1
|
Xia Y, Wen Y, Yang Y, Song X, Wang Y, Zhang Z. Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117474. [PMID: 39644576 DOI: 10.1016/j.ecoenv.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO42-. Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University, Shenyang 110044, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yunlong Wang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
2
|
Xiao J, Wang D, Sinchan B, Mushinski R, Jin D, Deng Y. Response patterns of the microbiome during hexavalent chromium remediation by Tagetes erecta L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173413. [PMID: 38788956 DOI: 10.1016/j.scitotenv.2024.173413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Chromium pollution, particularly hexavalent chromium [Cr(VI)], may threaten the environment and human health. This study investigated the potential of Tagetes erecta L. (Aztec marigold) for phytoremediation of soil contaminated with Cr(VI), and focused on the effects of varying concentrations of Cr(VI) on both the physicochemical properties of soil and microbiome of Tagetes erecta L. We observed that Tagetes erecta L. showed tolerance to Cr(VI) stress and maintained normal growth under these conditions, as indicated by bioconcentration factors of 0.33-0.53 in shoots and 0.39-0.70 in roots. Meanwhile, the structure and diversity of bacterial communities were significantly affected by Cr(VI) pollution. Specifically, Cr(VI) had a more significant effect on the microbial community structure in the endophytic of Tagetes erecta L. than in the rhizosphere (p < 0.05). The genera Devosia and Methylobacillus were positively correlated with Cr(VI) concentrations. Biomarkers such as Bacilli and Pseudonocardia were identified under the different Cr(VI)-contaminated treatments using LEfSe. In addition, the interaction and stability of the endophytic microbiome were enhanced under Cr(VI) stress. This study explored the interactions between heavy metals, microorganisms, and plants, providing valuable insights for developing in situ bioremediation of Cr(VI)-contaminated soils.
Collapse
Affiliation(s)
- Juanjuan Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deying Wang
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Banerjee Sinchan
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Ryan Mushinski
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhao P, Li Y, Bai X, Jing X, Huo D, Zhao X, Ding Y, Shi Y. Resistance mechanisms of cereal plants and rhizosphere soil microbial communities to chromium stress. PeerJ 2024; 12:e17461. [PMID: 38952992 PMCID: PMC11216213 DOI: 10.7717/peerj.17461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/03/2024] [Indexed: 07/03/2024] Open
Abstract
Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).
Collapse
Affiliation(s)
- Pengyu Zhao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Taiyuan, China
| | - Yujing Li
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Xue Bai
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Xiuqing Jing
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Dongao Huo
- Research Center for Plant Resources and Nutritional Health, Taiyuan Normal University, Taiyuan, China
| | - Xiaodong Zhao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Taiyuan, China
| | - Yuqin Ding
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Yuxuan Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Gupta PK, Nair VK, Dalvi V, Dhali S, Malik A, Pant KK. Field-scale assessment of soil, water, plant, and soil microbiome in and around Rania-Khan Chandpur Chromium contaminated site, India. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133747. [PMID: 38350323 DOI: 10.1016/j.jhazmat.2024.133747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Rania-Khan Chandpur site, (Kanpur Dehat, Uttar Pradesh, India), one of the highly Chromium (Cr) contaminated sites in India due to Chromite Ore Processing Residue (COPR), has been investigated at the field-scale. We found that the area around the COPR dumps was hazardously contaminated with the Cr where its concentrations in the surface water and groundwater were > 40 mgL-1, its maximum contents in the COPRs and in the soils of the adjoining lands were 9.6 wt% and 3.83 wt%, respectively. By exploring the vegetation and microbial distribution across the site, we advocate the appropriateness of Cynodon dactylon, Chrysopogon zizanioides, Cyperus sp., and Typha angustifolia as the most suitable phytoremediation agent because their association with Cr remediating bacterial species (Pseudomonas sp., Clostridium sp. and Bacillus sp.) was strong. Using this remarkable information for the bioremediation projects, this site can be re-vegetated and bioaugmented to remediate Cr in soils, waterlogged ditches, surface water, and in groundwater systems.
Collapse
Affiliation(s)
- Pankaj Kumar Gupta
- Applied Microbiology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Wetland Hydrology Research Laboratory, Faculty of Environment, University of Waterloo, 200 University Ave W, Waterloo, ON N2L3G1, Canada
| | - Vivek Kumar Nair
- Applied Microbiology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; School of Interdisciplinary Research, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Vivek Dalvi
- Applied Microbiology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Sumit Dhali
- Applied Microbiology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Department of Chemical and Biological Engineering, Princeton University, E-Quad Visitor Office A429, Princeton, NJ 08544, USA.
| | - Kamal Kishore Pant
- Catalytic Reaction Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
5
|
Cai Y, Yang J, Ran Z, Bu F, Chen X, Shaaban M, Peng QA. Optimizing Typha biochar with phosphoric acid modification and ferric chloride impregnation for hexavalent chromium remediation in water and soil. CHEMOSPHERE 2024; 354:141739. [PMID: 38503383 DOI: 10.1016/j.chemosphere.2024.141739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Considering the persistent and covert nature of heavy metal soil contamination, the sustainable development of ecological environments and food safety is at significant risk. Our study focuses on remediating soils contaminated with chromium (Cr); we introduce an advanced remediation material, iron oxide phosphoric acid-loaded activated biochar (HFBC), synthesized through pyrolysis. This HFBC displays greater microporosity, fewer impurities, and enhanced efficiency for the remediation process. Our research utilized a comprehensive set of analytical techniques, including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS), alongside adsorption studies to elucidate the Cr removal mechanism. The effectiveness of HFBC in remediation was influenced by several factors: the pH level, dosage of HFBC, the initial concentration of Cr, and the ambient temperature. Our results indicated an optimal chromium (VI) adsorption capacity of 55.5 mg/g by HFBC at a pH of 6.0 and a temperature of 25 °C, with the process adhering to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm, thus suggesting spontaneity in the uptake method. Moreover, this mechanism encompasses both adsorption and reduction reactions. Using HFBC in pot experiments with cabbage indicated not only an increase in soil pH and cation exchange capacity (CEC), but also a surge in bacterial community abundance. Significant reductions in bioavailable chromium were also recorded. Interestingly, HFBC addition bolstered the growth of cabbage, while concurrently diminishing chromium accumulation within the plant, particularly notable as the HFBC application rate increased. In summation, the HFBC produced in our study has demonstrated convincing efficacy in removing chromium from aqueous solutions and soil. Moreover, the positive agronomic implications of its use, such as enhanced plant growth and reduced heavy metal uptake by plants, indicate its high potential for operational value in the domain of environmental remediation of heavy metals.
Collapse
Affiliation(s)
- Yajun Cai
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China; Clean Production of Textile Printing and DyeingEngineering Research Center, Ministry of Education, Wuhan, 430200, China.
| | - Jianwei Yang
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Zhonglyu Ran
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Fantong Bu
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Xu Chen
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| | - Qi-An Peng
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China; Clean Production of Textile Printing and DyeingEngineering Research Center, Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
6
|
Liu J, Pei S, Zheng Q, Li J, Liu X, Ruan Y, Luo B, Ma L, Chen R, Hu W, Niu J, Tian T. Heavy metal contamination impacts the structure and co-occurrence patterns of bacterial communities in agricultural soils. J Basic Microbiol 2024; 64:e2300435. [PMID: 38150647 DOI: 10.1002/jobm.202300435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Heavy metal (HM) contamination caused by mining and smelting activities can be harmful to soil microbiota, which are highly sensitive to HM stress. Here, we explore the effects of HM contamination on the taxonomic composition, predicted function, and co-occurrence patterns of soil bacterial communities in two agricultural fields with contrasting levels of soil HMs (i.e., contaminated and uncontaminated natural areas). Our results indicate that HM contamination does not significantly influence soil bacterial α diversity but changes the bacterial community composition by enriching the phyla Gemmatimonadetes, Planctomycetes, and Parcubacteria and reducing the relative abundance of Actinobacteria. Our results further demonstrate that HM contamination can strengthen the complexity and modularity of the bacterial co-occurrence network but weaken positive interactions between keystone taxa, leading to the gradual disappearance of some taxa that originally played an important role in healthy soil, thereby possibly reducing the resistance of bacterial communities to HM toxicity. The predicted functions of bacterial communities are related to membrane transport, amino acid metabolism, energy metabolism, and carbohydrate metabolism. Among these, functions related to HM detoxification and antioxidation are enriched in uncontaminated soils, while HM contamination enriches functions related to metal resistance. This study demonstrated that microorganisms adapt to the stress of HM pollution by adjusting their composition and enhancing their network complexity and potential ecological functions.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| |
Collapse
|
7
|
Abdullah, Wani KI, Naeem M, Jha PK, Jha UC, Aftab T, Prasad PVV. Systems biology of chromium-plant interaction: insights from omics approaches. FRONTIERS IN PLANT SCIENCE 2024; 14:1305179. [PMID: 38259926 PMCID: PMC10800501 DOI: 10.3389/fpls.2023.1305179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Plants are frequently subjected to heavy metal (HM) stress that impedes their growth and productivity. One of the most common harmful trace metals and HM discovered is chromium (Cr). Its contamination continues to increase in the environment due to industrial or anthropogenic activities. Chromium is severely toxic to plant growth and development and acts as a human carcinogen that enters the body by inhaling or taking Cr-contaminated food items. Plants uptake Cr via various transporters, such as sulfate and phosphate transporters. In nature, Cr is found in various valence states, commonly Cr (III) and Cr (VI). Cr (VI) is soil's most hazardous and pervasive form. Cr elevates reactive oxygen species (ROS) activity, impeding various physiological and metabolic pathways. Plants have evolved various complex defense mechanisms to prevent or tolerate the toxic effects of Cr. These defense mechanisms include absorbing and accumulating Cr in cell organelles such as vacuoles, immobilizing them by forming complexes with organic chelates, and extracting them by using a variety of transporters and ion channels regulated by various signaling cascades and transcription factors. Several defense-related proteins including, metallothioneins, phytochelatins, and glutathione-S-transferases aid in the sequestration of Cr. Moreover, several genes and transcriptional factors, such as WRKY and AP2/ERF TF genes, play a crucial role in defense against Cr stress. To counter HM-mediated stress stimuli, OMICS approaches, including genomics, proteomics, transcriptomics, and metallomics, have facilitated our understanding to improve Cr stress tolerance in plants. This review discusses the Cr uptake, translocation, and accumulation in plants. Furthermore, it provides a model to unravel the complexities of the Cr-plant interaction utilizing system biology and integrated OMICS approach.
