1
|
Duchet C, Verheyen J, Van Houdt R, Grabicová K, Dekan Carreira V, Stoks R, Boukal DS. Bioenergetic responses mediate interactive effects of pharmaceuticals and warming on freshwater arthropod populations and ecosystem functioning. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137814. [PMID: 40048784 DOI: 10.1016/j.jhazmat.2025.137814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/27/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Freshwater ecosystems are increasingly impacted by pharmaceutical contaminants (PhACs) and climate change-induced warming. Yet, their joint effects on freshwater taxa remain unclear. This is partly due to poorly understood mechanisms linking the effects on (sub)individual scales to higher levels of ecological organisation. We investigated the responses of two aquatic arthropods, Asellus aquaticus and Cloeon dipterum, to environmentally realistic levels of a 15-PhAC mixture (total concentration: 2.9 µg/L) and warming (+4 °C above ambient) in outdoor pond mesocosms (1000 L) across winter and summer. We measured physiological traits (bioenergetic responses based on quantification of energy consumption and energy stored in proteins, sugars and lipids, and oxidative damage based on malondialdehyde [MDA] levels), population density and ecosystem functions (leaf litter decomposition and insect emergence). In winter, PhACs reduced energy availability and increased MDA levels. In contrast, PhACs increased energy availability and decreased MDA levels in summer. The stressors reduced Asellus abundance, leading to reduced leaf litter decomposition, while Cloeon emergence in summer declined due to a PhAC-induced decline in larval abundance. Warming alone consistently decreased arthropod abundances and emergence, except for Asellus abundance in winter. The stressor effects through changes in bioenergetics were stronger than their direct effects on population abundances and ecosystem functions. Our findings highlight the vulnerability of aquatic arthropods to PhAC pollution and warming, emphasising the need for effective management strategies to mitigate the effects of emerging contaminants and climate change on freshwater biota.
Collapse
Affiliation(s)
- Claire Duchet
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Ria Van Houdt
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Vladimíra Dekan Carreira
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences of the University of Lisbon, Bloco C2, Campo Grande, Lisbon 1749-016, Portugal
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
2
|
Che S, Chen J, Zhang H, Xu W, Li Y, Dan X, Mo Z. Impacts of live and artificial feed on histology, biochemical indicators, gene expression, and bacterial resistance in mandarin fish (Siniperca chuatsi). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110169. [PMID: 39900313 DOI: 10.1016/j.fsi.2025.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
The mandarin fish (Siniperca chuatsi) is a significant freshwater carnivorous species in Chinese aquaculture industry, and its farming scale is continuously expanding. The use of feed in aquaculture has become an increasingly common practice. However, the impacts of substituting artificial feed for live bait on fish's biochemical and immune responses are poorly understood. In this study, two hundred forty mandarin fish (weight: 5.60 ± 0.41 g) were divided into two groups and fed live bait or artificial feed (LB and AF groups) over a 63-day aquaculture experiment. We compared the differences between the two groups in terms of histology, biochemical indicators, gene expression, and bacterial resistance. The results showed that artificial feed promoted enhanced growth, evidenced by higher weight (p < 0.05). The AF group exhibited higher liver and intestinal somatic indices (p < 0.05), and histological examination revealed denser cytoplasmic content in liver cells, less fragmentation of renal tubular epithelial cells, and less detachment of intestinal epithelial cells in the AF group. Regarding biochemical indicators and gene expression, the AF group showed better performance in glucose regulation and lipid metabolism. The AF group maintained glucose balance (p < 0.05) and effectively regulated cholesterol transport (p < 0.05), promoting lipolysis (p < 0.05) while inhibiting lipogenesis (p < 0.05). In contrast, live bait consumption resulted in reduced lipolysis (p < 0.05), increased lipogenesis (p < 0.05), impaired endoplasmic reticulum function (p < 0.05), heightened inflammation (p < 0.05), and diminished antioxidant capacity (p < 0.05). Additionally, the LB group exhibited lower survival rates and lysozyme levels during bacterial challenges. Overall, artificial feed was more beneficial for the growth, regulate physiology and enhance disease resistance of S. chuatsi, highlighting its potential to improve fish health and increase aquaculture yield.
Collapse
Affiliation(s)
- Shunli Che
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiawei Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Hai Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Weizhen Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Kaewda J, Boonanuntanasarn S, Sangsawad P, Manassila P, Nakharuthai C. Enhancement of Growth, Antioxidant Activity, and Immunity in Nile Tilapia ( Oreochromis niloticus) Through Recombinant Bacillus subtilis Expressing L-Gulonolactone Oxidase. Antioxidants (Basel) 2025; 14:50. [PMID: 39857384 PMCID: PMC11759777 DOI: 10.3390/antiox14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Due to its lack of the L-gulonolactone oxidase (GULO) enzyme, Nile tilapia is unable to synthesize vitamin C; thus, it requires an adequate level of exogenous vitamin C in its diet. To enhance antioxidant properties and vitamin C-related effects, we employed recombinant technology to integrate the GULO-encoding gene into the Bacillus subtilis chromosome. In this study, fish were divided into four groups: those fed with a basal diet (CON), a basal diet + vitamin C (VC), a basal diet + wild-type B. subtilis (BS), and a basal diet + recombinant B. subtilis (BS+GULO). After 90 days of the feeding trial, the BS+GULO groups showed the highest improvements in final weight, weight gain, specific growth rate, average daily gain, and relative growth rate. The VC, BS, and BS+GULO groups exhibited increased total immunoglobulin and lysozyme activity; however, only the VC and BS+GULO groups showed elevated alternative complement 50 levels, phagocytic activity and improved antioxidant parameters compared to the control. HPLC and qRT-PCR analyses revealed elevated serum vitamin C and intestinal GULO mRNA levels in the BS+GULO group. A challenge test showed increased pro-inflammatory gene expression and immune response against S. agalactiae in the BS+GULO group, indicating improved antagonistic activity over wild-type B. subtilis.
