1
|
Xiao W, Xiang P, Liao W, Xiong Z, Peng L, Zou L, Liu B, Li Q. Effects of polystyrene microplastics on the growth and metabolism of highland barley seedlings based on LC-MS. FRONTIERS IN PLANT SCIENCE 2024; 15:1477605. [PMID: 39741681 PMCID: PMC11685026 DOI: 10.3389/fpls.2024.1477605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Microplastics are widely present in the environment and can adversely affect plants. In this paper, the effects of different concentrations of microplastics on physiological indices and metabolites of highland barley were investigated for the first time using a metabolomics approach, and revealed the response mechanism of barley seedlings to polystyrene microplastics (PS-MPs) was revealed. The results showed that the aboveground biomass of highland barley exposed to low (10 mg/L) and medium (50 mg/L) concentrations of PS-MPs increased by 32.2% and 48.2%, respectively. The root length also increased by 16.4% and 21.6%, respectively. However, the aboveground biomass of highland barley exposed to high (100 mg/L) concentrations of PS-MPs decreased by 34.8%, leaf length by 20.7%, and root length by 25.9%. Microplastic exposure increased the levels of antioxidant activity, suggesting that highland barley responds to microplastic stress through oxidative stress. Metabolome analysis revealed that the contents of 4 metabolites increased significantly with increasing PS-MPs concentration in positive ionmode, while the contents of 8 metabolites increased significantly with increasing PS-MPs concentration in negative ionmode (P < 0.05), including prunin, dactylorhin E, and schisantherin B. Additionally, PS-MPs significantly interfered with highland barley flavonoid biosynthesis, pyrimidine metabolism, purine metabolism, fatty acid biosynthesis, and phenylpropanoid biosynthesis metabolic pathways. This study provides a new theoretical basis for a deeper understanding of the effects of different concentrations of PS-MPs on highland barley.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiang Li
- *Correspondence: Bingliang Liu, ; Qiang Li,
| |
Collapse
|
2
|
Zhang M, Chen X, Wang N, Guan L, Wang L, Chen X, Yang Z, Sun Y, Fan Y, Meng Y, Liu M, Chen W, Wu F, Song R, Wang S, Lu X, Wang J, Guo L, Zhao L, Nan H, Zhang K, Feng K, Ye W. GhCOMT33D modulates melatonin synthesis, impacting plant response to Cd 2+ in cotton via ROS. PHYSIOLOGIA PLANTARUM 2024; 176:e14647. [PMID: 39641144 DOI: 10.1111/ppl.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Caffeic acid-3-O-methyltransferase (COMT) serves as the final pivotal enzyme in melatonin biosynthesis and plays a crucial role in governing the synthesis of melatonin in plants. This research used bioinformatics to analyze the phylogenetic relationships, gene structure, and promoter cis-acting elements of the upland cotton COMT gene family members, which it identified as the key gene GhCOMT33D to promote melatonin synthesis and responding to Cd2+ stress. After silencing GhCOMT33D through virus-induced gene silencing (VIGS), cotton seedlings showed less resistance to Cd2+ stress. Under Cd2+ stress, the melatonin content in the silenced plants significantly decreased, while ROS, MDA, and proline accumulated in the plant cells. The stomatal aperture of the leaves was reduced, hindering normal photosynthesis, leading to cotton leaves withering and yellowing, and epidermal cells becoming twisted and deformed, with a large number of gaps appearing. The non-silenced plants had a significantly higher melatonin content and were in better condition, providing important evidence for further research on how plant melatonin enhances the Cd2+ resistance of cotton and its regulatory mechanisms.
