1
|
Yamamoto FY, Batista LA, Santos MP, Bedia C, Lacorte S, Cavalcante RM, Grassi MT, de Souza Abessa DM, Tauler R. Elucidating mechanisms of action of environmental contaminants from Doce River in Brazilian fish embryos using metabolomics and chemometric methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179158. [PMID: 40147241 DOI: 10.1016/j.scitotenv.2025.179158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/06/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Mining and other essential economic activities have a long historical contamination impact on diverse aquatic environments, such as the Doce River Basin (DRB), in Southeast Brazil. High concentrations of metals combined with organic chemicals released from multiple sources of contaminants may trigger complex toxicity pathways that are complicated to interpret and distinguish. This study aimed to investigate mechanisms of toxicity of environmental chemicals from DRB using a comprehensive untargeted LC-HRMS metabolomics approach (data-independent acquisition of all ion-fragmentation mode), in fish embryos (Rhamdia quelen) exposed to complex chemical mixtures. The Regions of Interest (ROI) Multivariate Curve Resolution (MCR) approach was applied to compress and resolve data-independent acquisition (DIA) LC-MS/MS complex datasets mode. Fish embryos exposed for 96 h to 6 treatment sample groups showed a distinct pattern of responses when compared to controls, with downregulated essential metabolites, such as amino acids, as a main response, especially for metal exposure. Organic contaminants extracted from sediments combined with inorganic elements have shown non-additive effects, with inorganics possibly exerting greater influence on metabolic responses. The results helped to investigate and distinguish the effects of different complex mixtures of environmental chemicals on fish embryo samples. ROIMCR approach is shown to be a suitable strategy for the analysis of large metabolomics-derived data in the investigation of the effects of different classes of environmental chemicals on aquatic biota and ecosystems.
Collapse
Affiliation(s)
- Flávia Y Yamamoto
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain; Institute of Biosciences, São Paulo State University, São Vicente, Brazil; Marine Science Institute, Federal University of Ceará, Fortaleza, Brazil.
| | - Larissa A Batista
- Department of Zoology, Federal University of Paraná, Curitiba, Brazil
| | - Mayara P Santos
- Chemistry Department, Federal University of Paraná, Curitiba, Brazil
| | - Carmen Bedia
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | | | - Marco T Grassi
- Chemistry Department, Federal University of Paraná, Curitiba, Brazil
| | | | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
2
|
Barreto LS, de Souza TL, de Morais TP, de Souza AC, Martins CC, Oliveira A, de Oliveira Ribeiro CA. Effects of inorganic and organic pollution on development of Steindachneridion melanodermatum from the Iguaçu river, Brazil. CHEMOSPHERE 2024; 364:143193. [PMID: 39197685 DOI: 10.1016/j.chemosphere.2024.143193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
The Iguaçu River basin, known for its rich endemic ichthyofauna, faces a significant threat from chemical pollution. The Jordão River, a major tributary, drains extensive agricultural and livestock areas and receives poorly treated domestic and industrial effluents before joining the Iguaçu River. This study investigated the pollution and toxic effects of water samples from the Iguaçu upstream (UI), Jordão (JR), and their confluence (DI) on Steindachneridion melanodermatum embryos and larvae. Chemical analyses of the water samples revealed that most contaminants were present at levels below detection limits or within the limits established by Brazilian legislation. However, cadmium in UI, aluminum in JR, and lead in DI exceeded the legal limits. Exposure up to 96 h post-fertilization revealed higher mortality and deformity rates in individuals exposed to water samples from UI and JR, despite JR having fewer detected pollutants. JR and DI samples induced increased superoxide dismutase activity, indicating activation of the antioxidant defense system due to xenobiotic exposure. Overall, the integrated biomarker response indexes showed that individuals exposed to JR water displayed the most significant variations in their responses compared to the control treatment, suggesting a higher level of contamination and toxicity. Although a direct link between water quality and toxicity in the Jordão and Iguaçu Rivers was inconclusive, the results confirmed pollution and risks to local wildlife. The study highlighted the harmful effects of pollutants, even at low concentrations. These findings underscore the need for conservation measures to safeguard endemic and endangered species in the Iguaçu River basin. Understanding pollutant effects on native species is crucial for effective mitigation strategies and ecological health preservation.