Collapse
Affiliation(s)
| | | | | | | | - Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (J.K.); (S.B.); (P.S.); (P.M.)
| |
Collapse
|
4
|
Dourado PLR, da Silva DGH, Alves TC, de Almeida EA. Fipronil exposure alters oxidative stress responses of Nile tilapia (Oreochromis niloticus) to acute moderate hypoxia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107163. [PMID: 39579505 DOI: 10.1016/j.aquatox.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/25/2024]
Abstract
Acute hypoxia is known to increase the generation of reactive oxygen species (ROS), leading to modulation in antioxidant defenses. Pollutant exposure can potentiate ROS generation during hypoxic events and impair antioxidant defenses, increasing the susceptibility of hypoxia-tolerant fishes, such as the Nile tilapia (Oreochromis niloticus), to oxidative stress. The purpose of this study was to evaluate oxidative stress responses of O. niloticus to acute (3 and 8 h) moderate hypoxia (dissolved oxygen ≤2 mg/L-1) and how these responses are affected by simultaneous exposure to the insecticide fipronil (0.1 and 0.5 µg L-1). Hypoxia exposure for 3 h caused an increase in glutathione peroxidase (GPx) activity in the gill and also increased catalase (CAT) and glutathione S-transferase (GST) activities in the liver. After 8 h of hypoxia, glutathione reductase (GR) activity increased. DNA damage (comet assay) in erythrocytes was reduced by hypoxia after 3 and 8 h. Fipronil exposure for 3 h decreased CAT activity in the gill, both under normoxia and hypoxia. After 8 h, the combination of fipronil and hypoxia increased GR activity in the gill. In the liver, fipronil exposure under hypoxia for 3 h increased CAT and GR activities; after 8 h, CAT was decreased, and GST increased. GR was also increased by fipronil under normoxia for 8 h. All treatments reduced lipid peroxidation levels in the gills, but in the liver, lipid peroxidation was increased by fipronil after 3 h under normoxia. Moreover, fipronil exposure under hypoxia for 3 and 8 h increased DNA damage in erythrocytes, while 8 h of fipronil exposure under normoxia decreased it, suggesting the activation of DNA repair mechanisms. Results show that both fipronil and hypoxia exposure significantly modulate the oxidative stress parameters of O. niloticus and that the combination of these factors produces more pronounced effects.
Collapse
Affiliation(s)
| | | | - Thiago Caique Alves
- FURB Fundação Universidade Regional de Blumenau, Department of Natural Sciences, Blumenau, Santa Catarina, Brazil
| | - Eduardo Alves de Almeida
- FURB Fundação Universidade Regional de Blumenau, Department of Natural Sciences, Blumenau, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Sibiya A, Karthikeyan S, Al-Ghanim KA, Govindarajan M, Malafaia G, Vaseeharan B. Toxicity assessment of Oreochromis mossambicus exposed to carbamazepine and selenium: Physiological and genotoxic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65764-65777. [PMID: 39604712 DOI: 10.1007/s11356-024-35534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Although the toxicity of selenium (Se) and carbamazepine (CBZ) has already been demonstrated, the possible effects of freshwater fish co-exposure to these pollutants have not been explored. Thus, we aimed to evaluate the potential impact of Se and CBZ (alone and combined) exposure (both 5 µg/L) in Oreochromis mossambicus after 28 days. Exposure to CBZ, alone or combined with Se, significantly increases the "red blood cells" and "mean corpuscular volume." In the gills, malondialdehyde levels in the "CBZ" and "Se + CBZ" groups were lower than in the control group. Furthermore, the exposure to treatments induced a significant increase in protein carbonyl formation in gills and DNA damage in gill and liver cells. Still, acetylcholinesterase activity in the brain was not changed. Thus, our study provides insight into the toxicity of metals and pharmaceutical drugs and warns about the ecotoxicological risk posed by such mixtures.
Collapse
Affiliation(s)
- Ashokkumar Sibiya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi, Tamil Nadu, 630004, India
| | | | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, 612 001, India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil.
