1
|
Torres-García DA, Balderas-Hernández VE, Barba de la Rosa AP, De Leon-Rodriguez A. Diisononyl phthalate down-regulates the expression of antioxidant genes NFE2L2, TXN, and TXNRD2, while diethyl-hexyl terephthalate up-regulates their expression including SOD-1. Xenobiotica 2025:1-11. [PMID: 40238463 DOI: 10.1080/00498254.2025.2493619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Phthalates, widely utilised as plasticisers to enhance the flexibility of rigid materials like polyvinyl chloride, are known for their endocrine-disrupting properties and cytotoxic effects.This study investigated the impact of Diisononyl phthalate (DINP) and Diethyl-hexyl terephthalate (DEHT) on human endothelial cells (EA.hy926).The assessment focused on cell viability, reactive oxygen species (ROS) production, and the antioxidant-responsive genes expression (NFE2L2, SOD1, TXN, and TXNRD2) following exposure to varying 1, 10, and 100 µg/mL of DINP or DEHT.Cell viability was determined using MTT and lactate dehydrogenase (LDH) release assays. ROS were measured using the DCFDA assay.Gene expression analysis was conducted via qRT-PCR after 48 h of exposure. Results revealed that DINP 100 µg/mL significantly reduced cell viability at 11 and 17% at 48 and 72 h, respectively, whereas increased LDH release by 69% at 48 h. ROS levels also rose by 19-30%, accompanied by down-regulation of NFE2L2, TXN, and TXNRD2.Conversely, DEHT had no adverse effect on cell viability or LDH levels but elevated ROS production (11-14%) and induced up-regulation of antioxidant genes, including SOD1.The findings indicate that DINP exposure could negatively affect the cellular antioxidant response, whereas DEHT leads to up-regulation of antioxidant genes without detrimental effects on viability.
Collapse
Affiliation(s)
- Daniel A Torres-García
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - Victor E Balderas-Hernández
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - Ana P Barba de la Rosa
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - Antonio De Leon-Rodriguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| |
Collapse
|
2
|
Wang L, Sha H, He X, Xie Y, Deng J, Chen J, Li G, Yang J. Neonatal IL-4 Over-Exposure is Accompanied by Macrophage Accumulation in Dura Mater After Instant Anti-inflammatory Cytokine Response in CSF. Cell Mol Neurobiol 2024; 44:18. [PMID: 38315435 PMCID: PMC10844484 DOI: 10.1007/s10571-023-01451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Multiple studies have shown that clinical events resulting into neonatal IL-4 over-exposure, such as asthma in early life and food allergy, were associated with brain damage and that the neuroinflammation induced by them might lead to cognitive impairments, anxiety-/depressive-like behaviors. IL-4 is the most major elevated cytokine in periphery when these clinical events occur and peripheral IL-4 level positively correlates with the severity of those events. Our previous studies have verified that neonatal IL-4 over-exposure induced a delayed neuroinflammatory damage in rodents, which might have adverse implications for brain development and cognition. Neuroinflammation in brain parenchyma is often accompanied by changes in CSF cytokines levels. However, whether the cytokines levels in CSF change after neonatal IL-4 over-exposure is unknown. Here, we found a delayed pro-inflammatory cytokines response (higher IL-6, IL-1β and, TNF levels) in both hippocampus and CSF after an instant anti-inflammatory cytokine response in IL-4 over-exposed rats. Moreover, the pro-inflammatory cytokines response appeared earlier in CSF than in hippocampus. The level of each of the pro-inflammatory cytokines in CSF positively correlated with that in hippocampus at the age of postnatal day 42. More microglia numbers/activation and higher M-CSF level in the hippocampus in IL-4 over-exposed rats were also observed. Furthermore, there were more macrophages with inflammatory activation in dural mater of IL-4 over-exposed rats. In sum, neonatal IL-4 over-exposure in rats induces delayed inflammation in CSF, suggesting CSF examination may serve as a potential method in predicting delayed neuroinflammation in brain following neonatal IL-4 over-exposure.
Collapse
Affiliation(s)
- Ling Wang
- Grade 2019, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China
| | - Haoran Sha
- Grade 2020, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyi He
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yinyin Xie
- Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiapeng Deng
- Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiexuan Chen
- Grade 2020, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China
| | - Guoying Li
- Guangdong Medical Association, Guangzhou, 510180, Guangdong, China.
| | - Junhua Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou, 510006, Guangdong, People's Republic of China.
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Shakerinasab N, Mottaghipisheh J, Eftekhari M, Sadeghi H, Bazarganipour F, Abbasi R, Doustimotlagh AH, Iriti M. The hydroalcoholic extract of Nasturtium officinale reduces oxidative stress markers and increases total antioxidant capacity in patients with asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116862. [PMID: 37437789 DOI: 10.1016/j.jep.2023.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/28/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a common chronic disease characterized by inflammation of the airways. One of the most devastating consequences of this inflammatory process is the production of reactive oxygen species responsible for oxidative stress. Nasturtium officinale commonly known as watercress has traditionally been applied in Iranian folk medicine to treat respiratory disorders and diseases mainly bronchitis and asthma. In accordance with these ethnopharmacological reports, through our previous in vivo experiment, we have confirmed significant effect of its hydroalcoholic extract in reducing lung inflammation and oxidative stress in an ovalbumin-induced asthmatic rat model. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory and antioxidant effects of N. officinale hydroalcoholic extract (NOE) in patients with asthma, in order to confirm our findings of the previous performed in vivo study. MATERIAL AND METHODS The NOE capsules (500 mg) were treated twice daily for 4 weeks as a supplementary treatment in a randomized, double-blind, and placebo-controlled trial in asthmatics. The primary outcome was Asthma Control Test score. The blood samples were taken at the beginning and end of the study. Then, the level of inflammatory markers, oxidative stress markers and antioxidant enzyme activity were measured. RESULTS Treatment with NOE for one month caused a reduction in the levels of MDA, PCO and NO metabolite markers compared to the placebo group. In addition, FRAP levels as an indicator of total antioxidant capacity in the intervention group was significantly increased at the end of the treatment period compared to pre-treatment values. CONCLUSION Findings demonstrated that NOE may have a therapeutic effect on asthma by improving oxidative stress. However, more studies are required to support these results. Moreover, bio-assay guided fractionation and isolation approach can be conducted to identify major bioactive compound/s.
Collapse
Affiliation(s)
- Nasrin Shakerinasab
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Fatemeh Bazarganipour
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Reza Abbasi
- Department of Pediatrics, Yasuj University of Medical Science, Yasuj, Iran.