Collapse
Affiliation(s)
- Abdullah
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - M. Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Prakash Kumar Jha
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, India
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- Department of Agronomy; and Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Zhao K, Zhang W, Liang Z, Zhao H, Chai J, Yang Y, Teng T, Zhang D. Facilitating New Chromium Reducing Microbes to Enhance Hexavalent Chromium Reduction by In Situ Sonoporation-Mediated Gene Transfer in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15123-15133. [PMID: 37747805 DOI: 10.1021/acs.est.3c04655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Chromium (Cr) is a heavy metal with a high toxicity and pathogenicity. Microbial reduction is an effective strategy to remove Cr(VI) at contaminated sites but suffers from the low populations and activities of Cr-reducing microorganisms in soils. This study proposed an in situ sonoporation-mediated gene transfer approach, which improved soil Cr(VI) reduction performance by delivering exogenous Cr-transporter chrA genes and Cr-reducing yieF genes into soil microorganisms with the aid of ultrasound. Besides the increasing populations of Cr-resistant bacteria and elevated copy numbers of chrA and yieF genes after sonoporation-mediated gene transfer, three new Cr-reducing strains were isolated, among which Comamonas aquatica was confirmed to obtain Cr-resistant capability. In addition, sonoporation-mediated gene transfer was the main driving force significantly shaping soil microbial communities owing to the predominance of Cr-resistant microbes. This study pioneered and evidenced that in situ soil sonoporation-mediated gene transfer could effectively deliver functional genes into soil indigenous microbes to facilitate microbial functions for enhanced bioremediation, e.g., Cr-reduction in this study, showing its feasibility as a chemically green and sustainable remediation strategy for heavy metal contaminated sites.
Collapse
Affiliation(s)
- Kaichao Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Zhentian Liang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Hongyu Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Juanfen Chai
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Yuesuo Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, PR China
| |
Collapse
|
9
|
Liu T, Guan Z, Li J, Ao M, Sun S, Deng T, Wang S, Tang Y, Lin Q, Ni Z, Qiu R. Nano zero-valent iron enhances the absorption and transport of chromium in rice (Oryza sativa L.): Implication for Cr risks management in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164232. [PMID: 37225094 DOI: 10.1016/j.scitotenv.2023.164232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Chromium (Cr) accumulating in soil caused serious pollution to cultivated land. At present, nano zero-valent iron (nZVI) is considered to be a promising remediation material for Cr-contaminated soil. However, the nZVI impact on the behavior of Cr in the soil-rice system under high natural geological background value remains unknown. We studied the effects of nZVI on the migration and transformation of Cr in paddy soil-rice by pot experiment. Three different doses of nZVI (0, 0.001 % and 0.1 % (w/w)) treatments and one dose of 0.1 % (w/w) nZVI treatment without plant rice were set up. Under continuous flooding conditions, nZVI significantly increased rice biomass compared with the control. At the same time, nZVI significantly promoted the reduction of Fe in the soil, increased the concentration of oxalate Fe and bioavailable Cr, then facilitated the absorption of Cr in rice roots and the transportation to the aboveground part. In addition, the enrichment of Fe(III)-reducing bacteria and sulfate-reducing bacteria in soil provided electron donors for Cr oxidation, which helps to form bioavailable Cr that is easily absorbed by plants. The results of this study can provide scientific basis and technical support for the remediation of Cr -polluted paddy soil with high geological background.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zeting Guan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ming Ao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shengsheng Sun
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Li L, Meng D, Yin H, Zhang T, Liu Y. Genome-resolved metagenomics provides insights into the ecological roles of the keystone taxa in heavy-metal-contaminated soils. Front Microbiol 2023; 14:1203164. [PMID: 37547692 PMCID: PMC10402746 DOI: 10.3389/fmicb.2023.1203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Microorganisms that exhibit resistance to environmental stressors, particularly heavy metals, have the potential to be used in bioremediation strategies. This study aimed to explore and identify microorganisms that are resistant to heavy metals in soil environments as potential candidates for bioremediation. Metagenomic analysis was conducted using microbiome metagenomes obtained from the rhizosphere of soil contaminated with heavy metals and mineral-affected soil. The analysis resulted in the recovery of a total of 175 metagenome-assembled genomes (MAGs), 73 of which were potentially representing novel taxonomic levels beyond the genus level. The constructed ecological network revealed the presence of keystone taxa, including Rhizobiaceae, Xanthobacteraceae, Burkholderiaceae, and Actinomycetia. Among the recovered MAGs, 50 were associated with these keystone taxa. Notably, these MAGs displayed an abundance of genes conferring resistance to heavy metals and other abiotic stresses, particularly those affiliated with the keystone taxa. These genes were found to combat excessive accumulation of zinc/manganese, arsenate/arsenite, chromate, nickel/cobalt, copper, and tellurite. Furthermore, the keystone taxa were found to utilize both organic and inorganic energy sources, such as sulfur, arsenic, and carbon dioxide. Additionally, these keystone taxa exhibited the ability to promote vegetation development in re-vegetated mining areas through phosphorus solubilization and metabolite secretion. In summary, our study highlights the metabolic adaptability and ecological significance of microbial keystone taxa in mineral-affected soils. The MAGs associated with keystone taxa exhibited a markedly higher number of genes related to abiotic stress resistance and plant growth promotion compared to non-keystone taxa MAGs.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
- Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, China
| |
Collapse
|
11
|
Shang C, Chai Y, Peng L, Shao J, Huang H, Chen A. Remediation of Cr(VI) contaminated soil by chitosan stabilized FeS composite and the changes in microorganism community. CHEMOSPHERE 2023; 327:138517. [PMID: 36972868 DOI: 10.1016/j.chemosphere.2023.138517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
In-suit immobilization is one of the major strategies to remediate heavy metals contaminated soil with the effectiveness largely depends on the characteristics of the added chemical reagents/materials. In this study, chitosan stabilized FeS composite (CS-FeS) was prepared to evaluate the performance of remediating the high and toxic hexavalent chromium contaminated soil from the effectiveness and microbial response aspects. The characterization analysis confirmed the successful preparation of composite, and the introduction of chitosan successfully stabilized FeS to protect it from rapid oxidation as compared to bare FeS particles. With the addition dosage at 0.1%, about 85.6% and 81.3% of Cr(VI) was reduced in 3 d based on toxicity characteristic leaching procedure (TCLP) and CaCl2 extraction, and the reduction efficiency increased to 96.6% and 94.8% in 7 d, respectively. The Cr(VI) was non-detected in the TCLP leachates with increase the CS-FeS composites to 0.5%. The percentages of HOAc-extractable Cr decreased from 25.17% to 6.12% accompanied with the increase in the residual Cr from 4.26% to 13.77% and improvement of soil enzyme activity under CS-FeS composites addition. Cr(VI) contamination reduced the diversity of microbial community in soil. Three dominate prokaryotic microorganisms, namely Proteobacteria, Actinobacteria and Firmicutes, were observed in Cr-contaminated soil. The addition of CS-FeS composites increased the microbial diversity especially for that in relative lower abundance. The relative abundance of Proteobacteria and Firmicute related to Cr-tolerance and reduction increased in CS-FeS composites added soils. Taking together, these results demonstrated the potential and promising of using the CS-FeS composites for Cr(VI) polluted soil remediation.
Collapse
Affiliation(s)
- Cui Shang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Youzheng Chai
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Liang Peng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hongli Huang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
12
|
Guan Z, Wei R, Liu T, Li J, Ao M, Sun S, Deng T, Wang S, Tang Y, Lin Q, Ni Z, Qiu R. Water Management Impacts on Chromium Behavior and Uptake by Rice in Paddy Soil with High Geological Background Values. TOXICS 2023; 11:toxics11050433. [PMID: 37235248 DOI: 10.3390/toxics11050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Chromium (Cr) is an expression toxic metal and is seriously released into the soil environment due to its extensive use and mining. Basalt is an important Cr reservoir in the terrestrial environment. Cr in paddy soil can be enriched by chemical weathering. Therefore, basalt-derived paddy soils contain extremely high concentrations of Cr and can enter the human body through the food chain. However, the water management conditions' effect on the transformation of Cr in basalt-derived paddy soil with high geological background values was less recognized. In this study, a pot experiment was conducted to investigate the effects of different water management treatments on the migration and transformation of Cr in a soil-rice system at different rice growth stages. Two water management treatments of continuous flooding (CF) and alternative wet and dry (AWD) and four different rice growth stages were set up. The results showed that AWD treatment significantly reduced the biomass of rice and promoted the absorption of Cr in rice plants. During the four growth periods, the root, stem and leaf of rice increased from 11.24-16.11 mg kg-1, 0.66-1.56 mg kg-1 and 0.48-2.29 mg kg-1 to 12.43-22.60 mg kg-1, 0.98-3.31 mg kg-1 and 0.58-2.86 mg kg-1, respectively. The Cr concentration in roots, stems and leaves of AWD treatment was 40%, 89% and 25% higher than CF treatment in the filling stage, respectively. The AWD treatment also facilitated the potential bioactive fractions conversion to the bioavailable fraction, compared with the CF treatment. In addition, the enrichment of iron-reducing bacteria and sulfate-reducing bacteria with AWD treatment also provided electron iron for the mobilization of Cr, thus affecting the migration and transformation of Cr in the soil. We speculated that the reason for this phenomenon may be the bioavailability of Cr was affected by the biogeochemical cycle of iron under the influence of alternating redox. This indicates that AWD treatment may bring certain environmental risks in contaminated paddy soil with high geological background, and it is necessary to be aware of this risk when using water-saving irrigation to plant rice.
Collapse
Affiliation(s)
- Zeting Guan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ran Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ming Ao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shengsheng Sun
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Song LJ, Xu YH, Yang JY. Assessing the impact of lime on chromium migration in soil caused by basic chromium sulfate in tannery. ENVIRONMENTAL TECHNOLOGY 2023; 44:1367-1378. [PMID: 34739353 DOI: 10.1080/09593330.2021.2003436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) pollution is the primary pollution problem of the soil in tannery. However, the effect of tanning chemicals on Cr migration in soil has not been clearly elucidated. Column leaching tests were designed in this study to reveal the transport and transformation of Cr from basic chromium sulfate (BCS) into soil and the effects of lime on Cr migration and transformation. The results showed that BCS was mainly leached out in the state of Cr(VI) after entering the soil, and the Cr concentration in leachate decreased with the increase of the bulking thickness of the BCS. Compared with the soil absent of lime, the concentration of total Cr in the leachate from soil with lime decreased by 8.80-88.1%. The proportions of Cr in the residual fraction were generally increased in the soil with lime, whereas other fractions were decreased. The presence of lime can reduce the migration and toxicity of BCS in soil to a certain extent. The analysis of soil bacterial community showed that the relative abundance of Proteobacteria increased significantly with the exposure to BCS and the Burkholderiaceae was the dominant bacteria family in the BCS contaminated soil. Understanding the mobility of BCS and lime and the bacterial community in BCS contaminated soil is conducive to the risk assessment of the tannery site.
