1
|
Wei Y, Yu J, Haider FU, Zhang Q, Chu R, Liqun C. Integrated removal of chromium, lead, and cadmium using nano-zero-valent iron-supported biochar: Mechanistic insights and eco-toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117532. [PMID: 39765113 DOI: 10.1016/j.ecoenv.2024.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/26/2025]
Abstract
The contamination of water and soil by heavy metals (HMs) is a global issue that should be given much more concern. Modified nano-zero-valent iron (nZVI) composites offer an effective strategy for HMs remediation, but few studies have focused on removing coexisting HMs and the eco-toxicity of the composite. In this study, corn straw biochar-supported nZVI composites (nZVI-BC) were synthesized, characterized and used for the removal of Cr6 +, Pb2+, and Cd2+ in single and multi-system at different composites dosages, metal concentrations, and solution pH. This study indicated that the composites exhibited enhanced removal capacities for Cr6+, Pb2+, and Cd2+ (respectively 82.24, 737.2, and 545.28 mg g-1), which were considerably superior to those observed with the sole application of biochar (0.05, 89.88, and 108.49 mg g-1) and nZVI (39.8, 297.35, and 191.02 mg g-1). Results of the remediation application of the composites to multi-metal systems revealed that intricate interplay existed between coexisting HMs, which hindered the simultaneous removal effect. The coexistence of Cr6+ and Cd2+ decreased both removal efficiencies by 58.16 % and 14.06 % at high Cr6+ levels, respectively, while the coexistence of Cd2+ and Pb2+ resulted in a decrease in Cd2+ removal efficiency by 14.3 %. An in-depth characterization of the underlying adsorption mechanism was performed by using kinetic and isotherms models such as Pseudo-first-order, Pseudo-second-order, Langmuir and Freundlich, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis. Each HM exhibited a distinct adsorption mechanism. The primary removal processes for Cr6+ and Pb2+ involved adsorption, reduction, and precipitation, whereas Cd2+ was mainly removed by adsorption and precipitation. Eco-toxicity experiments revealed that nZVI-BC enhanced pak choi (Brassica rapa L.) seeds germination (13.32, 17.22, and 23.33 %) and vigor indexes (1.22, 1.44, and 1.15) under Cr6+, Pb2+, and Cd2+ contamination, respectively. Nevertheless, an observed shift in toxicity occurred when the composites dosage for Cr6+, Pb2+, and Cd2+ exceeded 2, 4, and 4 g L-1, respectively, thereby instigating adverse effects on the early stages of plant growth. This work elucidates the removal mechanism and intricate reactions between co-existing HMs, highlighting the potential of nZVI-BC as a remediation strategy for HMs contamination.
Collapse
Affiliation(s)
- Yuzhen Wei
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jialu Yu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Qinhu Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Run Chu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
2
|
Chu KH, Bollinger JC. A critique of Rajendran et al.'s "A critical and recent developments on adsorption technique for removal of heavy metals from wastewater - A review". CHEMOSPHERE 2024; 368:143761. [PMID: 39551194 DOI: 10.1016/j.chemosphere.2024.143761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
This critique examines a review article in this journal on adsorption techniques for removing metal ions from wastewater. The article is marred by several flaws, including tortured phrases, miscitations, incoherent statements, and factual inaccuracies. These problems weaken the article's clarity and reliability, raising doubts about the authors' understanding of the subject. As a result, the review's credibility is compromised, limiting its value as a reliable resource for researchers. This critique highlights these issues, stressing the importance of accuracy and rigor in scientific writing.
Collapse
Affiliation(s)
- Khim Hoong Chu
- Institute of Energy Infrastructure, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor, Malaysia.
| | - Jean-Claude Bollinger
- Université de Limoges, Laboratoire E2Lim, Faculté des Sciences et Techniques, 87060 Limoges, France
| |
Collapse
|
3
|
Garg S, Singh S, Khan NA, Samuel J, Ramamurthy PC, Singh J. Equilibrium and kinetic modeling of Cr(VI) removal by novel tolerant bacteria species along with zero-valent iron nanoparticles. Sci Rep 2024; 14:8611. [PMID: 38616197 PMCID: PMC11016541 DOI: 10.1038/s41598-024-57835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
This work describes the study of the removal of a refractory contaminant, i.e., Hexavalent chromium (Cr(VI)) from aqueous systems by a novel adsorbent comprising Cr(VI) tolerant bacteria and zero valent iron nanoparticle (nZVI). A gram-positive, rod-shaped bacteria used in the study were isolated from wastewater (WW) received from the effluent of leather industries. The adsorbents were prepared with bacteria, nZVI alone, and a combination of both. The adsorbent comprising both elements was found to remove Cr(VI) with a higher percentage (93%) and higher capacities (0.58 mg/g) as compared to adsorbent with bacteria (Cr(VI) removal = 63%, qe = 0.163 mg/g) or nanoparticles (Cr(VI) removal = 80%, qe = 0.45 mg/g) alone. The adsorbent worked best at neutral pH, and the removal became saturated after 90 min of incubation. Equilibrium studies with isotherm modeling suggested that the adsorption process follows sips isotherm (R2 = 0.9955), which is expected to bean intra-particle diffusion process before the actual adsorption. Process kinetics was modeled with pseudo-first order, pseudo-second order, and Vermeulen model. The diffusion coefficient determined by fitting the kinetic data to Vermeulen model was found to be 0.0000314 cm2/s. The adsorbent can be tested further for continuous flow processes to find more insights about the usage on a large scale.
Collapse
Affiliation(s)
- Shashank Garg
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Jastin Samuel
- Waste Valorization Research Lab, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| | - Joginder Singh
- Department of Botany, Nagaland University, HQRS: Lumami, Nagaland, 798627, India.
| |
Collapse
|
4
|
Ding D, Zhao Y, Chen Y, Xu C, Fan X, Tu Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120187. [PMID: 38310792 DOI: 10.1016/j.jenvman.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.
Collapse
Affiliation(s)
- Dahai Ding
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yuanyuan Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yan Chen
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Chaonan Xu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xudong Fan
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yingying Tu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Donglin Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
5
|
Huang G, Wang M, Liu Q, Zhao S, Liu H, Liu F, Liu J. Efficient removal of tetracycline in water using modified eggplant straw biochar supported green nanoscale zerovalent iron: synthesis, removal performance, and mechanism. RSC Adv 2024; 14:3567-3577. [PMID: 38259987 PMCID: PMC10802144 DOI: 10.1039/d3ra08417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
A novel NaOH modified eggplant straw biochar supported green nanoscale zerovalent iron (P-nZVI/ESBC) composite was synthesized and its removal performance and reaction mechanism for tetracycline (TC) in water were investigated. Multiple characterizations showed that the prepared P-nZVI/ESBC composite contained oxygen-containing functional groups (hydroxyl, carbonyl, and carboxyl groups) and Fe species (nZVI and its oxides). The dosage of composite, temperature, and solution pH significantly affected the removal capacity of the P-nZVI/ESBC composite for TC. The Avrami fraction-order kinetic model and Sips adsorption isotherm model can fit well the removal process of TC by the P-nZVI/ESBC composite, indicating that the adsorption behavior of TC involved multiple adsorption mechanisms and chemical adsorption might occur. The maximum adsorption capacity of the P-nZVI/ESBC composite for TC was 304.62 mg g-1. The adsorption and reductive degradation were the dominant mechanisms of TC removal by the P-nZVI/ESBC composite. This work offers abundant information on the application of eggplant straw to manufacture biochar-based composites for the efficient removal of antibiotic contaminants from aquatic environments.
