1
|
Tian F, Zhou Z, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Residual behaviors and health risk assessment of dinotefuran, flonicamid, and their metabolites during apple growth, storage, and processing. Food Res Int 2025; 205:115970. [PMID: 40032465 DOI: 10.1016/j.foodres.2025.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Understanding the fate of dinotefuran, flonicamid, and their metabolites is crucial for accurate dietary exposure assessment and human health. The dissipation and removal of dinotefuran, flonicamid, and their metabolites from apple cultivation to consumer's plate were studied. The results of field and storage experiments indicated significant differences in half-life at different doses. And the half-life was shorter in the field than that in storage. During washing, the residues of all target compounds were decreased. Among washing solutions, the PF values of each pesticide gradually decreased with the increasing washing time and washing solution concentration. 2 % NaHCO3 produced best removal effect after washing 15 min. Various food processing techniques, including peeling, fermentation, clarification, blanching, drying, enzymolysis, and simmering, were used to confirm the most effective way to remove these target compounds. For majority processes, the PF values were < 1, and the peeling and fermentation could obviously reduce pesticide residues. The risk quotients were < 100 %, implying that the risks were acceptable. This study provided a necessary information for the use of pesticides in apple cultivation and improvement of processing technology to ensure food safety.
Collapse
Affiliation(s)
- Fajun Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China.
| | - Zhenzhen Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Junfeng Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Chengkui Qiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Caixia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Tao Pang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Linlin Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Jun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Rongli Pang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Hanzhong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China.
| |
Collapse
|
2
|
Vajdle O, Mutić S, Lazić S, Kónya Z, Guzsvány V, Anojčić J. Rapid direct cathodic voltammetric determination of insecticide flonicamid by renewable silver-amalgam film electrode. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2024; 104:1943-1957. [DOI: 10.1080/03067319.2022.2054706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Olga Vajdle
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sanja Mutić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sanja Lazić
- Department of Phytomedicine and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| | - Valéria Guzsvány
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jasmina Anojčić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
3
|
Yu XX, Chen KX, Yuan PP, Wang YH, Li HX, Zhao YX, Dai YJ. Asp-tRNA Asn/Glu-tRNA Gln amidotransferase A subunit-like amidase mediates the degradation of insecticide flonicamid by Variovorax boronicumulans CGMCC 4969. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172479. [PMID: 38621543 DOI: 10.1016/j.scitotenv.2024.172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The main metabolic product of the pyridinecarboxamide insecticide flonicamid, N-(4-trifluoromethylnicotinyl)glycinamide (TFNG-AM), has been shown to have very high mobility in soil, leading to its accumulation in the environment. Catabolic pathways of flonicamid have been widely reported, but few studies have focused on the metabolism of TFNG-AM. Here, the rapid transformation of TFNG-AM and production of the corresponding acid product N-(4-trifluoromethylnicotinoyl) glycine (TFNG) by the plant growth-promoting bacterium Variovorax boronicumulans CGMCC 4969 were investigated. With TFNG-AM at an initial concentration of 0.86 mmol/L, 90.70 % was transformed by V. boronicumulans CGMCC 4969 resting cells within 20 d, with a degradation half-life of 4.82 d. A novel amidase that potentially mediated this transformation process, called AmiD, was identified by bioinformatic analyses. The gene encoding amiD was cloned and expressed recombinantly in Escherichia coli, and the enzyme AmiD was characterized. Key amino acid residue Val154, which is associated with the catalytic activity and substrate specificity of signature family amidases, was identified for the first time by homology modeling, structural alignment, and site-directed mutagenesis analyses. When compared to wild-type recombinant AmiD, the mutant AmiD V154G demonstrated a 3.08-fold increase in activity toward TFNG-AM. The activity of AmiD V154G was greatly increased toward aromatic L-phenylalanine amides, heterocyclic TFNG-AM and IAM, and aliphatic asparagine, whereas it was dramatically lowered toward benzamide, phenylacetamide, nicotinamide, acetamide, acrylamide, and hexanamid. Quantitative PCR analysis revealed that AmiD may be a substrate-inducible enzyme in V. boronicumulans CGMCC 4969. The mechanism of transcriptional regulation of AmiD by a member of the AraC family of regulators encoded upstream of the amiD gene was preliminarily investigated. This study deepens our understanding of the mechanisms of metabolism of toxic amides in the environment, providing new ideas for microbial bioremediation.
Collapse
Affiliation(s)
- Xue-Xiu Yu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Pan-Pan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yu-He Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Hua-Xiao Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
4
|
Zhao YX, Yuan J, Song KW, Yin CJ, Chen LW, Yang KY, Yang J, Dai YJ. Efficient Biodegradation of the Neonicotinoid Insecticide Flonicamid by Pseudaminobacter salicylatoxidans CGMCC 1.17248: Kinetics, Pathways, and Enzyme Properties. Microorganisms 2024; 12:1063. [PMID: 38930445 PMCID: PMC11205548 DOI: 10.3390/microorganisms12061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Nitrile-containing insecticides can be converted into their amide derivatives by Pseudaminobacter salicylatoxidans. N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) is converted to 4-(trifluoromethyl) nicotinoyl glycine (TFNG) using nitrile hydratase/amidase. However, the amidase that catalyzes this bioconversion has not yet been fully elucidated. In this study, it was discovered that flonicamid (FLO) is degraded by P. salicylatoxidans into the acid metabolite TFNG via the intermediate TFNG-AM. A half-life of 18.7 h was observed for P. salicylatoxidans resting cells, which transformed 82.8% of the available FLO in 48 h. The resulting amide metabolite, TFNG-AM, was almost all converted to TFNG within 19 d. A novel amidase-encoding gene was cloned and overexpressed in Escherichia coli. The enzyme, PmsiA, hydrolyzed TFNG-AM to TFNG. Despite being categorized as a member of the amidase signature enzyme superfamily, PsmiA only shares 20-30% identity with the 14 previously identified members of this family, indicating that PsmiA represents a novel class of enzyme. Homology structural modeling and molecular docking analyses suggested that key residues Glu247 and Met242 may significantly impact the catalytic activity of PsmiA. This study contributes to our understanding of the biodegradation process of nitrile-containing insecticides and the relationship between the structure and function of metabolic enzymes.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Jing Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Ke-Wei Song
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Chi-Jie Yin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Li-Wen Chen
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Kun-Yan Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Ju Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
5
|
Kumar Karedla A, Surya Raj R, Krishnamoorthy SV, Suganthi A, Bhuvaneswari K, Karthikeyan S, Geetha P, Senthilkumar M, Jeyarajan Nelson S. Validation, dissipation kinetics and monitoring of flonicamid and dinotefuran residues in paddy grain, straw, its processed produces and bran oil using LC-MS/MS. Food Chem 2024; 435:137589. [PMID: 37804733 DOI: 10.1016/j.foodchem.2023.137589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/17/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
Flonicamid and dinotefuran are highly effective insecticides in paddy but residue persistence in crop and transmission into food and feed is unknown. This study aimed to examine initial deposits and dissipation kinetics of flonicamid and dinotefuran in paddy matrices and processed products including bran oil. The method was validated following acetonitrile extraction, dispersive solid phase clean-up and finally determination using liquid chromatography-mass spectrometry/mass spectrometry. Recoveries ranged from 76.6 to 109.7 percent for the paddy matrices tested. In a field experiment, flonicamid and dinotefuran were applied to paddy crops to study dissipation patterns. The half-lives of flonicamid and dinotefuran residues in paddy ranged from 2.0 to 3.0 days. However, at harvest time paddy grain and straw samples were found free from residues. Monitoring of residues in farm gate and market samples revealed that paddy products were not contaminated with flonicamid or dinotefuran residues.
Collapse
Affiliation(s)
- Ashok Kumar Karedla
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - R Surya Raj
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - S V Krishnamoorthy
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - A Suganthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - K Bhuvaneswari
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - S Karthikeyan
- Centre for Post Harvest Technology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - P Geetha
- Centre for Post Harvest Technology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - M Senthilkumar
- Directorate of Extension Education, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - S Jeyarajan Nelson
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
6
|
Yu J, Hou J, Xu Z, Yu R, Zhang C, Chen L, Zhao X. Dissipation behavior and dietary risk assessment of cyclaniliprole and its metabolite in cabbage under field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125907-125914. [PMID: 38008836 DOI: 10.1007/s11356-023-31146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Cyclaniliprole, a novel diamide insecticide, can successfully control Spodoptera litura (Fabricius, 1775) in cabbage. Understanding the residual level of cyclaniliprole in crops and the risk related to its dietary intake is imperative for safe application. Here, we established a simplified, sensitive method for simultaneous analysis of cyclaniliprole and its metabolite NK-1375 (3-bromo-2-((2-bromo-4H-pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N-(1-cyclopropylethyl)benzamide) in cabbage by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate their dissipation behavior and residual characteristics. Cyclaniliprole showed rapid dissipation in cabbage and had a half-life of 1.8-2.7 days. The highest residue of total cyclaniliprole (sum of cyclaniliprole and NK-1375) in cabbage from different pre-harvest intervals (3 and 5 days) was 0.25 mg/kg. Our results confirmed the generally low dietary risk quotient of cyclaniliprole (0.243-1.036%) among different age and gender groups in China. Therefore, cyclaniliprole did not pose an unacceptable risk to consumers. This study contributes to setting cyclaniliprole maximum residue limit in cabbage by assessing its dissipation fate and food safety risks.