Collapse
Affiliation(s)
- Li-Jie Song
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yu-Hui Xu
- Soil Institute, Sichuan Academy of Environmental Sciences, Chengdu, People's Republic of China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
14
|
Dan Y, Wang X, Ji M, Sang W, Shen Z, Zhang Y. Influence of temperature change on the immobilization of soil Pb and Zn by hydrochar: Roles of soil microbial modulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121109. [PMID: 36669718 DOI: 10.1016/j.envpol.2023.121109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Considering the potential effect of the ambient temperature on soil microorganisms during heavy metal immobilization by hydrochar, 60 days of soil incubation was conducted to explore the impact of ambient temperature (5, 25, and 35 °C) on the immobilization of Pb and Zn by chitosan-magnetic sawdust hydrochar (CMSH) and magnetic chitosan hydrochar (MCH). The results showed that soil pH was relatively high and total organic carbon (TOC) was slightly lower in the 35 °C treatment. The diethylenetriaminepentaacetic acid (DTPA) available state content decreased significantly with the temperature increasing. Meanwhile, the ratios of stable Pb and Zn in the sequential extraction method proposed by the European Community Bureau of Reference (BCR) gradually increased with increasing temperature. The heatmap based on microbial community showed that elevated temperature not only favored the enrichment of metal-stable phyla, such as Chloroflexi, but was also involved in inhibiting the growth of Firmicutes, Actinobacteriota, and Proteobacteria. Meanwhile, different genera (Fonticella and Bacillus) in the Firmicutes phylum had distinct responses to temperature as well as to heavy metal immobilization effects. Subsequently, redundancy analysis confirmed that Chloroflexi and Fonticella were positively correlated with temperature and stable state metal content, while Actinobacteriota and Bacillus were negatively correlated with temperature and were positively correlated with DTPA available metal content. Moreover, Pb and Zn indicators displayed significant correlations for the dominant genera (R2 > 0.8, p < 0.02).
Collapse
Affiliation(s)
- Yitong Dan
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxia Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mengyuan Ji
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Wenjing Sang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Zheng Shen
- Institute of New Rural Development, Tongji University, Shanghai, 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
15
|
Yan G, Gao Y, Xue K, Qi Y, Fan Y, Tian X, Wang J, Zhao R, Zhang P, Liu Y, Liu J. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1131204] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chromium (Cr) is the seventh most abundant chemical element in the Earth’s crust, and Cr(III) and Cr(VI) are common stable valence states of Cr. Several Cr-containing substances, such as FeOCr2O3 and stainless-steel products, exist in nature and in life. However, Cr(VI) is toxic to soil, microorganisms, and plants and poses a serious threat to human health through direct and indirect exposure. By collecting published journal literature, we found that Cr(VI) can cause acute and chronic toxicity in organisms and has carcinogenic effects, and the mechanisms causing these toxicity include endoplasmic reticulum stress, autophagy and apoptosis. However, the relationship between these mechanisms remains unclear. Many methods have been researched to purify chromium, but each of these methods has its own advantages and disadvantages. Therefore, this review summarizes the hazards of chromium and the mechanisms of chromium toxicity after entering cells and provides a number of methods for chromium contamination management, providing a direction for the next step in chromium toxicology and contamination decontamination research.
Collapse
|
16
|
Xu R, Wang YN, Sun Y, Wang H, Gao Y, Li S, Guo L, Gao L. External sodium acetate improved Cr(VI) stabilization in a Cr-spiked soil during chemical-microbial reduction processes: Insights into Cr(VI) reduction performance, microbial community and metabolic functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114566. [PMID: 36680991 DOI: 10.1016/j.ecoenv.2023.114566] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Interest combined chemical and microbial reduction for Cr(VI) remediation in contaminated sites has greatly increased. However, the effect of external carbon sources on Cr(VI) reduction during chemical-microbial reduction processes has not been studied. Therefore, in this study, the role of external sodium acetate (SA) in improving Cr(VI) reduction and stabilization in a representative Cr(VI)-spiked soils was systemically investigated. The results of batch experiments suggested that the soil Cr(VI) content declined from 1000 mg/kg to 2.6-5.1 mg/kg at 1-5 g C/kg SA supplemented within 15 days of reaction. The external addition of SA resulted in a significant increase in the relative abundances of Cr(VI)-reducing microorganisms, such as Tissierella, Proteiniclasticum and Proteiniclasticum. The relative abundance of Tissierella increased from 9.1% to 29.8% with the SA treatment at 5 g C/kg soil, which was the main contributors to microbial Cr(VI) reduction. Redundancy analysis indicated that pH and SA were the predominant factors affecting the microbial community in the SA treatments at 2 g C/kg soil and 5 g C/kg soil. Functional prediction suggested that the addition of SA had a positive effect on the metabolism of key substances involved in Cr(VI) microbial reduction. This work provides new insightful guidance on Cr(VI) remediation in contaminated soils.
Collapse
Affiliation(s)
- Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shupeng Li
- Beijing Construction Engineering Environmental Remediation Co., Ltd., National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Lili Guo
- Beijing Construction Engineering Environmental Remediation Co., Ltd., National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Lei Gao
- School of Marine Sciences and Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
17
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130063. [PMID: 36182879 DOI: 10.1016/j.jhazmat.2022.130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution caused by mining activities can be harmful to soil microbiota, which are highly sensitive to heavy metal stress. This study aimed to investigate the response of soil bacterial communities to varying levels of heavy metal pollution in four types of habitats (i.e., tailing, remediation, natural recovery, and undisturbed areas) at an abandoned polymetallic mine by high-throughput 16 S rRNA gene sequencing, and to determine the dominant ecological processes and major factors driving the variations in bacterial community composition. The diversity and composition of bacterial communities varied significantly between soil habitats (p < 0.05). Heterogeneous selection played a crucial role in shaping the difference of bacterial community composition between distinct soil habitats. Redundancy analysis and Pearson correlation analysis revealed that the total contents of Cu and Zn were key factors causing the difference in bacterial community composition in the tailing and remediation areas, whereas bioavailable Mn and Cd, total nitrogen, available nitrogen, soil organic carbon, vegetation coverage, and plant diversity were key factors shaping the soil bacterial structure in the undisturbed and natural recovery areas. These findings provide insights into the distribution patterns of bacterial communities in soil habitats with different levels of heavy metal pollution, and the dominant ecological processes and the corresponding environmental drivers, and expand knowledge in bacterial assembly mechanisms in mining regions.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Bai X, Li Y, Jing X, Zhao X, Zhao P. Response mechanisms of bacterial communities and nitrogen cycle functional genes in millet rhizosphere soil to chromium stress. Front Microbiol 2023; 14:1116535. [PMID: 36910173 PMCID: PMC9992798 DOI: 10.3389/fmicb.2023.1116535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction A growing amount of heavy metal contamination in soil disturbs the ecosystem's equilibrium, in which microbial populations play a key role in the nutrient cycle of soils. However, given the different sensitivity of microbial communities to different spatial and temporal scales, microbial community structure and function also have varied response mechanisms to different heavy metal contaminated habitats. Methods In this study, samples were taken prior to Cr stress (CK) and 6 h and 6 days after Cr stress (Cr_6h, Cr_6d) in laboratory experiments. High-throughput sequencing revealed trends in the structure and diversity of the bacterial communities, and real-time fluorescence quantitative polymerase chain reaction (qPCR) was used to analyze trends in nitrogen cycle functional genes (AOA-amoA, AOB-amoA, narG, nirK, and nifH). Results The findings showed that (1) the composition structure of the soil bacterial community changed considerably in Cr-stressed soils; α-diversity showed significant phase transition characteristic from stress to stability (p < 0.05). (2) With an overall rising tendency, the abundance of the nitrogen cycle functional genes (AOA-amoA and AOB-amoA) decreased considerably before increasing, and α-diversity dramatically declined (p < 0.05). (3) The redundancy analysis (RDA) and permutational multivariate analysis of variance (PERMANOVA) tests results showed that the soil physicochemical parameters were significantly correlated with the nitrogen cycle functional genes (r: 0.4195, p < 0.01). Mantel analysis showed that available nitrogen (N), available potassium (K), and available phosphorus (P) were significantly correlated with nifH (p = 0.006, 0.008, 0.004), and pH was highly significantly correlated with nifH (p = 0.026). The PLS-ME (partial least squares path model) model further demonstrated a significant direct effect of the soil physicochemical parameters on the nitrogen cycling functional genes. Discussion As a result, the composition and diversity of the bacterial community and the nitrogen cycle functional genes in Cr-stressed agricultural soils changed considerably. However, the influence of the soil physicochemical parameters on the functional genes involved in the nitrogen cycle was greater than that of the bacterial community. and Cr stress affects the N cycling process in soil mainly by affecting nitrification. This research has significant practical ramifications for understanding the mechanisms of microbial community homeostasis maintenance, nitrogen cycle response mechanisms, and soil remediation in heavy metal-contaminated agricultural soils.
Collapse
Affiliation(s)
- Xue Bai
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Yvjing Li
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Xiuqing Jing
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Xiaodong Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Pengyu Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| |
Collapse
|
19
|
HongE Y, Wan Z, Kim Y, Yu J. Submerged zone and vegetation drive distribution of heavy metal fractions and microbial community structure: Insights into stormwater biofiltration system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158367. [PMID: 36049683 DOI: 10.1016/j.scitotenv.2022.158367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Biofiltration system is a widely used stormwater treatment option that is effective in removing heavy metals. The concentration and distribution of heavy metal fractions in biofiltration filter media, as well as the microbiota composition affected by the design parameters, are relatively novel concepts that require further research. A laboratory-scale column study was conducted to investigate the microbial community and the fractionation of heavy metals (Pb, Cu, Cr, and Cd) extracted from filter media samples, subjected to the presence of vegetation, submerged zone (SZ), and major environmental parameters (pH, water content). Sequential extractions revealed that, compared to the three other fractions (exchangeable fraction, reducible fraction, and oxidizable fraction), the residual fraction was the most represented for each metal (41 - 82 %). As a result, vegetation was found to reduce pH value, and significantly decrease the concentration of the exchangeable fraction of Pb in the middle layer, and the oxidizable fraction of Pb, Cu, Cd, and Cr in the middle and bottom layers (p < 0.05). The formation of an anoxic environment by submerged zone settlements resulted in a significant decrease in the concentration of reducible fractions and a significant increase in the concentration of oxidizable fractions for four heavy metals (p < 0.05). In addition, the analysis of the microbiota showed that the diversity and richness of microorganisms increased in the presence of SZ and plants. The dominant phylum in biofiltration was Proteobacteria, followed by Firmicutes, Bacteroidetes, Acidobacteria, and Actinobacteria as major phyla. Heavy metal fractions could regulate the structure of microbial communities in biofiltration. The findings of this study would enrich our understanding of the improvement of multi-metal-contaminated runoff treatment and highlight the impact of design parameters and heavy metal fractionation on microbial community structure in the biofiltration system.