Collapse
Affiliation(s)
- Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Lijun Guan
- Institute of Agricultural Science of 13th Division of Xinjiang Production and Construction Corps, Hami, Xinjiang, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Xiao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Yuping Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Fange Wu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Ruize Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| | - Hongyu Nan
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kunpeng Zhang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| |
Collapse
|
3
|
Cheng Z, Xu M, Cao Q, Chi W, Cao S, Zhou Z, Wang Y. Antioxidant Systematic Alteration Was Responsible for Injuries Inflicted on the Marine Blue Mussel Mytilus edulis Following Strontium Exposure. Antioxidants (Basel) 2024; 13:464. [PMID: 38671912 PMCID: PMC11047646 DOI: 10.3390/antiox13040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The ionic properties of strontium (Sr), a significant artificial radionuclide in the marine environment, were estimated using a stable nuclide-substituting experimental system under controlled laboratory conditions. The bio-accumulation of Sr and its impacts, as well as any possible hidden mechanisms, were evaluated based on the physiological alterations of the sentinel blue mussel Mytilus edulis. The mussels were exposed to a series of stress-inducing concentrations, with the highest solubility being 0.2 g/L. No acute lethality was observed during the experiment, but sublethal damage was evident. Sr accumulated in a tissue-specific way, and hemolymph was the target, with the highest accumulating concentration being 64.46 µg/g wet weight (ww). At the molecular level, increases in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and changes in ROS components (H2O2, O2-, and -OH) and antioxidant system activity indicated that the redox equilibrium state in hemocytes was disturbed. Furthermore, the rise in the hemocyte micronucleus (MN) rate (4‱ in the high-concentration group) implied DNA damage. At the cellular level, the structures of hemocytes were damaged, especially with respect to lysosomes, which play a crucial role in phagocytosis. Lysosomal membrane stability (LMS) was also affected, and both acid phosphatase (ACP) and alkaline phosphatase (AKP) activities were reduced, resulting in a significant decline in phagocytosis. The hemolymph population structure at the organ level was disturbed, with large changes in hemocyte number and mortality rate, along with changes in component ratios. These toxic effects were evaluated by employing the adverse outcome pathway (AOP) framework. The results suggested that the disruption of intracellular redox homeostasis is a possible explanation for Sr-induced toxicity in M. edulis.
Collapse
Affiliation(s)
- Zihua Cheng
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266200, China
| | - Mengxue Xu
- Marine Science Research Institute of Shandong Province, Qingdao 266100, China; (M.X.); (W.C.)
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao 266100, China
| | - Qiyue Cao
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
| | - Wendan Chi
- Marine Science Research Institute of Shandong Province, Qingdao 266100, China; (M.X.); (W.C.)
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao 266100, China
| | - Sai Cao
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
| | - Zhongyuan Zhou
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266200, China
| | - You Wang
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266200, China
| |
Collapse
|
4
|
Li Q, Zhang B, Liu W, Zou H. Strigolactones alleviate the toxicity of polystyrene nanoplastics (PS-NPs) in maize (Zea mays L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170626. [PMID: 38325482 DOI: 10.1016/j.scitotenv.2024.170626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Nanoplastics are widely used across various fields, yet their uptake can potentially exert adverse effects on plant growth and development, ultimately reducing yields. While there is growing awareness of the phytotoxicity caused by nanoplastics, our understanding of effective strategies to prevent nanoplastic accumulation in plants remains limited. This study explores the role of strigolactones (SLs) in mitigating the toxicity of polystyrene nanoplastics (PS-NPs) in Zea mays L. (maize). SLs application markedly inhibited PS-NPs accumulation in maize roots, thus enhancing the root weight, shoot weight and shoot length of maize. Physiological analysis showed that SLs application activated the activities of antioxidant defence enzymes, superoxide dismutase and catalase, to decrease the malondialdehyde content and electrolyte leakage and alleviate the accumulation of H2O2 and O2.- induced by PS-NPs in maize plants. Transcriptomic analyses revealed that SLs application induced transcriptional reprogramming by regulating the expression of genes related to MAPK, plant hormones and plant-pathogen interaction signal pathways in maize treated with PS-NPs. Notably, the expression of genes, such as ZmAUX/IAA and ZmGID1, associated with phytohormones in maize treated with PS-NPs underwent significant changes. In addition, SLs induced metabolic dynamics changes related to amino acid biosynthesis, ABC transporters, cysteine and methionine metabolism in maize treated with PS-NPs. In summary, these results strongly reveal that SLs could serve as a strategy to mitigate the accumulation and alleviate the stress of PS-NPs in maize, which appears to be a potential approach for mitigating the phytotoxicity induced by PS-NPs in maize.
Collapse
Affiliation(s)
- Qiaolu Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Binglin Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Weijuan Liu
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Huawen Zou
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
5
|
Stanojković JN, Ćosić MV, Božović DP, Sabovljević AD, Sabovljević MS, Čučulović AA, Vujičić MM. Effects of Cesium on Physiological Traits of the Catherine's Moss Atrichum undulatum Hedw. PLANTS (BASEL, SWITZERLAND) 2023; 13:54. [PMID: 38202362 PMCID: PMC10780837 DOI: 10.3390/plants13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Mosses are proven bioindicators of living environments. It is known that mosses accumulate pollutants from precipitates and, to some lesser extent, from the substrate. In this study, the effects of cesium (Cs) on the physiological traits of acrocarp polytrichaceous Catherine's moss (Atrichum undulatum Hedw.) were studied under controlled, in vitro conditions. Cesium can be found in the environment in a stable form (133Cs) and as a radioactive isotope (134Cs and 137Cs). Belonging to the same group of elements, Cs and potassium (K) share various similarities, due to which Cs can interfere with this essential element and thus possibly alter the plant's metabolism. Results have shown that Cs affects the measured physiological characteristics of A. undulatum, although the changes to antioxidative enzyme activities were not drastic following Cs treatments. Therefore, the activities of antioxidative enzymes at lower pH values are more the consequence of pH effects on enzymatic conformation than simply the harmful effects of Cs. Moreover, Cs did not affect the survival of plants grown on the solid substrate nor plants grown in conditions of light and heavy rain simulation using Cs with variable pH, indicating that Cs is not harmful in this form for the studied species A. undulatum.