Collapse
Affiliation(s)
- Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Mianmian Wang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Qing Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Shasha Zhao
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Haijian Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Fangfang Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
| | - Jun Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
| |
Collapse
|
6
|
Tang Y, Wang C, Holm PE, Hansen HCB, Brandt KK. Impacts of biochar materials on copper speciation, bioavailability, and toxicity in chromated copper arsenate polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132067. [PMID: 37478594 DOI: 10.1016/j.jhazmat.2023.132067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Trace element polluted soils pose risks to human and environmental health. Biochar can decrease trace element bioavailability in soils, but their resulting ability to reduce soil toxicity may vary significantly depending on feedstocks used, pyrolysis conditions, and the target pollutants. Chromated copper arsenate (CCA) polluted sites are common, but only very few types of biochar have been tested for these sites. Hence, we tested fourteen well-characterized biochar materials for their ability to bind Cu and reduce toxicity in a CCA polluted soil in a 56-day experiment. Biochar (1%, wt/wt) increased plant (wheat, Triticum aestivum L.) shoot and root growth by 6-58% and 0-73%, reduced soil toxicity to Arthrobacter globiformis by 7-55%, decreased bioavailable Cu (Pseudomonas fluorescens bioreporter) by 5-65%, and decreased free Cu2+ ion activities by 27-89%. The A. globiformis solid-contact test constituted a sensitive ecotoxicological endpoint and deserves further attention for assessment of soil quality. Oil seed rape straw biochar generally performed better than other tested biochar materials. Biochar performance was positively correlated with its high cation exchange capacity, multiple surface functional groups, and high nitrogen and phosphorus content. Our results pave the way for future selection of feedstocks for creation of modified biochar materials with optimal performance in CCA polluted soil.
Collapse
Affiliation(s)
- Yinqi Tang
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Chen Wang
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Peter E Holm
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Hans Chr Bruun Hansen
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Kristian K Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
7
|
Khan MH, Akash NM, Akter S, Rukh M, Nzediegwu C, Islam MS. A comprehensive review of coconut-based porous materials for wastewater treatment and CO 2 capture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117825. [PMID: 37031519 DOI: 10.1016/j.jenvman.2023.117825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
For several decades, water pollution has become a major threat to aquatic and non-aquatic species, including humans. Different treatment techniques have already been proposed and implemented depending on wastewater characteristics. But many of these treatment techniques are expensive and inefficient. Adsorption-based techniques have shown impressive performances as an inexpensive treatment method previously. Coconut-based resources have been considered as adsorbents for wastewater treatment because of their abundance, low cost, and favorable surface properties. However, over the last decade, no comprehensive study has been published regarding biochar from coconut-based materials for wastewater treatment and CO2 capture. This review discusses biochar production technology for coconut-based materials, its modification and characterization, its utilization as an adsorbent for removing metals and organics from wastewater, and the associated removal mechanisms and the economic aspects of coconut-based biochar. Coconut-based materials are cheap and effective for removing various organic compounds such as pesticides, hormones, phenol, and phenolic compounds from solutions and capturing CO2 from air mainly through the pore-filling mechanism. Utilizing coconut-based biochars in a hybrid system that combines adsorption and other techniques, such as biotechnology or chemical coagulation is a promising way to increase their performance as an adsorbent in wastewater treatment.
Collapse
Affiliation(s)
- Mahmudul Hasan Khan
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh; Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, United States
| | - Nasim Mahmud Akash
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Sonia Akter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Mahe Rukh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, North Carolina, United States
| | - Christopher Nzediegwu
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| |
Collapse
|
8
|
Sun P, Liu Y, Wang R, Zhu Z, Wu J, Zhou J, Zhang Y, Jia H, Wang T. In-situ CO2−/ OH redox induced by degradation intermediate organic acids realized simultaneously Cu-EDTA decomplexation and Cr(VI) reduction in a plasma process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Som I, Roy M, Saha R. Polyethylene glycol-modified mesoporous zerovalent iron nanoparticle as potential catalyst for improved reductive degradation of Congo red from wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023:1-24. [PMID: 37243365 DOI: 10.1080/10934529.2023.2215679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
In this study, bare zero-valent iron nanoparticles (nZVI) have been modified using polyethylene glycol (PEG) of various molecular weight in a facile technique. The synthesized nZVI modified with PEG, M.W. of 600 and 6000 was denoted by nZVI-PEG600 and nZVI-PEG6000, respectively, and compared their catalytic activity towards the reductive degradation of Congo red (CR) using NaBH4.The existence of PEG layer surrounds the nZVI core was confirmed by several characterization tools, such as XRD, FTIR, FESEM and TEM. Herein, both nZVI-PEG600 and nZVI-PEG6000 exhibited remarkable removal efficiencies of 89.6% and 99.2% within 14 min of reaction time. The optimum reaction parameters were found to be as follows: 0.2 g L-1 catalyst dose and initial dye concentration of 2 × 10-5 molL-1 etc. Kinetic studies of dye degradation were investigated which follow pseudo-1st-order kinetics. The TOC analysis confirmed the complete mineralization of CR dye by nZVI-PEG6000 nanocatalyst. GCMS analysis of plausible degraded products was performed to elucidate a probable mechanistic pathway of CR degradation. Further, we have investigated the degradation of two anionic dyes mixture, i.e., CR and methyl orange (MO) using best catalyst, i.e., nZVI-PEG6000.
Collapse
Affiliation(s)
- Ipsita Som
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Mouni Roy
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan, India
| | - Rajnarayan Saha
- Department of Chemistry, National Institute of Technology, Durgapur, India
| |
Collapse
|
10
|
Cheng J, Zhang J, Xiao X, Yuan Y, Liao X, Shi B, Zhang S. Potassium assisted pyrolysis of Chinese Baijiu distillers' grains to prepare biochar as controlled-release K fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163814. [PMID: 37121329 DOI: 10.1016/j.scitotenv.2023.163814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
A novel K-loaded biochar as controlled-release K fertilizer was prepared through K assisted pyrolysis of distillers' grains (DGs, typical solid-byproducts of Chinese Baijiu) under different atmospheres (N2 and CO2) and temperatures (400 and 800 °C). The fabricated DGs-based biochar exhibited high K loading (200.20-232.33 mg/g), and the release kinetics and column leaching experiments suggested that K-loaded biochar exhibited excellent controlled release performance in a long term. Compared with other biochar, the K-loaded biochar prepared at CO2 and 400 °C has lower cumulative release ratio of 82.35 %, and could retain the durative K release at ~0.5 % for 25 d. The release kinetics suggested that the K release behavior was dominated by dissolution, electrostatic attraction, adsorption, confinement effect, and chemical interaction. Furthermore, pot experiments revealed that K-loaded biochar could promote the growth of Komatsuna, in which the fresh weight and chlorophyll relative content of Komatsuna cultivated with biochar prepared at CO2 and 400 °C reached 0.146 g and 41.95 after 25 d growth, respectively. The above results suggested that the K-loaded biochar exhibited excellent utilization potential as a controlled-release K fertilizer, facilitating the sustainable development and resource valorization of Baijiu industry.
Collapse
Affiliation(s)
- Jiali Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiaming Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiao Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xuepin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Suyi Zhang
- Luzhou Laojiao Group Co., Ltd., Luzhou 646000, China
| |
Collapse
|
11
|
Cay S. Assessment of tea saponin and citric acid-assisted phytoextraction of Pb-contaminated soil by Salvia virgata Jacq. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49771-49778. [PMID: 36787065 DOI: 10.1007/s11356-023-25809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
The present study, investigated the influence of the natural tea saponin (TS) obtained by microwave-assisted extraction and citric acid (CA) by commercially enhancing lead ion (Pb(II)) uptake by Salvia virgata Jacq. The Pb(II) tolerance was compared, and the growth of plants and Pb(II) accumulation characteristics of S. virgata with chemical agents TS and CA were studied for their phytoextraction potential of Pb(II) from artificially contaminated soil of 0-100 mg kg-1 different concentrations under pot conditions. The different morphophysiological parameters of S. virgata such as growth, biomass, chlorophylls, and carotenoids were significantly changed under different Pb(II) stress and TS and CA concentrations. To evaluate the removal efficiency of the studied plant, the bioconcentration factor (BCF) or enrichment coefficient (EC), translocation factor (TF), and tolerance index (TI) values were also calculated and compared with the control. Phytotoxic effects were observed at 100 mg kg-1; added Pb(II) treatments caused significant decreases of 33.05% in the biomass of S. virgata compared to the control. All the obtained results showed that the concentrations of Pb(II) being compared revealed a highest uptake (286 ± 5.2 mg kg-1) of 100 mg kg-1. The concentration of available Pb(II)-assisted TS and CA increased by 9.1-28.4% compared to the control. Based on these findings, S. virgata might be cultivated and used as a hyperaccumulator in the removal of Pb(II) from the contaminated soils, and appropriate application of TS and CA can enhance phytoremediation of Pb(II)-contaminated soil by other hyperaccumulator plants.