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
4
|
Wang Y, Du YY, Yao W, Deng TR, Guo N, Yin L, Yuan XQ, Guo QC, Li J, Liao HM, Qin DY, Li YF. Associations between phthalate metabolites and cytokines in the follicular fluid of women undergoing in vitro fertilization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115616. [PMID: 37871386 DOI: 10.1016/j.ecoenv.2023.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Many studies have showed that phthalates have reproductive and embryonic toxicity, while the potential mechanisms are mostly unknown. Inflammation may play a mediating part in phthalate exposure and adverse reproductive endpoints. A cross-sectional survey was conducted to investigate the associations of phthalate metabolites with inflammatory cytokines in the follicular fluid (FF) of women undergoing in vitro fertilization (IVF). We determined the levels of eight phthalate metabolites and five cytokines in the FF of 76 women, including interleukin (IL)- 6, IL-8, IL-10, monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α). The associations of individual phthalate exposure with cytokines in FF samples were explored by multiple linear regression. We further evaluated the combined effects of multiple phthalate exposures on FF levels of cytokines by using Bayesian kernel machine regression (BKMR) models. We found that there was a positive relationship between mono-ethyl phthalate (MEP) and IL-6 in the FF (percent change:12.4%; 95% CI: 1.3%, 24.9%). In contrast, elevated mono-benzyl phthalate (MBzP), mono(2-ethylhexyl) phthalate (MEHP) and %MEHP levels were associated with decreased MCP-1. In the BKMR models, phthalate metabolite mixtures were positively associated with TNF-α when the mixtures were lower than 65th percentile compared with their medians. In the stratified analyses, MEHP was inversely associated with MCP-1 among women with BMI ≥ 23 kg/m2 (test for interaction <0.05). Our results suggest that certain phthalate metabolites or their mixtures may alter levels of inflammatory cytokines in the FF, and further research is necessary to elucidate the mechanisms underlying the relationship between phthalates exposure, ovarian dysfunction and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yi Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yao-Yao Du
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao-Ran Deng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Yin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Qiong Yuan
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qing-Chun Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Mei Liao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan-Yu Qin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Liu Y, Huo WB, Deng JY, Tang QP, Wang JX, Liao YL, Gou D, Pei DS. Neurotoxicity and the potential molecular mechanisms of mono-2-ethylhexyl phthalic acid (MEHP) in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115516. [PMID: 37757626 DOI: 10.1016/j.ecoenv.2023.115516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of plasticizer di-2-ethylhexyl phthalic acid (DEHP), and there is limited information available on the effects of MEHP on neurotoxicity. This study aims to examine the neurotoxicity of MEHP and preliminarily explore its potential molecular mechanisms. We found that MEHP impeded the growth of zebrafish embryos and the neurodevelopmental-related gene expression at environmentally relevant concentrations. MEHP exposure also induces oxidative stress response and brain cell apoptosis accompanied by a decrease in acetylcholinesterase (AChE) activity in zebrafish larvae. RNA-Seq and bioinformatics analysis showed that MEHP treatment altered the nervous system, neurogenic diseases, and visual perception pathways. The locomotor activity in dark-to-light cycles and phototaxis test confirmed the abnormal neural behavior of zebrafish larvae. Besides, the immune system has produced a large number of differentially expressed genes related to neural regulation. Inflammatory factor IL1β and IL-17 signaling pathways highly respond to MEHP, indicating that inflammation caused by immune system imbalance is a potential mechanism of MEHP-induced neurotoxicity. This study expands the understanding of the toxicity and molecular mechanisms of MEHP, providing a new perspective for in-depth neurotoxicity exploration of similar compounds.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Bo Huo
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Qi-Ping Tang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jin-Xia Wang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Ling Liao
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Sun Q, Zhang S, Zhang BY, Zhang Y, Yao L, Hu J, Zhang HH. microRNA-181a contributes to gastric hypersensitivity in rats with diabetes by regulating TLR4 expression. Mol Pain 2023; 19:17448069231159356. [PMID: 36750423 PMCID: PMC9989404 DOI: 10.1177/17448069231159356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Aim: The aim of this study is to investigate the mechanism and interaction of microRNA-181a (miR-181a), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) in gastric hypersensitivity in diabetic rats. Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in female SD rats. Gastric balloon distension technique was used to measure diabetic gastric hypersensitivity. Gastric-specific (T7-T10) dorsal root ganglion (DRG) neurons were acutely dissociated to measure excitability with patch-clamp techniques. Western blotting was employed to measure the expressions of TLR4, TRAF6 and NF-κB subunit p65 in T7-T10 DRGs. The expressions of microRNAs in T7-T10 DRGs were measured with quantitative real-time PCR and fluorescence in situ hybridization. Dual-luciferase reporter gene assay was used to detect the targeting regulation of microRNAs on TLR4. Results: (1) Diabetic rats were more sensitive to graded gastric balloon distention at 2 and 4 weeks. (2) The expression of TLR4 was significantly up-regulated in T7-T10 DRGs of diabetic rats. Intrathecal injection of CLI-095 (TLR4-selective inhibitor) attenuated diabetic gastric hypersensitivity, and markedly reversed the hyper-excitability of gastric-specific DRG neurons. (3) The expressions of miR-181a and miR-7a were significantly decreased in diabetic rats. MiR-181a could directly regulate the expression of TLR4, while miR-7a couldn't. (4) Intrathecal injection of miR-181a agomir down-regulated the expression of TLR4, reduced the hyper-excitability of gastric-specific neurons, and alleviated gastric hypersensitivity. (5) p65 and TLR4 were co-expressed in Dil-labeled DRG neurons. (6) Inhibition of p65 attenuated diabetic gastric hypersensitivity and hyper-excitability of gastric-specific DRG neurons. (7) The expression of TRAF6 was significantly up-regulated in diabetic rats. CLI-095 treatment also reduced the expression of TRAF6 and p65. Conclusion: The reduction of microRNA-181a in T7-T10 DRGs might up-regulate TLR4 expression. TLR4 activated NF-κB through MyD88-dependent signaling pathway, increased excitability of gastric-specific DRG neurons, and contributed to diabetic gastric hypersensitivity.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Pain Medicine, Institute of Neuroscience, 12582Soochow University, Suzhou, China
| | - Shiyu Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Bing-Yu Zhang
- Department of Emergency, 199193The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yilian Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Lijun Yao
- Department of Endocrinology, 602846The Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Ji Hu
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China.,Clinical Research Center of Neurological Disease, 12582The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Lu X, Gong C, Lv K, Zheng L, Li B, Zhao Y, Lu H, Wei T, Huang J, Li R. Impacts of combined exposure to formaldehyde and PM 2.5 at ambient concentrations on airway inflammation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120234. [PMID: 36195197 DOI: 10.1016/j.envpol.2022.120234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Asthma is a respiratory disease that can be exacerbated by certain environmental factors. Both formaldehyde (FA) and PM2.5, the most common indoor and outdoor air pollutants in mainland China, are closely associated with the onset and development of asthma. To date, however, there is very little report available on whether there is an exacerbating effect of combined exposure to FA and PM2.5 at ambient concentrations. In this study, asthmatic mice were exposed to 1 mg/m3 FA, 1 mg/kg PM2.5, or a combination of 0.5 mg/m3 FA and 0.5 mg/kg PM2.5, respectively. Results demonstrated that both levels of oxidative stress and inflammation were significantly increased, accompanied by an obvious decline in lung function. Further, the initial activation of p38 MAPK and NF-κB that intensified the immune imbalance of asthmatic mice were found to be visibly mitigated following the administration of SB203580, a p38 MAPK inhibitor. Noteworthily, it was found that combined exposure to the two at ambient concentrations could significantly worsen asthma than exposure to each of the two alone at twice the ambient concentration. This suggests that combined exposure to formaldehyde and PM2.5 at ambient concentrations may have a synergistic effect, thus causing more severe damage in asthmatic mice. In general, this work has revealed that the combined exposure to FA and PM2.5 at ambient concentrations can synergistically aggravate asthma via the p38 MAPK pathway in mice.