Collapse
Affiliation(s)
- Luiza Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-970, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil.
| | - Tugstenio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-970, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Tobias Pereira de Morais
- Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Amanda Camara de Souza
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP, 83255-976, Pontal do Paraná, Paraná, Brazil; Instituto Oceanográfico, Universidade de São Paulo, CEP, 05508-120, São Paulo, SP, Brazil
| | - Cesar C Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP, 83255-976, Pontal do Paraná, Paraná, Brazil; Instituto Oceanográfico, Universidade de São Paulo, CEP, 05508-120, São Paulo, SP, Brazil
| | - Andrea Oliveira
- Departamento de Química, Setor de Ciências Exatas, Centro Politécnico, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-970, Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
de Morais TP, Barreto LS, de Souza TL, Pozzan R, Vargas DÁR, Yamamoto FY, Prodocimo MM, Neto FF, Randi MAF, Ribeiro CADO. Assessing the pollution and ecotoxicological status of the Iguaçu River, southern Brazil: A review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1280-1305. [PMID: 38037232 DOI: 10.1002/ieam.4865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
The degradation of water resources available for human consumption is increasing with the continuous release of chemicals into aquatic environments and their inefficient removal in wastewater treatment. Several watersheds in Brazil, such as the Iguaçu River, are affected by multiple sources of pollution and lack information about their pollution status. The Iguaçu River basin (IRB) has great socioeconomic and environmental relevance to both the supply of water resources and its considerable hydroelectric potential, as well as for the high rate of endemism of its ichthyofauna. Also, the IRB is home to large conservation units, such as the Iguaçu National Park, recognized by UNESCO as a natural World Heritage Site. Thus, this article discusses the chemical pollution in the IRB approaching: (i) the main sources of pollution; (ii) the occurrence of inorganic and organic micropollutants; (iii) the available ecotoxicological data; and (iv) the socioeconomic impacts in three regions of the upper, middle, and lower IRB. Different studies have reported relevant levels of emerging contaminants, persistent organic pollutants, toxic metals, and polycyclic aromatic hydrocarbons detected in the water and sediment samples, especially in the upper IRB region, associated with domestic and industrial effluents. Additionally, significant concentrations of pesticides and toxic metals were also detected in the lower IRB, revealing that agricultural practices are also relevant sources of chemicals for this watershed. More recently, studies indicated an association between fish pathologies and the detection of micropollutants in the water and sediments in the IRB. The identification of the main sources of pollutants, associated with the distribution of hazardous chemicals in the IRB, and their potential effects on the biota, as described in this review, represent an important strategy to support water management by public authorities for reducing risks to the local endemic biodiversity and exposed human populations. Integr Environ Assess Manag 2024;20:1280-1305. © 2023 SETAC.
Collapse
Affiliation(s)
| | | | | | - Roberta Pozzan
- Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Flávia Yoshie Yamamoto
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), São Vicente, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
4
|
de Souza TL, da Luz JZ, Roque ADA, Opuskevitch I, Ferreira FCADS, Ribeiro CADO, Neto FF. Exploring the endocrine disrupting potential of a complex mixture of PAHs in the estrogen pathway in Oreochromis niloticus hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107002. [PMID: 38936242 DOI: 10.1016/j.aquatox.2024.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
This study aimed to investigate the toxicity and endocrine disrupting potential of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) in the estrogen pathway using hepatocytes of Nile tilapia Oreochromis niloticus, the hepatocytes were exposed to various concentrations of the PAH mixture, and multiple endpoints were evaluated to assess their effects on cell viability, gene expression, oxidative stress markers, and efflux activity. The results revealed that the PAH mixture had limited effects on hepatocyte metabolism and cell adhesion, as indicated by the non-significant changes observed in MTT metabolism, neutral red retention, and crystal violet staining. However, significant alterations were observed in the expression of genes related to the estrogen pathway. Specifically, vitellogenin (vtg) exhibited a substantial increase of approximately 120% compared to the control group. Similarly, estrogen receptor 2 (esr2) showed a significant upregulation of approximately 90%. In contrast, no significant differences were observed in the expression of estrogen receptor 1 (esr1) and the G protein-coupled estrogen receptor 1 (gper1). Furthermore, the PAH mixture elicited complex responses in oxidative stress markers. While reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels remained unchanged, the activity of catalase (Cat) was significantly reduced, whereas superoxide dismutase (Sod) activity, glutathione S-transferase (Gst) activity, and non-protein thiols levels were significantly elevated. In addition, the PAH mixture significantly influenced efflux activity, as evidenced by the increased efflux of rhodamine and calcein, indicating alterations in multixenobiotic resistance (MXR)-associated proteins. Overall, these findings, associated with bioinformatic analysis, highlight the potential of the PAH mixture to modulate the estrogen pathway and induce oxidative stress in O. niloticus hepatocytes. Understanding the mechanisms underlying these effects is crucial for assessing the ecological risks of PAH exposure and developing appropriate strategies to mitigate their adverse impacts on aquatic organisms.
