1
|
Raheja Y, Sharma P, Gaur P, Gaur VK, Srivastava JK. Advancing bioremediation: biosurfactants as catalysts for sustainable remediation. Biodegradation 2025; 36:33. [PMID: 40237836 DOI: 10.1007/s10532-025-10128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Emerging contaminants such as persistent organic pollutants, perfluorinated compounds, and microplastics pose unparallel challenges to environmental health and current remediation techniques. Microbial biosurfactants, biodegradable compounds produced by microorganisms, have gained attention as eco-friendly alternatives for degrading recalcitrant pollutants. Unlike traditional chemical surfactants, biosurfactants offer the dual benefit of being derived from renewable resources while enhancing the solubility and bioavailability of hydrophobic contaminants. This review is novel in its comprehensive exploration of microbial biosurfactants as a one-step solution for tackling the most persistent environmental pollutants. It introduces recent advancements in metabolic engineering and alternative fermentation strategies that have significantly improved biosurfactant production. Furthermore, the review critically examines the current limitations, including high production costs and complex downstream processing, and proposes cutting-edge approaches to overcome these barriers, such as the use of low-cost feedstocks and integrated bioprocessing techniques. Beyond their established uses, this review also sheds light on their untapped potential in heavy metal removal and microplastic degradation areas that have received little attention. By emphasizing these novel applications and outlining pathways for large-scale production, this review offers valuable insights into how biosurfactants could play a transformative role in sustainable environmental remediation.
Collapse
Affiliation(s)
- Yashika Raheja
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Prachi Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Vivek Kumar Gaur
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India.
| | | |
Collapse
|
2
|
Martínez-Arcos A, Reig M, Cruz JM, Cortina JL, Pérez-Cid B, Moldes AB, Vecino X. Properties and potential uses of a biosurfactant extract obtained from corn steep water by a dialysis process. Colloids Surf B Biointerfaces 2025; 252:114649. [PMID: 40157168 DOI: 10.1016/j.colsurfb.2025.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
There is currently a significant demand for more sustainable and compatible ingredients and additives not only for cosmetic and pharmaceutical formulations but also for applications within the agrifood industry. This demand is emphasized by regulations like the COSMOS-standard, which classifies, for instance, cosmetic formulations based on ingredients that meet stringent criteria for their downstream processes promoting physical separation. In this research, a biosurfactant extract derived from a naturally fermented stream within the corn-wet milling industry was obtained for the first time through physical separation methods based on a dialysis process at lab scale. This was done as an alternative to the use of organic solvents. Subsequently, the extract underwent comprehensive characterization and assessment to ascertain its efficacy as a solubilizer, emulsifier, and spreading and wetting agent. The findings revealed that this biosurfactant extract is composed of glycopeptides and peptides, like the biosurfactant extract produced by lactic acid bacteria, but with lower critical micellar concentration (CMC). Moreover, the biosurfactant extract exhibited non-irritating properties (Mucosal Irritation Score < 0.07) and demonstrated interesting capabilities as a booster in the formulation of Pickering emulsions. Furthermore, it demonstrated a spreading capacity comparable to that of sodium dodecyl sulphate (SDS); but not a good solubilization of chicken broth cubes. However, its most noteworthy characteristic was its remarkable wettability capacity, which holds significant promise for applications in the cosmetic industry as a humectant agent, aligning with the standards set in COSMOS standard.
Collapse
Affiliation(s)
- A Martínez-Arcos
- Departamento de Enxeñaría Química, Escola de Enxeñaría Industrial, Universidade de Vigo, Campus As Lagoas-Marcosende, Vigo 36310, Spain; CINTECX, Universidade de Vigo, EQ10, Campus As Lagoas-Marcosende, Vigo 36310, Spain
| | - M Reig
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Barcelona 08930, Spain
| | - J M Cruz
- Departamento de Enxeñaría Química, Escola de Enxeñaría Industrial, Universidade de Vigo, Campus As Lagoas-Marcosende, Vigo 36310, Spain; CINTECX, Universidade de Vigo, EQ10, Campus As Lagoas-Marcosende, Vigo 36310, Spain
| | - J L Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Barcelona 08930, Spain; CETaqua, Carreterad'Esplugues, 75, Cornellà de Llobregat 08940Spain
| | - B Pérez-Cid
- CINTECX, Universidade de Vigo, EQ10, Campus As Lagoas-Marcosende, Vigo 36310, Spain; Departamento de Química Analítica e Alimentaria, Facultade de Química, Universidade de Vigo, Campus As Lagoas-Marcosende, Vigo 36310, Spain
| | - A B Moldes
- Departamento de Enxeñaría Química, Escola de Enxeñaría Industrial, Universidade de Vigo, Campus As Lagoas-Marcosende, Vigo 36310, Spain; CINTECX, Universidade de Vigo, EQ10, Campus As Lagoas-Marcosende, Vigo 36310, Spain
| | - X Vecino
- Departamento de Enxeñaría Química, Escola de Enxeñaría Industrial, Universidade de Vigo, Campus As Lagoas-Marcosende, Vigo 36310, Spain; CINTECX, Universidade de Vigo, EQ10, Campus As Lagoas-Marcosende, Vigo 36310, Spain.
| |
Collapse
|
3
|
Kugaji M, Ray SK, Parvatikar P, Raghu AV. Biosurfactants: A review of different strategies for economical production, their applications and recent advancements. Adv Colloid Interface Sci 2025; 337:103389. [PMID: 39765093 DOI: 10.1016/j.cis.2024.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost. Biosurfactants' amphiphilic nature has proven to be quite advantageous, allowing them to disperse onto two immiscible surfaces while lowering the interfacial surface tension and boosting the solubility of hydrophobic substances. Microbial surfactants are replacing their chemical counterparts in research and usage because of their low or non-toxic nature, durability at higher temperatures, capacity to endure wide range of pH variations and degrade naturally. Biosurfactants are often used as anti-adhesives, emulsifying/de-emulsifying agents, spreading agents, foaming agents, and detergents that have significance in a range of industries such as agriculture, biomedical, bioremediation, the manufacturing industry, and cosmetic. Recent advancements in biosurfactant production have enhanced its usefulness and research interest in a circular economy framework. These advancements include the use of alternative substrates, including various forms of organic waste and solid-state fermentation. Here, we attempted a comprehensive review of biosurfactants, their usage, latest research, limitations, and future aspects.
Collapse
Affiliation(s)
- Manohar Kugaji
- Central Research Laboratory, Maratha Mandal's NGH Institute of Dental Sciences & Research Centre, Bauxite Road, Belgaum 590010, India.
| | - Suman Kumar Ray
- Central Research Laboratory, Maratha Mandal's NGH Institute of Dental Sciences & Research Centre, Bauxite Road, Belgaum 590010, India
| | - Prachi Parvatikar
- Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India
| | - Anjanapura V Raghu
- Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India.
| |
Collapse
|
4
|
Kabeil SS, Darwish AM, Abdelgalil SA, Shamseldin A, Salah A, Taha HA, Bashir SI, Hafez EE, El-Enshasy HA. Rhamnolipids bio-production and miscellaneous applications towards green technologies: a literature review. PeerJ 2025; 13:e18981. [PMID: 40247838 PMCID: PMC12005046 DOI: 10.7717/peerj.18981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2025] [Indexed: 04/19/2025] Open
Abstract
Growing attention towards rhamnolipids (RLs) biosurfactants with antibacterial, antifungal, antivirus and antitumor potentials encourage future research in biotechnology and biomedicine fields. Economic production from waste materials, biodegradability and low toxicity makes RLs perform as green molecules that serve in sustainability and green technologies. This review aims to focus on bioproduction, detection and applications of rhamnolipids in pharmaceuticals, soil bioremediation, agriculture and food industries in addition to future perspectives. This will help to shed light on and update the existing knowledge of feasible and sustainable biosurfactant production depending on the fermentation processes.
Collapse
Affiliation(s)
- Sanaa S.A. Kabeil
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Amira M.G. Darwish
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Borg El Arab, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Soad A. Abdelgalil
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Abdelaal Shamseldin
- Envirommental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Abdallah Salah
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Heba A.I.M. Taha
- Department of Nutrition, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Shimaa Ismael Bashir
- Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Elsayed E. Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Hesham Ali El-Enshasy
- City of Scientific Research and Technology Application (SRTA-City), Alexandria, Egypt
- Universiti Teknologi Malaysia (UTM), Innovation Centre in Agritechnology for Advanced Bioprocessing, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
5
|
Chowdhury AA, Basak N, Roy T, Paul S, Yadav AN, Ali SI, Islam E. Production Optimization and Potential Bioactivities of Biosurfactant from PET Surface-Dwelling Oligotrophic Bacillus sp. EIKU23. Curr Microbiol 2025; 82:113. [PMID: 39903285 DOI: 10.1007/s00284-025-04088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
The growing demand for efficient biosurfactants in various industrial sectors has driven the search for sustainable alternatives, enhanced production methods, and low-cost substrates. This study aimed to optimize the production, characterize, and assess the bioactivities of biosurfactants produced by an oligotrophic PET plastic-associated Bacillus sp. EIKU23. The bacterium yielded the highest amount of biosurfactant after 6 days of incubation in Luria broth medium (pH 7.0) at 30 °C without any additives. FTIR and NMR analyses confirmed the lipopeptide nature of the biosurfactant, which exhibited a negative charge. The biosurfactant remained stable at 4 °C-80 °C and pH 7.0-8.0 for at least 7 days. It exhibited antioxidant properties comparable to the ascorbic acid standard, with efficacy ranging from 23.61% to 89.96% in different antioxidant assays. It showed antibacterial activity against both Gram-positive and Gram-negative potential pathogens. The biosurfactant induced substantial DNA leakage at a concentration of 10 mg/mL and eradicated approximately 48.4% of pre-formed Staphylococcus aureus biofilm and showed anti-attachment behaviour to a polystyrene surface. Additionally, the biosurfactant precipitated up to 98.7% uranium from an aqueous solution, demonstrating its potential for bioremediation. These findings suggest that the biosurfactant produced by Bacillus sp. EIKU23 is multifunctional with promising applications in bioremediation, antibacterial activity, antibiofilm formation, and antioxidant defense, offering a novel solution for sustainable industrial practices and plastic waste management.