Collapse
Affiliation(s)
- Jelena N. Stanojković
- Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11080 Zemun, Serbia;
| | - Marija V. Ćosić
- Faculty of Biology, Institute of Botany and Botanical Garden Jevremovac, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia; (M.V.Ć.); (D.P.B.); (A.D.S.); (M.S.S.); (M.M.V.)
| | - Djordje P. Božović
- Faculty of Biology, Institute of Botany and Botanical Garden Jevremovac, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia; (M.V.Ć.); (D.P.B.); (A.D.S.); (M.S.S.); (M.M.V.)
| | - Aneta D. Sabovljević
- Faculty of Biology, Institute of Botany and Botanical Garden Jevremovac, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia; (M.V.Ć.); (D.P.B.); (A.D.S.); (M.S.S.); (M.M.V.)
| | - Marko S. Sabovljević
- Faculty of Biology, Institute of Botany and Botanical Garden Jevremovac, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia; (M.V.Ć.); (D.P.B.); (A.D.S.); (M.S.S.); (M.M.V.)
- Faculty of Science, Department of Botany, Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Mánesova 23, 040 01 Košice, Slovakia
| | - Ana A. Čučulović
- Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11080 Zemun, Serbia;
| | - Milorad M. Vujičić
- Faculty of Biology, Institute of Botany and Botanical Garden Jevremovac, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia; (M.V.Ć.); (D.P.B.); (A.D.S.); (M.S.S.); (M.M.V.)
| |
Collapse
|
6
|
Wang L, Liu B, Zhang W, Li Q, Lin B, Wei C. An unrecognized entry pathway of submicrometre plastics into crop root: The split of hole in protective layer. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131732. [PMID: 37295328 DOI: 10.1016/j.jhazmat.2023.131732] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Threats to food safety caused by the continuous accumulation of plastic particles in the terrestrial environment is currently a worldwide concern. To date, descriptions of how plastic particles pass the external biological barrier of crop root have been vague. Here, we demonstrated that submicrometre polystyrene particles passed unimpededly the external biological barrier of maize through the split of holes in the protective layer. We identified plastic particles induced the apical epidermal cells of root tips become round, thereby expanding the intercellular space. It further pulled apart the protective layer between the epidermal cells, and eventually formed the entry pathway for plastic particles. The enhancement of oxidative stress level induced by plastic particles was the main reason for the deformation of the apical epidermal cells (increased roundness values: 15.5%), comparing to the control. Our findings further indicated that the presence of cadmium was conducive to the "holes" formation. Our results highlighted the critical insights into the fracture mechanisms of plastic particles for the external biological barriers of crop roots, providing a strong incentive to access the risk of plastic particles in agriculture security.
Collapse
Affiliation(s)
- Luya Wang
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China
| | - Beibei Liu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China
| | - Wen Zhang
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China
| | - Bigui Lin
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China.
| | - Chaoxian Wei
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China.
| |
Collapse
|
7
|
Xiao PX, Chen X, Zhong NY, Zheng T, Wang YM, Wu G, Zhang H, He B. Response of Vicia faba to short-term uranium exposure: chelating and antioxidant system changes in roots. JOURNAL OF PLANT RESEARCH 2023; 136:413-421. [PMID: 36826610 DOI: 10.1007/s10265-023-01443-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Uranium (U) phytotoxicity is an inherently difficult problem in the phytoremediation of U-contaminated environments. Plant chelating and antioxidant systems play an authoritative role in resistance to abiotic stress. To reveal the toxicity of U, the changes of chelating system, osmoregulatory substances and antioxidant systems in Vicia faba roots were studied after short-term (24 h) U exposure. The results indicated that the development of lateral roots and root activity of V. faba were significantly inhibited with U accumulation. Compared with the control, plant chelating systems showed significant positive effects after U exposure (15 - 25 μM). Osmoregulatory substances (proline and soluble protein) increasingly accumulated in roots with increasing U concentration, and O2- and H2O2 rapidly accumulated after U exposure (15 - 25 μM). Thus, the contents of malondialdehyde (MDA), a marker of lipid peroxidation, were also significantly increased. Antioxidant systems were activated after U exposure but were inhibited at higher U concentrations (15 - 25 μM). In summary, although the chelating, osmotic regulation and antioxidant systems in V. faba were activated after short-term U exposure, the antioxidases (CAT, SOD and POD) were inhibited at higher U concentrations (15 - 25 μM). Therefore, the root cells were severely damaged by peroxidation, which eventually resulted in inhibited activity and arrested root development.