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jiayin Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
7
|
Zhang TY, Gong CW, Pu J, Peng AC, Li XY, Wang YM, Wang XG. Enhancement of tolerance against flonicamid in Solenopsis invicta (Hymenoptera: Formicidae) through overexpression of CYP6A14. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105651. [PMID: 38072526 DOI: 10.1016/j.pestbp.2023.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
Solenopsis invicta is a main issue in southern China and is causing significant damage to the local ecological environment. The extensive use of insecticides has resulted in the development of tolerance in S. invicta. In our study, ten S. invicta colonies from Sichuan Province exhibited varying degrees of tolerance against flonicamid, with LC50 values from 0.49 mg/L to 8.54 mg/L. The sensitivity of S. invicta to flonicamid significantly increased after treatment with the P450 enzyme inhibitor piperonyl butoxide (PBO). Additionally, the activity of P450 in S. invicta was significantly enhanced after being treated with flonicamid. Flonicamid induced the expression levels of CYP4aa1, CYP9e2, CYP4C1, and CYP6A14. The expression levels of these P450 genes were significantly higher in the tolerant colonies compared to the sensitive colonies, and the relative copy numbers of CYP6A14 in the tolerant colonies were 2.01-2.15 fold. RNAi feeding treatment effectively inhibited the expression of P450 genes, thereby reducing the tolerance of S. invicta against flonicamid. In addition, the overexpression of CYP6A14 in D. melanogaster resulted in reduced sensitivity to flonicamid. Our investigations revealed hydrophobic interactions between flonicamid and seven amino acid residues of CYP6A14, along with the formation of a hydrogen bond between Glu306 and flonicamid. Our findings suggest that flonicamid can effectively control S. invicta and P450 plays a pivotal role in the tolerance of S. invicta against flonicamid. The overexpression of CYP6A14 also increased tolerance to flonicamid.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chang-Wei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - An-Chun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu-Yang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Meng Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Gui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Tan H, Wang L, Mo L, Wu C, Xing Q, Zhang X, Deng X, Li Y, Li Q. Occurrence and ecological risks of flonicamid and its metabolites in multiple substrates from intensive rice-vegetable rotations in tropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165571. [PMID: 37459992 DOI: 10.1016/j.scitotenv.2023.165571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/29/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Rice-vegetable rotations are dominant in (sub)-tropical agriculture worldwide. However, fate and risks of the insecticide flonicamid (FLO) and its main degradates (collectively called FLOMs) in multiple substrates from those cropping systems remain largely unknown. In this study, we characterized residual concentrations, driving factors, transport, and potential ecological risks of FLOMs in different substrates in 28 tropical rice-vegetable rotations. Concentrations (median) of FLOMs were 0.013-3.03 (0.42) ng g-1 in plants, 0.012-1.92 (0.23) ng g-1 in soil, 0.029-0.63 (0.126) μg L-1 in water, and 0.002-0.398 (0.055) ng g-1 in sediments. Flonicamid and its metabolite N-(4-trifluoromethylnicotinoyl) glycine were the dominant species in the four substrates (84.1 % to 88.5 %). Plants had the highest levels of FLOMs, with the highest bioconcentration factor in peppers. According to boosted regression trees coupled with a partial least squares structural equation model, levels and composition of FLOMs showed high spatiotemporal and crop-related patterns in different substrates, with patterns highly codetermined by agricultural practices (e.g., crop type and FLO/neonicotinoid/pyrethroid applications), substrate parameters (e.g., pH, organic matter or total organic carbon), and climate features (e.g., wet/dry seasons). Moreover, a fugacity method indicated differences in transport and partitioning patterns in different substrates during rice and vegetable planting periods. Integrated substrate risk assessment of FLOMs contamination was conducted based on species-sensitive distributions and substrate weight index. Although overall risks of FLOM contamination in tropical rice-vegetable rotations were negligible to low, the highest risks were in soils, vegetable planting periods, and a central intensively planted area.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Licheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China.
| | - Qiao Xing
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China.
| | - Xiaoying Zhang
- Chinese Academy of Tropical Agricultural Sciences Proving Ground, Danzhou 571737, PR China
| | - Xiao Deng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Yi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| |
Collapse
|
9
|
Dong B, Hu J. Residue levels and risk assessment of acetamiprid-pyridaben mixtures in cabbage under various open field conditions. Biomed Chromatogr 2023; 37:e5728. [PMID: 37700621 DOI: 10.1002/bmc.5728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Acetamiprid and pyridaben are highly efficient insecticides widely used to protect leafy vegetables against various pests, such as Phyllotreta striolata, but analyses of their residual behaviors applied in mixtures in cabbage fields are primarily lacking. Herein, field trials were performed by spraying 50% acetamiprid-pyridaben wettable powder (50% WP) once at a dose of 150 g of active ingredient per hectare in 12 representative provinces of China under Good Agricultural Practices. The residues of acetamiprid and pyridaben were detected using modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) and liquid chromatography-tandem mass spectrometry, together with an assessment of their dietary risks. The average recoveries of the two insecticides were 84.6-104%, and the relative standard deviations were 0.898-10.1%. The residual concentrations of acetamiprid and pyridaben at the preharvest interval of 7 days were <0.364 and 0.972 mg/kg, respectively, and less than their maximum residue limits in cabbage (0.5 mg/kg for acetamiprid and 2 mg/kg for pyridaben) in China. The chronic and acute risk values of acetamiprid and pyridaben were 0.0787-33.3%, implying acceptable health hazards to Chinese consumers. In conclusion, applying 50% WP in cabbage fields under Good Agricultural Practices is acceptable. These results provide essential data for using mixtures of acetamiprid and pyridaben in cabbage fields.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
10
|
Tang H, Sun Q, Huang J, Wen G, Han L, Wang L, Zhang Y, Dong M, Wang W. Residue behaviors, degradation, processing factors, and risk assessment of pesticides in citrus from field to product processing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165321. [PMID: 37419352 DOI: 10.1016/j.scitotenv.2023.165321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Pesticide residues in citrus may cause health risks in related juice products, and bring much uncertainty during the processing procedures. In this study, based on the dispersive solid-phase extraction (d-SPE) and UPLC-MS/MS, the residual levels of ten analytes in citrus and its processed products were monitored. The results showed that dissipation of the pesticides followed the first-order kinetics and the half-lives in citrus varied greatly, ranging from 6.36 to 63.0 days. The terminal residues of the five pesticides at harvest time were <0.01-0.302 and <0.01-0.124 mg/kg in raw citrus and citrus flesh, respectively, all of which were lower than the corresponding maximum residue limits (MRLs) of 0.5-1 mg/kg. In the processing experiments, the residues of ten analytes in sterilized juice, concentrated juice, and citrus essential oil were in the range of <0.01 to 0.442 mg/kg, <0.01 to 1.16 mg/kg, and <0.01 to 44.0 mg/kg, respectively, and the corresponding processing factors (PFs) were 0.127-1.00, 0.023-3.06, and 0.006-39.2. Particularly, in citrus essential oil, the PFs of etoxazole, fluazinam, lufenuron and spirotetramat-keto-hydroxy were 1.68-39.2, exhibiting obvious enrichment effects. By integrating the residue data of the field trials and the PFs, the acute and chronic dietary risks of the target pesticides in citrus juice were 0.031-1.83 % and 0.002-2.51 %, respectively, which were far lower than 100 %, demonstrating no unacceptable risk to human health. This work provides basic data for the establishment of the MRLs and dietary exposure risk assessment for processed citrus products.
Collapse
Affiliation(s)
- Hongxia Tang
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Qiang Sun
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Jiaqing Huang
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Guangyue Wen
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Haerbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Haerbin 150030, PR China
| | - Maofeng Dong
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.
| | - Weimin Wang
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| |
Collapse
|
11
|
Zheng H, Wu Q, Wu X. The Dissipation Kinetics, Residue Level and Dietary Risk of Kresoxim-Methyl in Rosa roxburghii and Soil Based on the QuEChERS Method Coupled with LC-MS/MS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:49. [PMID: 37752322 DOI: 10.1007/s00128-023-03771-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/01/2023] [Indexed: 09/28/2023]
Abstract
This study aimed to investigate the dissipation, residues and dietary assessment of kresoxim-methyl in the application of Rosa Roxburghii and soil field using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that kresoxim-methyl in R. roxburghii samples was extracted by acetonitrile and purified by ethyl enediamine-N-propylsilane (PSA), while kresoxim-methyl in soil samples was extracted by acetonitrile and purified by octadecylsilyl solid phase dispersant (C18). 0.1% formic acid (v/v)-water-methanol solution was used as the mobile phase, LC-MS/MS exhibited a good linearity in the range of 0.001-10 mg L-1. The recoveries of R. roxburghii and soil matrix were 82.48%-102.55%, and the relative standard deviation (RSD) were 1.13%-4.21%. The limit of detection (LOD) and quantification (LOQ) of kresoxim-methyl in R. roxburghii and soil samples was 0.50 and 0.60 µg kg-1, respectively. The dissipation dynamics of kresoxim-methyl in R. roxburghii and soil followed the first-order kinetics, with the half-life of 4.28 and 4.41 days, respectively. The terminal residual amount of kresoxim-methyl in R. roxburghii and soil samples was 0.003-1.764 and 0.007-2.091 mg kg-1, respectively. The dietary intake risk assessment indicates that a risk quotient (RQ) for kresoxim-methyl based on the national estimated daily intake (NEDI) of 0.1995 mg was 0.79%, suggesting that the use of kresoxim-methyl on R. roxburghii at recommended dosage was safe to consumers. This study provides the theoretical basis for guiding the rational use of kresoxim-methyl in the production of R. roxburghii.
Collapse
Affiliation(s)
- Handinghong Zheng
- Institute of Crop Protection, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qiong Wu
- Plant Protection and Plant Inspection Station of Guizhou Province, Guiyang, 550001, Guizhou, People's Republic of China
| | - Xiaomao Wu
- Institute of Crop Protection, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China.