Collapse
Affiliation(s)
- Atif Aziz Chowdhury
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100, Bolzano, Italy
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Taniya Roy
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sayantani Paul
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
6
|
Russo-Martínez N, Vecino X, Moldes A, Cruz J. Modelling and impact of tensiometer plate geometry and sample volume on biosurfactant surface activity assessment. Heliyon 2024; 10:e38325. [PMID: 39398011 PMCID: PMC11470507 DOI: 10.1016/j.heliyon.2024.e38325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/11/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Biosurfactants are molecules with hydrophilic and hydrophobic moieties with the capacity to reduce the surface tension of water. Given the limited quantity of biosurfactant extracts in laboratories, it is recommended to use equipment that requires minimal sample quantities for detecting the presence of biosurfactants. In this work, commercial glycolipids biosurfactants (rhamnolipids or sophorolipids) were diluted in water and subjected to different analyses to obtain their minimum surface tension (ST) reduction and their critical micellar concentration (CMC). The independent variables of the study were: the geometry of platinum plate (rectangular or cylindrical), the sample volume (2, 4 and 20 mL) and the container material consisting of either glass or polytetrafluoroethylene (PTFE). The variation of ST with biosurfactant concentration was studied based on the isotherm model proposed by Li & Lu. It was observed that the profile of ST values did not vary so much using the different independent variables described, observing that platinum rectangular plate can be used for volumes of 4 mL biosurfactants instead of cylindrical plate usually recommended for volumes lower than 20 mL, the container material was also not significant based on the Pearson and Spearman statistical treatment. Moreover, well-fitting regression model results were obtained for a non-commercial biosurfactant extract obtained from a residual stream of the dairy industry, predicting values close to the observed data.
Collapse
Affiliation(s)
- N. Russo-Martínez
- Chemical Engineering Department, School of Industrial Engineering – CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - X. Vecino
- Chemical Engineering Department, School of Industrial Engineering – CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - A.B. Moldes
- Chemical Engineering Department, School of Industrial Engineering – CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - J.M. Cruz
- Chemical Engineering Department, School of Industrial Engineering – CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
7
|
Lourenço M, Duarte N, Ribeiro IAC. Exploring Biosurfactants as Antimicrobial Approaches. Pharmaceuticals (Basel) 2024; 17:1239. [PMID: 39338401 PMCID: PMC11434949 DOI: 10.3390/ph17091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Antibacterial resistance is one of the most important global threats to human health. Several studies have been performed to overcome this problem and infection-preventive approaches appear as promising solutions. Novel antimicrobial preventive molecules are needed and microbial biosurfactants have been explored in that scope. Considering their structure, these biomolecules can be divided into different classes, glycolipids and lipopeptides being the most studied. Besides their antimicrobial activity, biosurfactants have the advantage of being biocompatible, biodegradable, and non-toxic, which favor their application in several areas, including the health sector. Often, the most difficult infections to fight are associated with biofilm formation, particularly in medical devices. Strategies to overcome micro-organism attachment are thus emergent, and it is possible to take advantage of the antimicrobial/antibiofilm properties of biosurfactants to produce surfaces that are more resistant to the deposition/attachment of bacteria. Approaches such as the covalent bond of biosurfactants to the medical device surface leading to repulsive physical-chemical interactions or contact killing can be selected. Simpler strategies such as the absorption of biosurfactants on surfaces are also possible, eliminating micro-organisms in the vicinity. This review will focus on the physical and chemical characteristics of biosurfactants, their antimicrobial activity, antimicrobial/antibiofilm approaches, and finally on their structure-activity relationship.
Collapse
Affiliation(s)
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
8
|
Bastos CG, Livio DF, de Oliveira MA, Meira HGR, Tarabal VS, Colares HC, Parreira AG, Chagas RCR, Speziali MG, da Silva JA, Granjeiro JM, Millán RDS, Gonçalves DB, Granjeiro PA. Exploring the biofilm inhibitory potential of Candida sp. UFSJ7A glycolipid on siliconized latex catheters. Braz J Microbiol 2024; 55:2119-2130. [PMID: 38954220 PMCID: PMC11405650 DOI: 10.1007/s42770-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Biosurfactants, sustainable alternatives to petrochemical surfactants, are gaining attention for their potential in medical applications. This study focuses on producing, purifying, and characterizing a glycolipid biosurfactant from Candida sp. UFSJ7A, particularly for its application in biofilm prevention on siliconized latex catheter surfaces. The glycolipid was extracted and characterized, revealing a critical micellar concentration (CMC) of 0.98 mg/mL, indicating its efficiency at low concentrations. Its composition, confirmed through Fourier transform infrared spectroscopy (FT-IR) and thin layer chromatography (TLC), identified it as an anionic biosurfactant with a significant ionic charge of -14.8 mV. This anionic nature contributes to its biofilm prevention capabilities. The glycolipid showed a high emulsification index (E24) for toluene, gasoline, and soy oil and maintained stability under various pH and temperature conditions. Notably, its anti-adhesion activity against biofilms formed by Escherichia coli, Enterococcus faecalis, and Candida albicans was substantial. When siliconized latex catheter surfaces were preconditioned with 2 mg/mL of the glycolipid, biofilm formation was reduced by up to 97% for E. coli and C. albicans and 57% for E. faecalis. These results are particularly significant when compared to the efficacy of conventional surfactants like SDS, especially for E. coli and C. albicans. This study highlights glycolipids' potential as a biotechnological tool in reducing biofilm-associated infections on medical devices, demonstrating their promising applicability in healthcare settings.
Collapse
Affiliation(s)
- Cibele Garcia Bastos
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Diego Fernandes Livio
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Maria Auxiliadora de Oliveira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Hiure Gomes Ramos Meira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Vinícius Souza Tarabal
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Heloísa Carneiro Colares
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Adriano Guimarães Parreira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Rafael César Russo Chagas
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Marcelo Gomes Speziali
- Chemistry Department, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - José Antônio da Silva
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - José Mauro Granjeiro
- National Institute of Metrology, Quality, and Technology, Duque de Caxias, RJ, 25250-020, Brazil
| | | | - Daniel Bonoto Gonçalves
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Paulo Afonso Granjeiro
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
9
|
Singh N, Hu XH, Kumar V, Solanki MK, Kaushik A, Singh VK, Singh SK, Yadav P, Singh RP, Bhardwaj N, Wang Z, Kumar A. Microbially derived surfactants: an ecofriendly, innovative, and effective approach for managing environmental contaminants. Front Bioeng Biotechnol 2024; 12:1398210. [PMID: 39253704 PMCID: PMC11381421 DOI: 10.3389/fbioe.2024.1398210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The natural environment is often contaminated with hydrophobic pollutants such as long-chain hydrocarbons, petrochemicals, oil spills, pesticides, and heavy metals. Hydrophobic pollutants with a toxic nature, slow degradation rates, and low solubility pose serious threats to the environment and human health. Decontamination based on conventional chemical surfactants has been found to be toxic, thereby limiting its application in pharmaceutical and cosmetic industries. In contrast, biosurfactants synthesized by various microbial species have been considered superior to chemical counterparts due to their non-toxic and economical nature. Some biosurfactants can withstand a wide range of fluctuations in temperature and pH. Recently, biosurfactants have emerged as innovative biomolecules not only for solubilization but also for the biodegradation of environmental pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and oil spills. Biosurfactants have been well documented to function as emulsifiers, dispersion stabilizers, and wetting agents. The amphiphilic nature of biosurfactants has the potential to enhance the solubility of hydrophobic pollutants such as petroleum hydrocarbons and oil spills by reducing interfacial surface tension after distribution in two immiscible surfaces. However, the remediation of contaminants using biosurfactants is affected considerably by temperature, pH, media composition, stirring rate, and microorganisms selected for biosurfactant production. The present review has briefly discussed the current advancements in microbially synthesized biosurfactants, factors affecting production, and their application in the remediation of environmental contaminants of a hydrophobic nature. In addition, the latest aspect of the circular bioeconomy is discussed in terms of generating biosurfactants from waste and the global economic aspects of biosurfactant production.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Chemistry, N.A.S.College, Meerut, India
| | - Xiao-Hu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Vikash Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Amit Kaushik
- College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Hisar, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | | | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Priya Yadav
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
10
|
Sankhyan S, Kumar P, Pandit S, Kumar S, Ranjan N, Ray S. Biological machinery for the production of biosurfactant and their potential applications. Microbiol Res 2024; 285:127765. [PMID: 38805980 DOI: 10.1016/j.micres.2024.127765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The growing biotechnology industry has focused a lot of attention on biosurfactants because of several advantages over synthetic surfactants. These benefits include worldwide public health, environmental sustainability, and the increasing demand from sectors for environmentally friendly products. Replacement with biosurfactants can reduce upto 8% lifetime CO2 emissions avoiding about 1.5 million tons of greenhouse gas released into the atmosphere. Therefore, the demand for biosurfactants has risen sharply occupying about 10% (∼10 million tons/year) of the world production of surfactants. Biosurfactants' distinct amphipathic structure, which is made up of both hydrophilic and hydrophobic components, enables these molecules to perform essential functions in emulsification, foam formation, detergency, and oil dispersion-all of which are highly valued characteristic in a variety of sectors. Today, a variety of biosurfactants are manufactured on a commercial scale for use in the food, petroleum, and agricultural industries, as well as the pharmaceutical and cosmetic industries. We provide a thorough analysis of the body of knowledge on microbial biosurfactants that has been gained over time in this research. We also discuss the benefits and obstacles that need to be overcome for the effective development and use of biosurfactants, as well as their present and future industrial uses.