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| | - Baskaralingam Vaseeharan
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
6
|
Li J, Guo Q, Yang B, Zhou J. Combined Analysis of Metabolomics and Transcriptome Revealed the Effect of Bacillus thuringiensis on the 5th Instar Larvae of Dendrolimus kikuchii Matsumura. Int J Mol Sci 2024; 25:11823. [PMID: 39519375 PMCID: PMC11547106 DOI: 10.3390/ijms252111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Dendrolimus kikuchii Matsumura (D. kikuchii) is a serious pest of coniferous trees. Bacillus thuringiensis (Bt) has been widely studied and applied as a biological control agent for a variety of pests. Here, we found that the mortality rate of D. kikuchii larvae after being fed Bt reached 95.33% at 24 h; the midgut membrane tissue was ulcerated and liquefied, the MDA content in the midgut tissue decreased and the SOD, CAT and GPx enzyme activities increased, indicating that Bt has toxic effects on D. kikuchii larvae. In addition, transmission electron microscopy showed that Bt infection caused severe deformation of the nucleus of the midgut tissue of D. kikuchii larvae, vacuoles in the nucleolus, swelling and shedding of microvilli, severe degradation of mitochondria and endoplasmic reticulum and decreased number. Surprisingly, metabolomics and transcriptome association analysis revealed that four metabolic-related signaling pathways, Nicotinate and nicotinamide metabolism, Longevity regulating pathway-worm, Vitamin digestion and absorption and Lysine degradation, were co-annotated in larvae. More surprisingly, Niacinamide was a common differential metabolite in the first three signaling pathways, and both Niacinamide and L-2-Aminoadipic acid were reduced. The differentially expressed genes involved in the four signaling pathways, including NNT, ALDH, PNLIP, SETMAR, GST and RNASEK, were significantly down-regulated, but only SLC23A1 gene expression was up-regulated. Our results illustrate the effects of Bt on the 5th instar larvae of D. kikuchii at the tissue, cell and molecular levels, and provide theoretical support for the study of Bt as a new biological control agent for D. kikuchii.
Collapse
Affiliation(s)
- Jinyan Li
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
| | - Qiang Guo
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jielong Zhou
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
7
|
Rielly A, Dahms-Verster S, Greenfield R. Biomarker responses in Danio rerio following an acute exposure (96 h) to e-waste leachate. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:859-874. [PMID: 38995499 PMCID: PMC11399175 DOI: 10.1007/s10646-024-02784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Electronic waste (e-waste) has been identified as an emerging pollutant and is the fastest growing waste stream at the present time. Significant technological development and modernization within the last decade has led to the rapid accumulation of outdated, broken and unwanted electrical and electronic equipment (EEE). Electronic products mainly consist of a range of metal containing components that, when disposed of improperly, could result in metal constituents leached into the environment and posing a health risk to humans and animals alike. Metal exposure can induce oxidative stress in organisms, which could lead to synergistic, antagonistic and additive effects. The metals found highest in abundance in the simulated e-waste leachate, were nickel (Ni), barium (Ba), zinc (Zn), lithium (Li), iron (Fe), aluminium (Al) and copper (Cu). An acute exposure study was conducted over a 96 h period to determine the potential toxicity of e-waste on the test organism Danio rerio. Biomarker analysis results to assess the biochemical and physiological effects induced by e-waste leachate, showed a statistically significant effect induced on acetylcholinesterase activity, superoxide dismutase, catalase activity, reduced glutathione content, glutathione s-transferase, malondialdehyde and glucose energy available. The Integrated Biomarker Response (IBRv2) analysis revealed a greater biomarker response induced as the exposure concentration of e-waste leachate increased.
Collapse
Affiliation(s)
- A Rielly
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - S Dahms-Verster
- School of Geography, Archaeology and Environmental Studies, Wits University, Johannesburg, South Africa
| | - R Greenfield
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, South Africa.
| |
Collapse
|
8
|
Dong Y, Van de Maele M, De Meester L, Verheyen J, Stoks R. Pollution offsets the rapid evolution of increased heat tolerance in a natural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173070. [PMID: 38734087 DOI: 10.1016/j.scitotenv.2024.173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.
Collapse
Affiliation(s)
- Ying Dong
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universitat Berlin, Berlin, Germany
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
9
|
Junaid M, Liu S, Yue Q, Wang J. Exacerbated interfacial impacts of nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonate by natural organic matter in adult zebrafish: Evidence through histopathology, gut microbiota, and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135038. [PMID: 38941840 DOI: 10.1016/j.jhazmat.2024.135038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Nanoplastics (NPs) interact with cooccurring chemicals and natural organic matter (NOM) in the environment, forming complexes that can change their bioavailability and interfacial toxicity in aquatic organisms. This study aims to elucidate the single and combined impacts of 21-day chronic exposure to low levels of polystyrene NPs (size 80 nm) at 1 mg/L and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES or F53B) at 200 μg/L in the presence and absence of NOM (humic acid-HA and bovine serum albumin-BSA at 10 mg/L) in adult zebrafish (Danio rerio). Our findings through multiple bioassays, revealed that the mixture group (M), comprising of NPs, F53B, HA, and BSA, caused a higher level of toxicity compared to the single NPs (AN), single F53B (AF), and combined NPs+F53B (ANF) groups. The mixture exposure caused the highest level of vacuolization and nuclear condensation in hepatocytes, and most of the intestinal villi were fused and highly reduced in villi length and crypt depth. Further, the T-AOC levels were significantly lower (p < 0.05), while the MDA levels in the liver and intestine were significantly higher (p < 0.05) in the M group with downregulation of nfkbiaa, while upregulation of prkcda, csf1ra, and il1b apoptosis genes in the liver. Pairwise comparison of gut microbiota showed significantly higher (p < 0.05) abundances of various genera in the M group, including Gordonia, Methylobacterium, Tundrisphaera, GKS98, Pedomicrobium, Clostridium, Candidatus and Anaerobacillus, as well as higher abundance of genera including pathogenic strains, while control group showed higher abundance of probiotic genus ZOR0006 than exposed group (p < 0.01). The transcriptomic analysis revealed highest number of DEGs in the M group (2815), followed by the AN group (506) and ANF group (206) with the activation of relaxin signaling pathway-RSP (slc9a1, slc9a2) and AMP-activated protein kinase (AMPK) pathway (plin1), and suppression of the toll-like receptor (TLR) pathway (tlr4a, tlr2, tlr1), cytokine-cytokine receptor interaction (CCRI) pathway (tnfb, il21r1, il21, ifng1), and peroxisome proliferator-activated receptors (PPAR) pathway (pfkfb3). Overall, toxicity in the M group was higher, indicating that the HA and BSA elevated the interfacial impacts of NPs and F53B in adult zebrafish after chronic environmentally relevant exposure, implying the revisitation of the critical interaction of NOM with co-occurring chemicals and associated impacts.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