Collapse
Affiliation(s)
- Xianxian Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China; Department of Materials and Architectural Engineering, Hebei Institute of Mechanical and Electrical Technology, Xingtai, 054002, China
| | - Cunyi Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ke Lv
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lifang Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Beibei Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuanteng Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haonan Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Tingting Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jiawei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
8
|
Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. Physiol Behav 2022; 254:113919. [PMID: 35858673 DOI: 10.1016/j.physbeh.2022.113919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
Overweight and obesity are associated with an increased risk of developing dementia and cognitive deficits. Neuroinflammation is one of the most important mechanisms behind cognitive impairment in obese patients. In recent years, the neuroendocrine hormone melatonin has been suggested to have therapeutic effects for memory decline in several neuropsychiatric and neurological conditions. However, the effects of melatonin on cognitive function under obesity conditions still need to be clarified. The purpose of this study was to determine whether melatonin treatment can improve cognitive impairment in obese mice. To this end, male C57BL6 mice were treated with a high-fat diet (HFD) for 20 weeks to induce obesity. The animal received melatonin for 8 weeks. Cognitive functions were evaluated using the Y maze, object recognition test, and the Morris water maze. We measured inflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-17A, and brain-derived neurotrophic factor (BDNF) in the hippocampus of obese mice. Our results show that HFD-induced obesity significantly impaired working, spatial and recognition memory by increasing IFN-γ and IL-17A and decreasing BDNF levels in the hippocampus of mice. On the other hand, melatonin treatment effectively improved all cognitive impairments and reduced TNF-α, IFN-γ, and IL-17A and elevated BDNF levels in the hippocampus of obese mice. Taken together, this study suggests that melatonin treatment could have a beneficial role in the treatment of cognitive impairment in obesity.
Collapse
|
9
|
Han J, Xu D, Xu D, Yang X, Wang Q, Chen M, Xia W, Xing W, Xu C, Liu Y, Chang J, Fu W, Hao S, Li N, Dong X, Li Y, Meng C, Liu J. Air Pollution Health Impact Monitoring and Health Risk Assessment Technology and Its Application - China, 2006-2019. China CDC Wkly 2022; 4:577-581. [PMID: 35919456 PMCID: PMC9339357 DOI: 10.46234/ccdcw2022.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Air pollution is a significant risk factor contributing to the burden of disease in China. Health risk assessment and management are important to reduce the impact of air pollution on public health. To help formulate standardized health risk assessment techniques, a series of studies were conducted from 2006 to 2019. Through systematic review, study of molecular mechanisms, epidemiological investigation, and health effect monitoring, the overall project established a monitoring and evaluation indicator system, a comprehensive information platform, software for automatic data cleaning, and standardized health risk assessment techniques. Technical specifications have been issued by the National Health Commission for promoting health risk assessments across China. This paper introduces the project, the research approach, its main research accomplishments, innovations, and public health significance, and describes directions for further research.
Collapse
Affiliation(s)
- Jingxiu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Donggang Xu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan City, Hubei Province, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan City, Hubei Province, China
| | - Wenrong Xia
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Weiwei Xing
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Chunyu Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junrui Chang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenliang Fu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Shuxin Hao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyan Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunpu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Congshen Meng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingyi Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
10
|
Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022; 30:1569-1596. [PMID: 35665873 PMCID: PMC9167428 DOI: 10.1007/s10787-022-01011-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful in controlling the microbiota. CONCLUSION Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.
Collapse
|
11
|
Xiao S, Wang Q, Gao H, Zhao X, Zhi J, Yang D. Dexmedetomidine alleviates airway hyperresponsiveness and allergic airway inflammation through the TLR4/NF‑κB signaling pathway in mice. Mol Med Rep 2022; 25:74. [PMID: 35014685 PMCID: PMC8778652 DOI: 10.3892/mmr.2022.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dexmedetomidine (DEX) suppresses inflammatory responses and protects against organ injury. The aim of the present study was to investigate the effect of DEX on airway hyperresponsiveness (AHR) and allergic airway inflammation, as well as its underlying mechanism of action in a murine model of ovalbumin (OVA)-induced asthma. A total of 30 female BALB/c mice were divided into 6 groups (n=5 mice/group): Control, OVA, OVA + DEX (20, 30 or 50 µg/kg) and OVA + TAK-242 [a toll-like receptor 4 (TLR4) inhibitor]. The mice were intraperitoneally injected with 20, 30 or 50 µg/kg DEX 1 h before OVA challenge. AHR to inhaled methacholine (Mch) was measured, and the mice were sacrificed 24 h after the last challenge. AHR following Mch inhalation was measured using the FlexiVent apparatus. Hematoxylin and eosin, periodic acid-Schiff and Wright-Giemsa staining was performed to evaluate inflammatory cell infiltration in the lung tissue. The levels of IL-4, IL-5 and IL-13 in the bronchoalveolar lavage fluid were analyzed using ELISA, and their mRNA expression levels in the lung tissue were examined using reverse transcription-quantitative PCR. The protein expression of TLR4, NF-κB and phosphorylated (p)NF-κB in the lung tissue was also detected using immunohistochemistry. In the murine OVA-induced asthma model, DEX decreased AHR following Mch inhalation and reduced the infiltration of inflammatory cells. IL-4, IL-5 and IL-13 levels in the bronchoalveolar lavage fluid were significantly lower following DEX treatment. Furthermore, DEX treatment inhibited the expression of TLR4, NF-κB and p-NF-κB in the lung tissue and exhibited a similar effect to TAK-242 treatment. In conclusion, DEX may attenuate AHR and allergic airway inflammation by inhibiting the TLR4/NF-κB pathway. These results suggested that DEX may represent a potential anti-inflammatory agent for the treatment and management of patients with asthma.
Collapse
Affiliation(s)
- Shilin Xiao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Qianyu Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Huibin Gao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Xumin Zhao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Juan Zhi
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| |
Collapse
|
12
|
Oluranti OI, Alabi BA, Michael OS, Ojo AO, Fatokun BP. Rutin prevents cardiac oxidative stress and inflammation induced by bisphenol A and dibutyl phthalate exposure via NRF-2/NF-κB pathway. Life Sci 2021; 284:119878. [PMID: 34384828 DOI: 10.1016/j.lfs.2021.119878] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 01/22/2023]
Abstract
AIM Environmental pollutants such as plastic-component substances (phthalates and bisphenol A) that coexist in natural ecosystems have been linked to an increase in the occurrence of human health hazards, particularly cardiovascular health. This study was designed to investigate single and combined cardio-toxic effects of dibutyl phthalate and bisphenol-A and the possible interventional role of rutin. MATERIALS AND METHODS Forty-two rats were randomized into 7 groups of 6 animals each and were treated as follows for 28 days: Control (0.1% DMSO), Bisphenol-A (BPA, 25 mg/kg, p.o), Dibutyl phthalate (DBP, 25 mg/kg, p.o), BPA + Rutin (25 mg/kg, Rt 50 mg/kg), DBP + Rt (25 mg/kg, Rt 50 mg/kg), BPA + DBP, BPA + DBP + Rt. Cardiac lipid peroxidation, antioxidants and inflammatory markers activities were measured. KEY FINDINGS The result showed that BPA reduced the superoxide dismutase (SOD) activity, DBP and DBP+ BPA reduced the catalase (CAT) activity, DBP reduced glutathione (GSH) and nuclear factor erythroid 2-related factor 2 (Nrf2) while malondialdehyde (MDA) increased in DBP + BPA group. Also, DBP increased tissue C-reactive protein (CRP); DBP, DBP + BPA increased tissue nuclear factor kappa B (NF-κB); DBP + BPA increased plasma CRP; BPA increased plasma NF-κB. However, rutin efficiently reduced MDA level, CRP and NF-κB; increasing SOD, GSH and Nrf2 levels in DBP and BPA exposed rats. SIGNIFICANCE These results revealed that bisphenol and dibutyl phthalate exposure caused oxidative stress and inflammation in the heart through Nrf2/NF-κB signaling pathway while oral administration of rutin prevents these effects via upregulation of Nrf2 and suppression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Olufemi I Oluranti
- Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria.