Collapse
Affiliation(s)
- Shivangi Sankhyan
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Prasun Kumar
- MNR Foundation for Research & Innovations (MNR-FRI), MNR Medical College & Hospital, MNR Nagar, Fasalwadi, Sangareddy, Telangana 502294, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Nishant Ranjan
- University Center for Research and Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
11
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
12
|
Sundaram T, Govindarajan RK, Vinayagam S, Krishnan V, Nagarajan S, Gnanasekaran GR, Baek KH, Rajamani Sekar SK. Advancements in biosurfactant production using agro-industrial waste for industrial and environmental applications. Front Microbiol 2024; 15:1357302. [PMID: 38374917 PMCID: PMC10876000 DOI: 10.3389/fmicb.2024.1357302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
The adverse effects of waste generation on the environment and public health have raised global concerns. The utilization of waste as a raw material to develop products with enhanced value has opened up novel prospects for promoting environmental sustainability. Biosurfactants obtained from agro-industrial waste are noteworthy due to their sustainability and environmental friendliness. Microorganisms have been employed to generate biosurfactants as secondary metabolites by making use of waste streams. The utilization of garbage as a substrate significantly reduces the expenses associated with the process. Furthermore, apart from reducing waste and offering alternatives to artificial surfactants, they are extensively employed in bioremediation, food processing, agriculture, and various other industrial pursuits. Bioremediation of heavy metals and other metallic pollutants mitigated through the use of bacteria that produce biosurfactants which has been the more recent research area with the aim of improving its quality and environmental safety. Moreover, the production of biosurfactants utilizing agricultural waste as a raw material aligns with the principles of waste minimization, environmental sustainability, and the circular economy. This review primarily focuses on the production process and various types of biosurfactants obtained from waste biomass and feedstocks. The subsequent discourse entails the production of biosurfactants derived from various waste streams, specifically agro-industrial waste.
Collapse
Affiliation(s)
- Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Vasumathi Krishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Virudhunagar, India
| | - Shankar Nagarajan
- Department of Biomedical Engineering, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | | |
Collapse
|
13
|
Li C, Wang Y, Zhou L, Cui Q, Sun W, Yang J, Su H, Zhao F. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Lett Appl Microbiol 2024; 77:ovae016. [PMID: 38366661 DOI: 10.1093/lambio/ovae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
This study aims to isolate microbial strains for producing mono-rhamnolipids with high proportion. Oily sludge is rich in petroleum and contains diverse biosurfactant-producing strains. A biosurfactant-producing strain LP20 was isolated from oily sludge, identified as Pseudomonas aeruginosa based on phylogenetic analysis of 16S rRNA. High-performance liquid chromatography-mass spectrometry results indicated that biosurfactants produced from LP20 were rhamnolipids, mainly containing Rha-C8-C10, Rha-C10-C10, Rha-Rha-C8-C10, Rha-Rha-C10-C10, Rha-C10-C12:1, and Rha-C10-C12. Interestingly, more mono-rhamnolipids were produced by strain LP20 with a relative abundance of 64.5%. Pseudomonas aeruginosa LP20 optimally produced rhamnolipids at a pH of 7.0 and a salinity of 0.1% using glycerol and nitrate. The culture medium for rhamnolipids by strain LP20 was optimized by response surface methodology. LP20 produced rhamnolipids up to 6.9 g L-1, increased by 116%. Rhamnolipids produced from LP20 decreased the water surface tension to 28.1 mN m-1 with a critical micelle concentration of 60 mg L-1. The produced rhamnolipids emulsified many hydrocarbons with EI24 values higher than 56% and showed antimicrobial activity against Staphylococcus aureus and Cladosporium sp. with inhibition rates 48.5% and 17.9%, respectively. Pseudomonas aeruginosa LP20 produced more proportion of mono-rhamnolipids, and the LP20 rhamnolipids exhibited favorable activities and promising potential in microbial-enhanced oil recovery, bioremediation, and agricultural biocontrol.
Collapse
Affiliation(s)
- Chunyan Li
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Yujing Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Liguo Zhou
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Qingfeng Cui
- Research Center of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Wenzhe Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Junyuan Yang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Han Su
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Feng Zhao
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| |
Collapse
|
14
|
Qiao H, Ma Z, Wang Y, Zheng Z, Ouyang J. Achieving efficient and rapid high-solids enzymatic hydrolysis for producing high titer ethanol with the assistance of di-rhamnolipids. BIORESOURCE TECHNOLOGY 2024; 394:130189. [PMID: 38097000 DOI: 10.1016/j.biortech.2023.130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
High-solids enzymatic hydrolysis is the premise of obtaining high concentration ethanol by fermentation. In this study, corn stover was first pretreated with formic acid under mild conditions, and more than 70 % of xylan and lignin were removed within the first hour. 173.0 g/L glucose was achieved from total 30 % solid of the pretreated corn stover via fed-batch mode. Moreover, the glucose concentration rose to 194.5 g/L and the hydrolysis time was significantly reduced by 42.9 % with the addition of di-rhamnolipid. On this basis, 89.1 g/L ethanol was obtained by fermentation, and the presence of di-rhamnolipid had no negative effect on fermentation. The effective conversion of corn stover to high titer ethanol provides support for the conversion of stover to ethanol in industrial production.
Collapse
Affiliation(s)
- Hui Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Zewen Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
Nagaraju TV, Sri Bala G, Bonthu S, Mantena S. Modelling biochemical oxygen demand in a large inland aquaculture zone of India: Implications and insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167386. [PMID: 37769733 DOI: 10.1016/j.scitotenv.2023.167386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Water quality surveillance is tough, and a specific timely management is necessary for the inland aquaculture ponds and ecology as well. Real time quality monitoring involves the study of numerous parameters includes physical (turbidity, temperature, and specific conductivity), chemical (pH, calcium, manganese, chlorides, iron, biochemical oxygen demand), and biological (bacteria and algae). It is also crucial to recognize the inter-dependence among the parameters. Alternatively, these relationships can be predicted with statistical and numerical modelling. Organic strength parameter 5-day biochemical oxygen demand (BOD) is a significant parameter to evaluate since its impact is very high on the quality of water, aquatic life, and other biological concerns. This study focuses on the prediction of BOD using six traditional and four boosting algorithms considering ten input physicochemical attributes. The attributes were fine-tuned for highly precise predictions by removing extreme values from the data set using data outlier treatment. The prediction results are compared using performance metrics such as coefficient of determination (R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE). The findings revealed that boosting algorithms outperform the results of traditional models with the highest prediction accuracy. Among the boosting algorithms, eXtreme Gradient Boosting algorithm (XGBM) is found highly appropriate for the inland aquaculture waters with R2 = 0.95, RMSE = 0.31, MSE = 0.09, MAE = 0.1. Finally, this study provides a systematic evaluation of the BOD in the aquaculture waters and has a significant contribution to water management and eco-balance.