Collapse
Affiliation(s)
- Pi-Xian Xiao
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Xi Chen
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Ning-Ying Zhong
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Ting Zheng
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, China
| | - Ying-Mei Wang
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Guo Wu
- Life Science College, Sichuan Normal University, Chengdu, 610101, China.
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, China.
| | - Hong Zhang
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Bing He
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
8
|
Ren H, Huang R, Li Y, Li W, Zheng L, Lei Y, Chen K. Photosynthetic regulation in response to strontium stress in moss Racomitrium japonicum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20923-20933. [PMID: 36264468 DOI: 10.1007/s11356-022-23684-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Strontium (Sr2+) pollution and its biological effects are of great concern including photosynthetic regulation, which is fundamental to environmental responses, especially for bryophytes during their terrestrial adaptation. Alternative electron flows mediated by flavodiiron proteins (FLVs) and cyclic electron flow (CEF) in photosystem I (PSI) are crucial to abiotic stresses moss responses; however, little is known about the moss photosynthesis regulation under nuclide treatment. We measured chlorophyll fluorescence parameters in PSI, photosystem II (PSII) and the P700 redox state, oxidative stress in the moss Racomitrium japonicum under low (5 mg/L), moderate (50 mg/L) and high (500 mg/L) Sr2+ stress level. Moderate and high Sr2+ stress triggered H2O2 and malondialdehyde (MDA) generation, and catalase (CAT) activity increases, which are involved in reactive oxygen species regulation. The significant PSII photochemistry (Fv/Fm), Chla/chlb, Y(I)/Y(II), Y(NA), Y(ND) and ETRI-ETRII decreases at moderate and high Sr2+, and the Y(I), Y(II) decreases at high Sr2+ revealed the photo-inhibition and photo-damage in PSI and PSII by moderate and high Sr2+ stress. The nonphotochemical quenching (NPQ) increased significantly at moderate and high Sr2+ stress, reflecting a heat-dissipation-related photo-protective mechanism in antenna system and reaction centers. Moreover, rapid re-oxidation of P700 indicated that FLV-dependent flows significantly regulated PSI redox state under moderate and high Sr2+ stress. and CEF upregulation was found at low Sr2+. Finally, photosynthetic acclimation to Sr2+ stress in R. japonicum was linked to FLVs and CEF adjustments.
Collapse
Affiliation(s)
- Hui Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Renhua Huang
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, 448000, Hubei, China
| | - Ying Li
- Administration Bureau of Jiuzhaigou National Nature Reserve, Jiuzhaigou, 623402, China
| | - Wanting Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Liuliu Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yanbao Lei
- China-Croatia "Belt and Road" Joint Laboratory On Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
9
|
Xu M, Zhang Y, Cao S, Li Y, Wang J, Dong H, Wang Y. A simulated toxic assessment of cesium on the blue mussel Mytilus edulis provides evidence for the potential impacts of nuclear wastewater discharge on marine ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120458. [PMID: 36270569 DOI: 10.1016/j.envpol.2022.120458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The toxic effects of cesium (Cs) on the blue mussel Mytilus edulis were experimentally investigated to assess the potential environmental consequences of the discharge of nuclear wastewater containing radionuclides. A simulated experimental system of stable cesium (133Cs) was set up to mimic the impacts of radiocesium, and its heavy metal property was emphasized. The mussels were exposed to a concentration gradient of 133Cs for 21 days, followed by another 21-day elimination period. 133Cs exposure resulted in effective bioaccumulation with distinct features of concentration dependence and tissue specificity, and hemolymph, gills and digestive glands were recognized as the most target tissues for accumulation. Although the elimination period was helpful in reducing the accumulated 133Cs, the remaining concentrations of tissues were still significant. 133Cs exposure presented little effect on growth status at the individual level but had distinct interference on feeding and metabolism indicated by the oxygen consumption rate, ammonia-N excretion rate and O:N ratio, simultaneously with the impairment of digestive glands. Regarding hemocytes in the hemolymph, the cell mortality increment, micronucleus promotion, lysosomal membrane stability disruption and phagocytic ability inhibition suggested that the immune function was injured. The cooccurrence of reactive oxygen species overproduction had a close relationship with the observed damages and was thought to be the possible explanation for the immune toxicity. The assay based integrated biomarker response (IBR) presented a good linear relation with the exposure concentrations, suggesting that it was a promising method for assessing the risk of 133Cs. The results indicated that 133Cs exposure damaged M. edulis at the tissue and cell before at the macroscopic individual, evidencing the potentially detrimental impacts of nuclear wastewater discharge on marine ecosystems.