| | - Babatunde A Alabi
- Department of Pharmacology and Therapeutics, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Olugbenga S Michael
- Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Alaba O Ojo
- Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Bosede P Fatokun
- Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| |
Collapse
|
13
|
Jędruchniewicz K, Ok YS, Oleszczuk P. COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125938. [PMID: 34010776 PMCID: PMC8076738 DOI: 10.1016/j.jhazmat.2021.125938] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
The appearance of the virus SARS-CoV-2 at the end of 2019 and its spreading all over the world has caused global panic and increase of personal protection equipment usage to protect people against infection. Increased usage of disposable protective gloves, their discarding to random spots and getting to landfills may result in significant environmental pollution. The knowledge concerning possible influence of gloves and potential of gloves debris on the environment (water, soil, etc.), wildlife and humans is crucial to predict future consequences of disposable gloves usage caused by the pandemic. This review focuses on the possibility of chemical release (heavy metals and organic pollutants) from gloves and gloves materials, their adsorptive properties in terms of contaminants accumulation and effects of gloves degradation under environmental conditions.
Collapse
Affiliation(s)
- Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
14
|
Huang D, Cao Y, Zu T, Ju J. Interference with long noncoding RNA SNHG3 alleviates cerebral ischemia-reperfusion injury by inhibiting microglial activation. J Leukoc Biol 2021; 111:759-769. [PMID: 34411323 DOI: 10.1002/jlb.1a0421-190r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation plays a strong part in cerebral ischemia-reperfusion injury, and microglial activation is regarded as a marker for neuroinflammation. Long noncoding RNA small nucleolar RNA host gene 3 (lncRNA SNHG3) is heavily expressed in cerebral ischemia-reperfusion models, but its mechanism is rarely studied. This study aims to explore whether SNHG3 is involved in cerebral ischemia-reperfusion injury by promoting microglial activation and inflammatory factor secretion. Activation of microglia was induced through oxygen-glucose deprivation/reoxygenation (OGD/R) or LPS and the cerebral ischemia-reperfusion injury in mice was induced by transient middle cerebral artery occlusion (tMCAO). Levels of SNHG3, IL-6, and TNF-α were determined by quantitative real-time PCR. Immunofluorescence was used for the detection of Iba-1 expression. Western blot was carried out for the detection of Iba-1 and histone deacetylase 3 (HDAC3) protein levels. An ELISA was performed to detect TNF-α and IL-6 levels. RNA pull-down, RNA immunoprecipitation, and co-Immunoprecipitation assays were conducted to detect the binding between SNHG3 and HDAC3. A H&E staining assay was applied to observe pathologic changes. Microglial activation was observed with immunohistochemistry. Levels of SNHG3, microglial activation marker Iba-1, proinflammatory factors (TNF-α and IL-6) were highly expressed in cell models (treated with OGD/R or LPS) and mouse models (tMCAO). Besides, SNHG3 could bind to HDAC3 and promote its expression. Through further study, we found that SNHG3 could stabilize the protein levels of HDAC3 and inhibit the ubiquitination of HDAC3. Furthermore, interference with SNHG3 down-regulated the levels of HDAC3, Iba-1, TNF-α, and IL-6, whereas the overexpression of HDAC3 reversed the results. The H&E staining assay demonstrated that the condition of vacuoles of different sizes, uneven cytoplasmic staining, and inflammatory infiltration in the brain tissue was improved by interference with SNHG3. The immunohistochemistry result showed that microglial activation marker Iba-1 was increased in the shRNA-SNHG3 group, indicating that interference with SNHG3 inhibited the activation of microglia in the brain. LncRNA SNHG3 aggravated cerebral ischemia-reperfusion injury by promoting the activation of microglia, increasing the levels of HDAC3, and the secretion of inflammatory factors.
Collapse
Affiliation(s)
- Dezhang Huang
- Department of Neurosurgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yanbin Cao
- Department of Neurosurgery, Weihai Municipal Hospital, Weihai, China
| | - Tingting Zu
- Department of Intensive Care Unit, Shouguang People's Hospital, Shouguang, China
| | - Jianghua Ju
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Mohammadi H, Ashari S. Mechanistic insight into toxicity of phthalates, the involved receptors, and the role of Nrf2, NF-κB, and PI3K/AKT signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35488-35527. [PMID: 34024001 DOI: 10.1007/s11356-021-14466-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The wide use of phthalates, as phthalates are used in the manufacturing of not only plastics but also many others goods, has become a main concern in the current century because of their potency to induce deleterious effects on organism health. The toxic effects of phthalates such as reproductive toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, teratogenicity, and tumor development have been widely indicated by previous experimental studies. Some of the important mechanisms of toxicity by phthalates are the induction and promotion of inflammation, oxidative stress, and apoptosis. Awareness of the involved molecular pathways of these mechanisms will permit the detection of exact molecular targets of phthalates to protect or treat their toxicity. Up to now, various transcription factors and signaling pathways have been associated with phthalate-induced toxicity which by influencing on nuclear surface and the expression of different genes can alter cell hemostasis. In different studies, the role of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), and phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathways in processes of oxidative stress, inflammation, apoptosis, and cancer has been shown following exposure to phthalates. In the present review, we aim to survey experimental studies (in vitro and in vivo) in order to show firstly the most involved receptors and also the importance and the role of the mentioned signaling pathways in phthalate-induced toxicity, and with considering this point, the future studies can focus on these molecular targets as a strategic method to reduce environmental chemicals-induced toxicity especially phthalates toxic effects.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
16
|
Schisandrin B Attenuates Airway Inflammation by Regulating the NF- κB/Nrf2 Signaling Pathway in Mouse Models of Asthma. J Immunol Res 2021; 2021:8029963. [PMID: 34258300 PMCID: PMC8261176 DOI: 10.1155/2021/8029963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Asthma is a complex inflammatory disorder that plagues a large number of people. Schisandrin B is an active ingredient of the traditional Chinese herbal medicine Schisandra with various proven physiological activities such as anti-inflammatory and antioxidant activities. In this study, we explored the anti-inflammatory and antioxidant effects and provided the mechanistic insights into the activity of schisandrin B in a mouse model of ovalbumin- (OVA-) induced allergic asthma. Methods Male BALB/c mice were sensitized and challenged with OVA to induce asthma and treated with various doses (15 mg/kg, 30 mg/kg, and 60 mg/kg) of SCH to alleviate the features of allergic asthma, airway hyperresponsiveness, inflammatory response, OVA-specific immunoglobulin (Ig)E level, and pathological injury. Results Schisandrin B significantly attenuated the airway hyperresponsiveness induced by OVA. Moreover, schisandrin B administration suppressed inflammatory responses, reduced the level of IgE, and attenuated pathological injury. Mechanistically, schisandrin B treatment promoted the activation of nuclear erythroid 2-related factor 2 (Nrf2), but suppressed the stimulation of the NF-κB pathway caused by OVA. Conclusion Taken together, our study suggests that schisandrin B attenuates the features of asthmatic lungs by inhibiting the NF-κB pathway and activating the Nrf2 signaling pathway.