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Yang C, Zhang F, Duan Y, Lu X, Peng X, Wang J, Pan L, Liu W, Wang H. Method validation and dissipation kinetics of the novel HPPD-inhibiting herbicide cypyrafluone in winter wheat using QuEChERS method coupled with UPLC-MS/MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115090. [PMID: 37267777 DOI: 10.1016/j.ecoenv.2023.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Cypyrafluone, a novel hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide, can successfully control a wide species of grass and broadleaf weed in wheat fields. However, the dissipation behaviors and terminal residues of cypyrafluone in wheat fields remain unclear. Here, a simple, accurate, and dependable approach for the analysis of cypyrafluone in soil, wheat plant, and grain was constructed utilizing an adapted QuEChERS extraction combined with UPLC-MS/MS. For accurate quantification, matrix-matched calibrations with high linearity (R2 >0.99) were employed to eliminate matrix interference. The method possessed high accuracy with recoveries in the range of 85.5%- 100.6% and precision with relative standard deviations < 14.3%, as well as high sensitivity with limits of quantifications of 0.001 mg kg-1 in the three matrixes. The dissipation kinetics and terminal residues of cypyrafluone were determined at two separate locations with different climates, soil types and cropping systems in 2018. The half-lives of cypyrafluone in soil and wheat plant were 1.47-1.55 d and 1.00-1.03 d, respectively. At harvest, the terminal residue values of cypyrafluone detected in wheat plants were 0-0.0025 mg kg-1 and 0.0044-0.0057 mg kg-1 at the recommended dose and 1.5 times of the recommended dose, respectively, and 0.0049 mg kg-1 of this herbicide was detected in grain at 1.5 times of the recommended dose, which was below the maximum residue limit (MRL). Finally, the risk quotient for cypyrafluone ranged from 0.33% to 0.81% (<1) for different age groups in China, indicating that the impact of residues from the cypyrafluone application on wheat was acceptable. These findings above will offer scientific guidelines for cypyrafluone application in the wheat field ecosystem.
Collapse
Affiliation(s)
- Cheng Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yunxia Duan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xingtao Lu
- Qingdao Kingagroot Chemical Compound Co., Ltd., Qingdao 266000, PR China
| | - Xuegang Peng
- Qingdao Kingagroot Chemical Compound Co., Ltd., Qingdao 266000, PR China
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, PR China
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, 410128 Changsha, PR China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Hengzhi Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
13
|
Xu M, Hu J. Residue analysis and dietary risk assessment of thiamethoxam, flonicamid and their metabolites in cucumber under field conditions in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55471-55484. [PMID: 36892702 DOI: 10.1007/s11356-023-26227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Thiamethoxam and flonicamid are two representative insecticides of neonicotinoids which are used to treat cucumber aphids, causing food safety and human health problems. A 60% thiamethoxam-flonicamid commercial mixture water dispersible granule (WDG) is being prepared for registering in China, so it is essential to investigate the residue levels of these neonicotinoids and their metabolites in cucumber and evaluate the dietary risks of these insecticides. We developed a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method combined with high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of thiamethoxam and its metabolite clothianidin, flonicamid and its metabolites 4-trifluoromethylnicotinic acid (TFNA), 4-trifluoromethilnicotinamide (TFNA-AM), 4-(trifluoromethyl) nicotinol glycine (TFNG) in cucumber. Method validation indicated good selectivity, linearity (r ≥ 0.9996), accuracy (recoveries of 80-101%), precision (relative standard deviations (RSD) ≤ 9.1%), sensitivity (limits of detection (LOD), 0.28-1.44 × 10-3 mg/L; limits of quantification (LOQ), 0.01 mg/kg) and minor matrix effect (ME) ( ≤|± 5%|). In the terminal residue trials under good agricultural practice (GAP) conditions, the residue levels of six analytes in cucumber samples were ˂0.01-0.215 mg/kg after application trice with an interval of 7 days based on pre-harvest interval (PHI) of 3 days under the high recommended dosage of 54 g active ingredient/ha (g a.i./ha). Relevant toxicological, residual chemistry parameters and dietary consumption of the residents were applied to assess the potential risk of dietary exposure. The chronic and acute dietary exposure assessment risk quotient (RQ) values were less than 1. The above results indicated that the potential dietary intake risk of this formulation was negligible to consumers.
Collapse
Affiliation(s)
- Mengyue Xu
- Laboratory of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiye Hu
- Laboratory of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
14
|
Zhang T, Xu Y, Zhou X, Liang X, Bai Y, Sun F, Zhang W, Wang N, Pang X, Li Y. Dissipation Kinetics and Safety Evaluation of Flonicamid in Four Various Types of Crops. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238615. [PMID: 36500708 PMCID: PMC9738400 DOI: 10.3390/molecules27238615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The chemical insecticide flonicamid is widely used to control aphids on crops. Differences among crops make the universality of detection methods a particularly important consideration. The aim of this study was to establish a universal, sensitive, accurate and efficient method for the determination of flonicamid residues in peach, cucumber, cabbage and cotton. QuEChERS pretreatment was combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A satisfactory recovery rate of 84.3-99.3% was achieved at three spiking levels, and the relative standard deviation (RSD) was 0.41-5.95%. The limit of quantification (LOQ) of flonicamid in the four matrices was 0.01 mg/kg. The residue and dissipation kinetics of flonicamid in four types of crops in various locations were determined by using the optimized method. The results showed that flonicamid had a high dissipation rate in the four different types of crops and a half-life in the different matrices and locations of 2.28-9.74 days. The terminal residue of flonicamid was lower than the maximum residue limit (MRL). The risk quotient (RQ) of flonicamid was 4.4%, which is significantly lower than 100%. This result shows that the dietary risk presented by using flonicamid at the maximum recommended dose is low and acceptable. The comprehensive long-term dietary risk assessment of flonicamid performed in this study provides a reference for the protection of consumer health and safe insecticide use.
Collapse
Affiliation(s)
- Tao Zhang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Yue Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Xuan Zhou
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Yang Bai
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, China
| | - Fengshou Sun
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, China
| | - Wenwen Zhang
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
| | - Yuekun Li
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
- Correspondence:
| |
Collapse
|
15
|
Li X, Zhao Q, Li A, Jia S, Wang Z, Zhang Y, Wang W, Zhou Q, Pan Y, Shi P. Spatiotemporal distribution and fates of neonicotinoid insecticides during the urban water cycle in the lower reaches of the Yangtze River, China. WATER RESEARCH 2022; 226:119232. [PMID: 36270144 DOI: 10.1016/j.watres.2022.119232] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoid insecticides (NNIs) are the most popular insecticides worldwide, yet their spatiotemporal distribution and fates during the urban water cycle remain limited on a large watershed scale. Thus, we investigated ten kinds of NNIs in surface water from the lower reaches of the Yangtze River and hubs of the urban water cycle in all seasons. In brief, eight out of ten NNIs were detected, and thiamethoxam (THM), imidacloprid (IMI), and dinotefuran (DNT) were the most abundant NNIs in surface water, with concentrations of 0.29-48.15 ng/L, 1.69-20.57 ng/L, and 0.98-25.32 ng/L, respectively. The average concentrations of total NNIs in summer were 1.96-4.41 folds higher than those in other seasons. NNIs in the effluents of municipal wastewater treatment plants (WWTPs) were lower than those in surface water, while the average concentrations of total NNIs in the effluents of industrial WWTPs were 1.56-6.86 folds higher than those in surface water, indicating that insecticide production is an important source for NNIs in surface water. DNT was the most recalcitrant NNI in WWTPs, with an average removal efficiency of 49.89%, while in drinking water treatment plants (DWTPs), the removal efficiencies of most NNIs were limited, except for clothianidin (CLO) (90%). Risk assessment showed that NNIs posed medium or high risks to aquatic life, and DNT contributed 26.86-51.48% to the cumulative risks of detected NNIs. This study investigates the spatiotemporal distribution and risks of NNIs and provides information for the supervision of NNIs in the Yangtze River basin, China.
Collapse
Affiliation(s)
- Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qiuyun Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Dissipation, Processing Factors and Dietary Risk Assessment for Flupyradifurone Residues in Ginseng. Molecules 2022; 27:molecules27175473. [PMID: 36080241 PMCID: PMC9457792 DOI: 10.3390/molecules27175473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The massive use of pesticides has brought great risks to food and environmental safety. It is necessary to develop reliable analytical methods and evaluate risks through monitoring studies. Here, a method was used for the simultaneous determination of flupyradifurone (FPF) and its two metabolites in fresh ginseng, dried ginseng, ginseng plants, and soil. The method exhibited good accuracy (recoveries of 72.8–97.5%) and precision (relative standard deviations of 1.1–8.5%). The field experiments demonstrated that FPF had half-lives of 4.5–7.9 d and 10.0–16.9 d in ginseng plants and soil, respectively. The concentrations of total terminal residues in soil, ginseng plants, dried ginseng, and ginseng were less than 0.516, 2.623, 2.363, and 0.641 mg/kg, respectively. Based on these results, the soil environmental risk assessment shows that the environmental risk of FPF to soil organisms is acceptable. The processing factors for FPF residues in ginseng were 3.82–4.59, indicating that the concentration of residues increased in ginseng after drying. A dietary risk assessment showed that the risk of FPF residues from long-term and short-term dietary exposures to global consumers were 0.1–0.4% and 12.07–13.16%, respectively, indicating that the application of FPF to ginseng at the recommended dose does not pose a significant risk to consumers.