10
|
Bitschinski D, Warsneski A, Rutkoski CF, Gonçalves GHP, Giasson LOM, Hasckel RP, Israel NG, da Silva EB, de Albuquerque CAC, Lã L, Alves TC, de Campos Guerreiro F, de Almeida EA. Exposure to pesticides used in rice farming (bentazone, chlorantraniliprole and tebuconazole) affects biochemical biomarkers and hepatic histopathological parameters of hammertoad tadpoles (Boana faber). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109960. [PMID: 38885749 DOI: 10.1016/j.cbpc.2024.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Pesticides used in rice cultivation can cause negative health effects to non-target organisms representative of natural biodiversity. In this context, the present study aimed to investigate the occurrence of pesticides in surface waters from a river that flows in the middle of a rice farming-dominated area. We were also interested in evaluate biochemical and histological effects caused by exposure (16 d) to the lower and higher concentrations of the main found herbicide (bentazone, BTZ), insecticide (chlorantraniliprole, CTP) and fungicide (tebuconazole, TBZ), isolated or mixed, in Boana faber tadpoles. No significant differences were observed in the development of the animals. Tadpoles exposed to the herbicide BTZ showed higher hepatic levels of malondialdehyde (MDA). In animals exposed to CTP, MDA levels were lower than controls. Animals exposed to the fungicide TBZ showed higher hepatic activity of glutathione S-transferase and carboxylesterase (CbE), as well as higher levels of carbonyl proteins and MDA. Animals exposed to Mix showed higher activity in CbE and glucose-6-phosphate dehydrogenase activity in the liver, as well as higher levels of MDA. In the brain and muscle of tadpoles exposed to Mix, acetylcholinesterase activity was higher. Histological changes were also observed in pesticide-exposed animals, such as increased occurrence of melanomacrophages, inflammatory infiltrates and congestion. Our data evidences the contamination of natural aquatic environments by rice pesticides, and the adverse effects of main ones in B. faber tadpoles, which suggests the contribution of pesticides derived from rice cultivation to the degradation of local biodiversity health.
Collapse
Affiliation(s)
- Daiane Bitschinski
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Aline Warsneski
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Camila Fatima Rutkoski
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Gustavo Henrique Pereira Gonçalves
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Luís Olímpio Menta Giasson
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Rony Paolin Hasckel
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Nicole Grasmuk Israel
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Elizia Barbosa da Silva
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Claudia Almeida Coelho de Albuquerque
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Luíza Lã
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Thiago Caique Alves
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Fernando de Campos Guerreiro
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Eduardo Alves de Almeida
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil.
| |
Collapse
|
11
|
Paankhao N, Sangsawang A, Kantha P, Paankhao S, Promsee K, Soontara C, Kongsriprapan S, Srisapoome P, Kumwan B, Meachasompop P, Phrompanya P, Buncharoen W, Uchuwittayakul A. Antioxidant and antibacterial efficiency of the ethanolic leaf extract of Kratom (Mitragyna speciosa (Korth.) Havil) and its effects on growth, health, and disease resistance against Edwardsiella tarda infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109771. [PMID: 39025168 DOI: 10.1016/j.fsi.2024.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
The research examined the impact of an ethanolic extract from the leaves of Kratom (Mitragyna speciosa (Korth.) Havil.) on the growth, antioxidant capacity, immune-related gene expression, and resistance to disease caused by Edwardsiella tarda in Nile tilapia (Oreochromis niloticus). The findings revealed that the extract had the important phytochemical content in the extract included total phenolics content, total flavonoids content, vitamin C, and total antioxidant capacity and 5.42 % of the crude extract was mitragynine. The extract demonstrated antioxidant activity, as evidenced by its IC50 values against ABTS and DPPH radicals and its ferric reducing power in vitro. Moreover, the MIC-IC50 value of 0.625 mg/mL indicated that the growth of the bacteria was reduced by approximately 50 %, and the MBC was 2.50 mg/mL against E. tarda. Furthermore, the orally administered Kratom leaf extract to fingerling tilapia for 8 weeks exhibited a noticeable increase in oxidative stress, as demonstrated by the increase in MDA production in the 10 and 25 g/kg groups. It also exhibited an increase in acetylcholinesterase (AChE) activity in muscle tissue at the 50 g/kg group. However, when administered at a feeding rate of 5-10 g/kg feed, the extract showed an increase in the expression of immune-related genes (IL1, IL6, IL8, NF-kB, IFNγ, TNFα, Mx, CC-chemokine, CD4, TCRβ, MHC-IIβ, IgM, IgT, IgD) and enhanced resistance to E. tarda infection in fish. Conversely, administering the extract at 25-50 g/kg feed resulted in contrasting effects, suppressing and reducing the observed parameters. Nevertheless, feeding the extract at all concentrations for 8 weeks did not produce any changes in the histology or systemic functioning of the liver and intestines, as indicated by blood biochemistry. These findings suggest that the ethanolic leaf extract from Kratom has the potential to be used as a substitute for antibiotics in the management of bacterial infections in Nile tilapia culture, with a recommended dosage of 5-10 g/kg feed/day for a maximum of 8 weeks.