Collapse
|
17
|
Zhang Q, Hao L, Hong Y. Detrimental effects induced by diisononyl phthalate on development and behavior of Drosophila larva and potential mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108967. [PMID: 33412299 DOI: 10.1016/j.cbpc.2020.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
Diisononyl phthalate (DINP) as one of the most commonly used phthalates, has been found in various environmental samples and is considered to have potential risks to ecosystem. Till now, DINP has no clear effect consensus on insects from development to behavior and even mechanisms. Here, Drosophila melanogaster was selected as model organisms and the toxic effects of DINP (0.1%, 0.2%, 0.5% and 1.0%) (v/v) on its metamorphosis, crawling behavior, intestinal cells and cellular redox balance were investigated. During metamorphosis process, lower hatching rate, longer development time, lighter body weight and malformation were observed at high concentration groups. The crawling ability of larvae was severely inhibited by DINP and the movement distance was drastically reduced. DINP could cause severe damage to the larval intestinal cells in the dose-dependent and time-dependent manners. DINP was found to induce redox imbalance with activities of two important antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) increasing, and reactive oxygen species (ROS) level fluctuation in larvae. Our findings provide theoretical basis and data support for scientific management of DINP to reduce ecological risk.
Collapse
Affiliation(s)
- Qing Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lichong Hao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Song P, Yan B, Lei F, Qiu Z, Zhang C, Wu Y, Chen S, Yang X, Shen D, Ma P. Continuous artificial light at night exacerbates diisononyl phthalate-induced learning and memory impairment in mice: Toxicological evidence. Food Chem Toxicol 2021; 151:112102. [PMID: 33711377 DOI: 10.1016/j.fct.2021.112102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/01/2023]
Abstract
Previously, we reported that exposure to diisononyl phthalate (DINP) resulted in cognitive deficits and anxiety in mice (https://doi.org/10.1038/srep14676). Artificial light at night (ALAN) is now recognized as being a potential threat to human health. However, toxicological evidence concerning exposure to a combination of ALAN and DINP in vivo is limited. To this end, mice were orally exposed to different concentrations of DINP for 28 consecutive days, and ALAN (intensity 150 lux, every night for 12 h). The results showed that oxidative stress levels increased with increasing DINP exposure concentrations, which triggered apoptosis (Bcl-2 levels decreased, Bax levels increased), resulting in nerve cell damage and a decline in the learning and memory abilities of mice. The combined effects of ALAN and DINP exposure on the learning ability and memory of mice are more serious than for DINP exposure alone. The antioxidant vitamin E was shown to have a certain antagonistic effect on the oxidative damage caused by ALAN and DINP exposure. These results highlight a previously unknown relationship between exposure to ALAN and DINP-induced learning and memory impairment, and provide evidence that ALAN may be exacerbating the effects of DINP.
Collapse
Affiliation(s)
- Peng Song
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China; Five Senses Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| | - Biao Yan
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China.
| | - Fan Lei
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China
| | - Zhuonan Qiu
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China
| | - Chi Zhang
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China
| | - Yang Wu
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China.
| | - Shaohui Chen
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China.
| | - Xu Yang
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China.
| | - Dingwen Shen
- Five Senses Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| | - Ping Ma
- Laboratory of Environment-immunological and neurological diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning, 437100, PR China.
| |
Collapse
|
19
|
Godoi FGA, Forner-Piquer I, Randazzo B, Habibi HR, Lo Nostro FL, Moreira RG, Carnevali O. Effects of Di-Isononyl Phthalate (DiNP) on Follicular Atresia in Zebrafish Ovary. Front Endocrinol (Lausanne) 2021; 12:677853. [PMID: 34194395 PMCID: PMC8238463 DOI: 10.3389/fendo.2021.677853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Di-isononyl phthalate (DiNP) is a plasticizer reported to elicit hormone-like activity and disrupt metabolism and reproduction in fish and other vertebrates. In general, phthalates have been used at high concentrations beyond reported environmental levels to assess their adverse effects on fish gonadal physiology. The present study exposed adult female zebrafish to a wide range of DiNP concentrations [0.42 µg L-1 (10-9 M), 4.2 µg L-1 (10-8 M), and 42 µg L-1 (10-7 M)] for 21 days. We evaluated gene expression profiles related to apoptosis, autophagy, and oxidative stress; DNA fragmentation (TUNEL assay: terminal deoxynucleotidyl transferase dUTP nick end labeling) and caspase activity (CAS3) were also examined. Exposure to 0.42 and 4.2 µg L-1 upregulated the genes coding for tnfa and baxa, sod1, prkaa1, respectively. CAS3 immunohistochemistry revealed a higher number of positive vitellogenic oocytes in ovaries exposed to 0.42 µg L-1. Subsequently, we examined the relationship between CAS3 signaling and DNA fragmentation. Accordingly, DNA fragmentation was observed in vitellogenic follicles of fish exposed to 0.42 and 4.2 μg L-1. Our results demonstrate that follicular atresia can occur after exposure to environmental levels of DiNP for 21 days, which may adversely affect the reproductive performance of female zebrafish in a non-monotonic manner.
Collapse
Affiliation(s)
- Filipe G. Andrade Godoi
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica dele Marche, Ancona, Italy
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Cidade Universitária, São Paulo, Brazil
| | - Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica dele Marche, Ancona, Italy
| | - Basilio Randazzo
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica dele Marche, Ancona, Italy
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Fabiana L. Lo Nostro
- Laboratorio de Ecotoxicología Acuática, IBBEA, CONICET-UBA & DBBE, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Cidade Universitária, São Paulo, Brazil
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica dele Marche, Ancona, Italy
- Istituto Nazionale Biostrutture Biosistemi, Consorzio Interuniversitario di Biosistemi e Biostrutture, Rome, Italy
- *Correspondence: Oliana Carnevali,
| |
Collapse
|
20
|
Zhang Q, Hao LC, Hong Y. Exposure evaluation of diisononyl phthalate in the adults of Drosophila melanogaster: Potential risks in fertility, lifespan, behavior, and modes of action. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108847. [PMID: 32781294 DOI: 10.1016/j.cbpc.2020.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
Diisononyl phthalate (DINP) as a phthalate plasticizer is widely used in daily life and production, which shows endocrine disruption effects and has several adverse effects on the normal physiological function. Here, the effects of DINP (0.1%, 0.2%, 0.5%, and 1.0%) (v/v) on the fertility, lifespan, climbing behavior, anti-starvation ability of Drosophila melanogaster and the potential modes of action were investigated. The results showed that DINP impaired fertility in a dose-dependent manner and smaller ovarian volume, lower hatching rate, and fewer offspring was observed at higher concentrations. The effect of DINP on the lifespan showed gender-specific, and mortality was increased after exposure above 0.2% DINP. The climbing ability increased at 0.1% DINP compared with the vehicle group, while it manifested a dose-dependent decrease at higher concentrations. The anti-starvation ability exhibited hormesis after short-term culture and reduced as culture time extending. By measuring the redox status (catalase (CAT) and reactive oxygen species (ROS)) of adult flies after two exposure methods, it was found that DINP induced redox instability, which may explain the above effects at the molecular level. This study provides data to support a comprehensive analysis of DINP potential toxicity and to guide its rational use and management better.