Collapse
Affiliation(s)
- Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil.
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Aliciane de Almeida Roque
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Iracema Opuskevitch
- Copel GeT-SOS/DNGT - Rua José Izidoro Biazetto, no. 18, Bloco A, CEP 81200-240, Curitiba, PR, Brazil
| | | | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Rubio-Vargas DA, Morais TPD, Randi MAF, Filipak Neto F, Ortolani-Machado CF, Martins CDC, Oliveira AP, Nazário MG, Ferreira FCADS, Opuskevitch I, Penner D, Esquivel-Muelbert J, Mela Prodocimo M, de Souza C, Choueri RB, de Oliveira Ribeiro CA. Multispecies and multibiomarker assessment of fish health from Iguaçu River reservoir, Southern Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:564. [PMID: 38773003 DOI: 10.1007/s10661-024-12720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.
Collapse
Affiliation(s)
- Dámaso Angel Rubio-Vargas
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Tobias Pereira de Morais
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Marco Antonio Ferreira Randi
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Cláudia Feijó Ortolani-Machado
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - César de Castro Martins
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP, CEP 05508-120, Brazil
| | - Andrea Pinto Oliveira
- Departamento de Química. Setor de Ciências Exatas, Centro Politécnico, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Mariana Gallucci Nazário
- Laboratório de Análises Ambientais, Setor Litoral, Universidade Federal Do Paraná, Matinhos, Paraná, CEP 83.260-000, Brasil
| | | | - Iracema Opuskevitch
- Copel GeT-SOS/DNGT, Rua José Izidoro Biazetto, No. 18. Bloco A, Curitiba, Paraná, CEP, 81200-240, Brazil
| | - Dieter Penner
- Copel GeT-SOS/DNGT, Rua José Izidoro Biazetto, No. 18. Bloco A, Curitiba, Paraná, CEP, 81200-240, Brazil
| | - Juan Esquivel-Muelbert
- Piscicultura Panamá, Estrada Geral Bom Retiro, Paulo Lopes, Santa Catarina, CEP, 88490-000, Brasil
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Claudemir de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Rodrigo Brasil Choueri
- Laboratório de Toxicologia Marinha, Departamento de Ciências Do Mar, Universidade Federal de São Paulo, Instituto do Mar, Rua Maria Máximo 168, Santos, São Paulo, CEP, 11030-100, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, Curitiba, Paraná, CEP 81531-970, Brazil.
| |
Collapse
|
6
|
Barreto LS, Souza TLD, Morais TPD, Oliveira Ribeiro CAD. Toxicity of glyphosate and aminomethylphosphonic acid (AMPA) to the early stages of development of Steindachneridion melanodermatum, an endangered endemic species of Southern Brazil. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104234. [PMID: 37481050 DOI: 10.1016/j.etap.2023.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
This study aimed to evaluate glyphosate (GLY) and aminomethylphosphonic acid (AMPA) toxicity at 65, 650, and 6500 μg L-1 to the initial stages of development of Steindachneridion melanodermatum, an endangered endemic species from the Iguaçu River, assessing hatching, survival, total larval length, deformities, oxidative stress biochemical biomarkers, and neurotoxicity. Overall, looking at the sum of responses through the integrated biomarker response, the species was more sensitive to AMPA than GLY, especially at the lower concentration of 65 μg L-1, which induced mortality, deformities, underdevelopment, and oxidative stress. Considering the risk of exposure and the importance of conservation of the highly endemic ichthyofauna of this basin, it is urgent to investigate and regulate both GLY and AMPA levels at the Iguaçu River to protect not only this species, but the entire ecosystem.