Collapse
Affiliation(s)
- Natthapong Paankhao
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Akkarasiri Sangsawang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Phunsin Kantha
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Suwinai Paankhao
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Kittipong Promsee
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Chayanit Soontara
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Sopanat Kongsriprapan
- Faculty of Science at Sriracha, Kasetsart University, Si Racha Campus, Si Racha, Chonburi, 20230, Thailand.
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Benchawan Kumwan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Pakapon Meachasompop
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Phornphan Phrompanya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Wararut Buncharoen
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Anurak Uchuwittayakul
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
12
|
Wu Z, Yu X, Chen P, Pan M, Liu J, Sahandi J, Zhou W, Mai K, Zhang W. Dietary Clostridium autoethanogenum protein has dose-dependent influence on the gut microbiota, immunity, inflammation and disease resistance of abalone Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109737. [PMID: 38960106 DOI: 10.1016/j.fsi.2024.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Clostridium autoethanogenum protein (CAP) is an eco-friendly protein source and has great application potential in aquafeeds. The present study aimed to investigate the effects of dietary CAP inclusion on the anti-oxidation, immunity, inflammation, disease resistance and gut microbiota of abalone Haliotis discus hannai after a 110-day feeding trial. Three isonitrogenous and isolipidic diets were formulated by adding 0 % (control), 4.10 % (CAP4.10) and 16.25 % (CAP16.25) of CAP, respectively. A total of 540 abalones with an initial mean body weight of 22.05 ± 0.19 g were randomly distributed in three groups with three replicates per group and 60 abalones per replicate. Results showed that the activities of superoxide dismutase and glutathione peroxidase in the cell-free hemolymph (CFH) were significantly decreased and the content of malondialdehyde in CFH was significantly increased in the CAP16.25 group. The diet with 4.1 % of CAP significantly increased the activities of lysozyme and acid phosphatase in CFH. The expressions of pro-inflammatory genes such as tumor necrosis factor-α (tnf-α), nuclear factor-κb (nf-κb) and toll-like receptor 4 (tlr4) in digestive gland were downregulated, and the expressions of anti-inflammatory genes such as β-defensin and mytimacin 6 in digestive gland were upregulated in the CAP4.10 group. Dietary CAP inclusion significantly decreased the cumulative mortality of abalone after the challenge test with Vibrio parahaemolyticus for 7 days. Dietary CAP inclusion changed the composition of gut microbiota of abalone. Besides, the balance of the ecological interaction network of bacterial genera in the intestine of abalone was enhanced by dietary CAP. The association analysis showed that two bacterial genera Ruegeria and Bacteroides were closely correlated with the inflammatory genes. In conclusion, the 4.10 % of dietary CAP enhanced the immunity and disease resistance as well as inhibited the inflammation of abalone. The 16.25 % of dietary CAP decreased the anti-oxidative capacity of abalone. The structure of the gut microbiota of abalone changed with dietary CAP levels.
Collapse
Affiliation(s)
- Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiaojun Yu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Peng Chen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Javad Sahandi
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wanyou Zhou
- Weihai JinPai Biological Technology Co., Ltd, Weihai, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
13
|
Laçin C, Turhan DO, Güngördü A. Assessing the impact of antiviral drugs commonly utilized during the COVID-19 pandemic on the embryonic development of Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134462. [PMID: 38718506 DOI: 10.1016/j.jhazmat.2024.134462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
The antiviral drugs favipiravir and oseltamivir are widely used to treat viral infections, including coronavirus 2019 (COVID-19), and their levels are expected to increase in the aquatic environment. In this study, the potential toxic and teratogenic effects of these drugs were evaluated using the frog embryo teratogenesis assay Xenopus (FETAX). In addition, glutathione S-transferase (GST), glutathione reductase (GR), catalase, carboxylesterase (CaE), and acetylcholinesterase (AChE) enzyme activities and malondialdehyde levels were measured as biochemical markers in embryos and tadpoles for comparative assessment of the sublethal effects of the test compounds. Prior to embryo exposure, drug concentrations in the exposure medium were measured with high-performance liquid chromatography. The 96-h median lethal concentration (LC50) was 137.9 and 32.3 mg/L for favipiravir and oseltamivir, respectively. The teratogenic index for favipiravir was 4.67. Both favipiravir and oseltamivir inhibited GR, CaE, and AChE activities in embryos, while favipiravir increased the GST and CaE activities in tadpoles. In conclusion, favipiravir, for which teratogenicity data are available in mammalian test organisms and human teratogenicity is controversial, inhibited Xenopus laevis embryo development and was teratogenic. In addition, sublethal concentrations of both drugs altered the biochemical responses in embryos and tadpoles, with differences between the developmental stages.