Collapse
|
17
|
Liu Y, Zhao Y, Li S, Liu D. Multi-residue analysis, dissipation behavior, and final residues of four insecticides in supervised eggplant field. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1086-1099. [PMID: 35537031 DOI: 10.1080/19440049.2022.2040746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, the residues of four insecticides, spirotetramat, flonicamid, thiamethoxam, and tolfenpyrad, and their metabolites, including spirotetramat-enol, spirotetramat-mono-hydroxy, spirotetramat-keto-hydroxy, spirotetramat-enol-glucoside, 4-trifluoromethylnicotinamide, 4-trifluoromethylnicotinic acid, N-(4-trifluoromethylnicotinoyl) glycine, and clothianidin, were assessed using a single analysis method. The samples were extracted by acetonitrile, then purified by dispersive solid phase extraction and quantified using high performance liquid chromatography tandem mass spectrometry. The average recovery rate of 12 target compounds was 73.5-103.7%, the relative standard deviation was 1.1-18.3%, and the limit of quantification was 0.01-0.05 mg/kg. The results showed good linearity (R2 >0.99), meeting the requirements of the pesticide residue analysis. The dissipation half-lives of the four insecticides in eggplant were 3.4-14.5 days. After the last applications at 7 and 10 days, the final residues of the four insecticides in eggplant were <0.01-0.21, 0.085-0.26, <0.05-0.078, and <0.01-0.21 mg/kg, respectively. The dissipation and final residue results could provide a theoretical basis for the rational application of four insecticides in eggplant fields.HighlightsHPLC-MS/MS for simultaneous determination of four insecticides and their metabolites in eggplant fields.The dissipation dynamics and final residue of the target compounds in field eggplant were studied.Guidance for the safe use of four insecticides on eggplant.
Collapse
Affiliation(s)
- Yang Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuanling Zhao
- Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Jiang HY, Jiang ND, Wang L, Guo JJ, Chen KX, Dai YJ. Characterization of nitrilases from Variovorax boronicumulans that functions in insecticide flonicamid degradation and β-cyano-L-alanine detoxification. J Appl Microbiol 2022; 133:311-322. [PMID: 35365856 DOI: 10.1111/jam.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS To characterize the functions of nitrilases of Variovorax boronicumulans CGMCC 4969 and evaluate flonicamid (FLO) degradation and β-cyano-L-alanine (Ala(CN)) detoxification by this bacterium. METHODS AND RESULTS V. boronicumulans CGMCC 4969 nitrilases (NitA and NitB) were purified and substrate specificity assay indicated that both of them degraded insecticide FLO to N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM) and 4-(trifluoromethyl)nicotinol glycine (TFNG). Ala(CN), a plant detoxification intermediate, was hydrolyzed by NitB. Escherichia coli overexpressing NitA and NitB degraded 41.2 and 93.8% of FLO (0.87 mmol·L-1 ) within 1 h, with half-lives of 1.30 and 0.25 h, respectively. NitB exhibited the highest nitrilase activity toward FLO. FLO was used as a substrate to compare their enzymatic properties. NitB was more tolerant to acidic conditions and organic solvents than NitA. Conversely, NitA was more tolerant to metal ions than NitB. CGMCC 4969 facilitated FLO degradation in soil and surface water and utilized Ala(CN) as a sole nitrogen source for growth. CONCLUSIONS CGMCC 4969 efficiently degraded FLO mediated by NitA and NitB; NitB was involved in Ala(CN) detoxification. SIGNIFICANCE AND IMPACT OF THE STUDY This study promotes our understanding of versatile functions of nitrilases from CGMCC 4969 that is promising for environmental remediation.
Collapse
Affiliation(s)
- H Y Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - N D Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - L Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - J J Guo
- Nanjing Normal University Zhongbei College, Zhenjiang, People's Republic of China
| | - K X Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y J Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Calvo‐Agudo M, Tooker JF, Dicke M, Tena A. Insecticide-contaminated honeydew: risks for beneficial insects. Biol Rev Camb Philos Soc 2022; 97:664-678. [PMID: 34802185 PMCID: PMC9299500 DOI: 10.1111/brv.12817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
Honeydew is the sugar-rich excretion of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, and psyllids, and can be a main carbohydrate source for beneficial insects in some ecosystems. Recent research has revealed that water-soluble, systemic insecticides contaminate honeydew excreted by hemipterans that feed on plants treated with these insecticides. This contaminated honeydew can be toxic to beneficial insects, such as pollinators, parasitic wasps and generalist predators that feed on it. This route of exposure has now been demonstrated in three plant species, for five systemic insecticides and four hemipteran species; therefore, we expect this route to be widely available in some ecosystems. In this perspective paper, we highlight the importance of this route of exposure by exploring: (i) potential pathways through which honeydew might be contaminated with insecticides; (ii) hemipteran families that are more likely to excrete contaminated honeydew; and (iii) systemic insecticides with different modes of action that might contaminate honeydew through the plant. Furthermore, we analyse several model scenarios in Europe and/or the USA where contaminated honeydew could be problematic for beneficial organisms that feed on this ubiquitous carbohydrate source. Finally, we explain why this route of exposure might be important when exotic, invasive, honeydew-producing species are treated with systemic insecticides. Overall, this review opens a new area of research in the field of ecotoxicology to understand how insecticides can reach non-target beneficial insects. In addition, we aim to shed light on potential undescribed causes of insect declines in ecosystems where honeydew is an important carbohydrate source for insects, and advocate for this route of exposure to be included in future environmental risk assessments.
Collapse
Affiliation(s)
- Miguel Calvo‐Agudo
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Carretera de Moncada‐Náquera Km. 4,546113MoncadaValenciaSpain
- Laboratory of EntomologyWageningen UniversityPO Box 166700AAWageningenThe Netherlands
| | - John F. Tooker
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPA16802U.S.A.
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityPO Box 166700AAWageningenThe Netherlands
| | - Alejandro Tena
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Carretera de Moncada‐Náquera Km. 4,546113MoncadaValenciaSpain
| |
Collapse
|
20
|
Zhang Z, Ding K, Lu Z, Fang N, Wang B, Hou Z, Lu Z. Dissipation and residue analysis of novel nematicide trifluorocide in ginseng and soil using modified QuEChERS method coupled with HPLC-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:1042-1050. [PMID: 34846269 DOI: 10.1080/03601234.2021.2007016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, an analytical method that combined a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method and high-performance liquid chromatography coupled with tandem mass spectrometry was developed to determine trifluorocide in fresh and dried ginseng roots, plants (stems and leaves), and soil. At three spiked levels (0.01, 0.1, and 1.0 mg kg-1), the mean recoveries (n = 15) of trifluorocide from fresh and dried ginseng roots, plants, and soil were in the range of 95.6 - 109.7%, with relative standard deviations less than 10.0%. The limits of quantitation of different matrices were determined to be 0.01 mg kg-1. Dissipation and residue study of trifluorocide was conducted in ginseng cultivation ecosystems in Northeast China. The t1/2 (half-life) of trifluorocide in ginseng fresh roots, plants, and soil were 8.3-13.1 days, 7.4-10.9 days, and 8.8-10.6 days, respectively. The terminal residues of trifluorocide in ginseng fresh roots were less than 0.01 mg kg-1 after 35 days of trifluorocide application. This study could be beneficial in residue analysis and assist in the scientific application of trifluorocide during ginseng cultivation.
Collapse
Affiliation(s)
- Zhongbei Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
- Agricultural Product Quality Inspection and Monitoring Center, Baishan Municipal Bureau of Agriculture and Rural Affairs, Baishan, Jilin, China
| | - Kai Ding
- Agricultural Product Quality Inspection and Monitoring Center, Baishan Municipal Bureau of Agriculture and Rural Affairs, Baishan, Jilin, China
| | - Zhou Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Nan Fang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Bo Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
21
|
Xu F, Du G, Xu D, Chen L, Zha X, Guo Z. Residual behavior and dietary intake risk assessment of flonicamid, dinotefuran and its metabolites on peach trees. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5842-5850. [PMID: 33788960 DOI: 10.1002/jsfa.11236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Flonicamid and dinotefuran are widely applied to control pests and diseases in various economic crops arousing much public concerns about the potential risk to human health. In this study, the multi-determination and residual behavior of flonicamid-dinotefuran mixture on peach trees were investigated. The chronic risk of long-term dietary intake for Chinese consumers was evaluated. RESULTS An optimized QuEChERS method combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis for simultaneous determination of flonicamid, dinotefuran and its metabolites was established to analyze the residual dissipation and terminal residues in peach matrices. The results demonstrated that (i) a satisfactory linearity relationship with the detector response and the correlation coefficient R2 > 0.999, the average recoveries of these four analytes ranged from 94 to 108%, the relative standard deviation was between 1.0% and 8.8%, and the limit of the quantitation was 0.02 mg kg-1 ; (ii) the dissipation behaviors of flonicamid and dinotefuran followed with the first-order dynamic kinetics model, and the half-lives were 6.9-12.4 days and 8.1-15.1 days, respectively; (iii) the recommended preharvest interval (PHI) was 21 days, the risk quotient (RQ) values of flonicamid and dinotefuran were 16.6 and 20.7%, respectively, which were significantly less than 100%. CONCLUSION The established analytical method met the detection requirement in terms of sensitivity, accuracy, and precision. Additionally, the results indicated that the potential dietary intake risk of the flonicamid-dinotefuran mixture on peach trees was negligible. This work can be utilized in the safe and responsible use of flonicamid-dinotefuran mixture and provide guidance for establishing its maximum residue limit (MRL) in China. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Xu
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd, Nanjing, China
| | - Gongming Du
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd, Nanjing, China
| | - Duo Xu
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd, Nanjing, China
| | - Liuyang Chen
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd, Nanjing, China
| | - Xinxin Zha
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd, Nanjing, China
| | - Zhenyu Guo
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd, Nanjing, China
| |
Collapse
|
22
|
Li P, Hu J. Residual levels and dietary risk assessment of bifenthrin and dinotefuran and its major metabolites in open wheat field conditions. Biomed Chromatogr 2021; 36:e5267. [PMID: 34654060 DOI: 10.1002/bmc.5267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 11/11/2022]
Abstract
To evaluate the residual levels of bifenthrin and dinotefuran, a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) and high-performance liquid chromatography-tandem mass spectrometry method for simultaneous detection of bifenthrin and dinotefuran and its major metabolites in wheat was developed and validated. Dietary risk assessments were further performed based on the relevant residual data from 12 wheat fields, toxicology data and dietary patterns. In wheat grain and straw, the recoveries of all analytes ranged from 77 to 102% with the relative standard deviation <9.7% and the limit of quantitation 0.05 mg kg-1 . The highest terminal residue of bifenthrin in wheat grain was 0.069 mg kg-1 and dinotefuran was 0.34 mg kg-1 . Residual concentrations of bifenthrin and dinotefuran decreased to <0.05 and 0.15 mg kg-1 at 21 days (pre-harvest interval), respectively. The chronic risk quotient ranged from 6.4 to 62.7% and the acute risk quotient varied from 0.38 to 17.73%. The chronic and acute dietary risks caused by the terminal residues of the two insecticides were negligible for Chinese populations. The recommended pre-harvest interval was proposed to ensure safe wheat consumption. These data could provide a scientific reference to establish the Chinese maximum residue limit of dinotefuran in wheat.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
23
|
Fu Y, Wang Q, Zhang L, Ling S, Jia H, Wu Y. Dissipation, occurrence, and risk assessment of 12 pesticides in Dendrobium officinale Kimura et Migo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112487. [PMID: 34252681 DOI: 10.1016/j.ecoenv.2021.112487] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The residual behaviors and dietary risk probability of 12 pesticides in Dendrobium officinale Kimura et Migo cultivated at two representative locations under green house conditions were investigated using liquid chromatography-tandem mass spectrometry. Field trials showed that the half-lives of 12 pesticides ranged from 0.9 to 14.4 days in fresh D. officinale stems. Based on maximum residue levels (MRLs), the ultimate residues of imidacloprid, dimethomorph, metalaxyl, tebuconazole, and cyazofamid at a pre-harvest interval (PHI) of 28 days were within acceptable limits. For abamectin, indoxacarb, and difenoconazole, 35-day PHIs were needed. The PHIs of trifloxystrobin and fluopyram were 42 days, the time required for their residues to be reduced to an MRL of 4 mg/kg. The chronic and acute risk quotients of target pesticides at PHIs of 28-42 days were below 5.929% and 0.532%, respectively, showing that the evaluated D. officinale exhibited an acceptably low dietary risk to the general population.