Collapse
Affiliation(s)
- Qing Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li-Chong Hao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Yang S, Arcanjo RB, Nowak RA. The effects of the phthalate DiNP on reproduction†. Biol Reprod 2020; 104:305-316. [PMID: 33125036 DOI: 10.1093/biolre/ioaa201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/12/2023] Open
Abstract
Di-isononyl phthalate (DiNP) is a high molecular weight, general purpose, plasticizer used primarily in the manufacture of polymers and consumer products. It can be metabolized rapidly and does not bioaccumulate. The primary metabolite of DiNP is monoisononyl-phthalate (MiNP) and the secondary metabolites include three oxidative derivatives of DiNP, which have been identified mainly in urine: mono-oxoisononyl phthalate (MOINP or oxo-MiNP), mono-carboxyisooctyl phthalate (MCIOP, MCOP or cx-MiNP), and mono-hydroxyisononyl phthalate (MHINP or OH-MiNP). The secondary metabolites are very sensitive biomarkers of DiNP exposure while primary metabolites are not. As the usage of DiNP worldwide increases, studies evaluating its potential reproductive toxicity are becoming more prevalent in the literature. In studies on female animals, the researchers found that the exposure to DiNP appears to induce negative effects on ovarian function and fertility in animal models. Whether or not DiNP has direct effects on the uterus is still controversial, and the effects on human reproduction require much more research. Studies on males indicate that DiNP exposure has disruptive effects on male reproduction and fertility. Occupational studies also indicate that the exposure to DiNP might induce negative effects on male reproduction, but larger cohort studies are needed to confirm this. This review presents an overview of the literature regarding the reproductive effects of exposure to DiNP.
Collapse
Affiliation(s)
- Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
22
|
Zhou S, Han M, Ren Y, Yang X, Duan L, Zeng Y, Li J. Dibutyl phthalate aggravated asthma-like symptoms through oxidative stress and increasing calcitonin gene-related peptide release. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110740. [PMID: 32446102 DOI: 10.1016/j.ecoenv.2020.110740] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most ubiquitous phthalate esters found in everyday products, and is receiving increased attention as an immunologic adjuvant. However, information regarding DBP-aggravated allergic asthma is still limited. This study used a mouse model sensitized with ovalbumin (OVA) to determine any adverse effects of DBP on allergic asthma. Our results reveal that allergic asthmatic mice exposed to DBP for an extended period had a significant increase in inflammatory cell infiltration; a significant increase in levels of serum immunoglobulin and T helper 2 cell (Th2) and T helper 17 cell (Th17) cytokines in lung tissue; and significant changes in lung histology and AHR, all of which are typical asthmatic symptoms. The levels of oxidative stress and levels of the neuropeptide, calcitonin gene related peptide (CGRP), were also elevated after DBP exposure. Interestingly, blocking oxidative stress by administering melatonin (MT) not only reduced oxidative stress and CGRP levels, but also ameliorated the asthmatic symptoms. Collectively, these results show that DBP exacerbates asthma-like pathologies by increasing the expression of CGRP mediated by oxidative stress.
Collapse
Affiliation(s)
- Sangyu Zhou
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Man Han
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yaolin Ren
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Liju Duan
- School of Public Health, Huazhong University of Science and Technology, Wuhan, 430030, 430079, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
23
|
Bernardini L, Barbosa E, Charão MF, Brucker N. Formaldehyde toxicity reports from in vitro and in vivo studies: a review and updated data. Drug Chem Toxicol 2020; 45:972-984. [PMID: 32686516 DOI: 10.1080/01480545.2020.1795190] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formaldehyde (FA) is a xenobiotic air pollutant and its universal distribution causes a widespread exposure to humans. This review aimed to bring updated information concerning FA toxicity in humans and animals based on in vitro and in vivo studies from 2013 to 2019. Researches were carried out in Pubmed, Scopus, and Science Direct databases to determine the effects of FA exposure on inflammation, oxidative stress and genotoxicity in experimental studies with animals (rats and mice) and humans. Besides, in vitro studies assessing FA cytotoxicity focusing on cell viability and apoptosis in different cell line cultures were reviewed. Studies with humans gave evidence regarding significant deleterious effects on health associated to chronic FA occupational exposure. Evaluations carried out in experimental studies showed toxic effects on different organs as lung, upper respiratory tract, bone marrow and brain as well as in cells. In summary, this study demonstrates that knowing the mechanisms underlying FA toxicity is essential to understand the deleterious effects that this xenobiotic causes on biological systems.
Collapse
Affiliation(s)
- Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eduardo Barbosa
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
24
|
Antunes GL, Silveira JS, Kaiber DB, Luft C, Dos Santos TM, Marques EP, Ferreira FS, Schmitz F, de Souza Wyse AT, Stein RT, Pitrez PM, da Cunha AA. Neostigmine treatment induces neuroprotection against oxidative stress in cerebral cortex of asthmatic mice. Metab Brain Dis 2020; 35:765-774. [PMID: 32189127 DOI: 10.1007/s11011-020-00558-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
During chronic inflammatory disease, such asthma, leukocytes can invade the central nervous system (CNS) and together with CNS-resident cells, generate excessive reactive oxygen species (ROS) production as well as disbalance in the antioxidant system, causing oxidative stress, which contributes a large part to neuroinflammation. In this sense, the aim of this study is to investigate the effects of treatment with neostigmine, known for the ability to control lung inflammation, on oxidative stress in the cerebral cortex of asthmatic mice. Female BALB/cJ mice were submitted to asthma model induced by ovalbumin (OVA). Control group received only Dulbecco's phosphate-buffered saline (DPBS). To evaluate neostigmine effects, mice received 80 μg/kg of neostigmine intraperitoneally 30 min after each OVA challenge. Our results revealed for the first time that treatment with neostigmine (an acetylcholinesterase inhibitor that no crosses the BBB) was able to revert ROS production and change anti-oxidant enzyme catalase in the cerebral cortex in asthmatic mice. These results support the communication between the peripheral immune system and the CNS and suggest that acetylcholinesterase inhibitors, such as neostigmine, should be further studied as possible therapeutic strategies for neuroprotection in asthma.