Collapse
Affiliation(s)
- Cemal Laçin
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey
| | - Duygu Ozhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey.
| |
Collapse
|
14
|
Pang H, Zheng K, Wang W, Zheng M, Liu Y, Yin H, Zhang D. Cefotaxime Exposure-Caused Oxidative Stress, Intestinal Damage and Gut Microbial Disruption in Artemia sinica. Microorganisms 2024; 12:675. [PMID: 38674619 PMCID: PMC11052325 DOI: 10.3390/microorganisms12040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cefotaxime (CTX) is an easily detectable antibiotic pollutant in the water environment, but little is known about its toxic effects on aquatic invertebrates, especially on the intestine. Here, we determined the oxidative stress conditions of A. sinica under CTX exposure with five concentrations (0, 0.001, 0.01, 0.1 and 1 mg/L) for 14 days. After that, we focused on changes in intestinal tissue morphology and gut microbiota in A. sinica caused by CTX exposure at 0.01 mg/L. We found malondialdehyde (MDA) was elevated in CTX treatment groups, suggesting the obvious antibiotic-induced oxidative stress. We also found CTX exposure at 0.01 mg/L decreased the villus height and muscularis thickness in gut tissue. The 16S rRNA gene analysis indicated that CTX exposure reshaped the gut microbiota diversity and community composition. Proteobacteria, Actinobacteriota and Bacteroidota were the most widely represented phyla in A. sinica gut. The exposure to CTX led to the absence of Verrucomicrobia in dominant phyla and an increase in Bacteroidota abundance. At the genus level, eleven genera with an abundance greater than 0.1% exhibited statistically significant differences among groups. Furthermore, changes in gut microbiota composition were accompanied by modifications in gut microbiota functions, with an up-regulation in amino acid and drug metabolism functions and a down-regulation in xenobiotic biodegradation and lipid metabolism-related functions under CTX exposure. Overall, our study enhances our understanding of the intestinal damage and microbiota disorder caused by the cefotaxime pollutant in aquatic invertebrates, which would provide guidance for healthy aquaculture.
Collapse
Affiliation(s)
- Huizhong Pang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Kaixuan Zheng
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Wenbo Wang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Mingjuan Zheng
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Yudan Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Hong Yin
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Daochuan Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
15
|
Zhao Y, Duan C, Zhang H, Gong W, Wang Y, Ren J, Nie X, Li J. Response of lipid metabolism, energy supply, and cell fate in yellowstripe goby (Mugilogobius chulae) exposed to environmentally relevant concentrations atorvastatin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122991. [PMID: 37995957 DOI: 10.1016/j.envpol.2023.122991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The usage of typical pharmaceuticals and personal care products (PPCPs) such as cardiovascular and lipid-modulating drugs in clinical care accounts for the largest share of pharmaceutical consumption in most countries. Atorvastatin (ATV), one of the most commonly used lipid-lowering drugs, is frequently detected with lower concentrations in aquatic environments owing to its wide application, low removal, and degradation rates. However, the adverse effects of ATV on non-target aquatic organisms, especially the molecular mechanisms behind the toxic effects, still remain unclear. Therefore, this study investigated the potentially toxic effects of ATV exposure (including environmental concentrations) on yellowstripe goby (Mugilogobius chulae) and addressed the multi-dimensional responses. The results showed that ATV caused typical hepatotoxicity to M. chulae. ATV interfered with lipid metabolism by blocking fatty acid β-oxidation and led to the over-consumption of lipids. Thus, the exposed organism was obliged to alter the energy supply patterns and substrates utilization pathways to keep the normal energy supply. In addition, the higher concentration of ATV exposure caused oxidative stress to the organism. Subsequently, M. chulae triggered the autophagy and apoptosis processes with the help of key stress-related transcriptional regulators FOXOs and Sestrins to degrade the damaged organelles and proteins to maintain intracellular homeostasis.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| |
Collapse
|
16
|
Zhang SQ, Li P, He SW, Xing SY, Cao ZH, Zhao XL, Sun C, Li ZH. Combined effect of microplastic and triphenyltin: Insights from the gut-brain axis. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100266. [PMID: 37096249 PMCID: PMC10121632 DOI: 10.1016/j.ese.2023.100266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms. To investigate the individual and combined toxicity of MPs and TPT, we selected the common carp (Cyprinus carpio) for a 42-day exposure experiment. Based on the environmental concentrations in a heavily polluted area, the experimental concentrations of MPs and TPT were set at 0.5 mg L-1 and 1 μg L-1, respectively. The effects of MPs combined with TPT on the carp gut-brain axis were evaluated by detecting gut physiology and biochemical parameters, gut microbial 16S rRNA, and brain transcriptome sequencing. Our results suggest that a single TPT caused lipid metabolism disorder and a single MP induced immunosuppression in carp. When MPs were combined with TPT, the involvement of TPT amplified the immunotoxic effect induced by MPs. In this study, we also explored the gut-brain axis relationship of carp immunosuppression, providing new insights for assessing the combined toxicity of MPs and TPT. At the same time, our study provides a theoretical basis for evaluating the coexistence risk of MPs and TPT in the aquatic environment.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shao-Ying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Han Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xue-Li Zhao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| |