Collapse
Affiliation(s)
- Yan Fu
- The Ningbo Academy of Agricultural Sciences, Ningbo 315040, PR China
| | - Quansheng Wang
- The Ningbo Academy of Agricultural Sciences, Ningbo 315040, PR China
| | - Liang Zhang
- The Ningbo Academy of Agricultural Sciences, Ningbo 315040, PR China
| | - Shuping Ling
- The Ningbo Academy of Agricultural Sciences, Ningbo 315040, PR China
| | - Huiyan Jia
- The Ningbo Academy of Agricultural Sciences, Ningbo 315040, PR China
| | - Yinliang Wu
- The Ningbo Academy of Agricultural Sciences, Ningbo 315040, PR China.
| |
Collapse
|
24
|
Corregidor PF, Zígolo MA, Ottavianelli EE. Conformational search, structural analysis, vibrational properties, reactivity study and affinity towards DNA of the novel insecticide flonicamid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Malhat F, Bakery M, Anagnostopoulos C, Youssef M, Abd El-Ghany W, Abdallah A, Abd El-Salam S. Investigation of the dissipation behaviour and exposure of spitotetramat, flonicamid, imidacloprid and pymetrozine in open field strawberries in Egypt. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:2128-2136. [PMID: 34525319 DOI: 10.1080/19440049.2021.1973113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The dissipation behaviour and the consumer risk assessment of spitotetramat, flonicamid, imidacloprid and pymetrozine in open field strawberries were studied. Insecticides were applied at the authorised levels and the more critical good agricultural practice regimes (GAP). The initial concentrations varied from 0.069 to 1.75 mg kg-1 depending on the compound, while the dissipation half-lives and terminal residues, 14 days from the last applications, were similar. After application according to the authorised pattern the half-lives were 2.8 days for flonicamid and 3.2 days for spitotetramat, imidacloprid and pymetrozine. The dietary risk assessment, performed using the hazard quotient and the EFSA PRIMo model showed no concern to consumer health with exposure values <2% of the acceptable daily intake (ADI) and <32% of the acute reference dose (ARfD) of each compound.
Collapse
Affiliation(s)
- Farag Malhat
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mona Bakery
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Chris Anagnostopoulos
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides Residues, Athens, Greece
| | - Mohamed Youssef
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Walaa Abd El-Ghany
- Plant Protection Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Amira Abdallah
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shokr Abd El-Salam
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
26
|
Zhao YX, Guo L, Wang L, Jiang ND, Chen KX, Dai YJ. Biodegradation of the pyridinecarboxamide insecticide flonicamid by Microvirga flocculans and characterization of two novel amidases involved. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112384. [PMID: 34091185 DOI: 10.1016/j.ecoenv.2021.112384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO) is a new type of pyridinecarboxamide insecticide that exhibits particularly good efficacy in pest control. However, the extensive use of FLO in agricultural production poses environmental risks. Hence, its environmental behavior and degradation mechanism have received increasing attention. Microvirga flocculans CGMCC 1.16731 rapidly degrades FLO to produce the intermediate N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) and the end acid metabolite 4-(trifluoromethyl) nicotinol glycine (TFNG). This bioconversion is mediated by the nitrile hydratase/amidase system; however, the amidase that is responsible for the conversion of TFNG-AM to TFNG has not yet been reported. Here, gene cloning, overexpression in Escherichia coli and characterization of pure enzymes showed that two amidases-AmiA and AmiB-hydrolyzed TFNG-AM to TFNG. AmiA and AmiB showed only 20-30% identity to experimentally characterized amidase signature family members, and represent novel amidases. Compared with AmiA, AmiB was more sensitive to silver and copper ions but more resistant to organic solvents. Both enzymes demonstrated good pH tolerance and exhibited broad amide substrate specificity. Homology modeling suggested that residues Asp191 and Ser195 may strongly affect the catalytic activity of AmiA and AmiB, respectively. The present study furthers our understanding of the enzymatic mechanisms of biodegradation of nitrile-containing insecticides and may aid in the development of a bioremediation agent for FLO.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
27
|
Abbas N, Abubakar M, Hassan MW, Shad SA, Hafez AM. Risk Assessment of Flonicamid Resistance in Musca domestica (Diptera: Muscidae): Resistance Monitoring, Inheritance, and Cross-Resistance Potential. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1779-1787. [PMID: 33758935 DOI: 10.1093/jme/tjab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Flonicamid is a chordotonal modulator and novel systemic insecticide that has been used frequently for controlling a broad range of insect pests. The risk of flonicamid resistance was assessed through laboratory selection and determining inheritance pattern and cross-resistance potential to five insecticides in house fly, Musca domestica L. Very low to high flonicamid resistance in M. domestica populations was found compared with the susceptible strain (SS). A flonicamid-selected (Flonica-RS) M. domestica strain developed 57.73-fold resistance to flonicamid screened for 20 generations compared with the SS. Overlapping 95% fiducial limits of LC50 of the F1 and F1ǂ, and dominance values (0.87 for F1 and 0.92 for F1ǂ) revealed an autosomal and incomplete dominant flonicamid resistance. The monogenic model of resistance inheritance suggested a polygenic flonicamid resistance. The Flonica-RS strain displayed negative cross-resistance between flonicamid and sulfoxaflor (0.10-fold) or clothianidin (0.50-fold), and very low cross-resistance between flonicamid and flubendiamide (4.71-fold), spinetoram (4.68-fold), or thiamethoxam (2.02-fold) in comparison with the field population. The estimated realized heritability (h2) value of flonicamid resistance was 0.02. With selection mortality 40-90%, the generations required for a 10-fold increase in LC50 of flonicamid were 94-258 at h2 (0.02) and slope (3.29). Flonicamid resistance was inherited as autosomal, incomplete dominant, and polygenic in the Flonica-RS. Negative or very low cross-resistance between flonicamid and sulfoxaflor, clothianidin, flubendiamide, spinetoram, and thiamethoxam means that these insecticides can be used as alternatives for controlling M. domestica. These data can be useful in devising the management for M. domestica.
Collapse
Affiliation(s)
- Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Entomology, College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Abubakar
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Waqar Hassan
- Department of Entomology, College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sarfraz Ali Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdulwahab M Hafez
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Zhao YX, Wang L, Chen KX, Jiang ND, Sun SL, Ge F, Dai YJ. Biodegradation of flonicamid by Ensifer adhaerens CGMCC 6315 and enzymatic characterization of the nitrile hydratases involved. Microb Cell Fact 2021; 20:133. [PMID: 34256737 PMCID: PMC8278588 DOI: 10.1186/s12934-021-01620-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO) is a new type of pyridinamide insecticide that regulates insect growth. Because of its wide application in agricultural production and high solubility in water, it poses potential risks to aquatic environments and food chain. RESULTS In the present study, Ensifer adhaerens CGMCC 6315 was shown to efficiently transform FLO into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) via a hydration pathway mediated by two nitrile hydratases, PnhA and CnhA. In pure culture, resting cells of E. adhaerens CGMCC 6315 degraded 92% of 0.87 mmol/L FLO within 24 h at 30 °C (half-life 7.4 h). Both free and immobilized (by gel beads, using calcium alginate as a carrier) E. adhaerens CGMCC 6315 cells effectively degraded FLO in surface water. PnhA has, to our knowledge, the highest reported degradation activity toward FLO, Vmax = 88.7 U/mg (Km = 2.96 mmol/L). Addition of copper ions could increase the enzyme activity of CnhA toward FLO by 4.2-fold. Structural homology modeling indicated that residue β-Glu56 may be important for the observed significant difference in enzyme activity between PnhA and CnhA. CONCLUSIONS Application of E. adhaerens may be a good strategy for bioremediation of FLO in surface water. This work furthers our understanding of the enzymatic mechanisms of biodegradation of nitrile-containing insecticides and provides effective transformation strategies for microbial remediation of FLO contamination.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Shi-Lei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116 People’s Republic of China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042 People’s Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| |
Collapse
|
29
|
Xu F, Ren W, Fang X, Chen L, Zha X. Residues, dissipation, and safety evaluation of pymetrozine-clothianidin mixture in strawberry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22641-22650. [PMID: 33420934 DOI: 10.1007/s11356-020-12223-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
The residue detection method and field dissipation dynamics of the pymetrozine-clothianidin mixture in strawberries were investigated combining QuEChERS pretreatment and LC-MS/MS analysis to provide a reference for the safe use of pymetrozine and clothianidin mixture on strawberries. Good linearity (R2 > 0.999) was obtained for pymetrozine and clothianidin within the range of 0.005-1 μg mL-1. Method validations indicated that the recovery for pymetrozine and clothianidin was 84.2-101.4%, intra-day and inter-day repeatability ranged from 1.8 to 8.1% and from 4.1 to 7.0%, respectively. Following application of the recommended dose in field trials, pymetrozine and clothianidin dissipation followed first-order kinetics with half-lives of 6.8-13.9 days in strawberries at four locations. Moreover, owing to risk quotient < 100%, a mixture pesticide of 30% suspension concentrates (25% pymetrozine + 5% clothianidin) was unlikely to give rise to vital health concerns to humans following the recommended application guidelines. This study can be utilized in safety assessment and developing spray schedules for this mixed pesticide in strawberries.