Collapse
Affiliation(s)
- Géssica Luana Antunes
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Josiane Silva Silveira
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Daniela Benvenutti Kaiber
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Carolina Luft
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Tiago Marcon Dos Santos
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Eduardo Peil Marques
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Fernanda Silva Ferreira
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Felipe Schmitz
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Angela Terezinha de Souza Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Renato Tetelbom Stein
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Paulo Márcio Pitrez
- Infant Center, Institutional Research Coordinator, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Aline Andrea da Cunha
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
25
|
Bu Z, Xu X, Xu Q, Mmereki D, Wang J, Cheng Z, Li K, Dong C. Indoor polybrominated diphenyl ethers in urban China: An exposure and risk assessment based on settled dust from selected urban regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136808. [PMID: 31982732 DOI: 10.1016/j.scitotenv.2020.136808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, measurements of seven typical polybrominated diphenyl ethers (PBDEs) in indoor settled dust were summarized in selected urban regions of China. BDE-209 was the most dominant congener in settled dust (1.4-101 μg/g), with a mean contribution of 95%. Indoor exposures to PBDEs were estimated via inhalation, dust ingestion, and dermal absorption. The average daily intake of ΣPBDE was 4.9 to 19.1 ng/day/kg for all the population groups, with >80% of the total exposures from dust ingestion. Exposures in commuting environments (contributing 60%-80% of the total exposures) were higher than those in other microenvironments. The means of hazard indexes ranged from 1.66 × 10-3 to 5.26 × 10-3, which were mainly as a result of exposure to BDE-209, BDE-47, and BDE-99. The average lifetime cancer risks were from 0.03 × 10-9 to 2.37 × 10-9, which indicated the acceptable health risks resulting from indoor PBDE exposure for the Chinese population. The present study could provide valuable information that could be helpful for decision-makers, analysts and researchers to develop, implement and evaluate the effectiveness of interventions for the reduction of exposures to semi-volatile organic compounds (SVOCs) for large population groups in China.
Collapse
Affiliation(s)
- Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaoxue Xu
- Hangzhou Architectural and Civil Engineering Design Institute Company Limited, Hangzhou 310020, China
| | - Qi Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daniel Mmereki
- Occupational Health Division, School of Public Health, University of the Witwatersrand, Parktown Education Campus, 2193 Johannesburg, South Africa
| | - Jiahui Wang
- Institute of Urban Construction, Hangzhou Polytechnic, Hangzhou 311402, China
| | - Zhu Cheng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Ke Li
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
26
|
Wei X, Sun C, Zhou RP, Ma GG, Yang Y, Lu C, Hu W. Nerve growth factor promotes ASIC1a expression via the NF-κB pathway and enhances acid-induced chondrocyte apoptosis. Int Immunopharmacol 2020; 82:106340. [PMID: 32146316 DOI: 10.1016/j.intimp.2020.106340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Nerve growth factor (NGF) is a neurotrophic factor that is thought to have a broad role in the nervous system and tumors, and has recently been described as a mediator of inflammation. It is not clear whether or not NGF participates in apoptosis of articular chondrocytes. In this study, we determined if NGF affects ASIC1a expression and NF-κB P65 activation in rat chondrocytes, and measured the effectiveness of NGF on apoptotic protein expression in acid-induced chondrocytes. NGF was shown to up-regulate the level of ASIC1a in a dose- and time-dependent fashion. Simultaneously, NGF activated NF-κB P65 in chondrocytes. Additionally, the elevated ASIC1a expression induced by NGF was eliminated by the NF-κB inhibitor (PDTC) in chondrocytes. Moreover, NGF reduced cell viability and induced LDH release under the premise of acid-induced articular chondrocytes. Furthermore, NGF could enhance cleaved-caspase 9 and cleaved-PARP expression in acid-pretreated chondrocytes, and which could be inhibited by using psalmotoxin 1(PcTX1) or PDTC. Together, these results indicated that NGF may up-regulate ASIC1a expression through the NF-κB signaling pathway, and further promote acid-induced apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Sun
- Department of Pharmacology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
27
|
Duan J, Xie J, Deng T, Xie X, Liu H, Li B, Chen M. Exposure to both formaldehyde and high relative humidity exacerbates allergic asthma by activating the TRPV4-p38 MAPK pathway in Balb/c mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113375. [PMID: 31662264 DOI: 10.1016/j.envpol.2019.113375] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Some studies have indicated that formaldehyde, a ubiquitous environmental pollutant, can induce or aggravate allergic asthma. Epidemiological studies have also shown that the relative humidity indoors may be an independent and a key factor associated with the aggravation of allergic asthma. However, the synergy of humidity and formaldehyde on allergic asthma and the mechanism underlying this effect remain largely unknown. In this study, we aim to determine the effect of high relative humidity and/or formaldehyde exposure on allergic asthma and explore the underlying mechanisms. Male Balb/c mice were modeled with ovalbumin (OVA) and exposure to 0.5 mg/m3 formaldehyde and/or different relative humidity (60%/75%/90%). Histopathological changes, pulmonary function, Th1/Th2 balance, the status of mucus hypersecretion and the levels of inflammatory factors were detected to assess the exacerbation of allergic asthma. The levels of the transient receptor potential vanilloid 4 (TRPV4), calcium ion and the activation of p38 mitogen-activated protein kinases (p38 MAPK) were detected to explore the underlying mechanisms. The results showed that exposure to high relative humidity or to 0.5 mg/m3 formaldehyde alone had a slight, but not significant, affect on allergic asthma. However, the pathological response and airway hyperresponsiveness (AHR) were greatly aggravated by simultaneous exposure to 0.5 mg/m3 formaldehyde and 90% relative humidity. Blocking TRPV4or p38 MAPK using HC-067047 and SB203580 respectively, effectively alleviated the exacerbation of allergic asthma induced by this simultaneous exposure to formaldehyde and high relative humidity. The results show that when formaldehyde and high relative humidity are present this can enhance the activation of the TRPV4 ion channel in the lung leading to the aggravation of the p38 MAPK activation, resulting in the exacerbation of inflammation and hypersecretion of mucus in the airways.
Collapse
Affiliation(s)
- Jiufei Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Jing Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xiaoman Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Hong Liu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
28
|
Zhang L, Sun W, Duan X, Duan Y, Sun H. Promoting differentiation and lipid metabolism are the primary effects for DINP exposure on 3T3-L1 preadipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113154. [PMID: 31546122 DOI: 10.1016/j.envpol.2019.113154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 05/13/2023]
Abstract
Diisononyl phthalate (DINP) is a high-molecular-weight phthalate, and has been recently introduced as di-(2-ethyl hexyl) phthalate (DEHP) substitute and commonly used in a large variety of plastic items. The fat tissue is an important target for DINP exposure, however, very little is understood about its toxicity and mechanism(s) in adipocyte cells. Therefore, the present work aimed to investigate the role of DINP in adipogenesis using 3T3-L1 preadipocytes. DINP exposure for 10 days extensively induced adipogenesis in 3T3-L1 preadipocytes to adipocytes as assessed by lipid accumulation and gene expression of adipogenic markers. The RT-qPCR results showed that DINP could upregulate the expression of peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα) and C/EBPβ, while the expression of sterol regulatory element binding transcription factor 1 (SREBF1) and C/EBPδ was not affected. The DINP-induced adipogenesis could be inhibited by using the selective PPARγ antagonist GW9662. The RNA-seq analysis was used to study the systemic toxicities of DINP on preadipocytes. A total of 1181 differently expressed genes (DEGs) (640 genes were up-regulated, 541 genes were down-regulated) were detected in 3T3-L1 preadipocytes under 50 μM DINP. The GO enrichment showed the GO term of "fat cell differentiation" was the most significantly affected metabolic functions, and the KEGG pathway enrichment showed the PPAR pathway was the top affected pathway. The interactive pathway (iPath) analysis showed that the changed metabolic pathways were focus on the lipid metabolism.
