simão
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ana Luísa Machado
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
40
|
Saraiva AS, Sarmento RA, Gravato C, Rodrigues ACM, Campos D, Simão FCP, Soares AMVM. Strategies of cellular energy allocation to cope with paraquat-induced oxidative stress: Chironomids vs Planarians and the importance of using different species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140443. [PMID: 32887009 DOI: 10.1016/j.scitotenv.2020.140443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 05/22/2023]
Abstract
Paraquat (PQ) is still used in several countries worldwide as an herbicide for weed control in agricultural production, ponds, reservoirs and irrigation canals. Thus, PQ is frequently found in surface water systems and is potentially toxic to aquatic organisms, since it can cause mitochondrial dysfunction altering in the redox state of cells. This study aimed to investigate the chronic effects of PQ to Chironomus riparius and Girardia tigrina, and compare their physiological strategies to cope with environmental stress. The mean emergence time was the most sensitive endpoint for Chironomids, with the lowest observed effect concentrations (LOEC) being 0.02 for males and 0.1 mg PQ L-1 for females. Moreover, PQ reduced the body weight of male and female imagoes, with LOECs of 0.5 and 2.5 mg PQ L-1, respectively. Paraquat also decreased the respiration rate (LOEC = 2.5 mg PQ L-1) and total glutathione (tGSH) content (LOEC = 0.5 mg PQ L-1). Thus, the aerobic production of energy was not affected and allowed chironomids to cope with oxidative stress induced by PQ, but with consequent physiological costs in terms of development rates and weight of adults. In planarians, PQ decreased the locomotion and feeding activity, and delayed photoreceptor regeneration (LOECs = 2.5 mg PQ L-1 for all endpoints). Despite increased aerobic energy production (LOEC = 0.5 mg PQ L-1), planarians were not able to cope with oxidative stress induced by the highest PQ concentrations, since lipid peroxidation levels were significantly increased (LOEC = 2.5 mg PQ L-1) concomitantly with a significant decrease of tGSH (LOEC = 2.5 mg PQ L-1). These results showed that planarians were unable to cope with oxidative stress induced by PQ with consequent impairments of behavior and regeneration despite an increased aerobic energy production.
Collapse
Affiliation(s)
- Althiéris S Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia, Goiano - Campus Campos Belos, 73840-000 Campos Belos, Goiás, Brazil
| | - Renato A Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia C M Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima C P Simão
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
41
|
Shah SI, Williams AC, Lau WM, Khutoryanskiy VV. Planarian toxicity fluorescent assay: A rapid and cheap pre-screening tool for potential skin irritants. Toxicol In Vitro 2020; 69:105004. [PMID: 33010358 DOI: 10.1016/j.tiv.2020.105004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023]
Abstract
Here we report a new planarian (Dugesia lugubris) fluorescent assay as a rapid and cheap pre-screening tool to predict strong skin irritants. Our aim was to provide a simple and cost-effective in vivo method that avoided use of higher vertebrates. Adapting previously reported methods for planaria mobility alongside an acute toxicity assay, different irritants at five concentrations (0.1%, 0.05%, 0.025%, 0.01% and 0.005% w/v) were tested but both methods failed to discriminate the irritation potential of the test compounds. Therefore, a new alternative fluorescence assay was developed, hypothesising that increasing damage from the irritant to the planarian outer protective membrane will increase accumulation of sodium fluorescein in the flatworm. Fourteen test chemicals were selected representing strong, moderate, mild and non-irritants. In general, results showed increasing sodium fluorescein accumulation within planaria following acute exposure to increasingly strong skin irritants; on exposure to the strong irritants, benzalkonium chloride, citronellal, methyl palmitate, 1-bromohexane and carvacrol, fluorescence within the planaria was significantly greater (P < 0.05) than the negative controls and the common non-irritants PEG-400, dipropylene glycol and isopropyl alcohol; fluorescence values of planaria tested with negative controls and non-irritants were not significantly different. For all test compounds, Fluorescence Intensity of the planaria was compared with literature Primary Irritation Index data and generated a statistically significant (P < 0.005) Pearson correlation (r) of 0.87. Thus, the planarian fluorescent assay is a promising tool for rapid early testing of potential strong skin irritants, and non-irritants, and avoids use of higher vertebrate models.