Collapse
Affiliation(s)
- T Vamsi Nagaraju
- Department of Civil Engineering, SRKR Engineering College, India; Centre for Clean and Sustainable Environment, SRKR Engineering College, India.
| | - G Sri Bala
- Department of Civil Engineering, SRKR Engineering College, India; Centre for Clean and Sustainable Environment, SRKR Engineering College, India
| | - Sridevi Bonthu
- Department of Computer Science and Engineering, Vishnu Institute of Technology, India
| | - Sireesha Mantena
- Department of Geo-Engineering, College of Engineering, Andhra University, India
| |
Collapse
|
16
|
Patowary R, Jain P, Malakar C, Devi A. Biodegradation of carbofuran by Pseudomonas aeruginosa S07: biosurfactant production, plant growth promotion, and metal tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115185-115198. [PMID: 37878173 DOI: 10.1007/s11356-023-30466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Pesticides are an indispensable part of modern farming as it aids in controlling pests and hence increase crop yield. But, unmanaged use of pesticides is a growing concern for safety and conservation of the environment. In the present study, a novel biosurfactant-producing bacterium, Pseudomonas aeruginosa S07, was utilized to degrade carbofuran pesticide, and it was obtained at 150 mg/L concentration; 89.2% degradation was achieved on the 5th day of incubation in in vitro culture condition. GC-MS (gas chromatography and mass spectrometry) and LC-MS (liquid chromatography and mass spectrometry) analyses revealed the presence of several degradation intermediates such as hydroxycarbofurnan, ketocarbofuran, and hydroxybenzofuran, in the degradation process. The bacterium was found to exhibit tolerance towards several heavy metals: Cu, Co, Zn, Ni, and Cd, where maximum and least tolerance were obtained against Co and Ni, respectively. Additionally, the bacterium also possesses plant growth-promoting activity showing positive results in nitrogen fixation, phosphate solubilising, ammonia production, and potassium solubilizing assays. Thus, from the study, it can be assumed that the bacterium can be useful in the production of bioformulation for remediation and rejuvenation of pesticide-contaminated sites in the coming days.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Department of Biotechnology, The Assam Royal Global University, Betkuchi, Guwahati, Assam, 781035, India
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Prerna Jain
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Chandana Malakar
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India.
| |
Collapse
|
17
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
18
|
Subsanguan T, Jungcharoen P, Khondee N, Buachan P, Abeyrathne BP, Nuengchamnong N, Pranudta A, Wannapaiboon S, Luepromchai E. Copper and chromium removal from industrial sludge by a biosurfactant-based washing agent and subsequent recovery by iron oxide nanoparticles. Sci Rep 2023; 13:18603. [PMID: 37903874 PMCID: PMC10616064 DOI: 10.1038/s41598-023-45729-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Industrial wastewater treatment generates sludge with high concentrations of metals and coagulants, which can cause environmental problems. This study developed a sequential sludge washing and metal recovery process for industrial sludge containing > 4500 mg/kg Cu and > 5000 mg/kg Cr. The washing agent was formulated by mixing glycolipid, lipopeptide, and phospholipid biosurfactants from Weissella cibaria PN3 and Brevibacterium casei NK8 with a chelating agent, ethylenediaminetetraacetic acid (EDTA). These biosurfactants contained various functional groups for capturing metals. The optimized formulation by the central composite design had low surface tension and contained relatively small micelles. Comparable Cu and Cr removal efficiencies of 37.8% and 38.4%, respectively, were obtained after washing the sludge by shaking with a sonication process at a 1:4 solid-to-liquid ratio. The zeta potential analysis indicated the bonding of metal ions on the surface of biosurfactant micelles. When 100 g/L iron oxide nanoparticles were applied to the washing agent without pH adjustment, 83% Cu and 100% Cr were recovered. In addition, X-ray diffraction and X-ray absorption spectroscopy of the nanoparticles showed the oxidation of nanoparticles, the reduction of Cr(V) to the less toxic Cr(III), and the absorption of Cu. The recovered metals could be further recycled, which will be beneficial for the circular economy.
Collapse
Affiliation(s)
- Tipsuda Subsanguan
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Nichakorn Khondee
- Department of Natural Resources and Environment, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Pantita Buachan
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Buddhika Prabath Abeyrathne
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Antika Pranudta
- Synchrotron Light Research Institute, Nakhon Ratchasima, Thailand
| | | | - Ekawan Luepromchai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
20
|
Chen Y, Ma F, Wu Y, Tan S, Niu A, Qiu W, Wang G. Biosurfactant from Pseudomonas fragi enhances the competitive advantage of Pseudomonas but reduces the overall spoilage ability of the microbial community in chilled meat. Food Microbiol 2023; 115:104311. [PMID: 37567617 DOI: 10.1016/j.fm.2023.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/07/2023] [Accepted: 06/01/2023] [Indexed: 08/13/2023]
Abstract
Biosurfactants from Pseudomonas spp. have been reported to exhibit antibacterial and anti-adhesive properties, but their role during meat spoilage remains unclear. In this study, the biosurfactant was isolated from an isolate of Pseudomonas fragi with strong spoilage potential, and its surface tension and emulsification ability were determined. The chemical and microbial characteristics of the biosurfactant-treated meat samples were periodically analyzed. The results demonstrated that the biosurfactant produced by P. fragi could reduce surface tension and showed good emulsification properties. For the in situ spoilage trials, biosurfactant from P. fragi changed the microbial diversity on meat, helping Pseudomonas establish a dominant position in the population. However, biosurfactant treatment caused chicken meat to exhibit a weaker spoilage state, as indicated by the growth of psychrophilic microorganisms, total volatile basic nitrogen (TVBN) and meat color. These results provide practical information for understanding the role of P. fragi biosurfactant during chilled meat storage.
Collapse
Affiliation(s)
- Yuping Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yajie Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Song Tan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ajuan Niu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Weifen Qiu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
21
|
Al-Marri S, Eldos H, Ashfaq M, Saeed S, Skariah S, Varghese L, Mohamoud Y, Sultan A, Raja M. Isolation, identification, and screening of biosurfactant-producing and hydrocarbon-degrading bacteria from oil and gas industrial waste. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00804. [PMID: 37388572 PMCID: PMC10300049 DOI: 10.1016/j.btre.2023.e00804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Qatar is one of the biggest oil and gas producers in the world, coupled with it is challenging environmental conditions (high average temperature: >40 °C, low annual rainfall: 46.71 mm, and high annual evaporation rate: 2200 mm) harbors diverse microbial communities that are novel and robust, with the potential to biodegrade hydrocarbons. In this study, we collected hydrocarbon contaminated sludge, wastewater and soil samples from oil and gas industries in Qatar. Twenty-six bacterial strains were isolated in the laboratory from these samples using high saline conditions and crude oil as the sole carbon source. A total of 15 different bacterial genera were identified in our study that have not been widely reported in the literature or studied for their usage in the biodegradation of hydrocarbons. Interestingly, some of the bacteria that were identified belonged to the same genus however, demonstrated variable growth rates and biosurfactant production. This indicates the possibility of niche specialization and specific evolution to acquire competitive traits for better survival. The most potent strain EXS14, identified as Marinobacter sp., showed the highest growth rate in the oil-containing medium as well as the highest biosurfactant production. When this strain was further tested for biodegradation of hydrocarbons, the results showed that it was able to degrade 90 to 100% of low and medium molecular weight hydrocarbons and 60 to 80% of high molecular weight (C35 to C50) hydrocarbons. This study offers many promising leads for future studies of microbial species and their application for the treatment of hydrocarbon contaminated wastewater and soil in the region and in other areas with similar environmental conditions.
Collapse
Affiliation(s)
| | | | | | - S. Saeed
- ExxonMobil Research Qatar, Doha, Qatar
| | - S. Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | | | - Y.A. Mohamoud
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | - A.A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | - M.M. Raja
- Qatargas Operating Company, Doha, Qatar
| |
Collapse
|
22
|
Qi X, Liu W, He X, Du C. A review on surfactin: molecular regulation of biosynthesis. Arch Microbiol 2023; 205:313. [PMID: 37603063 DOI: 10.1007/s00203-023-03652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Surfactin has many biological activities, such as inhibiting plant diseases, resisting bacteria, fungi, viruses, tumors, mycoplasma, anti-adhesion, etc. It has great application potential in agricultural biological control, clinical medical treatment, environmental treatment and other fields. However, the low yield has been the bottleneck of its popularization and application. It is very important to understand the synthesis route and control strategy of surfactin to improve its yield and purity. In this paper, based on the biosynthetic pathway and regulatory factors of surfactin, its biosynthesis regulation strategy was comprehensively summarized, involving enhancement of endogenous and exogenous precursor supply, modification of the synthesis pathway of lipid chain and peptide chain, improvement of secretion and efflux, and manipulation some global regulatory factors, such as Spo0A, AbrB, ComQXP, phrCSF, etc. to directly or indirectly stimulate surfactin synthesis. And the current production and separation and purification process of surfactin are briefly described. This review also provides a scientific reference for promoting surfactin production and its applications in various fields.
Collapse
Affiliation(s)
- Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin He
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
23
|
Begum W, Saha B, Mandal U. A comprehensive review on production of bio-surfactants by bio-degradation of waste carbohydrate feedstocks: an approach towards sustainable development. RSC Adv 2023; 13:25599-25615. [PMID: 37649573 PMCID: PMC10463011 DOI: 10.1039/d3ra05051c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The advancement of science and technology demands chemistry which is safer, smarter and green by nature. The sustainability of science thus requires well-behaved alternates that best suit the demand. Bio-surfactants are surface active compounds, established to affect surface chemistry. In general, microbial bio-surfactants are a group of structurally diverse molecules produced by different microbes. A large number of bio-surfactants are produced during hydrocarbon degradation by hydrocarbonoclistic microorganisms during their own growth on carbohydrates and the production rate is influenced by the rate of degradation of carbohydrates. The production of such biological surfactants is thus of greater importance. This write up is a dedicated review to update the existing knowledge of inexpensive carbohydrate sources as substrates, microorganisms and technologies of biosurfactant production. This is an economy friendly as well as sustainable approach which will facilitate achieving some sustainable development goals. The production is dependent on the fermentation strategies, different factors of the microbial culture broth and downstream processing; these all have been elaborately presented in this article.