Collapse
Affiliation(s)
- Lianying Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Weijie Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoyu Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Xie X, Deng T, Duan J, Ding S, Yuan J, Chen M. Comparing the effects of diethylhexyl phthalate and dibutyl phthalate exposure on hypertension in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:75-82. [PMID: 30822670 DOI: 10.1016/j.ecoenv.2019.02.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Epidemiological studies have shown that high molecular weight phthalates (HMW) such as diethylhexyl phthalate (DEHP), are associated with hypertension in humans, while low molecular weight phthalates (LMW) such as dibutyl phthalate (DBP), have hardly any impact on the elevation of blood pressure. However, the molecular mechanisms responsible for this difference are not completely understood. In this experiment, mice were exposed to 0.1/1/10 mg/kg/day DEHP and 0.1/1/10 mg/kg/day DBP for 6 weeks, and their blood pressure was monitored using the tail pressure method. The results showed that exposure to DEHP dosages of 1 or 10 mg/kg/day resulted in a sharp increase in blood pressure, while exposure to DBP did not induce any significant changes in blood pressure. Investigating the renin-angiotensin-aldosterone system (RAAS) and NO pathway in mice exposed to DEHP, we found that levels of angiotensin-converting enzyme (ACE) and angiotensin II (AngII) increased with increasing exposure to DEHP, and the expression of nitric oxide synthase (eNOS) and the level of NO decreased. Treatment with ACE inhibitor (ACEI) to block the ACE pathway inhibited the enhancement of RAAS expression, inhibited the increase in blood pressure, and inhibited the decrease in NO levels induced by DEHP. However, the expression of ACE, AngII, AT1R, and eNOS in the DBP treatment groups showed no significant changes. When examining estradiol in vivo, we found that exposure to DBP resulted in a significant increase in the level of estradiol, while exposure to DEHP did not lead to a significant change. When ICI182780 was used to block the estradiol receptors, any increase in the level of NO induced by DBP exposure, was inhibited. These results indicate that exposure to DEHP induces an increase in mouse blood pressure through RAAS, and the different effects of DEHP and DBP on blood pressure are partly due to the different estradiol levels induced by DEHP and DBP.
Collapse
Affiliation(s)
- Xiaoman Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jiufei Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Junlin Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
30
|
Hydrogen Sulfide Inhibits Formaldehyde-Induced Senescence in HT-22 Cells via Upregulation of Leptin Signaling. Neuromolecular Med 2019; 21:192-203. [DOI: 10.1007/s12017-019-08536-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
|
31
|
Liu L, Huang Y, Feng X, Chen J, Duan Y. Overexpressed Hsp70 alleviated formaldehyde-induced apoptosis partly via PI3K/Akt signaling pathway in human bronchial epithelial cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:495-504. [PMID: 30600586 DOI: 10.1002/tox.22703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Formaldehyde (FA) is a ubiquitous environmental pollutant, which can induce apoptosis in lung cell and is related to the pathogenesis of asthma, pneumonia, and chronic obstructive pulmonary disease. Heat shock protein 70 (Hsp70) is an ATP-dependent molecular chaperone and exhibits an anti-apoptosis ability in a variety of cells. Previous studies reported that the expression of Hsp70 was induced when organisms were exposed to FA. Whether Hsp70 plays a role in the FA-induced apoptosis and the involved cell signaling pathway remain largely unknown. In this study, human bronchial epithelial cells with overexpressed Hsp70 and the control were exposed to different concentrations of FA (0, 40, 80, and 160 μmol/L) for 24 hours. Apoptosis and the expression levels of PI3K, Akt, p-Akt, MEK, p-MEK, and GLI2 were detected by Annexin-APC/7AAD double-labeled flow cytometry and western blot. The results showed that overexpression of Hsp70 decreased the apoptosis induced by FA and alleviated the decline of PI3k and p-Akt significantly. Inhibitor (LY 294002, a specific inhibitor of PI3K-Akt) test result indicated that PI3K-Akt signaling pathway was involved in the inhibition of FA-induced apoptosis by Hsp70 overexpression and also active in the maintenance of GLI2 level. However, it also suggested that other signaling pathways activated by overexpressed Hsp70 participated in this process, which was needed to be elucidated in further research.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yun Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Experimental Center for Preventive Medicine, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
32
|
|
33
|
Wang C, Choi YH, Xian Z, Zheng M, Piao H, Yan G. Aloperine suppresses allergic airway inflammation through NF-κB, MAPK, and Nrf2/HO-1 signaling pathways in mice. Int Immunopharmacol 2018; 65:571-579. [PMID: 30415164 DOI: 10.1016/j.intimp.2018.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023]
Abstract
To explore the effects of aloperine (ALO) on allergic airway inflammation, we investigated whether its mechanism is related with NF-κB, MAPK, and Nrf2/HO-1 signaling pathways. Histochemical staining and inflammatory cell count were used to observe lung histopathological changes in mice. ELISA was used to detect the content of inflammatory cytokines and IgE in the mouse bronchoalveolar lavage fluid (BALF). Airway hyperresponsiveness (AHR) to inhale methacholine was measured by the plethysmography in conscious mice. Immunohistochemical method was used to detect the expression levels of Nrf2 and HO-1 in lung tissues. The key proteins of MAPK, NF-κB, and Nrf2/HO-1 in lung tissues were quantitatively analyzed by Western blot. Finally, the in vitro effect of ALO on the production of pro-inflammatory mediators and cytokines by lipopolysaccharide-stimulated RAW 264.7 cells was also evaluated. In the ovalbumin (OVA)-induced asthma mouse model, ALO reduced the exudation and infiltration of inflammatory cells and suppressed goblet cell hyperplasia. ALO-treated asthmatic mice also decreased the protein levels of interleukin (IL)-4, IL-5, IL-13, IFN-γ, and IgE in BALF and attenuated AHR. Furthermore, ALO inhibited the expression of key proteins of MAPK and NF-κB pathways, and increased the expression of Nrf2/HO-1 in OVA-challenged mice. Additional in vitro study has shown that ALO abrogates the macrophage production of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, IL-6, and IL-1β. Taken together, ALO attenuated allergic airway inflammation through regulating NF-κB, MAPK, and Nrf2/HO-1 signaling pathways. The results suggest the utility of ALO as an anti-inflammatory agent for the treatment of asthma.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju 561-180, Jeonbuk, Republic of Korea
| | - Zhemin Xian
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji 133002, PR China
| | - Hongmei Piao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China.
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China.
| |
Collapse
|