Collapse
Affiliation(s)
- Syed Ibrahim Shah
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Adrian C Williams
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Wing Man Lau
- School of Pharmacy, The Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom.
| |
Collapse
|
42
|
Salvetti A, Gambino G, Rossi L, De Pasquale D, Pucci C, Linsalata S, Degl'Innocenti A, Nitti S, Prato M, Ippolito C, Ciofani G. Stem cell and tissue regeneration analysis in low-dose irradiated planarians treated with cerium oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111113. [DOI: 10.1016/j.msec.2020.111113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
43
|
Dornelas ASP, Sarmento RA, Cavallini GS, da Silva Barbosa R, Vieira MM, de Souza Saraiva A, Bordalo MD, Soares AMVM, Pestana JLT. Lethal and sublethal effects of the saline stressor sodium chloride on Chironomus xanthus and Girardia tigrina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34223-34233. [PMID: 32557035 DOI: 10.1007/s11356-020-09556-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Salinization in freshwaters is gradually increasing as a result of human activities and climatic changes. Higher salt content causes stress for freshwater organisms. Sodium chloride (NaCl) is among the most frequently occurring salts in freshwater ecosystems. The objective of the present study was to investigate the lethal and sublethal effects of NaCl on freshwater ecosystems, using as test organism the dipteran Chironomus xanthus and the planarian Girardia tigrina. Acute tests showed that C. xanthus was more sensitive (48-h LC50 (median lethal concentration) of 2.97 g NaCl L-1) than G. tigrina (48-h LC50 of 7.77 g NaCl L-1). C. xanthus larvae growth rate (larvae length and head capsule width) was significantly reduced under exposure to concentrations as low as 0.19 g L-1 NaCl and higher. A delay in the emergence time (EmT50) was also demonstrated for the same concentration. Sublethal NaCl effects in G. tigrina included feeding inhibition (LOEC (lowest observed effect concentration) of 0.4 g L-1), reduced locomotion (LOEC = 0.2 g L-1), and 24-48-h blastema regeneration (LOEC = 0.2 g L-1 and 0.1 g L-1, respectively). The results demonstrated the toxicity of NaCl to C. xanthus and G. tigrina including sublethal effects that can result in negative consequences for populations in natural freshwaters under salinization.
Collapse
Affiliation(s)
- Aline Silvestre Pereira Dornelas
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil.
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins (UFT), Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Rone da Silva Barbosa
- Curso de Engenharia Florestal, Universidade Federal do Tocantins, 77410-530, Gurupi, Tocantins, Brazil
| | - Mayane Marques Vieira
- Curso de Química Ambiental, Universidade Federal do Tocantins, 77410-530, Gurupi, Tocantins, Brazil
| | - Althiéris de Souza Saraiva
- Departamento de Agropecuaria (Conservacao de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educacao, Ciência e Tecnologia Goiano - Campus Campos Belos, Campos Belos, Goias, 73840-000, Brazil
| | - Maria D Bordalo
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
44
|
Zhang J, Shao X, Zhao B, Zhai L, Liu N, Gong F, Ma X, Pan X, Zhao B, Yuan Z, Zhang X. Neurotoxicity of perfluorooctanoic acid and post-exposure recovery due to blueberry anthocyanins in the planarians Dugesia japonica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114471. [PMID: 32268227 DOI: 10.1016/j.envpol.2020.114471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widely used synthetic industrial chemical which accumulates in ecosystems and organisms. Our study have investigated the neurobehavioral effects of PFOA and the alleviation effects of PFOA-induced neurotoxicity by blueberry anthocyanins (ANT) in Dugesia japonica. The planarians were exposed to PFOA and ANT for ten days. Researchs showed that exposure to PFOA affected locomotor behavior and ANT significantly alleviated the reduction in locomotion induced by PFOA. The regeneration of eyespots and auricles was suppressed by PFOA and was promoted by ANT. Following exposure to PFOA, acetylcholinesterase activity continually decreased and was unaffected in the ANT group, but was elevated after combined administration of PFOA and ANT. Oxidative DNA damage was found in planarians exposed to PFOA and was attenuated after administration of ANT by the alkaline comet assay. Concentrations of three neurotransmitters increased following exposure to PFOA and decreased after administration of ANT. Furthermore, ANT promoted and PFOA inhibited neuronal regeneration. DjotxA, DjotxB, DjFoxG, DjFoxD and Djnlg associated with neural processes were up-regulated following exposure to PFOA. Our findings indicate that PFOA is a neurotoxicant while ANT can attenuate these detrimental effects.