Collapse
Affiliation(s)
- Wasefa Begum
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| | - Ujjwal Mandal
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| |
Collapse
|
24
|
Kumari R, Singha LP, Shukla P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS MICROBES 2023; 4:xtad015. [PMID: 37614639 PMCID: PMC10442721 DOI: 10.1093/femsmc/xtad015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Globally, there is a huge demand for chemically available surfactants in many industries, irrespective of their detrimental impact on the environment. Naturally occurring green sustainable substances have been proven to be the best alternative for reducing reliance on chemical surfactants and promoting long-lasting sustainable development. The most frequently utilized green active biosurfactants, which are made by bacteria, yeast, and fungi, are discussed in this review. These biosurfactants are commonly originated from contaminated sites, the marine ecosystem, and the natural environment, and it holds great potential for environmental sustainability. In this review, we described the importance of biosurfactants for the environment, including their biodegradability, low toxicity, environmental compatibility, and stability at a wide pH range. In this review, we have also described the various techniques that have been utilized to characterize and screen the generation of microbial biosurfactants. Also, we reviewed the potential of biosurfactants and its emerging applications in the foods, cosmetics, pharmaceuticals, and agricultural industries. In addition, we also discussed the ways to overcome problems with expensive costs such as low-cost substrate media formulation, gravitational techniques, and solvent-free foam fractionation for extraction that could be employed during biosurfactant production on a larger scale.
Collapse
Affiliation(s)
- Renuka Kumari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Lairenjam Paikhomba Singha
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
25
|
Rubio-Ribeaux D, da Costa RAM, Montero-Rodríguez D, do Amaral Marques NSA, Puerta-Díaz M, de Souza Mendonça R, Franco PM, Dos Santos JC, da Silva SS. Sustainable production of bioemulsifiers, a critical overview from microorganisms to promising applications. World J Microbiol Biotechnol 2023; 39:195. [PMID: 37171665 DOI: 10.1007/s11274-023-03611-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Microbial bioemulsifiers are molecules of amphiphilic nature and high molecular weight that are efficient in emulsifying two immiscible phases such as water and oil. These molecules are less effective in reducing surface tension and are synthesized by bacteria, yeast and filamentous fungi. Unlike synthetic emulsifiers, microbial bioemulsifiers have unique advantages such as biocompatibility, non-toxicity, biodegradability, efficiency at low concentrations and high selectivity under different conditions of pH, temperature and salinity. The adoption of microbial bioemulsifiers as alternatives to their synthetic counterparts has been growing in ongoing research. This article analyzes the production of microbial-based emulsifiers, the raw materials and fermentation processes used, as well as the scale-up and commercial applications of some of these biomolecules. The current trend of incorporating natural compounds into industrial formulations indicates that the search for new bioemulsifiers will continue to increase, with emphasis on performance improvement and economically viable processes.
Collapse
Affiliation(s)
- Daylin Rubio-Ribeaux
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil.
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil.
| | - Rogger Alessandro Mata da Costa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Dayana Montero-Rodríguez
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Nathália Sá Alencar do Amaral Marques
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Mirelys Puerta-Díaz
- Pernambuco Institute of Agronomy, Recife, Pernambuco, 50761-000, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Rafael de Souza Mendonça
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Paulo Marcelino Franco
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| |
Collapse
|
26
|
Karnwal A, Shrivastava S, Al-Tawaha ARMS, Kumar G, Singh R, Kumar A, Mohan A, Yogita, Malik T. Microbial Biosurfactant as an Alternate to Chemical Surfactants for Application in Cosmetics Industries in Personal and Skin Care Products: A Critical Review. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2375223. [PMID: 37090190 PMCID: PMC10118887 DOI: 10.1155/2023/2375223] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023]
Abstract
Cosmetics and personal care items are used worldwide and administered straight to the skin. The hazardous nature of the chemical surfactant utilized in the production of cosmetics has caused alarm on a global scale. Therefore, bacterial biosurfactants (BS) are becoming increasingly popular in industrial product production as a biocompatible, low-toxic alternative surfactant. Chemical surfactants can induce allergic responses and skin irritations; thus, they should be replaced with less harmful substances for skin health. The cosmetic industry seeks novel biological alternatives to replace chemical compounds and improve product qualities. Most of these chemicals have a biological origin and can be obtained from plant, bacterial, fungal, and algal sources. Various biological molecules have intriguing capabilities, such as biosurfactants, vitamins, antioxidants, pigments, enzymes, and peptides. These are safe, biodegradable, and environmentally friendly than chemical options. Plant-based biosurfactants, such as saponins, offer numerous advantages over synthetic surfactants, i.e., biodegradable, nontoxic, and environmentally friendly nature. Saponins are a promising source of natural biosurfactants for various industrial and academic applications. However, microbial glycolipids and lipopeptides have been used in biotechnology and cosmetics due to their multifunctional character, including detergency, emulsifying, foaming, and skin moisturizing capabilities. In addition, some of them have the potential to be used as antibacterial agents. In this review, we like to enlighten the application of microbial biosurfactants for replacing chemical surfactants in existing cosmetic and personal skincare pharmaceutical formulations due to their antibacterial, skin surface moisturizing, and low toxicity characteristics.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Shrivastava
- Department of Plant Pathology, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | | | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rattandeep Singh
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anupam Kumar
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anand Mohan
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yogita
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|
27
|
Nagtode V, Cardoza C, Yasin HKA, Mali SN, Tambe SM, Roy P, Singh K, Goel A, Amin PD, Thorat BR, Cruz JN, Pratap AP. Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability-Comparison, Applications, Market, and Future Prospects. ACS OMEGA 2023; 8:11674-11699. [PMID: 37033812 PMCID: PMC10077441 DOI: 10.1021/acsomega.3c00591] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Surfactants are a group of amphiphilic molecules (i.e., having both hydrophobic and hydrophilic domains) that are a vital part of nearly every contemporary industrial process such as in agriculture, medicine, personal care, food, and petroleum. In general surfactants can be derived from (i) petroleum-based sources or (ii) microbial/plant origins. Petroleum-based surfactants are obvious results from petroleum products, which lead to petroleum pollution and thus pose severe problems to the environment leading to various ecological damages. Thus, newer techniques have been suggested for deriving surfactant molecules and maintaining environmental sustainability. Biosurfactants are surfactants of microbial or plant origins and offer much added advantages such as high biodegradability, lesser toxicity, ease of raw material availability, and easy applicability. Thus, they are also termed "green surfactants". In this regard, this review focused on the advantages of biosurfactants over the synthetic surfactants produced from petroleum-based products along with their potential applications in different industries. We also provided their market aspects and future directions that can be considered with selections of biosurfactants. This would open up new avenues for surfactant research by overcoming the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Vaishnavi
S. Nagtode
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Clive Cardoza
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Haya Khader Ahmad Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Suraj N. Mali
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India
| | - Srushti M. Tambe
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pritish Roy
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Kartikeya Singh
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Antriksh Goel
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Purnima D. Amin
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Bapu R. Thorat
- Department
of Chemistry, Government College of Arts
and Science, Aurangabad, Maharashtra 431001, India
| | - Jorddy N. Cruz
- Laboratory
of Modeling and Computational Chemistry, Department of Biological
and Health Sciences, Federal University
of Amapá, Macapá 68902-280, Amapá, Brazil
| | - Amit P. Pratap
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
28
|
Silva IGSD, Pappalardo JR, Rocha e Silva NMPD, Converti A, Almeida FCGD, Sarubbo LA. Treatment of Motor Oil-Contaminated Soil with Green Surfactant Using a Mobile Remediation System. Processes (Basel) 2023. [DOI: 10.3390/pr11041081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Leak of fuels and lubricants occurring during exploration, distribution, refining and storage operations is the major cause of environmental pollution due to petroderivatives dispersion. The quick use of a series of physicochemical and biological techniques is needed to drastically reduce the magnitude of damage provoked by these pollutants. Among them, soil washing proved to be an effective alternative to the remediation of hydrocarbon-polluted sites, mainly if combined with surfactant utilization. However, the direct use of surfactants can lead to problems related to the toxicity and dispersion of the resulting by-products, as the majority of marketed surfactants are produced from oil derivatives. In this context, green surfactants appear as a promising alternative to their synthetic counterpart. In the present study, two green surfactants, i.e., a chemically synthesized biobased surfactant and a Starmerella bombicola biosurfactant, were applied in soil decontamination tests using a concrete mixer-type Mobile Soil Remediation System (MSRS). The system was designed and developed with 3D printing based on bench-scale results. A commercial biosurfactant was formulated based on the microbial surfactant, which was compared with the biobased surfactant in various experimental conditions. A set of factorial designs combined with Response Surface Methodology was used to select the optimal conditions for pollutant removal using the prototype. The following variables were tested: Surfactant type, Surfactant volume, Surfactant dilution, Contaminant concentration, Soil type, Soil mass, Washing duration, Tank tilt angle, Mixing speed, and Type of basket. Under the optimized experimental condition, the commercial biosurfactant allowed to remove 92.4% of the motor oil adsorbed in the sand. These results demonstrate the possibility of using natural surfactants and the development of novel mechanical technologies to degrade hydrocarbons with economic earnings for oil industry.