Collapse
Affiliation(s)
- Feng Xu
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd., Nanjing, 210046, China.
| | - Wenhao Ren
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd., Nanjing, 210046, China
| | - Xinting Fang
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd., Nanjing, 210046, China
| | - Liuyang Chen
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd., Nanjing, 210046, China
| | - Xinxin Zha
- Analysis Center, Residue Laboratory, Jiangsu Evertest Co., Ltd., Nanjing, 210046, China
| |
Collapse
|
30
|
He L, He F, Yang S, Gao Y, Li B, Liu F, Mu W. Dissipation kinetics and safety evaluation of pyraclostrobin and its desmethoxy metabolite BF 500-3 in a cucumber greenhouse agroecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17712-17723. [PMID: 33400109 DOI: 10.1007/s11356-020-11798-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Pyraclostrobin (PYR), a fungicide of the strobilurin class, is used to control many different kinds of fungal diseases in greenhouses and on agricultural fields. In the present study, an efficient method was established for simultaneously determining PYR and its metabolite BF 500-3 in cucumber fruits, leaves, and soil matrices using QuEChERS pretreatment coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The residue levels and dissipation kinetics of PYR were determined under greenhouse conditions. The recoveries ranged from 89.8 to 103.6% with relative standard deviations (RSDs) of 3.6-7.5% at three spiking levels. The results demonstrated that PYR dissipated quickly in the cucumber field with half-lives (DT50) of 2.14-4.17 days on different sites and in different matrices. The residue of its metabolite BF 500-3 was very low and showed a trend of first increasing and then decreasing. The degradation rate of PYR in soil was the fastest, followed by that on cucumber fruits and leaves. The terminal residue of PYR at an application rate of 150 g a.i. ha-1 (the maximum recommended rate) in cucumber fruits was below the maximum residue limit (MRL) of 0.5 mg/kg established in China. However, the application of the fungicide at 225 g a.i. ha-1 (1.5× the maximum recommended rate) resulted in residues that were above the MRL 1 day after the final application, which is an unacceptable risk. Therefore, the application dosage of PYR at the recommended rates was safe to human beings and animals.
Collapse
Affiliation(s)
- Lifei He
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an,, Shandong, 271018, People's Republic of China
| | - Falin He
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an,, Shandong, 271018, People's Republic of China
| | - Song Yang
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Yangyang Gao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an,, Shandong, 271018, People's Republic of China
| | - Beixing Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an,, Shandong, 271018, People's Republic of China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an,, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Mu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an,, Shandong, 271018, People's Republic of China.
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
31
|
Li H, Zhong Q, Wang X, Luo F, Zhou L, Sun H, Yang M, Lou Z, Chen Z, Zhang X. The degradation and metabolism of chlorfluazuron and flonicamid in tea: A risk assessment from tea garden to cup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142070. [PMID: 32920390 DOI: 10.1016/j.scitotenv.2020.142070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Degradation and metabolism of chlorfluazuron and flonicamid from tea garden to cup were simultaneously investigated by a modified QuEChERS method coupled with UPLC-MS/MS quantification. The dissipation half-lives of chlorfluazuron, flonicamid, and total flonicamid (the sum of flonicamid and its metabolites TFNG, TFNA, and TFNA-AM) in fresh tea leaves during tea growth were 6.0 d, 4.8 d, and 8.1 d, respectively. TFNG and TFNA were generated during tea growth. After tea processing, the residues of chlorfluazuron, flonicamid, and its metabolites in black tea were higher than those in green tea. The average processing factors of chlorfluazuron, flonicamid, and total flonicamid in black tea were 2.54, 3.02, and 2.87, respectively, while in green tea they were 2.40, 2.93, and 2.79, respectively. TFNG, TFNA, and TFNA-AM were formed rapidly during the drying step. Considering the influence of water content at various processing steps, the average loss rates of chlorfluazuron, flonicamid, and total flonicamid residue from fresh tea leaves to black tea were 16.7%, 33.8%, and 20.7%, respectively, and 29.6%, 14.0% and 18.2%, respectively, in the case of green tea. The highest leaching rates of chlorfluazuron, flonicamid, and total flonicamid during tea brewing were 6.8%, 97.0%, and 97.4%, respectively, in black tea infusion, and 6.0%, 98.9%, and 98.6%, respectively, in green tea infusion. The metabolites, especially TFNG, had a higher leaching rate during tea brewing. The migration of chlorfluazuron from fresh leaves to tea infusion was low, and the migration of flonicamid was high. The RQc and RQa of chlorfluazuron and total flonicamid were less than 1. This result indicates that the potential dietary intake risk of chlorfluazuron from tea is negligible. However, the risk of total flonicamid intake is three times higher than that of chlorfluazuron. There is a potential risk of intake of flonicamid and its metabolites in tea for human consumption.
Collapse
Affiliation(s)
- Hongxia Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qing Zhong
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| |
Collapse
|
32
|
Yang W, Fan Z, Jiang H, Zhao Y, Guo L, Dai Y. Biotransformation of flonicamid and sulfoxaflor by multifunctional bacterium Ensifer meliloti CGMCC 7333. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:122-131. [PMID: 33283619 DOI: 10.1080/03601234.2020.1852854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flonicamid is a novel, selective, systemic pyridinecarboxamide insecticide that effectively controls hemipterous pests. Sulfoxaflor, a sulfoximine insecticide, effectively controls many sap-feeding insect pests. Ensifer meliloti CGMCC 7333 transforms flonicamid into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM). Resting cells of E. meliloti CGMCC 7333 (optical density at 600 nm [OD600] = 5) transformed 67.20% of the flonicamid in a 200-mg/L solution within 96 h. E. meliloti CGMCC 7333 transforms sulfoxaflor into N-(methyl(oxido){1-[6-(trifluoromethyl) pyridin-3-yl] ethyl}-k4-sulfanylidene) urea (X11719474). E. meliloti CGMCC 7333 resting cells (OD600 = 5) transformed 89.36% of the sulfoxaflor in a 200 mg/L solution within 96 h. On inoculating 2 mL of E. meliloti CGMCC 7333 (OD600 = 10) into soil containing 80 mg/kg flonicamid, 91.1% of the flonicamid was transformed within 9 d (half-life 2.6 d). On inoculating 2 mL of E. meliloti CGMCC 7333 (OD600 = 10) into soil containing 80 mg/kg sulfoxaflor, 83.9% of the sulfoxaflor was transformed within 9 d (half-life 3.4 d). Recombinant Escherichia coli harboring the E. meliloti CGMCC 7333 nitrile hydratase (NHase)-encoding gene and NHase both showed the ability to transform flonicamid or sulfoxaflor into their corresponding amides, TFNG-AM and X11719474, respectively. These findings may help develop a bioremediation agent for the elimination of flonicamid and sulfoxaflor contamination.
Collapse
Affiliation(s)
- Wenlong Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zhixia Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Huoyong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yunxiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
33
|
Yang Y, Liu X, Zhang Q, Chen Y, Zhang S, Lu P, Hu D. Dissipation, Processing, Leaching, and Safety Evaluation of Flonicamid and Its Metabolites in Tea. J AOAC Int 2020; 103:1441-1450. [PMID: 33247740 DOI: 10.1093/jaoacint/qsaa052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Tea is a popular traditional non-alcoholic beverage worldwide. Flonicamid is a selective systemic pyridine carboxamide insecticide that is widely used for controlling tea leafhopper in tea. OBJECTIVE The leaching rates, dissipation dynamics, and residue levels of flonicamid and its metabolites in tea leaves during processing and transferring were investigated to validate the safe risk in tea and transfer behavior using high performance liquid chromatography-tandem mass spectrometry with a convenient pretreatment method. METHOD The extracting method and immersion rate experiments were optimized by single factor analysis and orthogonal tests. The acetonitrile extracting solvent with 0.5% formic acid was used and optimal leaching conditions were obtained with a regime of 15 min immersion time, 100°C temperature, three immersions and a tea-to-water ratio of 1:50. RESULTS Average recoveries in processed green tea and infusions were 80.85-98.75% with relative standard deviations <5.87%. LODs and LOQs of flonicamid, 4-trifluoromethylnicotinic acid (TFNA), N-(4-trifluoromethylnicotinoyl) glycine (TFNG), and 4-trifluoromethylnicotinamide (TFNA-AM) were 0.0013-0.350 and 0.004-1 μg/g, respectively. The processing factor of flonicamid was 0.36-5.52 during green tea manufacture. The leaching rates were 22.9-97.4% from processed tea to infusion. CONCLUSIONS The risk of long-term and short-term dietary intake of flonicamid was safe in tea infusions with the risk quotient (RQ) values <1 for the Chinese consumer. This work may provide guidance for safe and reasonable consumption of flonicamid in tea in China. HIGHLIGHTS The suitable leaching factors of flonicamid and its metabolites in tea infusions were optimized by orthogonal experimentation for the first time.