Collapse
Affiliation(s)
- Yusheng HongE
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zeyi Wan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Youngchul Kim
- Department of Environmental Engineering, Hanseo University, Seosan City 356-706, Republic of Korea.
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
20
|
Gan CD, Yang JY, Liu R, Li XY, Tang QX. Contrasted speciation distribution of toxic metal(loid)s and microbial community structure in vanadium-titanium magnetite tailings under dry and wet disposal methods. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129624. [PMID: 35870207 DOI: 10.1016/j.jhazmat.2022.129624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Tailing disposal technologies such as dry and wet disposal methods have a profound effect on the ecosystem of mining areas. However, the chemical speciation of metal(loid)s and microbial community structure in tailings under different disposal methods are still poorly understood. Here we compared the bioavailable fraction of metal(loid)s and the microbial community in vanadium-titanium (V-Ti) magnetite tailing profiles derived from dry and wet stockpiled methods. In wet tailings, the bioavailability of Cr, Cu, Mn, Ni, V, and Zn was higher than that in dry tailings as identified by BCR sequential extraction. Especially for Cu and Ni, the oxidizable fraction was the predominant fraction except the residual fraction, accounting for 37.2-59.0% and 23.2-36.6% of the total concentration in wet tailings, respectively. Based on 16 S rRNA high-throughput sequencing, totally 12 indicator bacterial taxa were detected in dry tailings against 68 in wet tailings. As the biomarkers in wet tailings, genera Sulfuricurvum, Geobacter, and Pseudomonas were expected to be applied to the transformation of metal(loid)s in the tailings. Our results emphasize the importance of dehydration treatment of tailings before stockpiling to minimize the environmental risks caused by toxic metal(loid)s, and provide insights into the engineering application of microbial technologies in V-Ti magnetite tailing area.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| | - Rui Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Xiao-Yu Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Qi-Xuan Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Sun H, Shao C, Jin Q, Li M, Zhang Z, Liang H, Lei H, Qian J, Zhang Y. Response of microbial community structure to chromium contamination in Panax ginseng-growing soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61122-61134. [PMID: 35435557 DOI: 10.1007/s11356-022-20187-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Chromium (Cr) contamination in soil poses a serious security risk for the development of medicine and food with ginseng as the raw material. Microbiome are critical players in the functioning and service of soil ecosystems, but their feedback to Cr-contaminated ginseng growth is still poorly understood. To study this hypothesis, we evaluated the effects of microbiome and different Cr exposure on the soil microbial community using Illumina HiSeq high-throughput sequencing. Our results indicated that 2467 OTUs and 1785 OTUs were obtained in 16S and ITS1 based on 97% sequence similarity, respectively. Bacterial and fungal diversity were affected significantly in Cr-contaminated soil. Besides, Cr contamination significantly changed the composition of the soil bacterial and fungal communities, and some biomarkers were identified in the different classification level of the different Cr-contaminated treatments using LEfSe. Finally, a heatmap of Spearman's rank correlation coefficients and canonical discriminant analysis (CDA) indicated that Chloroflexi, Gemmatimonadetes, Acidobacteria, Verrucomicobia, and Parcubacteria in phylum level and Acidimicrobiia, Gemmatimonadetes, and Deltaproteobacteria in class level were positively correlated with AK, AP, and NO3--N (p < 0.05 or p < 0.01), but negatively correlated with total Cr and available Cr (p < 0.05 or p < 0.01). Similarly, in the fungal community, Tubaria, Mortierellaceae, and Rhizophagus in the phylum level and Glomeromycetes, Agaricomycetes, and Exobasidiomycetes in the class level were positively correlated with AK, AP, and NO3--N (p < 0.05 or p < 0.01), but negatively correlated with total Cr and available Cr (p < 0.05 or p < 0.01). Our findings provide new insight into the effects of Cr contamination on the microbial communities in ginseng-growing soil.
Collapse
Affiliation(s)
- Hai Sun
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Cai Shao
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Qiao Jin
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Meijia Li
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Zhenghai Zhang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Hao Liang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Huixia Lei
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Jiaqi Qian
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China
| | - Yayu Zhang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China.
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130062, People's Republic of China.
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| |
Collapse
|
22
|
Farias P, Francisco R, Morais PV. Potential of tellurite resistance in heterotrophic bacteria from mining environments. iScience 2022; 25:104566. [PMID: 35784792 PMCID: PMC9240799 DOI: 10.1016/j.isci.2022.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Untreated mining wastes and improper disposal of high-tech devices generate an environmental increase of bioavailable metalloids, exerting stress on autochthonous microbial populations. Tellurium is a metalloid, an element with raising economic importance; nevertheless, its interaction with living organisms is not yet fully understood. Here we characterized aerobic heterotrophic bacteria, isolated from high metal-content mining residues, able to resist/reduce tellurite into tellurium structures and to determine the presence of confirmed tellurite resistance genetic determinants in resistant strains. We identified over 50 tellurite-resistant strains, among 144 isolates, eight strains reduced tellurite to tellurium at different rates, with the concomitant production of tellurium deposits. Most tellurite resistance genes were found in strains from Bacillales, with the prevalence of genes of the ter operon. This work demonstrated that bacterial isolates, from environments with a persistent selective pressure, are potential candidates for uncovering strategies for tellurite resistance and/or production of valuable Te-containing materials. Sites with continuous high metal pressure as a source of Te-resistant bacteria diversity Organism-specific Te (IV) reduction produces unique Te (0) insoluble structures Unveiled Te resistance genetic determinants and arrangements in Bacillales
Collapse
Affiliation(s)
- Pedro Farias
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Romeu Francisco
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Paula V. Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
- Corresponding author
| |
Collapse
|
23
|
Luo Y, Pang J, Li C, Sun J, Xu Q, Ye J, Wu H, Wan Y, Shi J. Long-term and high-bioavailable potentially toxic elements (PTEs) strongly influence the microbiota in electroplating sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151933. [PMID: 34838915 DOI: 10.1016/j.scitotenv.2021.151933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/01/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Multiple potentially toxic elements (PTEs) wastes are produced in the process of electroplating, which pollute the surrounding soils. However, the priority pollutants and critical risk factors in electroplating sites are still unclear. Hence, a typical demolished electroplating site (operation for 31 years) in the Yangtze River Delta was investigated. Results showed that the soil was severely polluted by Cr(VI) (1711.3 mg kg-1), Ni (6754.0 mg kg-1) and Pb (2784.4 mg kg-1). The spatial distribution of soil PTEs performed by ArcGIS illustrated that the soil pollution varied with plating workshops. Hard Cr electroplating workshops (HCE), decorative Cr electroplating workshops (DCE) and sludge storage station (SS) were the hot spots in the site. Besides, the toxicity characteristic leaching procedure (TCLP) - extractable Cr and Ni contents in different workshops were significantly related (P < 0.05) to their bioavailable fractions (exchangeable fraction (F1) + bound to carbonate fraction (F2)), which pose potential risk to humans. Although the soil total Pb concentration was high, its mobility was very low (<0.007%). Moreover, the soil microbial community dynamics under the stress of long term and high contents of PTEs were further revealed. The soil microbiota was significantly disturbed by long term and high concentration of PTEs. A bit of bacteria (Caulobacter) and fungi (Cladosporium and Monocillium) showed tolerance potential to multiple metals. Furthermore, the canonical correspondence analysis (CCA) showed that the bioavailable fractions (F1 + F2) of Cr and Ni were the most critical environmental variables affecting microbiota. Therefore, remediation strategies are required urgently to reduce the bioavailability of soil Cr and Ni. The results of this study provide an overview of the pollution distribution and microbial dynamics of a typical plating site, laying a foundation for ecological remediation of electroplating sites in Yangtze River Delta of China.
Collapse
Affiliation(s)
- Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Li
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiacong Sun
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanyan Wan
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Zhou YH, Wang C, Liu HC, Xue Z, Nie ZY, Liu Y, Wan JL, Yang Y, Shu WS, Xia JL. Correlation Between Fe/S/As Speciation Transformation and Depth Distribution of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum in Simulated Acidic Water Column. Front Microbiol 2022; 12:819804. [PMID: 35222314 PMCID: PMC8863614 DOI: 10.3389/fmicb.2021.819804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
It is well known that speciation transformations of As(III) vs. As(V) in acid mine drainage (AMD) are mainly driven by microbially mediated redox reactions of Fe and S. However, these processes are rarely investigated. In this study, columns containing mine water were inoculated with two typical acidophilic Fe/S-oxidizing/reducing bacteria [the chemoautotrophic Acidithiobacillus (At.) ferrooxidans and the heterotrophic Acidiphilium (Aph.) acidophilum], and three typical energy substrates (Fe2+, S0, and glucose) and two concentrations of As(III) (2.0 and 4.5 mM) were added. The correlation between Fe/S/As speciation transformation and bacterial depth distribution at three different depths, i.e., 15, 55, and 105 cm from the top of the columns, was comparatively investigated. The results show that the cell growth at the top and in the middle of the columns was much more significantly inhibited by the additions of As(III) than at the bottom, where the cell growth was promoted even on days 24–44. At. ferrooxidans dominated over Aph. acidophilum in most samples collected from the three depths, but the elevated proportions of Aph. acidophilum were observed in the top and bottom column samples when 4.5 mM As(III) was added. Fe2+ bio-oxidation and Fe3+ reduction coupled to As(III) oxidation occurred for all three column depths. At the column top surfaces, jarosites were formed, and the addition of As(III) could lead to the formation of the amorphous FeAsO4⋅2H2O. Furthermore, the higher As(III) concentration could inhibit Fe2+ bio-oxidation and the formation of FeAsO4⋅2H2O and jarosites. S oxidation coupled to Fe3+ reduction occurred at the bottom of the columns, with the formations of FeAsO4⋅2H2O precipitate and S intermediates. The formed FeAsO4⋅2H2O and jarosites at the top and bottom of the columns could adsorb to and coprecipitate with As(III) and As(V), resulting in the transfer of As from solution to solid phases, thus further affecting As speciation transformation. The distribution difference of Fe/S energy substrates could apparently affect Fe/S/As speciation transformation and bacterial depth distribution between the top and bottom of the water columns. These findings are valuable for elucidating As fate and toxicity mediated by microbially driven Fe/S redox in AMD environments.