Collapse
Affiliation(s)
- Mengxue Xu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Yaya Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Sai Cao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Yuanyuan Li
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Jiayi Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Huihui Dong
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
10
|
Wang L, Lin B, Wu L, Pan P, Liu B, Li R. Antagonistic effect of polystyrene nanoplastics on cadmium toxicity to maize (Zea mays L.). CHEMOSPHERE 2022; 307:135714. [PMID: 35842040 DOI: 10.1016/j.chemosphere.2022.135714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics (NPs) (<1 μm) have gradually attracted worldwide attention owing to their widespread occurrence, distribution, and ecosystem risks. Few studies have explored the interaction between NPs and heavy metals in crops. In this study, we investigated the influence of polystyrene nanoplastics (PSNPs; 10 mg/L and 100 mg/L) and cadmium (2 mg/L and 10 mg/L) on the physiological and biochemical indices of maize plants, grown in Hoagland solution with contaminants, for 14 days. The fresh weight and growth of the maize plants were significantly reduced after exposure to high concentrations of PSNPs and Cd (p < 0.05). Specifically, the fresh weight decreased by 30.3% and 32.5% in the PSNPs and Cd treatment, respectively. Root length and shoot length decreased by 11.7% and 20.0%, and by 16.3% and 27.8%, in the PSNPs and Cd treatment, respectively. However, there were no significant effects on the fresh weight and growth of maize plants as Cd levels increased from 2 to 10 mg/L in the presence of PSNPs. Polystyrene nanoplastics alleviated the phytotoxicity of Cd in maize. Scanning electron microscopy (SEM) showed that PSNPs and Cd could enter maize roots and were transported upwards to the leaves through the vascular bundle. The activities of peroxidase (POD) and catalase (CAT) in maize leaves increased significantly under high concentrations of PSNPs, whereas superoxide dismutase (SOD) activity decreased (p < 0.05). The differences in SOD activity may be related to the absence of microelements such as Zn, Fe, and Mn. This study provides a scientific basis for further exploration of the combined toxicological effects of heavy metals and NPs on the environment.
Collapse
Affiliation(s)
- Luya Wang
- College of Ecology and Environment, Hainan University, Haikou, 570228, PR China; Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, PR China
| | - Bigui Lin
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Haikou, 571101, PR China
| | - Lin Wu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Haikou, 571101, PR China
| | - Pan Pan
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Haikou, 571101, PR China
| | - Beibei Liu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou, 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Haikou, 571101, PR China.
| | - Ruilong Li
- School of Marine Sciences, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
11
|
Wu G, Chen X, Zheng T, Xiao PX, Zhong NY, Yang XL, Li Y, Li W. Effects of U on the growth, reactive oxygen metabolism and osmotic regulation in radish (Raphanus sativus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55081-55091. [PMID: 35312915 DOI: 10.1007/s11356-022-19803-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Uranium (U) is a non-essential and toxic element, so it is necessary to study the physiological mechanism of plant response to U stress. The present study evaluated the growth status, reactive oxygen metabolism and osmotic regulation system in radish (Raphanus sativus) under U stress (0, 25, 50 and 100 μM). The results showed that U had no significant effect on the germination of radish seeds but inhibited the growth of seedlings, such as reduced root activity and increased plasma membrane permeability. U is mainly distributed in radish roots, so it poisons the roots more than the aboveground parts. When U concentration was 25 μM, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities in radish were increased to cope with the oxidative stress caused by U stress, and the accumulation of proline and soluble sugar was increased to maintain cell turgor. However, under high concentration (100 μM), the damage of radish root was serious; thus, the SOD, CAT and soluble sugar could not respond to U stress. In conclusion, the identification and characterization of U-stress responses in genuine U-tolerant plants would improve our knowledge on the detoxification of this radionuclide.
Collapse
Affiliation(s)
- Guo Wu
- Life Science College, Sichuan Normal University, Chengdu, 610101, China.