Collapse
Affiliation(s)
- Seydahmet Cay
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, 28200, Gure, Giresun, Turkey.
| |
Collapse
|
12
|
Cao X, Liu Q, Yue T, Zhang F, Liu L. Facile preparation of activated carbon supported nano zero-valent iron for Cd(Ⅱ) removal in aqueous environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116577. [PMID: 36323115 DOI: 10.1016/j.jenvman.2022.116577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Activated carbon-supported nano-zero-valent iron (nZVI@AC) is considered to be one of the most promising materials for in-situ remediation of pollutants in aqueous environment, while liquid phase reduction (LPR) is one of the most commonly used preparation methods for nZVI@AC. However, the complex operation and the requirement of various agents limit the practical application of the traditional liquid-phase reduction (TLPR). In this study, an improved liquid phase reduction method (ILPR) was proposed, which was characterized by solid-state dosing of reducing agents. Compared with TLPR, ILPR simplified the preparation process, while there was no requirement of polyethylene glycol and ethanol. When the Cd(II) removal efficiency was used as the evaluation index, the preferred parameters of ILPR were as follows: AC/FeSO4·7H2O mass ratio was 15:1; NaBH4 dosage was 8 g; ultrasonic time was 1 h; stirring time was 20 min. Moreover, the Cd(II) removal efficiency of nZVI@AC prepared by ILPR (nZVI@AC-I) was greater than 92.00%, which was superior to that of nZVI@AC prepared by TLPR (nZVI@AC-T). The characterization results showed that the pore parameters, surface functional groups and iron contents of nZVI@AC-I and nZVI@AC-T were basically the same. However, the distribution of iron-containing particles on the surface of nZVI@AC-I was more uniform. Furthermore, the Fe0 in nZVI@AC-I had a smaller particle size and a higher content. Overall, this study provided a promising approach for nZVI@AC preparation.
Collapse
Affiliation(s)
- Xingfeng Cao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qiaojing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Tiantian Yue
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Fengzhi Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
13
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
14
|
Shamshirgaran R, Malakooti R, Akbarpoor A, Moghaddam AZ. Fabrication of Polyvinylpyrrolidone‐Stabilized Nano Zero‐Valent Iron Supported by Hydrophilic Biochar for Efficient Cr (VI) Removal from Groundwater. ChemistrySelect 2022. [DOI: 10.1002/slct.202202927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Wang S, Zhong D, Xu Y, Zhong N. Adsorption and Reductive Removal of Hexavalent Chromium from Aqueous Solution by Nanoscale Iron‐modified Dual Surfactants. ChemistrySelect 2022. [DOI: 10.1002/slct.202201204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Wang
- Prof. Dr. School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Dengjie Zhong
- Prof. Dr. School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yunlan Xu
- Prof. Dr. School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Nianbing Zhong
- Prof. Dr. School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing 400054 China
| |
Collapse
|
16
|
Xiong L, Ma L, Zhao M, Zhang H, Chen S. Shewanella oneidensis MR-1 for enhanced the reactivity of FA-stabilized nZVI toward Cr(VI) removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Ruan J, Tang T, Zhang M, Qiao W. Interaction mechanism between chlorinated polyfluoroalkyl ether potassium sulfonate (F-53B) and chromium on different types of soil surfaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119820. [PMID: 35940486 DOI: 10.1016/j.envpol.2022.119820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The coexistence of per- and polyfluoroalkyl substances (PFASs) and heavy metals have been found in soils. However, the interaction between the combined pollutants in soils remains unclear. In this study, the adsorption processes of single and combined Cr(VI) and chlorinated polyfluoroalkyl ether potassium sulfonate (F-53 B) in red, yellow and black soils were simulated. When compared with the single F-53 B and Cr(VI), the adsorption amount of the combined F-53 B and Cr(VI) on soils changed with the types of soils. The interactions between F-53 B and Cr(VI) in soils affected their adsorption behavior. The adsorption of the combined F-53 B and Cr(VI) best fit second-order kinetics and the Freundlich equation. Moreover, aluminum and iron oxides are highly correlated with adsorption of F-53 B and Cr(VI). Both F-53 B and Cr(VI) can form complexes with aluminum and iron oxides through electrostatic interactions, but PFOS could be bridged with iron oxides to form an inner sphere complex and with aluminum oxides to form an outer sphere complex. The coexistence of F-53 B and Cr(VI) could change the fluorescent group of dissolved organic matter (DOM) in soils due to the complexation between F-53 B and DOM. In addition, F-53 B increased the acid-soluble portion of Cr and decreased its residual form, which promoted the environmental risk of Cr in soils.
Collapse
Affiliation(s)
- Jingqi Ruan
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianhao Tang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
18
|
Gao J, Liu X, Ren P, Gao J, Chen Y, Chen Z. Removal behavior and mechanism of amino/carboxylate-functionalized Fe@SiO 2 for Cr(VI) and Cd(II) from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72058-72073. [PMID: 35610446 DOI: 10.1007/s11356-022-20048-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
The novel iron-based reductive particles, functionalized with amino and carboxylic functional groups, were synthesized to remove Cr(VI) and Cd(II) ions from aqueous solutions. The morphological structure and surface functional groups of new composites were characterized with SEM, XRD, FTIR, BET, and other techniques. The influence of pH, initial concentration, adsorbent dosing, and temperature on removal efficiencies were explored by batch experiments. The adsorption capacity of Cr(VI) and Cd(II) increased by 159.95% and 76.60%, respectively, compared with Fe0, reaching 47.638 and 62.047 mg/g. EDS and XPS analysis showed most of Cr(VI) was reduced to Cr(III) and precipitated as ferrochrome oxide, and Cd(II) was mainly precipitated as hydroxide. Reduction-precipitation and complexation may predominate in the removal process of Cr(VI), which fitted well with Langmuir and Freundlich models and pseudo-second-order kinetics. While hydrolysis and complexation may prevail for Cd(II), which was suited with Langmuir model and pseudo-second-order kinetics. Having good magnetic properties, the A/C-Fe@SiO2 particles exhibited excellent reusable stability after four times regeneration experiments, promising a prospect for in-situ remediations of groundwater contaminated by Cr(VI) and Cd(II).
Collapse
Affiliation(s)
- Jingqing Gao
- School of Ecology and Environment, ZhengZhou University, Zhengzhou, 450001, People's Republic of China.