Collapse
Affiliation(s)
- Yu-Hang Zhou
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Can Wang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hong-Chang Liu
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhen Xue
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhen-Yuan Nie
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yue Liu
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jiao-Li Wan
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yu Yang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jin-Lan Xia
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
25
|
Ma B, Yao J, Knudsen TŠ, Chen Z, Liu B, Zhao C, Zhu X. Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126698. [PMID: 34315632 DOI: 10.1016/j.jhazmat.2021.126698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The heavy metal and organic pollution caused by mining activities keep attracting attention, thus an economic and efficient treatment for combined pollution is pressing. In this study, the simultaneous removal performance of typical organic flotation reagent 8-hydroxyquinoline (8-HQ) and Cr(VI) was investigated via heterogeneous Fenton process induced by a novel polydopamine (PDA) functionalized attapulgite supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI). Batch experiments showed that PDA/ATP-nZVI had better catalytic reactivity and reduction ability than both ATP-nZVI and nZVI. Under acidic condition, 96.0% of 8-HQ was degraded accompanied with the 42.5% of total organic carbon (TOC) decrease, while 95.8% of Cr(VI) removal efficiency was accomplished by PDA/ATP-nZVI. PDA not only served as redox mediator in expediting electron transfer, but also acted as electron donor that accelerated transformation from Fe(III) to both dissolved Fe(II) and surface Fe(II), which resulted in the increased degradation of 8-HQ. The synergic removal behavior between 8-HQ and Cr(VI) was discussed and the reaction mechanism in the persulfate (PS)-PDA/ATP-nZVI system was also explored. This study developed a highly efficient heterogeneous catalyst, and demonstrated that the PS-PDA/ATP-nZVI system had a potential for remediation of mine environment polluted by both heavy metals and organic flotation reagents.
Collapse
Affiliation(s)
- Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Zhihui Chen
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
26
|
Li D, Li G, He Y, Zhao Y, Miao Q, Zhang H, Yuan Y, Zhang D. Key Cr species controlling Cr stability in contaminated soils before and chemical stabilization at a remediation engineering site. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127532. [PMID: 34879522 DOI: 10.1016/j.jhazmat.2021.127532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Linking chromium (Cr) speciation with its stability in soils is vital because insoluble Cr(VI) and chemically adsorbed Cr(VI) could hinder the remediation efficiency and release Cr(VI) for a prolonged period of time. In this study, we investigated key Cr species to probe the mechanisms controlling the release of insoluble Cr(VI) at Cr-contaminated sites using synchrotron-based X-ray absorption near-edge structure (XANES) for the first time. Chromite, stichtite and Cr-silicate were predominant forms of Cr(III). Insoluble Cr(VI) was hosted by layered double hydroxides (LDHs) such as brownmilerite and hydrotalcite. Anion competition tests documented a substitution of absorbed Cr(VI) by SO42- and NO3-. Acid extraction released 6.7-25.7% more Cr(VI) than anion extraction, possibly attributing to the erosion of LDH and CaCrO4 in calcite rather than Cr-bearing minerals. Brown and red soils released maximally 62% and 44% of total Cr(VI) by 10 mol/(kg soil) and 2 mol/(kg soil) of H+, respectively. SO42-, H2O and H+ contributed to more release of total Cr(VI) in brown soils (22%, 33% and 7%) than red soils (25%, 17% and 2%). More crystalline Cr structures were found after chemical stabilization, indicating a higher Cr stability in chemically stabilized soils. Cr and Mn exhibited an overlapped distribution pattern in both contaminated and chemically stabilized soils, hinting at the re-oxidation of Cr(III). Insoluble Cr(VI) could be released by acidic rainfalls and soil organic matters, posing potential threats to Cr long-term stability in field-scale remediation.
Collapse
Affiliation(s)
- Danni Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China
| | - Yuning He
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, PR China
| | - Yingshuang Zhao
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qiuci Miao
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hao Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ying Yuan
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China; Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
| |
Collapse
|
27
|
Liu B, Yao J, Ma B, Chen Z, Zhu X, Zhao C, Li M, Cao Y, Pang W, Li H, Mihucz VG, Duran R. Metal(loid)s diffusion pathway triggers distinct microbiota responses in key regions of typical karst non-ferrous smelting assembly. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127164. [PMID: 34534803 DOI: 10.1016/j.jhazmat.2021.127164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Non-ferrous metal(loid)s in region with karst characteristic are highly diffusible, especially by runoff or atmospheric deposition. However, microbiota in response to the diffusing metal(loid)s is still to be understood. In this study, we focused on microbiota across metal(loid)s diffusion pathways around a non-ferrous smelting assembly. The microbial distribution and metal(loid)s-microbial interactions were analysed by 16S rRNA amplicon and multivariate statistical analysis. Although runoff and atmospheric deposition showed similar metal(loid)s diffusion contribution, different microbial compositions were revealed. The microbiota along the runoff transect (region3) was similar to those within the atmospheric deposition transect (region4), which significantly differed from those closer to the smelting assembly (region1 and region2; R2 = 0.3866, p = 0.001). Random forest model indicated the negative impacts of bioavailable metal(loid)s on microbial diversity. Proteobacteria was predominant in region1 while Actinobacteriota dominated in the other regions. Twenty abundant genera were identified in metal(loid)s rich area, such as sulfur metabolizer Sulfurifustis and metal resistant Acinetobacter. Interactions between the geochemical parameters and the dominant taxa indicated that the main drivers were Al, Sb, As and their bioavailable fractions and sulfate. This study provides understandings of microbiota patterns towards different metal(loid)s diffusion pathways around non-ferrous smelting assembly with karst characteristic.
Collapse
Affiliation(s)
- Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhihui Chen
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Miaomiao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ying Cao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wancheng Pang
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Victor G Mihucz
- Sino-Hungarian Joint Research Laboratory for Environmental Sciences and Health, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
28
|
Wang Q, Song X, Wei C, Jin P, Chen X, Tang Z, Li K, Ding X, Fu H. In situ remediation of Cr(VI) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150260. [PMID: 34537698 DOI: 10.1016/j.scitotenv.2021.150260] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The performance of a permeable reactive barrier (PRB) for the in situ remediation of hexavalent chromium [Cr(VI)] contaminated groundwater, and the resulted responses in the indigenous microbial community, were investigated in a field-scale study. The PRB consisted of a mixture of zero-valent iron (ZVI), gravel and sand. The results showed that the PRB segment with 20% active reaction medium (ZVI) was able to successfully reduce Cr(VI) via chemical reduction from 27.29-242.65 mg/L to below the clean-up goal of 0.1 mg/L, and can be scaled-up under field conditions. It was found that the ZVI induced significant changes in the indigenous microbial community structure and compositions in the area of the PRB and those areas downgradient. The competitive growth among Cr(VI)-reducing bacteria (the reduced abundance of Hydrogenophaga, Pseudomonas, Exiguobacterium and Rhodobacter, along with the enrichment of Rivibacter and Candidatus_Desulforudis) were observed in PRB. In addition, Cr(VI)-reducing bacteria (Hydrogenophaga, Pseudomonas, Exiguobacterium and Rhodobacter) were enriched in the downgradient of PRB, indicating that Cr(VI) can be further bio-reduced to Cr(III). The Cr(VI) bio-reduction could serve as a secondary mechanism for further removal of Cr(VI) from contaminated groundwater, suggesting that the actual lifetime of a PRB can be prolonged, which is important for the design and economic assessment of a PRB. Further analysis revealed that pH, dissolved oxygen, Cr(VI) level, the oxidation-reduction potential, and temperature were the main environmental factors influencing the subsurface microbial community compositions.
Collapse
Affiliation(s)
- Qing Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changlong Wei
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Jin
- EPCR Innovation and Technology LLC, PA 19406, USA
| | - Xing Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhiwen Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Li
- NO.1 Institute of Geo-environment Survey of Henan, Henan 450003, China
| | - Xiaoyan Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Fu
- Nanjing Kangdi Environmental Protection Technology Co., LTD, Nanjing 21000, China
| |
Collapse
|
29
|
Li X, Liu X, Cao N, Fang S, Yu C. Adaptation mechanisms of arsenic metabolism genes and their host microorganisms in soils with different arsenic contamination levels around abandoned gold tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:117994. [PMID: 34547657 DOI: 10.1016/j.envpol.2021.117994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Soil around the gold tailing due to the smelting process of wastewater and solid waste can lead to metal (loids) contamination, especially arsenic (As). Soil microorganisms have gradually evolved adaptive mechanisms in the process of long-term adaptation to As contamination. However, comprehensive investigations on As metabolism genes and their host microbial communities in soil profiles with different levels under long-term As contamination are lacking. There are selected three typical soil profiles (0-100 cm) with different metal (loids) contamination levels (L-low, M-moderate and H-high) around tailings in this research. It uses a Metagenomic approach to explore the adaptation mechanisms of arsenic metabolism genes and arsenic metabolism gene host microorganisms in both horizontal and vertical dimensions. The results showed that four categories of As metabolism genes were prevalent in soil profiles at different As contamination, with As reduction genes being the most abundant, followed by As oxidation genes, then respiration genes and methylation genes. The As metabolism genes arsBCR, aioE, arsPH, arrAB increased with the increase of metal (loid) contaminants concentration. Longitudinal arsA, arrA, aioA, arsM and acr3 increased in abundance in deep soil. Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi were the dominant phylum of As metabolism gene host microorganisms. Different concentrations of metal (loid) contamination significantly affected the distribution of host As metabolism genes. Random forest prediction identified As as the most critical driver of As metabolism genes and their host microorganisms. Overall, this study provides a reference for a comprehensive investigation of the detoxification mechanisms of As metabolism microorganisms in soil profiles with different As contamination conditions, and is important for the development of As metabolism gene host microbial strains and engineering applications of microbial technologies to manage As contamination.
Collapse
Affiliation(s)
- Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Xiaoxia Liu
- Beijing Station of Agro-Environmental Monitoring, Test and Supervision Center of Agro-Environmental Quality, MOA, Beijing, China
| | - Neng Cao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Songjun Fang
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
30
|
Liu B, Yao J, Ma B, Chen Z, Zhao C, Zhu X, Li M, Cao Y, Pang W, Li H, Feng L, Mihucz VG, Duran R. Microbial community profiles in soils adjacent to mining and smelting areas: Contrasting potentially toxic metals and co-occurrence patterns. CHEMOSPHERE 2021; 282:130992. [PMID: 34087556 DOI: 10.1016/j.chemosphere.2021.130992] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Mining and smelting activities have introduced severe potentially toxic metals (PTMs) contamination into surrounding soil settings. Influences of PTMs on microbial diversity have been widely studied. However, variations of microbial communities, network structures and community functions in different levels of PTMs contaminated soils adjacent to mining and smelting aera are still poorly investigated. In this study, microbial communities of soils around different levels of PTMs contamination were comprehensively studied by 16S rRNA gene amplicons high-throughput sequencing. Microbial interactions and module functions were also exploited to ascertain the discrepancies of PTMs concentration levels on microbial ecological functions. Results indicated that the microbial community composition was significantly distinct attributed to the phylum Protebacteria (p = 0.002) dominating in soil with high level PTMs contents but Actinobacteria (p = 0.002) in low level of PTMs-contaminated soil. Microbial α diversity was not significantly influenced by different levels of PTMs contaminations. Microorganisms proactively responded to PTMs content levels by means of strengthening network complexities and modularities among microbe-microbe interactions. The functions of main network modules were predicted associating membrane transport, amino acid metabolism, energy metabolism and carbohydrate metabolism. The PTMs detoxification and anti-oxidation were significantly strengthened at the high level of PTMs contamination. The present study demonstrated that modification of microbial community by the adaptive adjustment of microbial compositions and strengthening their network complexity and modularity.