Collapse
Affiliation(s)
- Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xinxin Shao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Baoying Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Liming Zhai
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Na Liu
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Fangbin Gong
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xue Ma
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xiaolu Pan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| |
Collapse
|
45
|
Ireland D, Bochenek V, Chaiken D, Rabeler C, Onoe S, Soni A, Collins EMS. Dugesia japonica is the best suited of three planarian species for high-throughput toxicology screening. CHEMOSPHERE 2020; 253:126718. [PMID: 32298908 PMCID: PMC7350771 DOI: 10.1016/j.chemosphere.2020.126718] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 05/28/2023]
Abstract
High-throughput screening (HTS) using new approach methods is revolutionizing toxicology. Asexual freshwater planarians are a promising invertebrate model for neurotoxicity HTS because their diverse behaviors can be used as quantitative readouts of neuronal function. Currently, three planarian species are commonly used in toxicology research: Dugesia japonica, Schmidtea mediterranea, and Girardia tigrina. However, only D. japonica has been demonstrated to be suitable for HTS. Here, we assess the two other species for HTS suitability by direct comparison with D. japonica. Through quantitative assessments of morphology and multiple behaviors, we assayed the effects of 4 common solvents (DMSO, ethanol, methanol, ethyl acetate) and a negative control (sorbitol) on neurodevelopment. Each chemical was screened blind at 5 concentrations at two time points over a twelve-day period. We obtained two main results: First, G. tigrina and S. mediterranea planarians showed significantly reduced movement compared to D. japonica under HTS conditions, due to decreased health over time and lack of movement under red lighting, respectively. This made it difficult to obtain meaningful readouts from these species. Second, we observed species differences in sensitivity to the solvents, suggesting that care must be taken when extrapolating chemical effects across planarian species. Overall, our data show that D. japonica is best suited for behavioral HTS given the limitations of the other species. Standardizing which planarian species is used in neurotoxicity screening will facilitate data comparisons across research groups and accelerate the application of this promising invertebrate system for first-tier chemical HTS, helping streamline toxicology testing.