| | - Xiaobang Liu
- School of Ecology and Environment, ZhengZhou University, Zhengzhou, 450001, People's Republic of China
| | - Peng Ren
- School of Ecology and Environment, ZhengZhou University, Zhengzhou, 450001, People's Republic of China
| | - Jianlei Gao
- School of Ecology and Environment, ZhengZhou University, Zhengzhou, 450001, People's Republic of China
| | - Yong Chen
- Department of Resources and Environmental Engineering, Henan University of Engineering, Zhengzhou, 451191, People's Republic of China
| | - Zhijun Chen
- School of Chemical Engineering and Material Science, Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
19
|
Wei Y, Chu R, Zhang Q, Usman M, Haider FU, Cai L. Nano zero-valent iron loaded corn-straw biochar for efficient removal of hexavalent chromium: remediation performance and interfacial chemical behaviour. RSC Adv 2022; 12:26953-26965. [PMID: 36320854 PMCID: PMC9534316 DOI: 10.1039/d2ra04650d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022] Open
Abstract
To improve the poor stability of nano zero-valent iron (nZVI), corn-straw biochar (BC) was used as a support for the synthesis of composites of nZVI-biochar (nZVI/BC) in different mass ratios. After a thorough characterization, the obtained nZVI/BC composite was used to remove hexavalent chromium [Cr(vi)] in an aquatic system under varying conditions including composite amount, Cr(vi) concentration, and pH. The obtained results show that the treatment efficiency varied in the following order: nZVI-BC (1 : 3) > nZVI-BC (1 : 5) > nZVI alone > BC alone. This order indicates the higher efficiency of composite material and the positive effect of nZVI content in the composite. Similarly, the composite dosage and Cr(vi) concentration had significant effects on the removal performance and 2 g L-1 and 6 g L-1 were considered to be the optimum dose at a Cr(vi) concentration of 20 mg L-1 and 100 mg L-1, respectively. The removal efficiency was maximum (100%) at pH 2 whereas solution pH increased significantly after the reaction (from 2 to 4.13). The removal kinetics of Cr(vi) was described by a pseudo-second-order model which indicated that the removal process was mainly controlled by the rate of chemical adsorption. The thermodynamics was more in line with the Freundlich model which indicated that the removal was multi-molecular layer adsorption. TEM-EDS, XRD, and XPS were applied to characterize the crystal lattice and structural changes of the material to specify the interfacial chemical behaviour on the agent surface. These techniques demonstrate that the underlying mechanisms of Cr(vi) removal include adsorption, chemical reduction-oxidation reaction, and co-precipitation on the surface of the nZVI-BC composite. The results indicated that the corn-straw BC as a carrier material highly improved Cr(vi) removal performance of nZVI and offered better utilization of the corn straw.
Collapse
Affiliation(s)
- Yuzhen Wei
- College of Forestry, Gansu Agricultural University Lanzhou 730070 P. R. China
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Run Chu
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Qinhu Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Centre for Environmental Studies and Research, Sultan Qaboos University Al-Khoud 123 Muscat Oman
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Liqun Cai
- College of Forestry, Gansu Agricultural University Lanzhou 730070 P. R. China
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| |
Collapse
|
20
|
Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Phong Nguyen PQ, Nguyen XP. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. CHEMOSPHERE 2022; 302:134825. [PMID: 35526681 DOI: 10.1016/j.chemosphere.2022.134825] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The use of a cheap and effective adsorption approach based on biomass-activated carbon (AC) to remediate heavy metal contamination is clearly desirable for developing countries that are economically disadvantaged yet have abundant biomass. Therefore, this review provides an update of recent works utilizing biomass waste-AC to adsorb commonly-encountered adsorbates like Cr, Pb, Cu, Cd, Hg, and As. Various biomass wastes were employed in synthesizing AC via two-steps processing; oxygen-free carbonization followed by activation. In recent works related to the activation step, the microwave technique is growing in popularity compared to the more conventional physical/chemical activation method because the microwave technique can ensure a more uniform energy distribution in the solid adsorbent, resulting in enhanced surface area. Nonetheless, chemical activation is still generally preferred for its ease of operation, lower cost, and shorter preparation time. Several mechanisms related to heavy metal adsorption on biomass wastes-AC were also discussed in detail, such as (i) - physical adsorption/deposition of metals, (ii) - ion-exchange between protonated oxygen-containing functional groups (-OH, -COOH) and divalent metal cations (M2+), (iii) - electrostatic interaction between oppositely-charged ions, (iv) - surface complexation between functional groups (-OH, O2-, -CO-NH-, and -COOH) and heavy metal ions/complexes, and (v) - precipitation/co-precipitation technique. Additionally, key parameters affecting the adsorption performance were scrutinized. In general, this review offers a comprehensive insight into the production of AC from lignocellulosic biomass and its application in treating heavy metals-polluted water, showing that biomass-originated AC could bring great benefits to the environment, economy, and sustainability.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Sunil Kumar
- CSIR-NEERI, Nehru Marg, Nagpur, 440 020, India
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, CEREGE, Aix-en-Provence, 13100, France.
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rajender S Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West M.L.K. Drive, MS 443, Cincinnati, OH, 45268, United States
| | - N Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Mahar AM, Alveroglu E, Balouch A, Talpur FN, Jagirani MS. Fabrication of Fe/Bi bimetallic magnetic nano-oxides (IBBMNOs) as efficient remediator for hexavalent chromium from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65161-65175. [PMID: 35482238 DOI: 10.1007/s11356-022-20239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, highly efficient Fe/Bi bimetallic magnetic nanooxides (IBBMNOs) were used as adsorbent for the removal of Cr(VI) from an aqueous environment. The IBBMNOs were synthesized by a simple and facile chemical reduction method. After that, different analytical techniques were used to characterize the resultant nanomaterial. According to characterization results, the IBBMNOs are highly porous look like cotton beads with an average size of 60-69 nm. BET results show that IBBMNOs are highly porous with a high surface area. After optimizing different parameters such as pH, adsorbent dose, and time study, an excellent adsorption capacity was achieved up to 185 mg/g in 10 min. The calculated data of the adsorption process was well fitted with Langmuir and pseudo-first-order kinetic model. The prepared materials have good usability as compared to reported adsorbent materials can be used for five different cycles with good removal efficiency of chromium ion from aqueous samples. Schematic illustration of adsorption of Cr(VI) from aqueous solution by IBBMNOs.
Collapse
Affiliation(s)
- Ali Muhammad Mahar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| | - Esra Alveroglu
- Department of Physics Engineering, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan.
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| | - Muhammad Saqaf Jagirani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| |
Collapse
|
22
|
El-Naggar A, Mosa A, Ahmed N, Niazi NK, Yousaf B, Sarkar B, Rinklebe J, Cai Y, Chang SX. Modified and pristine biochars for remediation of chromium contamination in soil and aquatic systems. CHEMOSPHERE 2022; 303:134942. [PMID: 35577128 DOI: 10.1016/j.chemosphere.2022.134942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) contamination in soil and water poses high toxicity risks to organisms and threatens food and water security worldwide. Biochar has emerged as a promising material for cleaning up Cr contamination owing to biochar's strong capacity to immobilize Cr. This paper synthesizes information on biochar modification for the efficient remediation of Cr contamination in soil and water, and critically reviews mechanisms of Cr adsorption on pristine and modified biochars. Biochar modification methods include physical activation via ball milling or ultraviolet irradiation, chemical activation via magnetization, alkali/acid treatment, nano-fabrication or loading of reductive agents, and biological activation via integrating biochars with microorganisms and their metabolites. Modified biochars often have multi-fold enhancement in Cr adsorption/reduction capacity than pristine biochars. Iron (Fe)-supported magnetic biochars have the most promising Cr removal abilities with high reusability of the biochars. Pre-pyrolysis modification with Fe could load Fe3O4 micro-/nanoparticles on biochars, and increase the surface area and electrostatic attraction between chromate anions and biochar surfaces, and reduce Cr(VI) to Cr(III). Post-pyrolysis modification could enrich oxygen-containing functional groups such as CO and -OH on biochar surfaces and promote Cr reduction and adsorption. Future research directions for Cr mitigation using advanced biochar products are discussed in this review.