Collapse
Affiliation(s)
- Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zhihui Chen
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chenchen Zhao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaozhe Zhu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Miaomiao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ying Cao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Wancheng Pang
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Lingyun Feng
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Victor G Mihucz
- Sino-Hungarian Joint Research Laboratory for Environmental Sciences and Health, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter Stny. 1/A, Hungary
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de L'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
31
|
Zhang X, Gai X, Zhong Z, Bian F, Yang C, Li Y, Wen X. Understanding variations in soil properties and microbial communities in bamboo plantation soils along a chromium pollution gradient. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112507. [PMID: 34265530 DOI: 10.1016/j.ecoenv.2021.112507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
With high biomass productivity and resistance to heavy metals (HM) stress, bamboo has strong potential for HM phytoremediation. However, few studies have been conducted under field conditions to explore changes in soil physicochemical and microbial properties of bamboo forests with HM-contaminated soils. This study established bamboo (Phyllostachys praecox) plantations in five Cr-contaminated sites with different pollution levels (low, L; low-moderate, LM; moderate, M; moderate-high, MH; and high, H). We determined soil chemical properties, total and available Cr content, as well as bacterial and fungal community structures from 0 to 20 cm depth along the pollution gradient, and evaluated their interactions. The results revealed a corresponding decrease in soil pH, alkali-hydrolysable N (AN), along with urease and sucrase activities, as Cr pollution increased. In contrast, total organic carbon (TOC) increased with increasing Cr pollution. Soil available P (AP) and acid phosphatase activity did not differ significantly. Different pollution level resulted in distinct bacterial and fungal communities, with Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, and Basidiomycota being the dominant phyla across the five bamboo soils. Both total Cr (TCr) and HCl-extractable Cr (ACr) negatively correlated with alpha indices (Chao1 and Shannon) for bacteria but not for fungi, indicating that the latter is more resistant to Cr pollution. Decrease in soil pH and increase in TCr and ACr from L to H were closely related to the shift of bacterial and fungal communities. These changes reduced soil N and C cycles. Our findings suggest that improving soil acidic conditions and N availability enhances carbon and nitrogen cycles via altering soil microbial structure and activities. This, in turn, can increase phytoremediation efficiency in the bamboo ecosystem.
Collapse
Affiliation(s)
- Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang 310012, PR China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou, Zhejiang 310021, PR China
| | - Xu Gai
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang 310012, PR China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang 310012, PR China.
| | - Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang 310012, PR China
| | - Chuanbao Yang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang 310012, PR China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Xing Wen
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang 310012, PR China
| |
Collapse
|
32
|
Zhao Y, Duan FA, Cui Z, Hong J, Ni SQ. Insights into the vertical distribution of the microbiota in steel plant soils with potentially toxic elements and PAHs contamination after 60 years operation: Abundance, structure, co-occurrence network and functionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147338. [PMID: 33971607 DOI: 10.1016/j.scitotenv.2021.147338] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 05/14/2023]
Abstract
Both potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) are widely present in soil contaminated by steel industries. This study assessed the vertical variation (at 20 cm, 40 cm, 60 cm, 80 cm, 120 cm, and 150 cm depth) of bacterial abundance, community structure, functional genes related to PAHs degradation, and community co-occurrence patterns in an old steel plant soils which contaminated by PTEs and PAHs for 60 years. The excessive PAHs and PTEs in steel plant soils were benzo (a) pyrene, benzo (b) fluoranthene, dibenzo (a, h) anthracene, indeno (1,2,3-c, d) pyrene, and lead (Pb). The abundance and composition of bacterial community considerably changed with soil depth in two study areas with different pollution degrees. The results of co-occurrence network analysis indicated that the top genera in blast furnace zone identified as the potential keystone taxa were Haliangium, Blastococcus, Nitrospira, and Sulfurifustis. And in coking zone, the top genera were Gaiella. The predictions of bacterial metabolism function using PICRUSt showed that the PAHs-PTEs contaminated soil still had the potential for PAHs degradation, but most PTEs negatively correlated with PAHs degradation genes. The total sulfur (TS), acenaphthene (ANA), and Zinc (Zn) were the key factors to drive development of bacterial communities in the steel plant soils. As far as we know, this is the first investigation of vertical distribution and interaction of the bacterial microbiota in the aging soils of steel plant contaminated with PTEs and PAHs.
Collapse
Affiliation(s)
- Yiyi Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Fu-Ang Duan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhaojie Cui
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Jinglan Hong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
33
|
Li D, Li G, Zhang D. Field-scale studies on the change of soil microbial community structure and functions after stabilization at a chromium-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125727. [PMID: 34088197 DOI: 10.1016/j.jhazmat.2021.125727] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 05/20/2023]
Abstract
Various remediation strategies have been developed to eliminate soil chromium (Cr) contamination which challenges the ecosystem and human health, and chemical stabilization is the most popular one. Limited work focuses on the change of soil microbial community and functions after chemical stabilization. The present study examined the diversity and structure of bacterial, fungal and archaeal communities in 20 soils from a Cr-contaminated site in China after chemical stabilization and ageing. Cr contamination significantly reduced microbial diversity and shaped microbial community structure. After chemical stabilization, bacterial and fungal communities had higher richness and evenness, whereas archaea behaved oppositely. Microbial community structure after stabilization were more similar to uncontaminated soils. Among all environmental variables, pH and Al explained 25.2% and 9.4% of the total variance of bacterial diversity, whereas the major variable affecting fungal community was pH (29.3%). Cr, organic matters, extractable-Al and moisture explained 25.8%, 22.4%, 9.9% and 9.9% of the total variance in archaeal community, respectively. This work for the first time unraveled the change of the whole soil microbial community structures and functions at Cr-contaminated sites after chemical stabilization on field scale and proved chemical stabilization as an effective approach to detoxicate Cr(VI) and recover microbial communities in soils.
Collapse
Affiliation(s)
- Danni Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
34
|
Martin G, Sharma S, Ryan W, Srinivasan NK, Senko JM. Identification of Microbiological Activities in Wet Flue Gas Desulfurization Systems. Front Microbiol 2021; 12:675628. [PMID: 34262541 PMCID: PMC8273512 DOI: 10.3389/fmicb.2021.675628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Thermoelectric power generation from coal requires large amounts of water, much of which is used for wet flue gas desulfurization (wFGD) systems that minimize sulfur emissions, and consequently, acid rain. The microbial communities in wFGDs and throughout thermoelectric power plants can influence system performance, waste processing, and the long term stewardship of residual wastes. Any microorganisms that survive in wFGD slurries must tolerate high total dissolved solids concentrations (TDS) and temperatures (50–60°C), but the inocula for wFGDs are typically from fresh surface waters (e.g., lakes or rivers) of low TDS and temperatures, and whose activity might be limited under the physicochemically extreme conditions of the wFGD. To determine the extents of microbiological activities in wFGDs, we examined the microbial activities and communities associated with three wFGDs. O2 consumption rates of three wFGD slurries were optimal at 55°C, and living cells could be detected microscopically, indicating that living and active communities of organisms were present in the wFGD and could metabolize at the high temperature of the wFGD. A 16S rRNA gene-based survey revealed that the wFGD-associated microbial communities included taxa attributable to both thermophilic and mesophilic lineages. Metatranscriptomic analysis of one of the wFGDs indicated an abundance of active Burholderiaceae and several Gammaproteobacteria, and production of transcripts associated with carbohydrate metabolism, osmotic stress response, as well as phage, prophages, and transposable elements. These results illustrate that microbial activities can be sustained in physicochemically extreme wFGDs, and these activities may influence the performance and environmental impacts of thermoelectric power plants.
Collapse
Affiliation(s)
- Gregory Martin
- Department of Biology, The University of Akron, Akron, OH, United States
| | - Shagun Sharma
- Department of Biology, The University of Akron, Akron, OH, United States.,Integrated Bioscience Program, The University of Akron, Akron, OH, United States
| | - William Ryan
- Department of Biology, The University of Akron, Akron, OH, United States
| | | | - John M Senko
- Department of Biology, The University of Akron, Akron, OH, United States.,Integrated Bioscience Program, The University of Akron, Akron, OH, United States.,Department of Geosciences, The University of Akron, Akron, OH, United States
| |
Collapse
|
35
|
Song X, Wang Q, Jin P, Chen X, Tang S, Wei C, Li K, Ding X, Tang Z, Fu H. Enhanced biostimulation coupled with a dynamic groundwater recirculation system for Cr(VI) removal from groundwater: A field-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145495. [PMID: 33770851 DOI: 10.1016/j.scitotenv.2021.145495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
A large gap exists between laboratory findings and successful implementation of bioremediation technologies for the treatment of chromium (Cr)-contaminated sites. This work conducted the enhanced bioremediation of Cr(VI) in situ via the addition of organic carbon (ethanol) coupled with a dynamic groundwater recirculation (DGR)-based system in a field-scale study. The DGR system was applied to successfully (1) remove Cr(VI) from groundwater via enhanced flushing by the recirculation system and (2) deliver the biostimulant to the heterogeneous subsurface environment, including a sand/cobble aquifer and a fractured bedrock aquifer. The results showed that the combined extraction and bioreduction of Cr(VI) were able to reduce Cr(VI) concentrations from 1000 to 2000 mg/L to below the clean-up goal of 0.1 mg/L within the operation period of 52 days. The effectiveness of Cr(VI) bioremediation and the relationship between microbial communities and geochemical parameters were evaluated. Multiple-line of evidence demonstrated that the introduction of ethanol significantly stimulated a variety of bacteria, including those responsible for denitrification, sulfate reduction and reduction of Cr(VI), which contributed to the establishment of reducing conditions in both aquifers. Cr(VI) was removed from groundwater via combined mechanisms of physical removal through the DGR system and the bioreduction of Cr(VI) followed by precipitation. In particular, it was found competitive growth among Cr(VI)-reducing bacteria (such as the enrichment of Geobacter, along with the reduced relative abundance of Acinetobacter and Pseudomonas) was induced by ethanol injection. Furthermore, Cr(VI), total organic carbon, NO2-, and SO42- played important roles in shaping the composition of the microbial community and its functions.