Collapse
Affiliation(s)
- Israel Gonçalves Sales da Silva
- Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n—Dois Irmãos, Recife 52171-900, PE, Brazil
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50070-280, PE, Brazil
| | | | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, n. 15, 16145 Genova, Italy
| | | | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50070-280, PE, Brazil
- Escola Icam Tech, Universidade Católica de Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil
| |
Collapse
|
29
|
Khanna A, Handa S, Rana S, Suttee A, Puri S, Chatterjee M. Biosurfactant from Candida: sources, classification, and emerging applications. Arch Microbiol 2023; 205:149. [PMID: 36995448 DOI: 10.1007/s00203-023-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Biosurfactants are surface-active molecules that are synthesized by many microorganisms like fungi, bacteria, and yeast. These molecules are amphiphilic in nature, possessing emulsifying ability, detergency, foaming, and surface-activity like characteristics. Yeast species belongs to the genus Candida has gained globally enormous interest because of the diverse properties of biosurfactants produced by theme. In contrast to synthetic surfactants, biosurfactants are claimed to be biodegradable and non-toxic which labels them as a potent industrial compound. Biosurfactants produced by this genus are reported to possess certain biological activities, such as anticancer and antiviral activities. They also have potential industrial applications in bioremediation, oil recovery, agricultural, pharmaceutical, biomedical, food, and cosmetic industries. Various species of Candida have been recognized as biosurfactant producers, including Candida petrophilum, Candida bogoriensis, Candida antarctica, Candida lipolytica, Candida albicans, Candida batistae, Candida albicans, Candida sphaerica, etc. These species produce various forms of biosurfactants, such as glycolipids, lipopeptides, fatty acids, and polymeric biosurfactants, which are distinct according to their molecular weights. Herein, we provide a detailed overview of various types of biosurfactants produced by Candida sp., process optimization for better production, and the latest updates on the applications of these biosurfactants.
Collapse
Affiliation(s)
- Archna Khanna
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Shristi Handa
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Samriti Rana
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Puri
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Mary Chatterjee
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
30
|
Rhamnolipid Self-Aggregation in Aqueous Media: A Long Journey toward the Definition of Structure–Property Relationships. Int J Mol Sci 2023; 24:ijms24065395. [PMID: 36982468 PMCID: PMC10048978 DOI: 10.3390/ijms24065395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
The need to protect human and environmental health and avoid the widespread use of substances obtained from nonrenewable sources is steering research toward the discovery and development of new molecules characterized by high biocompatibility and biodegradability. Due to their very widespread use, a class of substances for which this need is particularly urgent is that of surfactants. In this respect, an attractive and promising alternative to commonly used synthetic surfactants is represented by so-called biosurfactants, amphiphiles naturally derived from microorganisms. One of the best-known families of biosurfactants is that of rhamnolipids, which are glycolipids with a headgroup formed by one or two rhamnose units. Great scientific and technological effort has been devoted to optimization of their production processes, as well as their physicochemical characterization. However, a conclusive structure–function relationship is far from being defined. In this review, we aim to move a step forward in this direction, by presenting a comprehensive and unified discussion of physicochemical properties of rhamnolipids as a function of solution conditions and rhamnolipid structure. We also discuss still unresolved issues that deserve further investigation in the future, to allow the replacement of conventional surfactants with rhamnolipids.
Collapse
|
31
|
Da Rós PCM, Pereira TA, Barbosa FG, Marcelino PRF, da Silva SS. An Environmentally Friendly Biosurfactant to Enhance the Enzymatic Hydrolysis for Production of Polyunsaturated Fatty Acids with Potential Application as Nutraceutical. Catal Letters 2023. [DOI: 10.1007/s10562-023-04313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
32
|
Bioremediation of Oil-Contaminated Soil of the Republic of Kazakhstan Using a New Biopreparation. Microorganisms 2023; 11:microorganisms11020522. [PMID: 36838488 PMCID: PMC9960684 DOI: 10.3390/microorganisms11020522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
A new biopreparation is developed to clean soils from oil pollution in the arid climate of the Republic of Kazakhstan. The biopreparation includes bacterial strains R. qingshengii F2-1, R. qingshengii F2-2, and P. alloputida BS3701. When using the biopreparation in a liquid mineral medium with 15% crude oil, laboratory studies have revealed degradation of 48% n-alkanes and 39% of PAHs after 50 days. The effectiveness of the biopreparation has been demonstrated in field experiments in the soil contaminated with 10% crude oil at the K-Kurylys landfill, Republic of Kazakhstan. During the six-month field experiment, the number of oil degraders reached 107 CFU/g soil, which degraded 70% of crude oil by the end of the experiment.
Collapse
|
33
|
Production and Characterization of New Biosurfactants/Bioemulsifiers from Pantoea alhagi and Their Antioxidant, Antimicrobial and Anti-Biofilm Potentiality Evaluations. Molecules 2023; 28:molecules28041912. [PMID: 36838900 PMCID: PMC9963710 DOI: 10.3390/molecules28041912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The present work aimed to develop rapid approach monitoring using a simple selective method based on a positive hemolysis test, oil spreading activity and emulsification index determinations. It is the first to describe production of biosurfactants (BS) by the endophytic Pantoea alhagi species. Results indicated that the new BS evidenced an E24 emulsification index of 82%. Fourier-transform infrared (FTIR) results mentioned that the described BS belong to the glycolipid family. Fatty acid profiles showed the predominance of methyl 2-hyroxydodecanoate in the cell membrane (67.00%) and methyl 14-methylhexadecanoate (12.05%). The major fatty acid in the BS was oleic acid (76.26%), followed by methyl 12-methyltetradecanoate (10.93%). Markedly, the BS produced by the Pantoea alhagi species exhibited antimicrobial and anti-biofilm activities against tested human pathogens. With superior antibacterial activity against Escherchia coli and Staphylococcus aureus, a high antifungal effect was given against Fusarium sp. with a diameter of zone of inhibition of 29.5 mm, 36 mm and 31 mm, obtained by BS dissolved in methanol extract. The DPPH assay indicated that the BS (2 mg/mL) showed a higher antioxidant activity (78.07 inhibition percentage). The new BS exhibited specific characteristics, encouraging their use in various industrial applications.
Collapse
|
34
|
Devale A, Sawant R, Pardesi K, Perveen K, Khanam MNI, Shouche Y, Mujumdar S. Production and characterization of bioemulsifier by Parapedobacter indicus. Front Microbiol 2023; 14:1111135. [PMID: 36876100 PMCID: PMC9978354 DOI: 10.3389/fmicb.2023.1111135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
The current study evaluated Parapedobacter indicus MCC 2546 for its potential to produce a bioemulsifier (BE). Screening methods performed for BE production by P. indicus MCC 2546 showed good lipase activity, positive drop collapse test, and oil-spreading activity. Furthermore, it showed maximum emulsification activity (225 EU/ml) and emulsification index (E24 50%) at 37°C in Luria Bertani broth at 72 h with olive oil as a substrate. The optimal pH and NaCl concentration for maximum emulsification activity were 7 and 1%, respectively. P. indicus MCC 2546 lowered the surface tension of the culture medium from 59.65 to 50.42 ± 0.78 mN/m. BE produced was composed of 70% protein and 30% carbohydrate, which showed the protein-polysaccharide nature of the BE. Furthermore, Fourier transform infrared spectroscopy analysis confirmed the same. P. indicus MCC 2546 showed a catecholate type of siderophore production. This is the first report on BE and siderophore production by the genus Parapedobacter.
Collapse
Affiliation(s)
- Anushka Devale
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| | - Rupali Sawant
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mehrun NIsha Khanam
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yogesh Shouche
- School of Arts and Sciences, Azim Premji University, Bengaluru, India
| | - Shilpa Mujumdar
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| |
Collapse
|
35
|
Zhao F, Zheng M, Xu X. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications. BIORESOURCE TECHNOLOGY 2023; 369:128426. [PMID: 36462764 DOI: 10.1016/j.biortech.2022.128426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The high cost and severe foam in rhamnolipid fermentation are still bottlenecks for its industrial production and application. Non-foaming production of rhamnolipid by Pseudomonas aeruginosa FA1 was explored in solid-state fermentation using the agro-processing waste (peanut meal) as low-cost substrate. An environmental-friendly extraction method was developed to harvest rhamnolipid from solid-state culture. Strain FA1 produced 265.4 ± 8.2 mg rhamnolipid using 10 g peanut meal. HPLC-MS results revealed that 7 rhamnolipid homologues were produced, mainly including Rha-C8-C10 and Rha-Rha-C10-C10. Nitrate was the optimal nitrogen source. Peanut meal, MgSO4 and CaCl2 were significant factors for rhamnolipid production in solid-state fermentation. Rhamnolipid production was enhanced 31 % using the solid-state medium optimized by response surface method. The produced rhamnolipid reduced water surface tension to 28.1 ± 0.2 mN/m with a critical micelle concentration of 70 mg/L. The crude oil was emulsified with an emulsification index of 75.56 ± 1.29 %. The growth of tested bacteria and fungi was inhibited.