Collapse
Affiliation(s)
- Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Naveed Ahmed
- U.S. Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Sindh, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
23
|
Rajendran S, Priya AK, Senthil Kumar P, Hoang TKA, Sekar K, Chong KY, Khoo KS, Ng HS, Show PL. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. CHEMOSPHERE 2022; 303:135146. [PMID: 35636612 DOI: 10.1016/j.chemosphere.2022.135146] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This review provides a quantitative description of the nano-adsorbent processing and its viability against wastewater detoxification by extracting heavy metal ions. The impact of nano-adsorbent functionalities on specific essential attributes such as the surface area, segregation, and adsorption capacity were comprehensively evaluated. A detailed analysis has been presented on the characteristics of nanomaterials through their limited resistance to adsorb some heavy metal ions. Experimental variables such as the adsorbent dosage, pH, substrate concentration, response duration, temperature, and electrostatic force that influence the uptake of metal ions have been studied. Besides, separate models for the adsorption kinetics and isothermal adsorption have been investigated to understand the mechanism behind adsorption. Here, we reviewed the different adsorbent materials with nano-based techniques for the removal of heavy metals from wastewater and especially highlighted the nano adsorption technique. The influencing factors such as pH, temperature, dosage time, sorbent dosage, adsorption capacities, ion concentration, and mechanisms related to the removal of heavy metals by nano composites are highlighted. Lastly, the application potentials and challenges of nano adsorption for environmental remediation are discussed. This critical review would benefit engineers, chemists, and environmental scientists involved in the utilization of nanomaterials for wastewater treatment.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Kar Yeen Chong
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
24
|
Liu T, Yao B, Luo Z, Li W, Li C, Ye Z, Gong X, Yang J, Zhou Y. Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155421. [PMID: 35472360 DOI: 10.1016/j.scitotenv.2022.155421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar (BC) is a low-cost material rich in carbon, which is being used increasingly as a catalyst in persulfate-based advanced oxidation processes (PS-AOPs) for the remediation of groundwater and soil contaminated with organic compounds. In this work, a general summary of preparation methods and applications of various BC (i.e., pristine BC, magnetic BC, and chemically modified BC) in PS-AOPs is presented. Different influence factors (e.g., pH, anions, natural organic matter) for the degradation of organic compounds are discussed. Meanwhile, the influence of external energy (e.g., solar irradiation, UV-Vis, ultrasonic) is also mentioned. Furthermore, the advantage of different BC in PS-AOPs are compared. Finally, potential problems, challenges, and prospects in the application of biochar-persulfate based advanced oxidation processes (BCPS-AOPs) are discussed in the conclusion and perspective.
Collapse
Affiliation(s)
- Tianhao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zirui Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi 562400, China.
| | - Changwu Li
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Ziyi Ye
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Xiaoxiang Gong
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
25
|
Sun P, Wang Z, An S, Zhao J, Yan Y, Zhang D, Wu Z, Shen B, Lyu H. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115211. [PMID: 35561491 DOI: 10.1016/j.jenvman.2022.115211] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Over the past decade, biochar-supported nZVI composites (nZVI/biochar) have been developed and applied to treat various pollutants due to their excellent physical and chemical properties, especially in the field of chromium (VI) removal. This paper reviewed the factors influencing the preparation and experiments of nZVI/biochar composites, optimization methods, column experimental studies and the mechanism of Cr(VI) removal. The results showed that the difference in raw materials and preparation temperature led to the difference in functional groups and electron transfer capabilities of nZVI/biochar materials. In the experimental process, pH and test temperature can affect the surface chemical properties of materials and involve the electron transfer efficiency. Elemental doping and microbial coupling can effectively improve the performance of nZVI/biochar composites. In conclusion, biochar can stabilize nZVI and enhance electron transfer in nZVI/biochar materials, enabling the composite materials to remove Cr(VI) efficiently. The study of column experiments provides a theoretical basis for applying nZVI/biochar composites in engineering. Finally, the future work prospects of nZVI/biochar composites for heavy metal removal are introduced, and the main challenges and further research directions are proposed.
Collapse
Affiliation(s)
- Peng Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shengwei An
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jian Zhao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yichen Yan
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Daijie Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
26
|
Liu X, Zhang S, Zhang X, Guo H, Cao X, Lou Z, Zhang W, Wang C. A novel lignin hydrogel supported nZVI for efficient removal of Cr(VI). CHEMOSPHERE 2022; 301:134781. [PMID: 35513080 DOI: 10.1016/j.chemosphere.2022.134781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
A novel hydrogel-supported nanoscale zero-valent iron (nZVI) composite (nZVI@LH) was synthesized by ion exchange and in-situ reduction. The removal efficiency was tested, and the mechanism was also explored. The nZVI@LH at the precursor Fe(II) ion concentration of 0.1 mol/L presented an enhanced Cr(VI) removal capacity of 310.86 mg/g Fe0 at pH 5.3, which was 11.6 times more than that of the pure nZVI. The removal efficiency of the composite at pH 2.1 was more than double compared with alkaline or neutral conditions. Scanning electron microscopy (SEM) suggested that the nZVI particles were uniformly immobilized in the lignin hydrogel. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) provided evidence supporting the removal mechanism. According to the XPS results, the high removal capacity of the composite was attributed to chemical reduction/precipitation (69.7%), surface sorption (19.7%), and swelling uptake (10.6%). The pseudo-first-order reduction kinetics and pseudo-second-order kinetic model were employed to simulate the kinetic data, which supported the mechanism that chemical reduction and surface sorption could simultaneously remove Cr(VI). The electron acceptor and electron donor affected the reaction rate, and the presence of humic acid significantly inhibited the reaction. The present study demonstrated that lignin hydrogel acted as a carrier to prevent aggregation of nZVI particles. nZVI particles loaded on lignin hydrogel showed high reactivity and high degree of utilization compared with bare-nZVI. These results exhibited the great potential of nZVI@LH in practical water treatment due to its high activity.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shenyu Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Hao Guo
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chuanhua Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
27
|
Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153956. [PMID: 35189211 DOI: 10.1016/j.scitotenv.2022.153956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Motivated by the unique structure and superior properties, biochar-based materials, including pristine biochar and composites of biochar with other functional materials, are considered as new generation materials for diverse multi-functional applications, which may be intentionally or unintentionally released to soil. The influencing mechanism of biochar-based material on soil organisms is a key aspect for quantifying and predicting its benefits and trade-offs. This work focuses on the effects of biochar-based materials on soil organisms within the past ten years. 206 sources are reviewed and available knowledge on biochar-based materials' impacts on soil organisms is summarized from a diverse perspective, including the pollutant bioavailability changes in soil, and potential effects of biochar-based materials on soil organisms. Herein, effects of biochar-based materials on the bioavailability of soil organic pollutants are detailed, from the perspective of plant, microorganism, and soil fauna. Potential biological effects of pristine biochar (PBC), metal/metal compounds-biochar composites (MBC), clay minerals-biochar composites (CMBC), and carbonaceous materials-biochar composites (CBC) on soil organisms are highlighted for the first time. And possible mechanisms are presented based on the different characters of biochar-based materials as well as various environmental interactions. Finally, the bottleneck and challenges of risk assessment of biochar-based materials as well as future prospects are proposed. This work not only promotes the development of risk assessment system of biochar-based materials, but broadens the strategy for the design and optimization of environmental-friendly biochar materials.
Collapse
Affiliation(s)
- Qing Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
28
|
Removal of Chromium(VI) by Nanoscale Zero-Valent Iron Supported on Melamine Carbon Foam. NANOMATERIALS 2022; 12:nano12111866. [PMID: 35683722 PMCID: PMC9181856 DOI: 10.3390/nano12111866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
The overuse of chromium (Cr) has significantly negatively impacted human life and environmental sustainability. Recently, the employment of nano zero-valent iron (nZVI) for Cr(VI) removal is becoming an emerging approach. In this study, carbonized melamine foam-supported nZVI composites, prepared by a simple impregnation–carbonization–reduction method, were assessed for efficient Cr(VI) removal. The prepared composites were characterized by XPS, SEM, TEM, BET and XRD. Batch experiments at different conditions revealed that the amount of iron added, the temperature of carbonization and the initial Cr(VI) concentration were critical factors. Fe@MF-12.5-800 exhibited the highest removal efficiency of 99% Cr(VI) (10 mg/L) at neutral pH among the carbonized melamine foam-supported nZVI composites. Its iron particles were effectively soldered onto the carbonaceous surfaces within the pore networks. Moreover, Fe@MF-12.5-800 demonstrated remarkable stability (60%, 7 days) in an open environment compared with nZVI particles.