Collapse
Affiliation(s)
- Luiza Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil.
| | - Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Tobias Pereira de Morais
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Golin N, Barreto LS, Esquivel L, Souza TLD, Nazário MG, Oliveira AP, Martins CC, Oliveira Ribeiro CAD. Organic and inorganic pollutants in Jordão and Iguaçu rivers southern Brazil impact early phases of Rhamdia quelen and represent a risk for population. CHEMOSPHERE 2022; 303:134989. [PMID: 35595115 DOI: 10.1016/j.chemosphere.2022.134989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The Iguaçu River basin presents high ecological importance due to its expressive endemic ichthyofauna rate, but chemical pollution may threat this biodiversity. Jordão River is one of the main tributaries of Iguaçu River and contribute to this pollution status, since it drains large agricultural areas receiving domestic and industrial effluents before flowing into the Iguaçu River. The objective of the current study was to evaluate the toxic effects of the Iguaçu, Jordão, and the combination of their waters to the embryo-larval phase of R. quelen, investigating the consequences to the population by means of mathematical modelling. R. quelen fertilized eggs were exposed for 96 h to water samples from Iguaçu River upstream (IR), Jordão River (JR), and downstream of both rivers (MR). The analysis of micropollutants in the water showed that JR presented the most complex mixture of substances and elements, followed by IR, while MR showed the lower number of micropollutants detected. Survival rate was not a sensitive endpoint, while the deformity indices were higher in individuals exposed to water from the three studied sites. Superoxide dismutase activity was increased in MR, while non-protein thiol levels were reduced in MR and JR showing the antioxidant mechanism activation. The mathematical modelling revealed that fish exposed to JR would lead to the greater population reduction (46.19%), followed by IR (40.48%) and MR (33.33%). Although the results showed toxicity in all studied sites, the JR site is the most impacted by micropollutants but decrease its toxicity after dilution with Iguaçu River.
Collapse
Affiliation(s)
- Natália Golin
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, PR, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Luiza Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, PR, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, CEP, 88490-000, Paulo Lopes, SC, Brazil
| | - Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, PR, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Mariana Gallucci Nazário
- Laboratório de Análises Ambientais, Setor Litoral, Universidade Federal do Paraná, CEP, 83.260-000, Matinhos, PR, Brazil
| | - Andrea Pinto Oliveira
- Departamento de Química, Setor de Ciências Exatas, Centro Politécnico, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - César Castro Martins
- Centro de Estudos do Mar, Campus Pontal do Paraná, Universidade Federal do Paraná, CEP, 83255-000, Pontal do Paraná, Paraná, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Bencheikh Z, Refes W, Brito PM, Prodocimo MM, Gusso-Choueri PK, Choueri RB, de Oliveira Ribeiro CA. Chemical pollution impairs the health of fish species and fishery activities along the Algeria coastline, Mediterranean Sea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:497. [PMID: 35695983 DOI: 10.1007/s10661-022-10059-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Chronic exposure to multiple pollutants affects aquatic organisms, even at low concentrations, and can impair fishery activities along marine coastlines. The bioavailability of toxic metals and the presence of metals and polycyclic aromatic hydrocarbons (PAHs) in both water and sediment can explain the worst-case scenario of fish health and fishery production decline along the Algeria coastline. The hepatosomatic index (HIS), gonadosomatic index (GSI), and condition factor (K) in the studied species from the Algiers, Bou Ismail, and Zemmouri bays are the first indicators of the poor environmental health along the studied region. These findings could be explained by the bioavailability of Zn, Cu, Cr, Mn, Hg, and Ni and the detection of PAHs in the water and sediment of these bays. Additionally, histopathological damage in the liver is described in sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus), and sardinelle (Sardinella aurita) highlights the current study in the investigation of the risk of exposure to biota or human populations. The occurrence of permanent lesions in the livers of fish impairs organ function and increases the incidence of diseases affecting the fish community. Furthermore, the factor analysis with principal component analysis (FA/PCA) dataset explains the physiological disturbances described in all studied species. These findings revealed that Zemmouri bay is the most affected by chemicals, suggesting that S. pilchardus is the most sensitive species. Finally, the results showed that the bioavailability of chemicals present in the studied bays confirms poor water quality, which can explain the decrease in fishery production along the Algerian Coastline.