Collapse
Affiliation(s)
- Ya Yang
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Xiangwu Liu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Qingtao Zhang
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Ya Chen
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Sumei Zhang
- Linyi Academy of Agricultural Sciences, Linyi, Shandong 276012, China
| | - Ping Lu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Deyu Hu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| |
Collapse
|
34
|
Yang WL, Dai ZL, Cheng X, Fan ZX, Jiang HY, Dai YJ. Biotransformation of insecticide flonicamid by Aminobacter sp. CGMCC 1.17253 via nitrile hydratase catalysed hydration pathway. J Appl Microbiol 2020; 130:1571-1581. [PMID: 33030814 DOI: 10.1111/jam.14880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS This study evaluates flonicamid biotransformation ability of Aminobacter sp. CGMCC 1.17253 and the enzyme catalytic mechanism involved. METHODS AND RESULTS Flonicamid transformed by resting cells of Aminobacter sp. CGMCC 1.17253 was carried out. Aminobacter sp. CGMCC 1.17253 converts flonicamid into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM). Aminobacter sp. CGMCC 1.17253 transforms 31·1% of the flonicamid in a 200 mg l-1 conversion solution in 96 h. Aminobacter sp. CGMCC 1.17253 was inoculated in soil, and 72·1% of flonicamid with a concentration of 0·21 μmol g-1 was transformed in 9 days. The recombinant Escherichia coli expressing Aminobacter sp. CGMCC 1.17253 nitrile hydratase (NHase) and purified NHase were tested for the flonicamid transformation ability, both of them acquired the ability to transform flonicamid into TFNG-AM. CONCLUSIONS Aminobacter sp. CGMCC 1.17253 transforms flonicamid into TFNG-AM via hydration pathway mediated by cobalt-containing NHase. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report that bacteria of genus Aminobacter has flonicamid-transforming ability. This study enhances our understanding of flonicamid-degrading mechanism. Aminobacter sp. CGMCC 1.17253 has the potential for bioremediation of flonicamid pollution.
Collapse
Affiliation(s)
- W L Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z L Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - X Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z X Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - H Y Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y J Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
35
|
Zhang X, Sun H, Wang X, Li H, Zhong Q, Luo F, Chen Z. Enantioselective residue analysis of oxathiapiprolin and its metabolite in tea and other crops by ultra-high performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2020; 43:3856-3867. [PMID: 32776703 DOI: 10.1002/jssc.202000457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022]
Abstract
Oxathiapiprolin is the first chiral piperidinyl thiazole isoxazoline fungicide developed to control downy mildew and other diseases, and there were no prior reports on its enantiomeric residue. In this study, a modified quick, easy, cheap, effective, rugged, and safe extraction and purification method followed by ultra-high performance liquid chromatography-tandem mass spectrometry determination was first developed and validated for the residue analysis of oxathiapiprolin enantiomers and its metabolite IN-E8S72 in green tea and other crops. Oxathiapiprolin enantiomers and IN-E8S72 were separated on a chiral Lux Cellulose-3 column with the use of 0.1% formic acid in acetonitrile and 5 mmol/L ammonium acetate in water as mobile phases. IN-E8S72 was eluted first, followed by (-)-oxathiapiprolin, and then (+)-oxathiapiprolin. The recoveries ranged from 53.3 to 125.3% with relative standard deviations ranging from 1.4 to 16.0%. The limits of quantification for (-)-oxathiapiprolin and (+)-oxathiapiprolin were 0.005 mg/kg in romaine lettuce, head cabbage, potato, grape, and garlic, 0.01 mg/kg in soybean and pea, and 0.025 mg/kg in green tea and dry pepper. The limits of quantification of IN-E8S72 were twice those of (-)-oxathiapiprolin. Screening results with real market samples indicated that there was no enantiomeric excess in the oxathiapiprolin residue in romaine lettuce.
Collapse
Affiliation(s)
- Xinzhong Zhang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| | - Hezhi Sun
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| | - Xinru Wang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| | - Hongxia Li
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qing Zhong
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fengjian Luo
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| | - Zongmao Chen
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| |
Collapse
|
36
|
Chen G, Qiao Y, Liu F, Zhang X, Liao H, Zhang R, Dong J. Dissipation and dietary risk assessment of kasugamycin and saisentong in Chinese cabbage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35228-35238. [PMID: 32592058 DOI: 10.1007/s11356-020-09827-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
A quick, easy, cheap, effective, rugged, and safe pretreatment method using dispersive solid-phase extraction was developed to quantify kasugamycin in Chinese cabbage samples by using ultra-performance liquid chromatography/tandem mass spectrometry. A pretreatment method involving precolumn transformation was utilized to determine the residue of saisentong in Chinese cabbage through high-performance liquid chromatography/ultraviolet detection. These methods were successfully applied through field trials to determine the contents of kasugamycin and saisentong in Chinese cabbage. The dissipation of kasugamycin and saisentong in Chinese cabbage followed first-order kinetics with a linear correlation coefficient of 0.9066-0.9731 at the 95% confidence level. The half-lives of kasugamycin and saisentong in Chinese cabbage were 1.8-2.0 and 2.2-3.8 days, respectively. Terminal residual levels of kasugamycin in Chinese cabbage were not detected 14 days after application. The dietary risk assessment of kasugamycin and saisentong in Chinese cabbage showed that their risk quotients were 0.93 and 2.58%, respectively, in the preharvest interval (PHI) of 14 days. Kasugamycin and saisentong in Chinese cabbage did not pose potential health hazards at PHI of 14 days. The maximum residue limits of kasugamycin and saisentong in Chinese cabbage were 0.02 and 0.36 mg/kg, respectively, and 14 days was the safe PHI.
Collapse
Affiliation(s)
- Guofeng Chen
- Safety and Quality Institute of Agricultural Products,, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Liu
- Safety and Quality Institute of Agricultural Products,, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaobo Zhang
- Safety and Quality Institute of Agricultural Products,, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Hui Liao
- Safety and Quality Institute of Agricultural Products,, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ruiying Zhang
- Safety and Quality Institute of Agricultural Products,, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jiannan Dong
- Safety and Quality Institute of Agricultural Products,, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| |
Collapse
|
37
|
Lin H, Liu L, Zhang Y, Shao H, Li H, Li N, Zou P, Lu N, Guo Y. Residue behavior and dietary risk assessment of spinetoram (XDE-175-J/L) and its two metabolites in cauliflower using QuEChERS method coupled with UPLC-MS/MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110942. [PMID: 32800224 DOI: 10.1016/j.ecoenv.2020.110942] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Spinetoram (XDE-175-J/L), a new spinosyn-based insecticide, is one of the most widely used bio-pesticide worldwide and its registration for direct application on cauliflower to control Plutella xylostella is currently under review in China. In this study, an accredited method for simultaneous determination of spinetoram and its two metabolites in cauliflower was established and validated using QuEChERS (quick, easy, cheap, effective, rugged, and safe) preparation coupled with ultra-liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The average recoveries using this method were ranged from 74 to 99% with relative standard deviations (RSDs) of 2.4-10.5%. The dissipation kinetics and terminal residues of spinetoram and its two metabolites in cauliflower were studied in Tianjin and Guizhou over two years under open field conditions. The dissipation experiments revealed that spinetoram was swiftly degraded in cauliflower, with the half-lives less than or equal to 4.85 days. The terminal residues of total spinetoram (sum of spinetoram and its two metabolites) detected in cauliflower samples were in the range of 0.009 mg/kg-0.337 mg/kg. Dietary risk assessment study was implemented based on the scientific data of field trials, food consumption and acceptable daily intake (ADI). The estimated long-term dietary risk probability (RQ) of total spinetoram from cauliflower was between 5.79% and 5.91%, indicating that spinetoram was associated with acceptable risk for dietary cauliflower consumption. The results would provide scientific guidance for proper usage of spinetoram in cauliflower field ecosystem.
Collapse
Affiliation(s)
- Hongfang Lin
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| | - Lei Liu
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| | - Yuting Zhang
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| | - Hui Shao
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| | - Hui Li
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| | - Na Li
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| | - Pan Zou
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| | - Na Lu
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| | - Yongze Guo
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, PR China.
| |
Collapse
|
38
|
Camara MA, Fuster A, Oliva J. Determination of pesticide residues in edible snails with QuEChERS coupled to GC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1881-1887. [PMID: 32897807 DOI: 10.1080/19440049.2020.1809720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A QuEChERS multi-residue GC-MS/MS method was developed for determining 160 pesticides in fresh edible snails. The method was validated according to the EU guidance SANTE/12682/2019. Twenty-seven different pesticides were quantified in the 824 samples analysed. Of these, 22.09% contained pesticide residues; in one case six different pesticides. The most frequently quantified pesticides were chlorpyrifos (108 samples), cypermethrin (50), difenoconazole (24), oxyfluorfen (13), lambda-cyhalothrin (12), tetraconazole and azoxystrobin (7). Other pesticides were found in <5 samples. Of the samples containing residues, 154 exceeded the EU legal limit. However, the estimated daily intake of pesticide residues showed that snail consumption does not represent appreciable risks to consumer health.