Collapse
|
17
|
Salaro AL, Silva SB, Ferraz RB, Salinas Jiménez LG, Carneiro CLS, Quadros ASG, Machado JP, Freitas MB, Oliveira EE. Acute sublethal exposure to ethiprole impairs physiological and oxidative status in the Neotropical fish Astyanax altiparanae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122152. [PMID: 37414119 DOI: 10.1016/j.envpol.2023.122152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Ethiprole, a phenylpyrazole insecticide, has been increasingly used in the Neotropical region to control stink bug pests in soybean and maize fields. However, such abrupt increases in use may have unintended effects on non-target organisms, including those inhabiting freshwater ecosystems. Here, we evaluated the effects of acute (96 h) sublethal exposure to ethiprole (up to 180 μg/L, which is equivalent to 0.013% of the recommended field dose) on biomarkers of stress in the gills, liver, and muscle of the Neotropical fish Astyanax altiparanae. We further recorded potential ethiprole-induced effects on the structural histology of A. altiparanae gills and liver. Our results showed that ethiprole exposure increased glucose and cortisol levels in a concentration-dependent manner. Ethiprole-exposed fish also exhibited higher levels of malondialdehyde and greater activity of antioxidant enzymes, such as glutathione-S-transferase and catalase, in both gills and liver. Furthermore, ethiprole exposure led to increased catalase activity and carbonylated protein levels in muscle. Morphometric and pathological analyses of the gills revealed that increasing ethiprole concentration resulted in hyperemia and loss of integrity of the secondary lamellae. Similarly, histopathological analysis of the liver demonstrated higher prevalence of necrosis and inflammatory infiltrates with increasing ethiprole concentration. Altogether, our findings demonstrated that sublethal exposure to ethiprole can trigger a stress response in non-target fish species, which may lead to potential ecological and economic imbalances in Neotropical freshwater systems.
Collapse
Affiliation(s)
- Ana Lúcia Salaro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stella B Silva
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Renato B Ferraz
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luis G Salinas Jiménez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Cristiana L S Carneiro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, 4450-208, Portugal
| | - Alessandro S G Quadros
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Machado
- Departamento de Medicina Veterinaria, Centro Universitário de Viçosa (UNIVIÇOSA), Viçosa, Minas Gerais, 36576-340, Brazil
| | - Mariella B Freitas
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
18
|
Kanerva M, Tue NM, Kunisue T, Vuori KA, Iwata H. Multi-level assessment of the origin, feeding area and organohalogen contamination on salmon from the Baltic Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115424. [PMID: 37672939 DOI: 10.1016/j.ecoenv.2023.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
The Atlantic salmon (Salmo salar) population in the Baltic Sea consists of wild and hatchery-reared fish that have been released into the sea to support salmon stocks. During feeding migration, salmon migrate to different parts of the Baltic Sea and are exposed to various biotic and abiotic stressors, such as organohalogen compounds (OHCs). The effects of salmon origin (wild or hatchery-reared), feeding area (Baltic Main Basin, Bothnian Sea, and Gulf of Finland), and OHC concentration on the differences in hepatic proteome of salmon were investigated. Multi-level analysis of the OHC concentration, transcriptome, proteome, and oxidative stress biomarkers measured from the same salmon individuals were performed to find the key variables (origin, feeding area, OHC concentrations, and oxidative stress) that best account for the differences in the transcriptome and proteome between the salmon groups. When comparing wild and hatchery-reared salmon, differences were found in xenobiotic and amino acid metabolism-related pathways. When comparing salmon from different feeding areas, the amino acid and carbohydrate metabolic pathways were notably different. Several proteins found in these pathways are correlated with the concentrations of polychlorinated biphenyls (PCBs). The multi-level analysis also revealed amino acid metabolic pathways in connection with PCBs and oxidative stress variables related to glutathione metabolism. Other pathways found in the multi-level analysis included genetic information processes related to ribosomes, signaling and cellular processes related to the cytoskeleton, and the immune system, which were connected mainly to the concentrations of Polychlorinated biphenyls and Dichlorodiphenyltrichloroethane and their metabolites. These results suggest that the hepatic proteome of salmon in the Baltic Sea, together with the transcriptome, is more affected by the OHC concentrations and oxidative stress of the feeding area than the origin of the salmon.