Collapse
Affiliation(s)
| | | | - Daniel Chaiken
- Department of Computer Science, Swarthmore College, Swarthmore, PA, USA
| | | | - Sumi Onoe
- Department of Computer Science, Swarthmore College, Swarthmore, PA, USA
| | - Ameet Soni
- Department of Computer Science, Swarthmore College, Swarthmore, PA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, USA; Department of Physics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
Gambino G, Ippolito C, Modeo L, Salvetti A, Rossi L. 5-Fluorouracil-treated planarians, a versatile model system for studying stem cell heterogeneity and tissue aging. Biol Cell 2020; 112:335-348. [PMID: 32640042 DOI: 10.1111/boc.202000040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Planarians are a sound, well-established model system for molecular studies in the field of stem cells, cell differentiation, developmental biology and translational research. Treated stem cell-less planarians produced by X-ray treatment are commonly used to study stem cell transcriptional profile and their role in planarian biological processes. X-ray induces oxidative and DNA damage to differentiated cells, requires expensive radiation machines that are not available in most of the research centres and demand rigorous risk management and dedicated staff. RESULTS We tested the use of the well-known antimetabolite genotoxic drug 5-fluorouracil which mainly affects proliferating cells in way to demonstrate its use in replacing X-ray treatment. We succeeded in demonstrating ability of high doses of 5-fluorouracil to deplete Dugesia japonica stem cells and in identifying a 5-fluorouracil transiently resistant population of lineage committed stem cells. CONCLUSIONS AND SIGNIFICANCE Our results encourage the use of 5-fluorouracil-treated planarians as a model system for studying mechanisms of resistance to genotoxicants, planarian stem cell heterogeneity and molecular cascades of tissue aging.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Letizia Modeo
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, 56126, Italy
| | - Alessandra Salvetti
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Leonardo Rossi
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
47
|
Zhang HC, Shi CY, Yang YJ, Chen GW, Liu DZ. Biomarkers of Planarian Dugesia japonica in Response to Herbicide Glyphosate Exposure. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:804-808. [PMID: 32372209 DOI: 10.1007/s00128-020-02865-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
As the worldwide top-selling herbicide, glyphosate is ubiquitously distributed in the natural environment, and its influence on the ecological safety and human health has being increasingly concerned. In this study, mRNA expressions of GPX and three heat shock protein genes in freshwater planarian Dugesia japonica in response to glyphosate were determined, and two oxidative stress parameters were measured. The results suggested that GPX activity can be used as a more sensitive biomarker in contrast with GPX gene expression, and mRNA expressions of Hsp70, Hsp90 genes are more sensitive than Hsp40 for planarians in response to glyphosate stress. Besides, the deduced T-AOC as well as varied GPX activity and mRNA expression levels of Hsps also indicated that glyphosate exposure would inhibit antioxidation and induce oxidative stress in D. japonica, while specific antioxidant systems and stress proteins tried to protect cells by their own regulation. The results of this study will be helpful to elucidate the stress response mechanisms of freshwater planarians to herbicide glyphosate.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, No. 46, Jianshe East Road, Xinxiang, 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, No. 46, Jianshe East Road, Xinxiang, 453007, China
| | - Yu-Juan Yang
- College of Life Sciences, Henan Normal University, No. 46, Jianshe East Road, Xinxiang, 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, No. 46, Jianshe East Road, Xinxiang, 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, No. 46, Jianshe East Road, Xinxiang, 453007, China
| |
Collapse
|
48
|
Wang B, Li D, Yuan Z, Zhang Y, Ma X, Lv Z, Xiao Y, Zhang J. Evaluation of joint effects of perfluorooctane sulfonate and wood vinegar on planarians, Dugesia japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18089-18098. [PMID: 32170611 DOI: 10.1007/s11356-020-08342-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/05/2020] [Indexed: 05/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant and can cause oxidative stress in animals. Wood vinegar (WV) is the water condensate of smoke produced during wood carbonization. It was used for antibacterial application, pest control, and antioxidant. In the study, PFOS and WV were used to treat the planarian, and then the oxidative stress induced by PFOS on the planarian (Dugesia japonica) and the protective effects of WV on lipid peroxidation, related antioxidant enzyme activity, and mRNA expression in the planarian were studied. PFOS caused an increase in malondialdehyde (MDA) contents, a decrease in superoxide dismutase (SOD) and catalase (CAT) activities, and a change in glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities. The mRNA levels of glutathione peroxidase gene (gpx), glutathione S-transferase enzyme gene (gst), and glutathione reductase gene (gr) are upregulated or downregulated to varying degrees. The WV and co-treatment planarians reduced MDA levels, increased the activities of oxidative stress biomarker enzymes, and restored gene expression levels. Our results show that low concentration of WV has protective effects on the oxidative damage caused by PFOS in the planarian.