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, China.
| | - Xi Chen
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Ting Zheng
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, China
| | - Pi-Xian Xiao
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Ning-Ying Zhong
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Xiu-Lin Yang
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Yi Li
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Wei Li
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
12
|
Kang DJ, Tazoe H, Yamada M. Effects of environmental conditions, low-level potassium, ethylenediaminetetraacetic acid, or combination treatment on radiocesium-137 decontamination in Napier grass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49602-49612. [PMID: 33939095 DOI: 10.1007/s11356-021-14177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Phytoextraction is widely used to remove environmental pollutants such as heavy metals or radionuclides from soil. It is important to understand how to enhance the accumulation of contaminants by plants. Previously, we found that Napier grass (Pennisetum purpureum Schum.) has the potential to effectively remove Cs (133Cs and 137Cs). In order to enhance the remediation efficiency of Napier grass, we evaluated the effects of low-level K (K), ethylenediaminetetraacetic acid (EDTA), or the combination of low-level K and EDTA (K+EDTA). We also examined the differences in 137Cs decontamination between two cropping years (2018 and 2019). Overall, there were no prominent effects from the K, EDTA, or K+EDTA treatments on plant growth (plant height, tiller number), aboveground biomass, 137Cs concentration, and 137Cs removal ratio (CR) in 2 years. However, the aboveground biomass (P < 0.001), 137Cs concentration (P < 0.001 in 2019 only), and CR (P < 0.001) in plants grown in the first growing period were significantly higher than in plants grown in the second growing period in both years. The mean 137Cs concentration (P < 0.001) and total CR (P < 0.001) per year was significantly greater in 2019 than in 2018. The precipitation amount during the cultivation period in 2019 (1197 mm) was 1.8-fold higher than in 2018 (655 mm). In this study, the K, EDTA, and K+EDTA treatments had less effect plant growth than the natural environmental conditions. To enhance remediation efficiency, soil moisture is one important factor to produce more aboveground biomass to achieve high CR in Napier grass.
Collapse
Affiliation(s)
- Dong-Jin Kang
- Teaching and Research Center for Bio-coexistence, Faculty of Agriculture and Life Science, Hirosaki University, Goshogawara, 037-0202, Japan.
| | - Hirofumi Tazoe
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Japan
| | - Masatoshi Yamada
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Japan
- Marine Ecology Research Institute, Chiba, 299-5105, Japan
| |
Collapse
|
13
|
Zhou CQ, Lu CH, Mai L, Bao LJ, Liu LY, Zeng EY. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123412. [PMID: 32763702 DOI: 10.1016/j.jhazmat.2020.123412] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 05/07/2023]
Abstract
Potential adverse effects of nanoplastics (NPs) on marine organisms have received increased attention in recent years. In contrast, few data are available on terrestrial plants, especially on the mechanisms for transport of NPs in plants and phytotoxicity (at both phenotypic and molecular levels) of plants induced by NPs. To address this knowledge gap, we conducted a microcosm study in which hydroponically-cultured rice (Oryza sativa L.) seedlings were exposed to polystyrene (PS)-NPs at 0, 10, 50, and 100 mg L-1 for 16 d and examined for morphological and physiological phenotypes and transcriptomics. Laser confocal scanning micrographs confirmed PS-NPs were uptaken by rice roots, greatly benefitted from the transport activity of aquaporin in rice roots. The significant enhancement (p < 0.05) of antioxidant enzyme activities reflected the oxidative stress response of rice roots upon exposure to PS-NPs. Treatment by PS-NPs decreased root length and increased lateral root numbers. Carbon metabolism was activated (e.g., increased carbon and soluble sugar contents) whereas jasmonic acid and lignin biosynthesis were inhibited. The present study demonstrated the likelihood for transport of PS-NPs in rice roots and induced phytotoxicity by PS-NPs, which should inspire further investigations into the potential human health risks from rice consumption.
Collapse
Affiliation(s)
- Chao-Qun Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chen-Hua Lu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lei Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Paramonova T, Kuzmenkova N, Godyaeva M, Slominskaya E. Biometric traits of onion (Allium cepa L.) exposed to 137Cs and 243Am under hydroponic cultivation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111191. [PMID: 32890947 DOI: 10.1016/j.ecoenv.2020.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
To elucidate the features of bioaccumulation and phytotoxic effects of long-lived artificial radionuclides, a hydroponic experiment was carried out with the cultivation of onion (Allium cepa L.) in low-mineralized solutions spiked with 137Cs (250 kBq L-1) or 243Am (9 kBq L-1). After the 27-day growth period, ≈70% of 137Cs and ≈14% of 243Am were transferred from the solutions to onion biomass with transfer factor values ≈ 400 and ≈ 80, respectively. Since the bioaccumulation of both radionuclides mainly took place in the roots of onion (77% 137Cs and 93% 243Am of the total amount in biomass), edible organs - bulbs and leaves - were protected to some extent from radioactive contamination. At the same time, the incorporation of the radionuclides into the root tissues caused certain changes in their biometric (geometric and mass) traits, which were more pronounced under the 243Am-treatment of onion. Exposure to 243Am significantly reduced the number, length, and total surface area of onion roots by 1.3-2.6 times. Under the influence of 137Cs, the dry-matter content in roots decreased by 1.3 times with a corresponding increase in the degree of hydration of the root tissues. On the whole, the data obtained revealed the specific features of 137Cs and 243Am behaviour in "hydroponic solution - plant" system and suggested that biometric traits of onion roots could be appropriate indicators of phyto(radio)toxicity.