Collapse
Affiliation(s)
- Miguel Angel Camara
- Research Group of Pesticide Chemistry, Agrofood Pollution, Ecoefficiency and Toxicology, Faculty of Chemistry, University of Murcia , Murcia, Spain
| | - Aurelio Fuster
- Research Group of Pesticide Chemistry, Agrofood Pollution, Ecoefficiency and Toxicology, Faculty of Chemistry, University of Murcia , Murcia, Spain
| | - José Oliva
- Research Group of Pesticide Chemistry, Agrofood Pollution, Ecoefficiency and Toxicology, Faculty of Chemistry, University of Murcia , Murcia, Spain
| |
Collapse
|
39
|
Zhao YX, Yang WL, Guo L, Jiang HY, Cheng X, Dai YJ. Bioinformatics of a Novel Nitrile Hydratase Gene Cluster of the N 2-Fixing Bacterium Microvirga flocculans CGMCC 1.16731 and Characterization of the Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9299-9307. [PMID: 32786837 DOI: 10.1021/acs.jafc.0c03702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microvirga flocculans CGMCC 1.16731 can degrade many cyano group-containing neonicotinoid insecticides. Here, its genome was sequenced, and a novel nitrile hydratase gene cluster was discovered in a plasmid. The NHase gene cluster (pnhF) has gene structure β-subunit 1, α-subunit, and β-subunit 2, which is different from previously reported NHase gene structures. Phylogenetic analysis of α-subunits indicated that NHases containing the three subunit (β1αβ2) structure are independent from NHases containing two subunits (αβ). pnhF was successfully expressed in Escherichia coli, and the purified PnhF could convert the nitrile-containing insecticide flonicamid to N-(4-trifluoromethylnicotinoyl)glycinamide. The enzymatic properties of PnhF were investigated using flonicamid as a substrate. Homology models revealed that amino acid residue β1-Glu56 may strongly affect the catalytic activity of PnhF. This study expands our understanding of the structures and functions of NHases and the enzymatic mechanism of the environmental fate of flonicamid.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Wen-Long Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Huo-Yong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xi Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
40
|
Yu J, Xu Z, Zhang C, Chen L, Hu X, Yu R, Wang X, Zhao X. Dissipation behavior, residue distribution, and risk assessment of triflumizole and FM-6-1 in greenhouse strawberries and soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15165-15173. [PMID: 32067175 DOI: 10.1007/s11356-020-08034-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to develop a reliable method for the simultaneous analysis of triflumizole (TRIF) and its primary metabolite FM-6-1 (N-4-chloro-2-trifluoromethylphenyl-2-propoxy-acetamidine) in the soil and treated strawberries using solid phase extraction (SPE) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS). Using this method, TRIF and FM-6-1 degradation in strawberries and the soil under greenhouse conditions were investigated. The field trials showed that t1/2 of TRIF and total residues (the sum of TRIF and FM-6-1) were 1.6-2.2 days and 2.4-2.9 days in strawberry and 4.3-6.1 days and 5.5-6.9 days in soil, respectively. Terminal total residues were ≤ 0.39 mg/kg in strawberry and ≤ 0.42 mg/kg in soil from 5 to 10 days of harvest. The risk quotient (RQ) of TRIF was below 1.89%, showing that the dietary risk of TRIF in strawberry was low. These findings provide guidance for the use of TRIF on crops and provide reference to establish the maximum residue level (MRL) of TRIF in strawberry.
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Quality and Safety of Agro-products, MOA Key Laboratory for Pesticide Residue Detection, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zhenlan Xu
- State Key Laboratory for Quality and Safety of Agro-products, MOA Key Laboratory for Pesticide Residue Detection, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Quality and Safety of Agro-products, MOA Key Laboratory for Pesticide Residue Detection, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liezhong Chen
- State Key Laboratory for Quality and Safety of Agro-products, MOA Key Laboratory for Pesticide Residue Detection, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiuqing Hu
- State Key Laboratory for Quality and Safety of Agro-products, MOA Key Laboratory for Pesticide Residue Detection, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruixian Yu
- State Key Laboratory for Quality and Safety of Agro-products, MOA Key Laboratory for Pesticide Residue Detection, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaochuan Wang
- State Key Laboratory for Quality and Safety of Agro-products, MOA Key Laboratory for Pesticide Residue Detection, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Quality and Safety of Agro-products, MOA Key Laboratory for Pesticide Residue Detection, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
41
|
Su Y, Wang W, Hu J, Liu X. Dissipation behavior, residues distribution and dietary risk assessment of tembotrione and its metabolite in maize via QuEChERS using HPLC-MS/MS technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110187. [PMID: 31951902 DOI: 10.1016/j.ecoenv.2020.110187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The dissipation and residues of tembotrione in corn field application were investigated using liquid chromatography tandem mass spectrometry (LC-MS/MS) method. The average recoveries of tembotrione in maize, corncob, and straw were in the ranges of 98-107% with relative standard deviations (RSDs ≤9.3%), respectively. The recoveries of M5 was in the ranges of 90-108% in all three matrices of maize, with RSDs were 3.3-12.8%. The LODs for tembotrione and M5 in maize were 0.85 μg/L and 1.0 μg/L, 0.84 μg/L and 0.43 μg/L in corncob, 0.94 μg/L and 1.5 μg/L in straw, respectively. The LOQs of the method in maize grain, corncob and straw were 0.01, 0.01 and 0.05 mg/kg for both analytes, respectively. The dissipation of tembotrione in straw was in compliance with the first-order dynamic equation, with half-lives of 1.18-1.23 days at Beijing and Heilongjiang. Total residue of tembotrione in maize grain and corncob matrix were both below 0.02 mg/kg, lower than the max residue limit (MRL) recommended by european food safety authority (EFSA). Risk quotients (RQs) of this pesticide was assessed via comparing national estimated daily intake with acceptable daily intake. The dietary intake risk of tembotrione residue in maize was very low for all groups of Chinese residents. These data could provide scientific data and strategies and facilitate Chinese government to establish the MRLs of tembotrione.
Collapse
Affiliation(s)
- Yue Su
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Weijun Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| |
Collapse
|
42
|
Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Qu J, Tang H, Cao D. Determination of Residues of Quizalofop-p-ethyl and Its Metabolite in Adzuki Bean and Soil. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jiangling Qu
- College of Food Sciences, Heilongjiang Bayi Agricultural University
| | - Huacheng Tang
- College of Food Sciences, Heilongjiang Bayi Agricultural University
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidah, Heilongjiang
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety
| | - Dongmei Cao
- College of Food Sciences, Heilongjiang Bayi Agricultural University
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province
- National Coarse Cereals Engineering Research Center
| |
Collapse
|
44
|
Yang WL, Guo LL, Dai ZL, Qin RC, Zhao YX, Dai YJ. Biodegradation of the Insecticide Flonicamid by Alcaligenes faecalis CGMCC 17553 via Hydrolysis and Hydration Pathways Mediated by Nitrilase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10032-10041. [PMID: 31419121 DOI: 10.1021/acs.jafc.9b04245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO), a novel selective systemic pyridinecarboxamide insecticide, effectively controls hemipterous pests. However, microbial degradation of flonicamid, along with the enzymatic mechanism, has not been studied. Here, bacterial isolate PG13, which converts flonicamid into 4-(trifluoromethyl)nicotinol glycine (TFNG) and N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM), was isolated and identified as Alcaligenes faecalis CGMCC 17553. The genome of CGMCC 17553 contained five nitrilases but no nitrile hydratase, and recombinant Escherichia coli strains harboring CGMCC 17553 nitrilase gene nitA or nitD acquired the ability to degrade flonicamid. Purified NitA catalyzed flonicamid into both TFNG and TFNG-AM, indicating dual functionality, while NitD could only produce TFNG-AM. Three-dimensional homology modeling revealed that aromatic amino acid residues in the catalytic pocket affected nitrilase activity. These findings further our understanding of the enzymatic mechanism of flonicamid metabolism in the environment and may help develop a potential bioremediation agent for the elimination of flonicamid contamination.
Collapse
Affiliation(s)
- Wen-Long Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Lei-Lei Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Zhi-Ling Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Ruo-Chen Qin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
45
|
Zhang X, Wang X, Luo F, Sheng H, Zhou L, Zhong Q, Lou Z, Sun H, Yang M, Cui X, Chen Z. Application and enantioselective residue determination of chiral pesticide penconazole in grape, tea, aquatic vegetables and soil by ultra performance liquid chromatography-tandem mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:530-537. [PMID: 30743169 DOI: 10.1016/j.ecoenv.2019.01.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Penconazole is a typical triazole fungicide with wide use on fruits, vegetables, and tea plants to control powdery mildew. In the present study, an efficient graphite carbon black solid phase extraction (GCB-SPE) purification combined with chiral ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for determination of penconazole enantiomers in different complex matrices, including grape, tea, soil, lotus root, lotus leaf, lotus seed and hulls. The method was then applied to investigate the enantioselective dissipation of penconazole enantiomers in a real field experiment of grape and soil. As a result, a satisfactory separation of penconazole enantiomers on a chiral Lux Cellulose-2 column (150 mm × 2 mm i.d., 3 µm) was obtained with 0.1% formic acid in methanol and 10 mmol L-1 ammonium acetate in water (75/25, v/v) as mobile phase at 0.25 mL min-1. The enantiomer (+)-penconazole was firstly eluted, and (-)-penconazole was then eluted. The method showed reliable performances in linearity, recovery and precision, the recoveries of (+)-penconazole and (-)-penconazole in all of six matrices were between 70.5% and 121.0% with the relative standard deviations (RSDs) ranging from 0.8% to 23.6% at the low, medium and high spiked levels. The limits of quantitation (LOQs) of this method were lower than 0.0025 mg kg-1 in grape, soil and lotus root, 0.005 mg kg-1 in lotus leaf, lotus seed meat and lotus seed shell, and 0.0125 mg kg-1 in tea. Results of field trials indicated that (-)-penconazole degraded faster than its (+)-isomer in grape. While only a moderate stereoselectivity was observed in soil, with (-)-penconazole preferential degraded. The proposed method could be used to investigate enantioselective environmental behavior of penconazole enantiomers in complex matrices. And results in this study could provide useful information on realistic risk assessment of penconazole in grape.
Collapse
Affiliation(s)
- Xinzhong Zhang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| | - Xinru Wang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Fengjian Luo
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| | - Huishan Sheng
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China.
| | - Li Zhou
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| | - Qing Zhong
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Zhengyun Lou
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hezhi Sun
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Mei Yang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Xuan Cui
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China.
| | - Zongmao Chen
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|