Collapse
Affiliation(s)
- Feng Zhao
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province 273165, China.
| | - Mengyao Zheng
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province 273165, China
| | - Xiaomeng Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province 273165, China
| |
Collapse
|
36
|
Freitas-Silva J, de Oliveira BFR, Dias GR, de Carvalho MM, Laport MS. Unravelling the sponge microbiome as a promising source of biosurfactants. Crit Rev Microbiol 2023; 49:101-116. [PMID: 35176944 DOI: 10.1080/1040841x.2022.2037507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microbial surfactants are particularly useful in bioremediation and heavy metal removal from soil and aquatic environments, amongst other highly valued uses in different economic and biomedical sectors. Marine sponge-associated bacteria are well-known producers of bioactive compounds with a wide array of potential applications. However, little progress has been made on investigating biosurfactants produced by these bacteria, especially when compared with other groups of biologically active molecules harnessed from the sponge microbiome. Using a thorough literature search in eight databases, the purpose of the review was to compile the current knowledge on biosurfactants from sponge-associated bacteria, with a focus on their relevant biotechnological applications. From the publications between the years 1995 and 2021, lipopeptides and glycolipids were the most identified chemical classes of biosurfactants. Firmicutes was the dominant phylum of biosurfactant-producing strains, followed by Actinobacteria and Proteobacteria. Bioremediation led as the most promising application field for the studied surface-active molecules in sponge-derived bacteria, despite the reports endorsed their use as antimicrobial and antibiofilm agents. Finally, we appoint some key strategies to instigate the research appetite on the isolation and characterization of novel biosurfactants from the poriferan microbiome.
Collapse
Affiliation(s)
- Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Gabriel Rodrigues Dias
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Tang AYL, Lee CH, Wang Y, Kan CW. Rhamnolipid (RL) microbial biosurfactant-based reverse micellar dyeing of cotton fabric with reactive dyes: A salt-free and alkali-free one-bath one-step approach. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Verma C, Hussain CM, Quraishi MA, Alfantazi A. Green surfactants for corrosion control: Design, performance and applications. Adv Colloid Interface Sci 2023; 311:102822. [PMID: 36442322 DOI: 10.1016/j.cis.2022.102822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Surfactants enjoy an augmented share of hydrophilicity and hydrophobicity and are well-known for their anticorrosive potential. The use of non-toxic surfactants is gaining growing interest because of the scaling demands of green chemistry. Green surfactants have successfully replaced traditional toxic surfactant-based corrosion inhibitors. Recently, many reports described the corrosion inhibition potential of green surfactants. The present article aims to describe the recent advancements in using green surfactants in corrosion mitigation. They create a charge transfer barrier through their adsorption at the interface of the metal and the environment. Their adsorption is well explained by the Langmuir adsorption isotherm. In the adsorbed layer, their hydrophilic polar heads orient toward the metal side and their hydrophobic tails orient toward the solution side. They block the active sites and retard the anodic and cathodic and act as mixed-type inhibitors. Their adsorption and bonding nature are fruitfully supported by surface analyses. They can form mono- or multilayers depending upon the nature of the metal, electrolyte and experimental conditions. The challenges and opportunities of using green surfactants as corrosion inhibitors have also been described.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - M A Quraishi
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates
| |
Collapse
|
39
|
Phulpoto IA, Yu Z, Qazi MA, Ndayisenga F, Yang J. A comprehensive study on microbial-surfactants from bioproduction scale-up toward electrokinetics remediation of environmental pollutants: Challenges and perspectives. CHEMOSPHERE 2023; 311:136979. [PMID: 36309062 DOI: 10.1016/j.chemosphere.2022.136979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Currently, researchers have focused on electrokinetic (EK) bioremediation due to its potential to remove a wide-range of pollutants. Further, to improve their performance, synthetic surfactants are employed as effective additives because of their excellent solubility and mobility. Synthetic surfactants have an excessive position in industries since they are well-established, cheap, and easily available. Nevertheless, these surfactants have adverse environmental effects and could be detrimental to aquatic and terrestrial life. Owing to social and environmental awareness, there is a rising demand for bio-based surfactants in the global market, from environmental sustainability to public health, because of their excellent surface and interfacial activity, higher and stable emulsifying property, biodegradability, non- or low toxicity, better selectivity and specificity at extreme environmental conditions. Unfortunately, challenges to biosurfactants, like expensive raw materials, low yields, and purification processes, hinder their applicability to large-scale. To date, extensive research has already been conducted for production scale-up using multidisciplinary approaches. However, it is still essential to research and develop high-yielding bacteria for bioproduction through traditional and biotechnological advances to reduce production costs. Herein, this review evaluates the recent progress made on microbial-surfactants for bioproduction scale-up and provides detailed information on traditional and advanced genetic engineering approaches for cost-effective bioproduction. Furthermore, this study emphasized the role of electrokinetic (EK) bioremediation and discussed the application of BioS-mediated EK for various pollutants remediation.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's, 66020, Sindh, Pakistan
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, China.
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's, 66020, Sindh, Pakistan
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jie Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
40
|
Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics 2022; 14:pharmaceutics14122818. [PMID: 36559311 PMCID: PMC9785322 DOI: 10.3390/pharmaceutics14122818] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The delivery of drugs via transdermal routes is an attractive approach due to ease of administration, bypassing of the first-pass metabolism, and the large skin surface area. However, a major drawback is an inability to surmount the skin's stratum corneum (SC) layer. Therefore, techniques reversibly modifying the stratum corneum have been a classical approach. Surmounting the significant barrier properties of the skin in a well-organised, momentary, and harmless approach is still challenging. Chemical permeation enhancers (CPEs) with higher activity are associated with certain side effects restricting their advancement in transdermal drug delivery. Furthermore, complexity in the interaction of CPEs with the skin has led to difficulty in elucidating the mechanism of action. Nevertheless, CPEs-aided transdermal drug delivery will accomplish its full potential due to advancements in analytical techniques, synthetic chemistry, and combinatorial studies. This review focused on techniques such as drug-vehicle interaction, vesicles and their analogues, and novel CPEs such as lipid synthesis inhibitors (LSIs), cell-penetrating peptides (CPPs), and ionic liquids (ILs). In addition, different types of microneedles, including 3D-printed microneedles, have been focused on in this review.
Collapse
|
41
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
42
|
Production of liamocins by Aureobasidium spp. with potential applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Production, Characterization, and Application of Biosurfactant From Lactobacillus plantarum OG8 Isolated From Fermenting Maize ( Zea Mays) Slurry. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Biosurfactants have wide applications in several industries. However, high production costs and safety concerns have limited their comprehensive use. Twenty-five strains of lactic acid bacteria, isolated from fermenting maize slurry, were screened for biosurfactant production using the emulsification activity (E24) assay. The selected bacterium was identified molecularly using the 16S rRNA gene sequencing as Lactobacillus plantarum OG8. The effect of some cultural factors on biosurfactant production from the bacterium, using pineapple peel as a low-cost substrate, was investigated. The optimum yield of biosurfactant occurred at a 48 h incubation period, using glucose and peptone as carbon and nitrogen sources, respectively. The biosurfactant was characterized to possess mostly carbohydrates, followed by protein and lipid contents. Optima pH 10.0 and temperature 60 °C were the best for the biosurfactant activity. The biosurfactant exhibited antimicrobial activity against bacterial pathogens Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumoniae, at a concentration of 5.0 mg/mL. The use of pineapple peel as a low-cost substrate for biosurfactant production from Lactobacillus plantarum OG8 will serve for cost-effective production. The biosurfactantt produced exhibited promising properties such as thermostability and antimicrobial activity against food spoilage and pathogenes that could make it suitable for food processing and preservation.
Collapse
|
44
|
Sánchez-Muñoz S, Balbino TR, de Oliveira F, Rocha TM, Barbosa FG, Vélez-Mercado MI, Marcelino PRF, Antunes FAF, Moraes EJC, dos Santos JC, da Silva SS. Surfactants, Biosurfactants, and Non-Catalytic Proteins as Key Molecules to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass. Molecules 2022; 27:8180. [PMID: 36500273 PMCID: PMC9739445 DOI: 10.3390/molecules27238180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed.
Collapse
Affiliation(s)
- Salvador Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Thércia R. Balbino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Fernanda de Oliveira
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Thiago M. Rocha
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Fernanda G. Barbosa
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Martha I. Vélez-Mercado
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Paulo R. F. Marcelino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Felipe A. F. Antunes
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Elisangela J. C. Moraes
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Julio C. dos Santos
- Biopolymers, Bioreactors, and Process Simulation Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Silvio S. da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| |
Collapse
|
45
|
Chen J, Zhang Q, Zhu Y, Li Y, Chen W, Lu T, Qi Z. Biosurfactant-mediated mobility of graphene oxide nanoparticles in saturated porous media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1883-1894. [PMID: 36148869 DOI: 10.1039/d2em00297c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There is currently a lack of scientific understanding regarding how bio-surfactants influence the mobility of graphene oxide (GO) through saturated porous media. In this study, the transport characteristics of GO through porous media with different heterogeneities (i.e., quartz sand and goethite-coated sand) after the addition of saponin (a representative bio-surfactant) were investigated. The results demonstrated that saponin (3-10 mg L-1) promoted GO mobility in both types of porous media at pH 7.0. This trend was attributed to the competitive deposition between nanoparticles and bio-surfactant molecules for attachment sites, the enhanced electrostatic repulsion, the decreased strain, the presence of steric effects induced by the adsorbed saponin, and the increase in the hydrophilicity of nanoparticles. Intriguingly, saponin promoted GO mobility in goethite-coated sand (i.e., chemically heterogeneous porous media) to a greater extent than that in sand (i.e., relatively homogeneous porous media) when saponin concentrations increased, which stemmed from the differences in the extent of the deposition site competition for saponin on the two porous media and the electrostatic repulsion between GO and the porous media. Furthermore, a cation-bridging mechanism was also involved in the ability of saponin to increase GO mobility when the electrolyte solution was 0.1 mM Cu2+. Moreover, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and the colloid transport model were applicable to elucidate the mobility properties of GO with or without saponin in porous media. The findings from this work highlight the important status of bio-surfactants in the fate of colloidal carbon-based nanomaterials in subsurface systems.