Collapse
Affiliation(s)
- Tatiana Paramonova
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, 199991, Russia.
| | - Natalia Kuzmenkova
- Chemistry Faculty, Lomonosov Moscow State University, Moscow, 199991, Russia; Vernadsky Institute of Geochemistry and Analytical Chemistry, 199991, Moscow, Russia.
| | - Maria Godyaeva
- Federal Agricultural Research Centre VIM, 109428, Moscow, Russia.
| | | |
Collapse
|
15
|
Hossain F. Natural and anthropogenic radionuclides in water and wastewater: Sources, treatments and recoveries. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 225:106423. [PMID: 32992070 DOI: 10.1016/j.jenvrad.2020.106423] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Water-energy nexus in the context of changing climate amplifies the importance of comprehending the transport, fate and recovery of radioisotope. While countries have been more interested for zero/low greenhouse gas emission technologies, energy production from nuclear power plant (NPP) can be a prominent solution. Moreover, radioisotopes are also used for other benefits such as in medical science, industrial activities and many more. These radionuclides are blended accidently or intentionally with water or wastewater because of inefficacious management of the nuclear waste; and therefore, it is an imperative task to manage nuclear waste so that the harmful consequences of the waste on environment, ecology and human health can be dispelled. Due to generation of significant amount of waste throughout its utilization, a noticeable number of physical, chemical and biological processes has been introduced as remediation processes although mechanisms of optimum removal process are still under investigation. Removal mechanisms and influencing factors for radionuclide removal are elucidated in this review so that, further, operation and process development can be promoted. Again, resource recovery, opportunities and challenges are also discussed for elevating the removal rates and minimizing the knowledge gaps existing in development and applications of novel decontamination processes.
Collapse
Affiliation(s)
- Fahim Hossain
- Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, USA.
| |
Collapse
|
16
|
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. CHEMOSPHERE 2020; 259:127436. [PMID: 32599387 DOI: 10.1016/j.chemosphere.2020.127436] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 05/27/2023]
Abstract
Copper (Cu) is an essential metal for human, animals and plants, although it is also potentially toxic above supra-optimal levels. In plants, Cu is an essential cofactor of numerous metalloproteins and is involved in several biochemical and physiological processes. However, excess of Cu induces oxidative stress inside plants via enhanced production of reactive oxygen species (ROS). Owing to its dual nature (essential and a potential toxicity), this metal involves a complex network of uptake, sequestration and transport, essentiality, toxicity and detoxification inside the plants. Therefore, it is vital to monitor the biogeo-physiochemical behavior of Cu in soil-plant-human systems keeping in view its possible essential and toxic roles. This review critically highlights the latest understanding of (i) Cu adsorption/desorption in soil (ii) accumulation in plants, (iii) phytotoxicity, (iv) tolerance mechanisms inside plants and (v) health risk assessment. The Cu-mediated oxidative stress and resulting up-regulation of several enzymatic and non-enzymatic antioxidants have been deliberated at molecular and cellular levels. Moreover, the role of various transporter proteins in Cu uptake and its proper transportation to target metalloproteins is critically discussed. The review also delineates Cu build-up in plant food and accompanying health disorders. Finally, this review proposes some future perspectives regarding Cu biochemistry inside plants. The review, to a large extent, presents a complete picture of the biogeo-physiochemical behavior of Cu in soil-plant-human systems supported with up-to-date 10 tables and 5 figures. It can be of great interest for post-graduate level students, scientists, industrialists, policymakers and regulatory authorities.