Collapse
Affiliation(s)
- Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peng Jin
- EPCR Innovation and Technology LLC, PA 19406, USA
| | - Xing Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiyue Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changlong Wei
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyan Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Fu
- Nanjing Kangdi Environmental Protection Technology Co., LTD, Nanjing 21000, China
| |
Collapse
|
36
|
Xu D, Ji P, Wang L, Zhao X, Hu X, Huang X, Zhao H, Liu F. Effect of modified fly ash on environmental safety of two soils contaminated with cadmium and lead. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112175. [PMID: 33773148 DOI: 10.1016/j.ecoenv.2021.112175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
In this study, a low-temperature roasting and hydrothermal methods were used to modify the fly ash resulting in two new types of adsorption materials - modified fly ash (MFA) and artificial zeolite (ZE). These modified fly ashes, as well as a natural zeolite (ZO) were applied to two types of contaminated soils to explore their effects and mechanisms on the behavior of Cd and Pb through leaching column experiments. The bioavailable of Pb, Cd, pH, dissolved organic carbon (DOC), organic matter, as well as the microbial community changings were detected. The results showed that, 2% ZE has a significant stabilizing effect on Cd and the bioavailable fraction contents in Guanzhong (GZ) and Hunan (HN) soils decreased by 40.5% and 53.2%, respectively. However, for Pb, the 2% MFA showed a better result than that of ZE and ZO; the contents of bioavailable Pb in HN and GZ decreased by 48.3% and 30%, respectively. Furthermore, based on the Illumina NovaSep sequencing platform, 18 soil samples of GZ and HN were sequenced for microbial communities. As compared to the control blank(CK) treatment, the abundance of soil microbial communities was significantly improved in the amended soils.
Collapse
Affiliation(s)
- Dong Xu
- Beijing Key Laboratory of Power Generation System Functional Material, China Energy New Energy Technology Institute, Beijing 102209, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xiongfei Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Hanghang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
37
|
Yan X, Liu X, Zhang M, Wang J, Zhong J, Ma D, Tang C, Hu X. Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22359-22371. [PMID: 33417128 DOI: 10.1007/s11356-020-11852-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Bioremediation of Cr(VI) by microorganisms has attracted immense research interests. There are three different mechanisms for bioremediation of Cr(VI): biosorption, bioreduction, and biomineralization. Identifying the relative contributions of these different mechanisms to Cr(VI) bioremediation can provide valuable information to enhance the final result. This article explores the corresponding contributions of different mechanisms in the Cr(VI) bioremediation process. To obtain a deeper understanding of each bioremediation mechanism, the corresponding precipitation products were analyzed via different methods. Fourier transform infrared spectrometer (FTIR) analysis showed that Cr(VI) was adsorbed by functional groups in EPS to form a chelate compound. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis determined that the stable Cr(III) compounds and mineral crystals which contain chromium gradually formed during the bioremediation process. High-throughput sequencing technology was applied to monitor microbial community succession. The results showed that the total removal rate of Cr(VI) reached 77.64% in 56 days in 100 mg/L Cr(VI). Bioreduction was the major contributor to the final result, followed by biosorption and biomineralization; their proportions are 69.61%, 19.16%, and 11.23%, respectively. Besides, the high-throughput sequencing data indicated that reductive microorganisms were the dominant flora and that the relative abundance of different reductive microorganism types changes significantly. This work has clarified the contributions of different mechanisms during Cr(VI) bioremediation process and provided a new enhancement strategy for Cr(VI) bioremediation.Graphical abstract.
Collapse
Affiliation(s)
- Xiao Yan
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xingyu Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China.
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China.
- GRIMAT Engineering Institute Co., Ltd., Beijing, 101407, China.
| | - Mingjiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Jianlei Wang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Juan Zhong
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Daozhi Ma
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Chuiyun Tang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xuewu Hu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
38
|
Lyu Y, Yang T, Liu H, Qi Z, Li P, Shi Z, Xiang Z, Gong D, Li N, Zhang Y. Enrichment and characterization of an effective hexavalent chromium-reducing microbial community YEM001. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19866-19877. [PMID: 33410044 DOI: 10.1007/s11356-020-11863-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) is one of the most widely used heavy metals in industrial processes, resulting in water and soil pollution that seriously threaten environmental safety. In this paper, we have directionally enriched a Cr(VI)-reducing bacterial community YEM001 from no-Cr(VI) polluted pond sedimental sludge by selectively growing it in Cr(VI)-containing media. This community could effectively reduce Cr(VI) in laboratory rich media containing different concentrations of Cr(VI), such as 61% reduction at 435 mg/L Cr(VI), 85% reduction at 355 mg/L Cr(VI), and complete reduction at 269 mg/L Cr(VI) in 93.5 h. It was also able to completely reduce 100 mg/L and 300 mg/L Cr(VI) in landfill leachate and natural sludge in 48 h, respectively. Optimal pH for Cr(VI) reduction of the YEM001 is between 7 and 8 and the best efficiency for Cr(VI) reduction occurs at 30 °C. Metagenomic data demonstrated that the YEM001 community was composed of multiple bacteria, including well-known Cr(VI)-reducing bacteria and non-Cr(VI)-reducing bacteria. Delftia, Comamonas, Alicycliphilus, Acidovorax, Bacillus, and Clostridioides account for 83% of total community abundance. The stability of the composition of the YEM001 community and its Cr(VI)-reducing activity allows for its application in bioremediation of environmental Cr(VI) pollution.
Collapse
Affiliation(s)
- Yucai Lyu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China.
| | - Tao Yang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Herong Liu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Zheng Qi
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ping Li
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ziyao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Zhen Xiang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Dachun Gong
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yaoping Zhang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
39
|
Feng Y, Yang J, Liu W, Yan Y, Wang Y. Hydroxyapatite as a passivator for safe wheat production and its impacts on soil microbial communities in a Cd-contaminated alkaline soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124005. [PMID: 33069995 DOI: 10.1016/j.jhazmat.2020.124005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 05/21/2023]
Abstract
The remediation of Cd-contaminated alkaline soil plays a critical role in safe wheat production. In this study, hydroxyapatite (HAP), a functional environmental remediation material, was selected to investigate the effects of HAP on cadmium accumulation in winter wheat (Triticum aestivum L.), Cd bioavailability in alkaline soil moderately polluted with Cd (2.46 mg kg-1) and the soil bacterial community via pot experiments. The results showed HAP effectively inhibited Cd accumulation in the grains of two investigated wheat cultivars by hindering root uptake. The Cd concentrations decreased by 49.9-81.9%, and 35.7-92.4% in the grains of Zhoumai-30 and Zhengmai-7698, respectively. HAP increased the soil pH and reduced the bioavailability of Cd. 16S rRNA sequencing analysis indicated that the changes of soil physicochemical properties changed the diversity and composition of the bacterial community by increasing the relative abundance of beneficial soil bacteria. These results demonstrated the application of 2.5% HAP combined with planting Zhengmai-7698 treatment was a potential remediation method for safe wheat production, and also benefited soil P and N cycling by increasing the relative abundance of beneficial bacteria. The good performance of HAP in inhabiting Cd accumulation in wheat grains indicated it is a promising material for safe wheat production.
Collapse
Affiliation(s)
- Ya Feng
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Liu
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Yubo Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yihao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
40
|
How the Soil Microbial Communities and Activities Respond to Long-Term Heavy Metal Contamination in Electroplating Contaminated Site. Microorganisms 2021; 9:microorganisms9020362. [PMID: 33673105 PMCID: PMC7918637 DOI: 10.3390/microorganisms9020362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of long-term heavy metal contamination on the soil biological processes and soil microbial communities were investigated in a typical electroplating site in Zhangjiakou, China. It was found that the soil of the electroplating plant at Zhangjiakou were heavily polluted by Cr, Cr (VI), Ni, Cu, and Zn, with concentrations ranged from 112.8 to 9727.2, 0 to 1083.3, 15.6 to 58.4, 10.8 to 510.0 and 69.6 to 631.6 mg/kg, respectively. Soil urease and phosphatase activities were significantly inhibited by the heavy metal contamination, while the microbial biomass carbon content and the bacterial community richness were much lower compared to noncontaminated samples, suggesting that the long-term heavy metal contamination had a severe negative effect on soil microorganisms. Differently, soil dehydrogenase was promoted in the presence of Chromate compared to noncontaminated samples. This might be due to the enrichment of Sphingomonadaceae, which have been proven to be able to secrete dehydrogenase. The high-throughput sequencing of the 16S rRNA gene documented that Proteobacteria, Actinobacteria, and Chloroflexi were the dominant bacterial phyla in the contaminated soil. The Spearman correlation analysis showed the Methylobacillus, Muribaculaceae, and Sphingomonadaceae were able to tolerate high concentrations of Cr, Cr (VI), Cu, and Zn, indicating their potential in soil remediation.
Collapse
|
41
|
Fu L, Feng A, Xiao J, Wu Q, Ye Q, Peng S. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123847. [PMID: 33264926 DOI: 10.1016/j.jhazmat.2020.123847] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
In order to solve the problem of re-oxidation after chemical remediation of soil contaminated with high levels of hexavalent chromium (Cr(VI)), we investigated the use of chemical reduction combined with microbial stabilization to remediate soils contaminated with high Cr(VI) concentration. The leaching toxicity and microbial diversity of Cr(VI)-contaminated soil and the leaching toxicity of remediated soil oxidized by potassium permanganate (KMnO4) were measured. The results indicate that the conversion rate of Cr(VI) reached 97 %, and the concentration of Cr(VI) in toxic solutions leaching can be reduced by 95 % after 40 days of microbial stabilization. Sterilization experiments showed that the reduction of Cr(VI) by microorganisms is stable. The results of microbial diversity analysis indicate that bacterial community changed more than fungal community during the reduction process of Cr(VI), and the species abundance and species evenness of bacteria decreased. Bacillus spp. and Halomonas spp. were the dominant species in this study.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Aixi Feng
- Yuhuan Environmental Science and Technology Co., Ltd, No. 88, Hongqi Street, Qiaoxi District, Shijiazhuang, Hebei Province, 050000, China
| | - Jingjing Xiao
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Qing Wu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Qunying Ye
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
42
|
Li S, Zhao B, Jin M, Hu L, Zhong H, He Z. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123255. [PMID: 32593028 DOI: 10.1016/j.jhazmat.2020.123255] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Smelter emissions have brought serious heavy metal contamination. Comprehensive surveys of spatial heavy metal and microorganism distribution in soils of smelters aera are still limited. In this study, the horizontal and vertical profiles of heavy metals as well as microorganisms of 80 samples from 5 soil layers of 16 sites in a Pb/Zn smelter were studied. Pollution index indicated the pollution level as Cd > Zn > Pb > As > Cu > Mn > Co > Cr > V, and the severe pollutants were Cd, Zn, Pb, As and Cu. The hazard quotient and hazard index indicated that the topsoil might pose high chronic risk to children mainly due to high content of Pb, As and Cd. The whole smelter was heavily polluted even to the depth of 100 cm as revealed by Nemerow pollution indices. Depth-related microbiota analysis indicated high richness of indigenous microorganisms and significant differences in vertical microbial structure. Proteobacteria was the dominant phylum in all depth layers, followed by Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria as major phyla. pH and heavy metals Zn, Cu, As, Mn and Cd significantly influenced the microbiota composition. Metagenomic functional prediction suggested antioxidant response, metal exportation and biotransformation play roles in bio-resistance to and bioremoval of heavy metals.