Collapse
Affiliation(s)
- Bin Wang
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Danping Li
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yuejie Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xue Ma
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Ziheng Lv
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yu Xiao
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China.
| |
Collapse
|
49
|
Zhang HC, Yang YJ, Ma KX, Shi CY, Chen GW, Liu DZ. A novel sigma class glutathione S-transferase gene in freshwater planarian Dugesia japonica: cloning, characterization and protective effects in herbicide glyphosate stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:295-304. [PMID: 32088881 DOI: 10.1007/s10646-020-02173-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 05/27/2023]
Abstract
As the top-selling herbicide in the world, glyphosate distributes widely in natural environment and its influence on the ecological security and human health has attracted more and more concern. Glutathione S-transferases (GSTs) are a well-characterized superfamily of isoenzymes for cellular defense against exogenous toxic substances and therefore protect organisms from injury. In this study, the complete cDNA sequence of GST gene (named as Dja-GST) in freshwater planarian Dugesia japonica was firstly cloned by means of RACE method. The full-length Dja-GST comprises of 706 nucleotides which encodes a polypeptide of 200 amino acids. Dja-GST has two representative GST domains at the N- and C-termini. The conservative GST-N domain includes G-site Y8, F9, R14, W39, K43, P52 and S64, while the variable GST-C domain contains H-site K104, V156, D159 and L161. Sequence analysis, phylogenetic tree reconstruction and multiple alignment collectively indicate that Dja-GST belongs to the Sigma class of GST superfamily. Also, GST gene expression profile, GST enzymatic activity and MDA content in response to glyphosate exposure were systematically investigated and the correlations among them were analyzed. The results suggest that glyphosate exposure modified the mRNA transcription and enzymatic activity of GST, as well as the MDA content in planarians, indicating that Dja-GST might play an important part in organisms defending against oxidative stress induced by glyphosate. This work lays a molecular foundation for further exploring the exact functions of Dja-GST and gives an important implication for evaluating the ecological environment effects of herbicide glyphosate.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu-Juan Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ke-Xue Ma
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
50
|
Ma KX, Song GG, Wu M, Zhang HC, Chen GW, Liu DZ. Identification of a potential tissue-specific biomarker cathepsin L-like gene from the planarian Dugesia japonica: Molecular cloning, characterization, and expression in response to heavy metal exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:73-79. [PMID: 31075718 DOI: 10.1016/j.ecoenv.2019.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal pollution is a global health issue affecting people worldwide, and the exploration of sensitive biomarkers to assess the toxicity of heavy metals is an important work for researchers. Cathepsin L, role as a tissue-specific biomarker to assess the biological effects of environmental pollutants, has not received much attention. In this work, the full-length cDNA of cathepsin L gene from the planarian Dugesia japonica (designated DjCatL) was cloned by rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of DjCatL is 1161 bp, which encodes a protein of 346 amino acids with a molecular weight of 39.03 kDa. Sequence analysis revealed that DjCatL contains highly conserved ERF/WNIN, GNFD, and GCXGG motifs, which are the features of the cathepsin L protein family. Whole-mount in situ hybridization (WISH) results revealed that the transcripts of DjCatL are specifically distributed in the intestinal system, suggesting that this gene is related to food digestion in planarians. Both quantitative polymerase chain reaction (qPCR) and WISH results revealed that the transcriptional levels of DjCatL are inhibited significantly by heavy metal (Cd2+, Hg2+, and Cu2+) exposure in a dose-dependent manner. Therefore, we proposed that cathepsin L can be used as a tissue-specific biomarker to assess the heavy metal pollution in the aquatic environment.
Collapse
Affiliation(s)
- Ke-Xue Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ge-Ge Song
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Meng Wu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|