Collapse
Affiliation(s)
- Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Aneeza Sardar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Abrar Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058, Toulouse, Cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326, Auzeville-Tolosane, France; Association Réseau-Agriville, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan. http://reseau-agriville.com/
| |
Collapse
|
17
|
Jiang Z, Jiang D, Zhou Q, Zheng Z, Cao B, Meng Q, Qu J, Wang Y, Zhang Y. Enhancing the atrazine tolerance of Pennisetum americanum (L.) K. Schum by inoculating with indole-3-acetic acid producing strain Pseudomonas chlororaphis PAS18. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110854. [PMID: 32585484 DOI: 10.1016/j.ecoenv.2020.110854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Atrazine as a kind of herbicide could cause damage to the sensitive plants. Though plant growth promoting rhizobacteria (PGPR) have been proven with the potential to enhance the resistance of plants against various abiotic stresses, whether it could alleviate phytotoxicity caused by atrazine is sill unclear. In present study, the effects of strain Pseudomonas chlororaphis PAS18, a kind of PGPR enable to produce indole-3-acetic acid (IAA), on the growth and physiological responses of Pennisetum americanum (L.) K.Schum seedlings were investigated under three different levels (0, 20 and 100 mg kg-1) of atrazine in pot experiment. The results suggest that strain PAS18 could alleviate the growth and physiological interference caused by 20 mg kg-1 of atrazine. Physiological analysis showed strain PAS18 could further decrease the damaged extent of photosystem II, superoxide radical level and malondialdehyde content of test plant via up-regulating psbA expression, enhancing superoxide dismutase activity and reducing atrazine accumulation in the test plant. Moreover, ion flux measurements suggest that IAA could alleviate the Ca2+ exflux state of the test plant which caused by atrazine stress. Hence, it is plausible that strain PAS18 could alleviate atrazine-induced stress to P. americanum by enhancing the photosystem II repair and antioxidant defense ability as well as balancing the Ca2+ flux.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qihang Zhou
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhi Zheng
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingjuan Meng
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yifan Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
18
|
Zhang Y, Lai JL, Ji XH, Luo XG. Assessment of cyto- and genotoxic effects of Cesium-133 in Vicia faba using single-cell gel electrophoresis and random amplified polymorphic DNA assays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110620. [PMID: 32311615 DOI: 10.1016/j.ecoenv.2020.110620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/29/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate the ecotoxic effect of high concentration cesium (Cs) exposure on plant root growth and its toxicological mechanism. The radicle of broad bean (Vicia faba) was selected as experimental material. The cytotoxic and genotoxic effects of plants exposed to different Cs levels (0.19-1.5 mM) for 48 h were evaluated using scanning electron microscopy (SEM), X-ray fluorescence (XRF) analysis, single-cell gel electrophoresis (SCGE) and random amplified polymorphic DNA (RAPD) assays. The results showed that radicle elongation decreased clearly after 48 h of exposure treatment with different concentrations of Cs solution. The root cell structure was obviously damaged in the Cs treatment groups (0.19-1.5 mM). At a Cs concentration of 1.5 mM, the percentages of viable non-apoptotic cells, viable apoptotic cells, non-viable apoptotic cells, and non-viable cells were 40.09%, 20.67%, 28.73%, and 10.52%, respectively. SCGE showed DNA damage in radicle cells 48 h after Cs exposure. Compared with the control group, the percentage of tail DNA in Cs exposed group (0.38-1.5 mM) increased by 0.56-1.12 times (P < 0.05). RAPD results showed that the genomic stability of V. faba radicles decreased by 4.44%-15.56%. This study confirmed that high concentration Cs exposure had cytotoxicity and genotoxicity effects on plants.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiao-Hui Ji
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
19
|
Wang J, Zhang H, Zheng X, Liu R, Zong W. In vitro toxicity and molecular interacting mechanisms of chloroacetic acid to catalase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109981. [PMID: 31812021 DOI: 10.1016/j.ecoenv.2019.109981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Chloroacetic acid (CAA), one of typical disinfection by-products (DBPs), has attracted considerable concerns for its biological safety. Antioxidant enzyme catalase (CAT) plays a crucial part in the regulation of redox state balance. Herein, CAA was used to test its adverse effects on CAT and explore the underlying mechanism. The cell viability of mouse primary hepatocytes decreased under CAA exposure. A bell-shaped response to CAA exposure was observed in intracellular CAT activity, whose change was partly influenced by molecular CAT activity. CAA binds to CAT mainly via van der Waals forces and hydrogen bonds with a stoichiometry of 9.2. The binding caused structural changes in CAT with the unfolding of polypeptide chains and the decrease of α-helical content. CAA interacts with the amino acid residues surrounding the active sites and substrate channel of CAT. These interactions result in the decrease of molecular CAT activity, which could be restored by high ionic strength. This study has provided a combined molecular and cellular tactics for studying the adverse effects of DBPs on biomarkers and the underlying mechanisms.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China.
| | - Hongfa Zhang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Xiaolin Zheng
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, PR China
| |
Collapse
|