Collapse
|
29
|
Zeng S, Zhong D, Xu Y, Zhong N. Biochar-loaded nZVI/Ni bimetallic particles for hexavalent chromium removal from aqueous solution. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2052310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sijing Zeng
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Nianbing Zhong
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
30
|
Cellulose hydrogel coated nanometer zero-valent iron intercalated montmorillonite (CH-MMT-nFe0) for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118355] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, Karaman C, Orooji Y, Show PL. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. CHEMOSPHERE 2022; 287:132369. [PMID: 34582930 DOI: 10.1016/j.chemosphere.2021.132369] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution remains a global environmental challenge that poses a significant threat to human life. Various methods have been explored to eliminate heavy metal pollutants from the environment. However, most methods are constrained by high expenses, processing duration, geological problems, and political issues. The immobilization of metals, phytoextraction, and biological methods have proven practical in treating metal contaminants from the soil. This review focuses on the general status of heavy metal contamination of soils, including the excessive heavy metal concentrations in crops. The assessment of the recent advanced technologies and future challenges were reviewed. Molecular and genetic mechanisms that allow microbes and plants to collect and tolerate heavy metals were elaborated. Tremendous efforts to remediate contaminated soils have generated several challenges, including the need for remediation methodologies, degrees of soil contamination, site conditions, widespread adoptions and various possibilities occurring at different stages of remediation are discussed in detail.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - T A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Hui-Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey
| | - Yasin Orooji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
Ma L, Du Y, Chen S, Du D, Ye H, Zhang TC. Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1. CHEMOSPHERE 2022; 287:132184. [PMID: 34507148 DOI: 10.1016/j.chemosphere.2021.132184] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been extensively used to remove various pollutants. However, the rapid deactivation due to aggregation and surface passivation severely limits its practical application. In this study, a novel composite with nZVI supported by pinecone biochar (nZVI-PBC) was successfully synthesized and used for the removal of high concentration Cr(VI) from aqueous solution in the presence of Shewanella oneidensis MR-1 (MR-1). The results showed that the nZVI-PBC coupling with MR-1 (nZVI-PBC/MR-1) exhibited an excellent removal performance for high concentration Cr(VI) compared to the nZVI-PBC alone. Under optimal conditions, 100 mg/L Cr(VI) could be removed completely by nZVI-PBC/MR-1 within 48 h, while only 39.50% of Cr(VI) was removed by nZVI-PBC alone. The improvement of Cr(VI) removal is due to the dissolution of the surface passivation layer of nZVI-PBC, formation of sorbed Fe(II) in the presence of MR-1, and an important role of extracellular polymeric substance (EPS) derived from MR-1. X-ray photoelectron spectroscopy (XPS) and Cr K-edge X-ray absorption near-edge structure spectra (XANES) confirmed that most Cr(VI) was reduced to insoluble Cr(III) and formed Cr2O3, CrxFe1-x(OH)3 and FeCr2O4 precipitates, and a small amount of unreduced Cr(VI) was immobilized through adsorption and complexation. The results suggest that nZVI-PBC/MR-1 can effectively overcome the limitations of nZVI and achieve highly efficient removal of high concentration Cr(VI).
Collapse
Affiliation(s)
- Liying Ma
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shaohua Chen
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Dongyun Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Hengpeng Ye
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| |
Collapse
|
33
|
Wang P, Fu F, Liu T. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism. CHEMOSPHERE 2021; 285:131435. [PMID: 34256206 DOI: 10.1016/j.chemosphere.2021.131435] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron (NZVI) with high chemical reactivity and environmental friendliness had recently become one of the most efficient technologies for wastewater restoration. However, the unitary NZVI system had not met practical requirements for wastewater treatments. Expectantly, the development of NZVI would prefer multifunctional NZVI-based composites, which could be prepared and optimized by the combined methods and technologies. Consequently, a systematic and comprehensive summary from the perspective of multifunctional NZVI-composite had been conducted. The results demonstrated that the advantages of various systems were integrated by multifunctional NZVI-composite systems with a more significant performance of pollutant removal than those of the bare NZVI and its composites. Simultaneously, characteristics of the product prepared by the incorporation of numerous methods were superior to those by a simple method, resulting in the increase of the entirety efficiency. By comparison with other preparation methods, the ball milling method with higher production and field application potential was worthy of attention. After combining multiple technologies, the effect of NZVI and its composite systems could be dramatically strengthened. Preparation technology parameters and treatment effect of contaminants could be further optimized using more comprehensive experimental designs and mathematical models. The mechanism of the multifunctional NZVI system for contaminants treatment was primarily focused on adsorption, oxidation, reduction and co-precipitation. Multiple techniques were combined to enhance the dispersion, alleviating passivation, accelerating electron transfer efficiency or mass transfer action for optimizing the effect of NZVI composites.
Collapse
Affiliation(s)
- Peng Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China; School of Geography and Environmental Sciences, Tianjin Normal University, Tianjin, 300387, Tianjin, PR China
| | - Fugang Fu
- PowerChina Guiyang Engineering Corporation Limited, 300387, Guiyang, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China.
| |
Collapse
|
34
|
Yang W, Xi D, Li C, Yang Z, Lin Z, Si M. "In-situ synthesized" iron-based bimetal promotes efficient removal of Cr(VI) in by zero-valent iron-loaded hydroxyapatite. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126540. [PMID: 34252675 DOI: 10.1016/j.jhazmat.2021.126540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Anionic Cr(VI) and cationic heavy metals generally co-exist in industrial effluents and threaten the public health. Zero-valent iron (ZVI) particles tent to passivate rapidly, which results in a gradual drop in its reactivity. In this work, a strategy of "in-situ synthesized" iron-based bimetal was first developed to stimulate the self-activation of passivated ZVI. During this process, ZVI-loaded hydroxyapatite (ZVI/HAP) was prepared to enhance the affinity for co-existing Cu2+, which promoted the in-situ Cu0 deposition on ZVI/HAP to form a Fe-Cu bimetal. The deposited Cu0 significantly decreased the activation energy (Ea) of Cr(VI) reduction by 24.9%, and its corresponding Cr(VI) removal (96.53%) was much higher that of single Cr(VI) system (68.67%) within 9 h. More importantly, the removal of Cr(VI) and Cu2+ were synchronously achieved. Systematical electrochemical characterizations were first introduced to explore the galvanic behaviors of iron-based bimetal. The charge transfer resistance and the negative open circuit potential of ZVI/HAP significantly decreased with the Cu0 deposition, thereby accelerating the electron transfer from Fe0 to Cu2+. The enhanced electron transfer further facilitated the Fe(II) release to promote Cr(VI) reduction. This "in-situ synthesized" iron-based bimetal strategy provides a novel pattern for ZVI activation and exhibits practical application in remediation of combined contaminant.