Collapse
Affiliation(s)
- Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Bi Zhao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ming Jin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
43
|
Yang J, Wang S, Guo Z, Deng Y, Xu M, Zhang S, Yin H, Liang Y, Liu H, Miao B, Meng D, Liu X, Jiang L. Spatial Distribution of Toxic Metal(loid)s and Microbial Community Analysis in Soil Vertical Profile at an Abandoned Nonferrous Metal Smelting Site. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7101. [PMID: 32998275 PMCID: PMC7579518 DOI: 10.3390/ijerph17197101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023]
Abstract
In this study soils at different depths were collected in a Zn smelting site located in Zhuzhou City, China, in order to understand toxic metal(loid)s distribution and microbial community in vertical soil profile at a smelting site. Except Soil properties and metal(loid)s content, the richness and diversity of microbial communities in soil samples were analyzed via high-throughput Illumina sequencing of 16s rRNA gene amplicons. The results showed that the content of As, Pb, Cu, Cd, Zn, and Mn was relatively high in top soil in comparison to subsoil, while the concentration of Cr in subsoil was comparable with that in top soil due to its relative high background value in this soil layer. The bioavailability of Cd, Mn, Zn, and Pb was relative higher than that of As, Cr, and Cu. The diversity of soil microbial communities decreased with increasing depth, which might be ascribed to the decrease in evenness with increase in depth duo to the influence by environmental conditions, such as pH, TK (total potassium), CEC (cation exchange capacity), ORP (oxidation reduction potential), and Bio-Cu (bioavailable copper). The results also found Acidobacteria, Proteobacteria, Firmicutes, and Chloroflexi were dominant phyla in soil samples. At the genus level, Acinetobacter, Pseudomonas, and Gp7 were dominant soil microorganism. Besides, Environmental factors, such as SOM (soil organic matter), pH, Bio-Cu, Bio-Cd (bioavailable cadmium), and Bio-Pb (bioavailable lead), greatly impacted microbial community in surface soil (1-3 m), while ORP, TK, and AN concentration influenced microbial community in the subsoil (4-10 m).
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Siqi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Menglong Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Siyuan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (S.W.); (Z.G.); (Y.D.); (M.X.); (S.Z.); (H.Y.); (Y.L.); (H.L.); (B.M.); (D.M.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
44
|
Wei S, Cao J, Ma X, Ping J, Zhang C, Ke T, Zhang Y, Tao Y, Chen L. The simultaneous removal of the combined pollutants of hexavalent chromium and o-nitrophenol by Chlamydomonas reinhardtii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110648. [PMID: 32388188 DOI: 10.1016/j.ecoenv.2020.110648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Microalgae have been used for the removal of heavy metals or synthetic organics; however, the simultaneous removal of both types of compounds is always technically difficult. In this study, a green algae, Chlamydomonas reinhardtii, was first used to simultaneously remove hexavalent chromium [Cr(VI)] and o-nitrophenol (ONP), and the balance among biomass, oxidative damage and removal rate was also investigated. The results showed that treatment with Cr(VI) or ONP decreased the photosynthetic and superoxide dismutase activities and increased the production of reactive oxygen species (ROS) and malondialdehyde content. However, combined treatment with Cr(VI) (≤4 mg/L) and ONP (≤15 mg/L) significantly decreased ROS generation and alleviated cell damage in C. reinhardtii. In addition, the removal rates of Cr(VI) and ONP by C. reinhardtii cells significantly increased from 37.4% to 54.9% and from 35.8% to 45.9%, respectively, and the cells could be reused at least four times. Moreover, the increased acidity in the medium and Cr(VI) reductase content in C. reinhardtii caused Cr(VI) to be reduced to Cr(III). The addition of an exogenous antioxidant decreased the removal rates of Cr(VI) and ONP. These results indicated that the presence of Cr(VI) could induce ROS generation in C. reinhardtii and enhance ONP degradation, which consumed ROS, alleviated cell damage, and thus benefited Cr(VI) reduction. As a result, C. reinhardtii could be used as a theoretical candidate for the simultaneous removal of combined Cr(VI) and ONP contamination.
Collapse
Affiliation(s)
- Sijie Wei
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Jun Cao
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; College of Chemical & Environmental Engineering, Hanjiang Normarl University, Shiyan, 442000, PR China
| | - Xinyue Ma
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Jie Ping
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430079, PR China
| | - Chao Zhang
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Tan Ke
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Yurui Zhang
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Yue Tao
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Lanzhou Chen
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
45
|
Hu L, Zhong H, He Z. Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11116-11126. [PMID: 31955336 DOI: 10.1007/s11356-019-07468-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Quantum dots (QDs) have caused large challenges in clinical tests and biomedical applications due to their potential toxicity from nanosize effects and heavy metal components. In this study, the physiological responses of Phanerochaete chrysosporium (P. chrysosporium) to CdSe/ZnS QDs with either an inorganic sulfide NaHS or an organic sulfide cysteine as antidote have been investigated. Scanning electron microscope analysis showed that the hyphal structure and morphology of P. chrysosporium have obviously changed after exposure to 100 nM of COOH CdSe/ZnS 505, NH2 CdSe/ZnS 505, NH2 CdSe/ZnS 565, or NH2 CdSe/ZnS 625. Fourier transform infrared spectroscopy analysis indicated that the existence of hydroxyl, amino, and carboxyl groups on cell surface could possibly conduct the stabilization of QDs in an aqueous medium. However, after NaHS or cysteine treatment, the cell viability of P. chrysosporium exposed to CdSe/ZnS QDs increased as compared to control group, since NaHS and cysteine have assisted P. chrysosporium to alleviate oxidative damage by regulating lipid peroxidation and superoxide production. Meanwhile, NaHS and cysteine have also stimulated P. chrysosporium to produce more antioxidant enzymes (superoxide dismutase and catalase), which played significant roles in the defense system. In addition, NaHS and cysteine were used by P. chrysosporium as sulfide sources to promote the glutathione biosynthesis to relieve CdSe/ZnS QDs-induced oxidative stress. This work revealed that sulfide sources (NaHS and cysteine) exerted a strong positive effect in P. chrysosporium against the toxicity induced by CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
46
|
Wang H, Liu X, Wu C, Zhang M, Ke Z, Jiang W, Zhou Y, Qiu J, Hong Q. An angular dioxygenase gene cluster responsible for the initial phenazine-1-carboxylic acid degradation step in Rhodococcus sp. WH99 can protect sensitive organisms from toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135726. [PMID: 31837849 DOI: 10.1016/j.scitotenv.2019.135726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
A bacterial strain, Rhodococcus sp. WH99, capable of degrading phenazine-1-carboxylic acid (PCA) was isolated and characterized. Genome comparison revealed that a 21499-bp DNA fragment containing a putative angular dioxygenase gene cluster consisting of the dioxygenase-, ferredoxin reductase- and ferredoxin-encoding genes (pzcA1A2, pzcC and pzcD) is missed in the PCA degradation-deficient mutant WH99M. The pzcA1A2CD genes were expressed in Escherichia coli respectively and hydroxylation of PCA to 1,2-dihydroxyphenazine occurred in vitro only when all components were present. However, in vivo analyses showed that pzcA1A2 and pzcD were indispensable for PCA degradation, while PzcC can be partially replaced by other ferredoxin reductases. Hydroxylation of PCA not only initiates degradation of PCA in strain WH99 but also provides protection to sensitive organisms that would otherwise be inhibited by PCA toxicity. This study illustrates a new initial PCA degradation step in Gram-positive bacteria and enhances our understanding of the genes responsible for PCA hydroxylation, thus enabling targeted studies on protection by PCA degradation in diverse environments.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiaoan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Chenglong Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
47
|
Liu B, Huang Q, Su Y, Sun L, Wu T, Wang G, Kelly RM. Rice busk biochar treatment to cobalt-polluted fluvo-aquic soil: speciation and enzyme activities. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1220-1231. [PMID: 31720910 DOI: 10.1007/s10646-019-02134-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Rice busk biochar was mixed with cobalt (Co)-polluted soil to examine the efficacy of biochar for Co immobilization and detoxification in fluvo-aquic soil. The Co speciation (modified BCR sequential extraction), fluorescein diacetate (FDA) hydrolysis and soil enzyme activities were investigated. In soil, the Co ions (acid-soluble fraction) could be uptake by biochar due to the microporous structure on the surface, as well as the oxygen-containing functional groups and conjugated structure in the molecular structure. Therefore, when the biochar concentration was lower than the optimum concentration (~6 g·kg-1), there was transformation of Co from the acid-soluble fraction to the oxidizable fraction, resulting in lower environmental risk. However, if the biochar concentration continued increasing, the distribution coefficient of Co in the acid-soluble fraction increased (P < 0.05). The biochar could also reduce the toxicity of Co, resulting in the negative correlations between soil enzyme activities (FDA hydrolysis, urease and alkaline phosphatases) and Co in the acid-soluble fraction (r = -0.816, -0.928 and -0.908, respectively, P < 0.01). When the biochar concentration ranged from 5.83 to 6.76 g·kg-1, the efficacy for Co immobilization and detoxification reached the maxima. To conclude, in fluvo-aquic soil, rice busk biochar is an effective amendment for immobilizing Co ions and reducing the toxicity of Co. The biochar concentration in soil should range from 5.83 to 6.76 g·kg-1 to reach the optimum efficacy.
Collapse
Affiliation(s)
- Borui Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Qing Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| | - Yuefeng Su
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Liuye Sun
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Tong Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Guange Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Ryan M Kelly
- Rykell Scientific Editorial, LLC, Los Angeles, CA, USA
| |
Collapse
|