Collapse
Affiliation(s)
- Zina Bencheikh
- Laboratoire des Ecosystèmes Marin et Littoraux, Ecole Nationale Supérieure Des Sciences de La Mer Et de L'Aménagement du Littoral (ENSSMAL), BP, 19, Campus Universitaire de Dely Ibrahim, Bois des Cars, Alger, Algeria
| | - Wahid Refes
- Laboratoire des Ecosystèmes Marin et Littoraux, Ecole Nationale Supérieure Des Sciences de La Mer Et de L'Aménagement du Littoral (ENSSMAL), BP, 19, Campus Universitaire de Dely Ibrahim, Bois des Cars, Alger, Algeria
| | - Patricia Manuitt Brito
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Paloma Kachel Gusso-Choueri
- Laboratório de Ecotoxicologia - Unisanta, Universidade Santa Cecília, R. Oswaldo Cruz, 277 - CP 11045-907 - Boqueirão, Santos, São Paulo, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo, Campus Baixada Santista. Rua Maria Máximo, 168 - Ponta da Praia - Santos, CEP: 11030-100, São Paulo, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-970, Brazil.
| |
Collapse
|
9
|
Picinini J, Oliveira RF, Garcia ALH, da Silva GN, Sebben VC, de Souza GMS, Dias JF, Corrêa DS, da Silva J. In vitro genotoxic and mutagenic effects of water samples from Sapucaia and Esteio streams (Brazil) under the influence of different anthropogenic activities. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503484. [PMID: 35649678 DOI: 10.1016/j.mrgentox.2022.503484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Pollution of aquatic ecosystems is associated with the discharge of mainly industrial and urban effluents, which may cause damage to public health. This study aims to evaluate the cytotoxic, genotoxic, and mutagenic potential of surface water samples under the influence of different anthropogenic effluents in a human-derived liver cell line (HepG2). Samples were collected in Esteio and Sapucaia streams (Rio Grande do Sul; Brazil), which flow into the Sinos River, a source of water supply for more than one million people. Physicochemical and microbiological analyses were performed as well as an analysis of inorganic elements using the PIXE technique (Particle-Induced X-Ray Emission). The presence of pharmaceutical compounds and caffeine was evaluated by gas chromatography coupled to mass spectrometry. The cytotoxicity, genotoxicity, and mutagenicity of the samples were evaluated in HepG2 cells by cell viability assays, alkaline Comet Assay and Cytokinesis-block micronucleus (CBMN) assay. We verified alterations in the physicochemical and microbiological parameters and detected caffeine, diethyltoluamide, and different inorganic elements that corresponded to elements from domestic and industrial effluents and agricultural runoff. Although the samples in the concentration used were not cytotoxic, water samples from all sites induced DNA damage. However, it is difficult to attribute these damages to a specific substance since the factors are a complex mixture of different compounds. Despite this, it is observed that both urban and industrial contributions had a similar effect in the cells evaluated. Such results demonstrate the need to perform biomonitoring of surface waters under anthropogenic influence, especially those that flow into rivers that are a source of public supply water. We also highlight the need for research into emerging pollutants in these aquatic environments.
Collapse
Affiliation(s)
- Juliana Picinini
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil.
| | - Renata Farias Oliveira
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Gabrielle Nunes da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil
| | - Viviane Cristina Sebben
- Rio Grande do Sul Toxicological Information Center (CIT/RS), Av. Ipiranga, 5400, Jardim Botânico, 90610-000, Porto Alegre, RS, Brazil
| | - Guilherme Maurício Soares de Souza
- Ionic Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ionic Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Dione Silva Corrêa
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil.
| |
Collapse
|
10
|
Monteiro DA, Kalinin AL, Rantin FT, McKenzie DJ. Use of complex physiological traits as ecotoxicological biomarkers in tropical freshwater fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2021; 335:745-760. [PMID: 34529366 DOI: 10.1002/jez.2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
We review the use of complex physiological traits, of tolerance and performance, as biomarkers of the toxicological effects of contaminants in subtropical and tropical freshwater fishes. Such traits are growing in relevance due to climate change, as exposure to contaminants may influence the capacity of fishes to tolerate and perform in an increasingly stressful environment. We review the evidence that the critical oxygen level, a measure of hypoxia tolerance, provides a valuable biomarker of impacts of diverse classes of contaminants. When coupled with measures of cardiorespiratory variables, it can provide insight into mechanisms of toxicity. The critical thermal maximum, a simple measure of tolerance of acute warming, also provides a valuable biomarker despite a lack of understanding of its mechanistic basis. Its relative ease of application renders it useful in the rapid evaluation of multiple species, and in understanding how the severity of contaminant impacts depends upon prevailing environmental temperature. The critical swimming speed is a measure of exercise performance that is widely used as a biomarker in temperate species but very few studies have been performed on subtropical or tropical fishes. Overall, the review serves to highlight a critical lack of knowledge for subtropical and tropical freshwater fishes. There is a real need to expand the knowledge base and to use physiological biomarkers in support of decision making to manage tropical freshwater fish populations and their habitats, which sustain rich biodiversity but are under relentless anthropogenic pressure.