Collapse
Affiliation(s)
- Jiuyan Chen
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yanxiang Li
- The Testing Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
46
|
Handa S, Aggarwal Y, Puri S, Chatterjee M. Pharmaceutical prospects of biosurfactants produced from fungal species. J Basic Microbiol 2022; 62:1307-1318. [PMID: 36257786 DOI: 10.1002/jobm.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022]
Abstract
The development of novel types of biogenic surface-active compounds is of greater interest for combating many diseases and infections. In this respect research and development of biosurfactant has gained immense importance. Substantially, biosurfactant is defined as a class of active amphiphilic chemical compounds that comprise hydrophobic and hydrophilic moieties on their surfaces. It is generally known that many kinds of microorganisms can be used to produce these surfactants or surface-active compounds. Hosting interesting features such as biodegradability, emulsifying/de-emulsifying capacity, low toxicity, and antimicrobial activities; these amphiphilic compounds in recent years have flourished as an ideal replacement for the chemically synthesized surfactant, and also have various commercial attractions. Both bacteria and fungi are the producers of these amphiphilic molecules; however, the pathogenicity of certain bacterial strains has caused a shift in interest toward fungi. Therefore, various fungi species have been reported for the production of biosurfactants amongst which Candida species have been the most studied strains. Biosurfactants uphold desired properties like antibacterial, antifungal, antiviral, antiadhesion, and anticancer activity which proves them an ideal candidate for the application in various fields like pharmaceutical, gene therapy, medical insertion safety, immunotherapy to fight against many chronic diseases, and so forth. Hence, this review article discusses the pharmaceutical prospects of biosurfactants produced from different fungal species, providing new directions toward the discovery and development of molecules with novel structures and diverse functions for advanced application in the medical field.
Collapse
Affiliation(s)
- Shristi Handa
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Yadu Aggarwal
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sanjeev Puri
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mary Chatterjee
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
47
|
Mulugeta K, Kamaraj M, Tafesse M, Kebede G, Gemechu G, Chandran M. Biomolecules from Serratia sp. CS1 indigenous to Ethiopian natural alkaline lakes: biosurfactant characteristics and assessment of compatibility in a laundry detergent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:873. [PMID: 36227369 DOI: 10.1007/s10661-022-10533-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, the biosurfactants (Bio-SFs) producing bacteria are screened from the selected alkaline lake of Ethiopia, and the potential bacterial strain and their produced Bio-SFs are further characterized. In an initial screening, 25 bacterial isolates were isolated, and among those, the bacterial isolate assigned as CS1 was identified as the most potent producer of Bio-SFs using a subsequent characterization process. The CS1 strain was identified as Serratia sp. via biochemical and molecular methods. An emulsion index (E24) of 69.06 ± 0.11% was obtained for CS1 after 5 days of incubation time at 30 °C. The CS1-extracted Bio-SFs were characterized by Fourier transform infrared (FTIR), and it indicated that the type of biosurfactant produced was a glycolipid. The stability of the crude Bio-SFs was characterized, and the optimal conditions were found to be 80 °C, pH 8, and 3% NaCl, respectively. The extracted Bio-SFs were compatible with tested commercial detergents, and its efficiency increased from 12.2 ± 0.1% to 67.1 ± 0.17% and 70.43 ± 0.11% when combined with commercially available detergent brands in Ethiopia such as Taza and Largo, respectively. This study suggests that the isolated S. marcescens CS1 strain has the potential to produce Bio-SFs that are viable competence to replace the use of synthetic chemicals in the production of commercial detergents.
Collapse
Affiliation(s)
- Kidist Mulugeta
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Murugesan Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology - Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Mesfin Tafesse
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Gessesse Kebede
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Getachew Gemechu
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Masi Chandran
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| |
Collapse
|
48
|
Fermented Angelicae tenussimae with Aspergillus oryzae Improves Skin Barrier Properties, Moisturizing, and Anti-Inflammatory Responses. Int J Mol Sci 2022; 23:ijms232012072. [PMID: 36292928 PMCID: PMC9602477 DOI: 10.3390/ijms232012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Angelicae tenussimae root has been used as a traditional medicine in Asia. Recently, anti-melanogenic and anti-photogenic effects of fermented A. tenuissima root (FAT) were identified. However, information about the anti-atopic dermatitis action of FAT is limited. Thus, the purpose of this study is to determine the applicability of FAT to AD by identifying the efficacy of FAT on the skin barrier and inflammatory response, which are the main pathogenesis of AD. Expression levels of skin barrier components and the production of inflammatory mediators in human keratinocyte and mouse macrophage cells were measured by quantitative RT-PCR or ELISA. FAT upregulated the expression of skin barrier components (filaggrin, involucrin, loricurin, SPTLC1) and inhibited the secretion of an inflammatory chemokine TARC in HaCaT cells. Furthermore, it suppressed pro-inflammatory cytokines (IL-6, TNF-α) and nitric oxide production in LPS-induced RAW264.7 cells. In addition, ligustilide increased filaggrin and SPTLC1, and also lowered pro-inflammatory mediators that increased in atopic environments, such as in FAT results. This means that ligustilide, one of the active ingredients derived from FAT, can ameliorate AD, at least in part, by promoting skin barrier formation and downregulating inflammatory mediators. These results suggest that FAT is a potential functional cosmetic material for the care and management of AD.
Collapse
|
49
|
Wei J, Deng S, Lu J. A Single Soil Washing with Humic Substance Can Achieve the Risk-Based Remedial Target for Nickel Contaminated Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:623-629. [PMID: 35292835 DOI: 10.1007/s00128-021-03399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Risk-based soil remediation and management have become a global environmental issue. Here, a nickel (Ni)-contaminated site was selected to conduct the risk-based remediation strategy. The Health and Environment Risk Assessment Software was used to calculate the human health risk and the remedial target value (RTV) of Ni. Soil highly contaminated with Ni (424.30 mg kg-1) could cause an unacceptable carcinogenic risk (1.41 × 10-6), which needs further remediation. Hence, a soluble humic substance (HS) was used as the washing agent to remove Ni. After a single wash at pH 4 and 8, the Ni concentrations in soil were reduced to 278.05 and 288.27 mg kg-1, both below the RTV (300 mg kg-1). Furthermore, sequential extraction analysis revealed that the residual Ni was maintained stably in the soil after HS washing. These findings suggested that HS is a promising washing agent for Ni-contaminated soil remediation under the guidance of risk control.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, Jiangsu, China.
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, China.
| |
Collapse
|
50
|
Sah D, Rai JPN, Ghosh A, Chakraborty M. A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech 2022; 12:218. [PMID: 35965658 PMCID: PMC9365905 DOI: 10.1007/s13205-022-03277-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022] Open
Abstract
The discharge of potentially toxic petroleum hydrocarbons into the environment has been a matter of concern, as these organic pollutants accumulate in many ecosystems due to their hydrophobicity and low bioavailability. Petroleum hydrocarbons are neurotoxic and carcinogenic organic pollutants, extremely harmful to human and environmental health. Traditional treatment methods for removing hydrocarbons from polluted areas, including various mechanical and chemical strategies, are ineffective and costly. However, many indigenous microorganisms in soil and water can utilise hydrocarbon compounds as sources of carbon and energy and hence, can be employed to degrade hydrocarbon contaminants. Therefore, bioremediation using bacteria that degrade petroleum hydrocarbons is commonly viewed as an environmentally acceptable and effective method. The efficacy of bioremediation can be boosted further by using potential biosurfactant-producing microorganisms, as biosurfactants reduce surface tension, promote emulsification and micelle formation, making hydrocarbons bio-available for microbial breakdown. Further, introducing nanoparticles can improve the solubility of hydrophobic hydrocarbons as well as microbial synthesis of biosurfactants, hence establishing a favourable environment for microbial breakdown of these chemicals. The review provides insights into the role of microbes in the bioremediation of soils contaminated with petroleum hydrocarbons and emphasises the significance of biosurfactants and potential biosurfactant-producing bacteria. The review partly focusses on how nanotechnology is being employed in different critical bioremediation processes.
Collapse
Affiliation(s)
- Diksha Sah
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - J. P. N. Rai
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Ankita Ghosh
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Moumita Chakraborty
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|