Collapse
Affiliation(s)
- Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Dongdong Xi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chaofang Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
35
|
Wang Y, Lin N, Gong Y, Wang R, Zhang X. Cu-Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms. CHEMOSPHERE 2021; 280:130663. [PMID: 33971416 DOI: 10.1016/j.chemosphere.2021.130663] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Porous hydrogel, as a high-efficiency adsorbent for heavy metals, suffers the drawbacks of the use of expensive and toxic reagents during the process of preparation, further limiting its application ranges. Besides, the heavy metals couldn't be transformed into nontoxic species, which leads to the environmental pollution risk. Herein, a three-dimensionally (3D) structured Cu-Fe embedded cross-linked cellulose hydrogel (nFeCu-CH) was innovatively fabricated by a novel self-assembly and in-situ reduction method, which exhibited exceptionally enhanced adsorption-reduction property towards Cr(VI) wastewater. The results of degradation experiment exhibited that the removal reaction followed Langmuir-Hinshelwood first order kinetic model and the degradation rate constant decreased with solution pH and initial Cr(VI) concentration, while increased with nFeCu-CH dosage and temperature. Regeneration studies demonstrated that more than 88% of Cr(VI) was removed by nFeCu-CH even after five times of cycling. nFeCu-CH exhibited excellent reductive activity, which had a close connection with the superiority of 3D crosslinked architectures and bimetallic synergistic effect. And 97.1% of Cr(VI) could be removed when nFeCu-CH dosage was 9.5 g/L, pH was 5, initial concentration of Cr(VI) was 20 mg/L and temperature was 303 K. Combined with cellulose hydrogel not only could provide additional active sites, but also could restrain the crystallite growth and agglomeration of nano-metallic particles, leading to the promotion of Cr(VI) removal. In addition, coating with Cu facilitated the generation and transformation of electrons according to the continuous redox cycles of Fe(III)/Fe(II) and Cu(II)/Cu(I), leading to the further improvement of the reductivity of nFeCu-CH. Multiple interaction mechanisms including adsorption, reduction and co-precipitation between nFeCu-CH and Cr(VI) were realized. The current work suggested that nFeCu-CH with highly reactive sites, excellent stability and recyclability was considered as an potential material for remediation of Cr(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naipeng Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yishu Gong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ruotong Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
36
|
Gao K, Su W, Song J. Preparation of Melamine Foam Supported Nanoscale Zero Valent Iron and Its Application for Removal of Cr(VI) from Aqueous Solution and Hydrogenation of p‐Nitrophenol. ChemistrySelect 2021. [DOI: 10.1002/slct.202101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kangqi Gao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wen Su
- Administration of Laboratory and Equipment Management Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| |
Collapse
|
37
|
Pietrelli L, Ferro S, Reverberi AP, Vocciante M. Removal of polyethylene glycols from wastewater: A comparison of different approaches. CHEMOSPHERE 2021; 273:129725. [PMID: 33529796 DOI: 10.1016/j.chemosphere.2021.129725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 05/16/2023]
Abstract
Physicochemical methods such as adsorption on activated carbon, oxidation with either ozone or Fenton reagent, and chemical precipitation (coagulation), were assessed for the removal of polyethylene glycol (PEG) from wastewater. This contaminant is rarely investigated due to its low toxicity, although its presence limits the use of large water resources. The experimental tests showed that adsorption on activated carbon is well approximated by a Langmuir isotherm, and influenced by contact time, PEG molecular weight, pH, temperature, and initial PEG concentration. Ozonation allowed fragmenting the polymeric chains but was unable to remove completely the PEG, while about 85% of the total organic carbon (TOC) was removed by Fenton oxidation reaction by using a ratio between H2O2 and FeII close to 4. Coagulation did not produce results worthy of note, most likely because the uncharged PEG molecule does not interact with the iron hydroxide flocs. However, when performed after the Fenton oxidation (i.e., by simply raising the pH to values > 8), it allowed a further reduction of the residual TOC, up to 96% of the total, in the best case. Based on the resources used by each process studied and in consideration of the effectiveness of each of them, a semi-quantitative comparison on the sustainability of the different approaches is proposed.
Collapse
Affiliation(s)
- Loris Pietrelli
- Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00100, Roma, Italy.
| | - Sergio Ferro
- Ecas4 Australia Pty Ltd, 8/1 London Road, Mile End South, SA, 5031, Australia.
| | - Andrea P Reverberi
- DCCI, Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy.
| | - Marco Vocciante
- DCCI, Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy.
| |
Collapse
|
38
|
Wu H, Xu C, Wang J, Xiang Y, Ren M, Qie H, Zhang Y, Yao R, Li L, Lin A. Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112046. [PMID: 33607337 DOI: 10.1016/j.ecoenv.2021.112046] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 05/09/2023]
Abstract
Long-term retention and accumulation of heavy metals in rivers pose a great threat to the stability of ecosystems and human health. In this study, Beiyun River was taken as the example to quantitatively identify pollution sources and assess the pollution source-oriented health risk. A total of 8 heavy metals (Mn, Ni, Pb, Zn, As, Cr, Cd, and Cu) in Beiyun River were measured. Ordinary kriging (OK) and inverse distance weight (IDW) methods were used to predict the distribution of heavy metals. The results showed that the OK method is more accurate, and heavy metal pollution in the midstream and downstream is much more serious than that in the upstream. Principal component analysis-multiple linear regressions (PCA-MLR) and positive matrix factorization (PMF) methods were used to quantitatively identify pollution sources. The coefficient of determination (R2) of PMF is closer to 1, and the analyzed pollution source is more refined. Furthermore, the result of source identification was imported into the health risk assessment to calculate the hazard index (HI) and carcinogenic risk (CR) of various pollution sources. The results showed that the HI and CR of As and Ni to local residents were serious in the Beiyun River. Industrial activities (23.0%) are considered to be the largest contribution of heavy metals in Beiyun River, followed by traffic source (17%), agricultural source (16%), and atmospheric deposition (16%). The source-oriented risk assessment indicated that the largest contribution of HI and CR is agricultural source in the Beiyun River, followed by industrial activities. This study provides a "target" for the precise control of pollution sources, which is of great significance for improving the fine management of the water environment in the basin.
Collapse
Affiliation(s)
- Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ying Xiang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ruihua Yao
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
39
|
Bayat M, Nasernejad B, Falamaki C. Preparation and characterization of nano-galvanic bimetallic Fe/Sn nanoparticles deposited on talc and its enhanced performance in Cr(VI) removal. Sci Rep 2021; 11:7715. [PMID: 33833296 PMCID: PMC8032741 DOI: 10.1038/s41598-021-87106-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
In this study, talc-supported nano-galvanic Sn doped nZVI (Talc-nZVI/Sn) bimetallic particles were successfully synthesized and utilized for Cr(VI) remediation. Talc-nZVI/Sn nanoparticles were characterized by FESEM, EDS, FTIR, XRD, zeta potential, and BET analysis. The findings verified the uniform dispersion of nZVI/Sn spherical nanoparticles on talc surface with a size of 30-200 nm, and highest specific surface area of 146.38 m2/g. The formation of numerous nano-galvanic cells between nZVI core and Sn shell enhanced the potential of bimetallic particles in Cr(VI) mitigation. Moreover, batch experiments were carried out to investigate optimum conditions for Cr(VI) elimination and total Cr(VI) removal was achieved in 20 min using Sn/Fe mass ratio of 6/1, the adsorbent dosage of 2 g/L, initial Cr(VI) concentration of 80 mg/L, at the acidic environment (pH = 5) and temperature of 303 K. Besides, co-existing of metallic cations turned out to facilitate the electron transfer from the nano-galvanic couple of NZVI/Sn, and suggested the revolution of bimetallic particles to trimetallic composites. The aging study of the nanocomposite confirmed its constant high activity during 60 days. The removal reaction was well described by the pseudo-second-order kinetic and the modified Langmuir isotherm models. Overall, due to the synergistic galvanic cell effect of nZVI/Sn nanoparticles and full coverage of active sites by Sn layer, Talc-nZVI/6Sn was utilized as a promising nanocomposite for fast and highly efficient Cr(VI) elimination.
Collapse
Affiliation(s)
- Mitra Bayat
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran.
| | - Cavus Falamaki
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| |
Collapse
|
40
|
CaCO3 coated nanoscale zero-valent iron (nZVI) for the removal of chromium(VI) in aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117967] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Yang C, Ge C, Li X, Li L, Wang B, Lin A, Yang W. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111552. [PMID: 33396093 DOI: 10.1016/j.ecoenv.2020.111552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
A novel material that nano zero valent iron (nZVI) loaded on biochar with stable starch stabilization (nZVI/SS/BC) was synthesized and used for the removal of hexavalent chromium [Cr(VI)] in simulated wastewater. It was indicated that as the pyrolysis temperature of rice straw increased, the removal rate of Cr(VI) by nZVI/SS/BC first increased and then decreased. nZVI/SS/BC made from biochar pyrolyzed at 600 °C (nZVI/SS/BC600) had the highest removal efficiency and was suitable for a wide pH range (pH 2.1-10.0). The results showed that 99.67% of Cr(VI) was removed by nZVI/SS/BC600, an increase of 45.93% compared to the control group, which did not add soluble starch during synthesis. The pseudo-second-order model and the Langmuir model were more in line with reaction. The maximum adsorption capacity for Cr(VI) by nZVI/SS/BC600 was 122.86 mg·g-1. The properties of the material were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). The results showed that the nZVI particles were uniformly supported on the biochar, and the BET surface areas of nZVI/SS/BC was 40.4837 m2·g-1, an increase of 8.79 times compared with the control group. Mechanism studies showed that soluble starch reduced the formation of metal oxides, thereby improving the reducibility of the material, and co-precipitates were formed during the reaction. All results indicated that nZVI/SS/BC was a potential repair material that can effectively overcome the limitations of nZVI and achieve efficient and rapid repair of Cr(VI).