Collapse
Affiliation(s)
- Diana A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Ana L Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - F Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - David J McKenzie
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- UMR Marbec, Univ. Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| |
Collapse
|
11
|
Nagamatsu PC, Garcia JRE, Esquivel L, Souza ATDC, de Brito IA, de Oliveira Ribeiro CA. Post hatching stages of tropical catfish Rhamdia quelen (Quoy and Gaimard, 1824) are affected by combined toxic metals exposure with risk to population. CHEMOSPHERE 2021; 277:130199. [PMID: 33770691 DOI: 10.1016/j.chemosphere.2021.130199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Toxic metals and silver nanoparticles (AgNPs) are of great importance as pollutants and their frequent use increases the risk of exposure to biota, but few studies have described co-toxic effects in aquatic organisms. In fish, the method using early stages of development are interesting parameters to validate ecotoxicological studies, and more recently, the use of mathematical models has substantially increased the efficiency of the method. Post hatching stages of native catfish Rhamdia quelen were exposed to single or combined mixtures of toxic metals (Mn, Pb, Hg or AgNPs) in order to study its effects. Fertilized eggs were exposed for 24, 48, 72, and 96 h, where hatching and survival rates, malformation frequency, and neuromast structure damages were evaluated. The results showed alterations in hatching rate after single and combined exposure to metals, but mixtures showed effects more severe comparatively with the single exposures. A similar result including a time-dependent effect was observed in survival rates and incidence of deformities. Overall, embryos and larvae were sensitive to toxic metals exposure while the mathematical modeling suggested a population reduction size including risk of local extinction.
Collapse
Affiliation(s)
- Paola Caroline Nagamatsu
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, Paulo Lopes, SC, CEP 88490-000, Brazil
| | - Angie Thaisa da Costa Souza
- Laboratório de Ecologia e Evolução de Interações, Departamento de Física, Universidade Federal do Paraná CEP 81531-990, Curitiba, PR, Brazil
| | - Izabella Andrade de Brito
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Gemusse SL, Turcatti Folle NM, Souza ATDC, Azevedo-Linhares M, Neto FF, Ortolani-Machado CF, Esquivel Garcia JR, Esquivel L, da Silva CP, de Campos SX, Martins CDC, de Oliveira Ribeiro CA. Micropollutants impair the survival of Oreochromis niloticus and threat local species from Iguaçu River, Southern of Brazil. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103596. [PMID: 33482285 DOI: 10.1016/j.etap.2021.103596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The wastewater contamination of urban rivers is a concern for biodiversity and a consequence from poor urban conservation policies. In the current study, the impact of urban and industrial activities was investigated in Iguaçu river (Southern Brazil) using juvenile Oreochromis niloticus, after trophic and chronic exposure (25, 50 and 100 %), over 81 days. After exposure liver, gills, gonads, brain, muscle, and blood were sampled for chemical, biochemical, histopathological, genotoxic and molecular analyses. Water levels of persistent organic pollutants such as polychlorinated biphenyls, organochlorine pesticides, polycyclic aromatics hydrocarbon (PAHs) and metals were investigated. The redox unbalance, histopathological and increase in vitellogenin expression in fish revealed both the bioavailability of micropollutants and their harmful effects. According to the results, the level of Iguaçu river pollution negatively impacts the health of O. niloticus revealing and highlighting the risk of this pollution exposure to biota and human populations.
Collapse
Affiliation(s)
- Satar Luciano Gemusse
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Nilce Mary Turcatti Folle
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Maristela Azevedo-Linhares
- Centro de Tecnologia Em Saúde e Meio Ambiente, Instituto de Tecnologia do Paraná, CEP 81350-010, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Claudia Feijó Ortolani-Machado
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, CEP 88490-000, Paulo Lopes, SC, Brazil
| | - Cleber Pinto da Silva
- Research Group on Environmental and Sanitary Analytical Chemistry (QAAS), Ponta Grossa State University (UEPG), Ponta Grossa, Parana State, Brazil
| | - Sandro Xavier de Campos
- Research Group on Environmental and Sanitary Analytical Chemistry (QAAS), Ponta Grossa State University (UEPG), Ponta Grossa, Parana State, Brazil
| | - Cesar de Castro Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|