Collapse
Affiliation(s)
- Chun Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chazhong Ge
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Xiaoliang Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Bin Wang
- Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China.
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing 100012, China; College of Renewable Energy, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
42
|
Hao J, Song Y, Tian B, Qi C, Li L, Wang L, Xing Y, Zhao X, Liu J. Platycodon grandifloras polysaccharides inhibit mitophagy injury induced by Cr (VI) in DF-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110901. [PMID: 32593805 DOI: 10.1016/j.ecoenv.2020.110901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the role of Platycodon grandiflorus polysaccharide (PGPS) in chromium (VI)-induced autophagy in a chicken embryo fibroblast cell lines (DF-1 cells). DF-1 cells were exposed to Cr (VI), PGPSt, and Cr (VI) + PGPSt, and their effects on cell viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and autophagy-related proteins were examined. The results showed that the cell viability was reduced after Cr (VI) treatment, and 3-MA, CsA or PGPSt suppressed this decrease. Cr (VI) treatment increased the ROS levels and decreased the MMP, thereby enhancing the expression of mitochondrial autophagy marker proteins (PINK1, Parkin, and LC3-II), inhibiting mitophagy autophagy protein TOMM20 expression, and promoting the degradation of autophagy-related marker p62. These changes led to exceeding mitochondrial autophagy and cell trauma and could be mitigated by PGPSt. Overall, our research showed that Cr (VI) can induce exceeding mitochondrial autophagy in DF-1 cells, whereas PGPSt can improve Cr (VI)-induced mitochondrial autophagy by inhibiting ROS and restoring MMP.
Collapse
Affiliation(s)
- Jiajia Hao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yafen Song
- Department of Veterinary Culture Collection, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Liping Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lumei Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaona Zhao
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
43
|
Wang T, Zheng L, Liu Y, Tang W, Fang T, Xing B. A novel ternary magnetic Fe 3O 4/g-C 3N 4/Carbon layer composite for efficient removal of Cr (VI): A combined approach using both batch experiments and theoretical calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138928. [PMID: 32388371 DOI: 10.1016/j.scitotenv.2020.138928] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution has posed a potential hazard to the ecological environment and human health. Herein, a novel ternary magnetic adsorbent (Fe3O4/g-C3N4/Carbon layer, Carbon layer: hydrothermal products from sucrose) was synthesized through a simple hydrothermal carbonization (HTC) method for removal of hexavalent chromium (Cr (VI)) removal. The Carbon layer (CL) formed during the HTC of carbon precursors (sucrose) acted as a reducing agent. Also, it has abundant oxygen-containing groups on its surface. The Fe3O4/g-C3N4/CL had a high removal capacity for Cr (VI) (50.09 mg/g), and excellent regeneration and magnetic separation performance. Importantly, the Fe3O4/g-C3N4/CL could not only improve the adsorption ability for Cr (VI), but also strengthen the immobilization of Cr (III). Based on the comprehensive experiments and characterization, combined with DFT calculations, we proposed that, the first time, the removal of Cr (VI) was controlled by three consecutive processes: (1) ion exchange of Cr (VI) by hydroxyl groups, (2) reduction of Cr (VI) to Cr (III) by electron-donor (oxygen-containing) groups (EDGs), and (3) complexation of Cr (III) by amine groups. This study provides a new avenue for the removal of toxic oxygen anions and reveals an original removal mechanism of Fe3O4/g-C3N4/CLx (x = hydrothermal products from carbon precursors (glucose, ascorbic acid, cellulose)).
Collapse
Affiliation(s)
- Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lewen Zheng
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
44
|
Abstract
The discharge of toxic heavy metals including zinc (Zn), nickel (Ni), lead (Pb), copper (Cu), chromium (Cr), and cadmium (Cd) in water above the permissible limits causes high threat to the surrounding environment. Because of their toxicity, heavy metals greatly affect the human health and the environment. Recently, better remediation techniques were offered using the nanotechnology and nanomaterials. The attentions were directed toward cost-effective and new fabricated nanomaterials for the application in water/wastewater remediation, such as zeolite, carbonaceous, polymer based, chitosan, ferrite, magnetic, metal oxide, bimetallic, metallic, etc. This review focused on the synthesis and capacity of various nanoadsorbent materials for the elimination of different toxic ions, with discussion of the effect of their functionalization on the adsorption capacity and separation process. Additionally, the effect of various experimental physicochemical factors on heavy metals adsorption, such as ionic strength, initial ion concentration, temperature, contact time, adsorbent dose, and pH was discussed.
Collapse
|
45
|
Abstract
Removal of aquatic cadmium ions using biochar is a low-cost method, but the results are usually not satisfactory. Modified biochar, which can be a low-cost and efficient material, is urgently required for Cd-polluted water and soil remediation. Herein, poplar bark (SB) and poplar sawdust (MB) were used as raw materials to prepare modified biochar, which is rich in N- and S- containing groups, i.e., TSBC-600 and TMBC-600, using a co-pyrolysis method with thiourea. The adsorption characteristics of Cd2+ in simulated wastewater were explored. The results indicated that the modification optimized the surface structure of biochar, Cd2+ adsorption process by both TSBC-600 and TMBC-600 was mainly influenced by the initial pH, biochar dosage, and contact time, sthe TSBC-600 showed a higher adsorption capacity compared to TMBC-600 under different conditions. The Langmuir adsorption isotherm model and pseudo-second-order kinetic model were more consistent with the adsorption behavior of TSBC-600 and TMBC-600 to Cd2+, the maximum adsorption capacity of TSBC-600 and TMBC-600 calculated by the Langmuir adsorption isotherm model was 19.998 mg/g and 9.631 mg/g, respectively. The modification method for introducing N and S into biochar by the co-pyrolysis of biomass and thiourea enhanced the removal rate of aquatic cadmium ions by biochar.
Collapse
|
46
|
Wen R, Tu B, Guo X, Hao X, Wu X, Tao H. An ion release controlled Cr(VI) treatment agent: Nano zero-valent iron/carbon/alginate composite gel. Int J Biol Macromol 2020; 146:692-704. [DOI: 10.1016/j.ijbiomac.2019.12.168] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022]
|
47
|
Jiao C, Tan X, Lin A, Yang W. Preparation of Activated Carbon Supported Bead String Structure Nano Zero Valent Iron in a Polyethylene Glycol-Aqueous Solution and Its Efficient Treatment of Cr(VI) Wastewater. Molecules 2019; 25:molecules25010047. [PMID: 31877736 PMCID: PMC6982729 DOI: 10.3390/molecules25010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
Nanometer zero-valent iron (nZVI) has been widely used in the treatment of heavy metals such as hexavalent chromium (Cr(VI)). A novel composite of bead string-structured nZVI on modified activated carbon (nZVI–MAC) is prepared here, using polyethylene glycol as the stable dispersant rather than traditional ethanol during the loading process. The microstructure characterization shows that nZVI particles are loaded on MAC with a bead string structure in large quantity and stably due to the addition of hydroxyl functional groups on the surface by polyethylene glycol. Experiments on the treatment of Cr(VI) in wastewater show that the reaction process requires only 20 min to achieve equilibrium. The removal rate of Cr(VI) with a low concentration (80–100 mg/L) is over 99% and the maximum saturation removal capacity is up to 66 mg/g. The system converts Cr(VI) to trivalent chromium (Cr(III)) through an oxidation-reduction effect and forms an insoluble material with iron ions by coprecipitation, which is then adsorbed on the surface of the nZVI–MAC. The process conforms to the quasi-second order adsorption kinetics equation (mainly chemical adsorption process).
Collapse
Affiliation(s)
- Chunlei Jiao
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (C.J.); (X.T.)
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Tan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (C.J.); (X.T.)
| | - Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (C.J.); (X.T.)
| | - Wenjie Yang
- College of Renewable Energy, North China Electric Power University, Beijing 102206, China
- Chinese Academy for Environmental Planning, Beijing 100012, China
- Correspondence:
| |
Collapse
|