Collapse
Affiliation(s)
- Mirella Kanerva
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan.
| | - Nguyen Minh Tue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan
| | - Tatsuya Kunisue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan
| | - Kristiina Am Vuori
- Department of Equine and Small Animal Medicine, University of Helsinki, P.O. Box 57, Koetilantie 2, FI-00014, Helsinki, Finland
| | - Hisato Iwata
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan.
| |
Collapse
|
19
|
Ibrahim RE, Elshopakey GE, Abdelwarith AA, Younis EM, Ismail SH, Ahmed AI, El-Saber MM, Abdelhamid AE, Davies SJ, El-Murr A, Abdel Rahman AN. Chitosan neem nanocapsule enhances immunity and disease resistance in nile tilapia ( Oreochromis niloticus). Heliyon 2023; 9:e19354. [PMID: 37662722 PMCID: PMC10474430 DOI: 10.1016/j.heliyon.2023.e19354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Finding eco-friendly alternatives for antibiotics in treating bacterial diseases affecting the aquaculture sector is essential. Herbal plants are promising alternatives, especially when combined with nanomaterials. Neem (Azadirachta indica) leaves extract was synthesized using a chitosan nanocapsule. Chitosan neem nanocapsule (CNNC) was tested in-vitro and in-vivo against the Aeromonas sobria (A. sobria) challenge in Nile tilapia. A preliminary experiment with 120 Nile tilapia was conducted to determine the therapeutic dose of CNNC, which was established to be 1 mg/L. A treatment study was applied for seven days using 200 fish categorized into four groups (10 fish/replicate: 50 fish/group). The first (control) and second (CNNC) groups were treated with 0 and 1 mg/L CNNC in water without being challenged. The third (A. sobria) and fourth (CNNC + A. sobria) groups were treated with 0 and 1 mg/L CNNC, respectively, and challenged with A. sobria (1 × 107 CFU/mL). Interestingly, CNNC had an in-vitro antibacterial activity against A. sobria; the minimum inhibitory concentration and minimum bactericidal concentration of CNNC against A. sobria were 6.25 and 12.5 mg/mL, respectively. A. sobria challenge caused behavioral alterations, skin hemorrhage, fin rot, and reduced survivability (60%). The infected fish suffered a noticeable elevation in the malondialdehyde level and hepato-renal function markers (aspartate aminotransferase, alanine aminotransferase, and creatinine). Moreover, a clear depletion in the level of the antioxidant and immune indicators (catalase, reduced glutathione, lysozymes, nitric oxide, and complement 3) was obvious in the A. sobria group. Treatment of the A. sobria-challenged fish with 1 mg/L CNNC recovered these parameters and enhanced fish survivability. Overall, CNNC can be used as a new versatile tool at 1 mg/L as a water treatment for combating the A. sobria challenge for sustainable aquaculture production.
Collapse
Affiliation(s)
- Rowida E. Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A. Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO Box 12588, Egypt
| | - Amany I. Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mahmoud M. El-Saber
- Biochemistry Unit, Department of Genetic Resources; Desert Research Center, PO Box 11753, El-Matareya, Cairo, Egypt
| | - Ahmed E. Abdelhamid
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St. Dokki, Giza, PO Box 12622, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1, Galway, Ireland
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Afaf N. Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
20
|
Verheyen J, Cuypers K, Stoks R. Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121438. [PMID: 36963457 DOI: 10.1016/j.envpol.2023.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Ecotoxicological studies considerably improved realism by assessing the toxicity of pollutants at different temperatures. Nevertheless, they may miss key interaction patterns between pollutants and temperature by typically considering only part of the natural thermal gradient experienced by species and ignoring daily temperature fluctuations (DTF). We therefore tested in a common garden laboratory experiment the effects of the pesticide chlorpyrifos across a range of mean temperatures and DTF on physiological traits (related to oxidative stress and bioenergetics) in low- and high-latitude populations of Ischnura elegans damselfly larvae. As expected, the impact of chlorpyrifos varied along the wide range of mean temperatures (12-34 °C). None of the physiological traits (except the superoxide anion levels) were affected by chlorpyrifos at the intermediate mean temperatures (20-24 °C). Instead, most of them were negatively affected by chlorpyrifos (reduced activity levels of the antioxidant defense enzymes superoxide dismutase [SOD], catalase [CAT] and peroxidase [PER], and a reduced energy budget) at the very high (≥28 °C) or extreme high temperatures (≥32 °C), and to lesser extent at the lower mean temperatures (≤16 °C). Notably, at the lower mean temperatures the negative impact of chlorpyrifos was often only present or stronger under DTF. Although the chlorpyrifos effects on the physiological traits greatly depended on the experimentally imposed thermal gradient, patterns were mainly consistent across the natural latitude-associated thermal gradient, indicating the generality of our results. The thermal patterns in chlorpyrifos-induced physiological responses contributed to the observed toxicity patterns in life history (reduced survival and growth at low and high mean temperatures). Taken together, our results underscore the importance of evaluating pesticide toxicity along a temperature gradient and of taking a mechanistic approach with a focus on physiology, to improve our understanding of the combined effects of pollutants and temperature in natural populations.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Kiani Cuypers
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|
21
|
Zhang J, Huang Y, Pei Y, Wang Y, Li M, Chen H, Liang X, Martyniuk CJ. Biotransformation, metabolic response, and toxicity of UV-234 and UV-326 in larval zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2023; 174:107896. [PMID: 36966637 DOI: 10.1016/j.envint.2023.107896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are emerging pollutants that are widely detected in aquatic ecosystems. While structure-dependent effects of BUVSs are reported, the relationship between biotransformation and toxicity outcomes remains unclear. In this study, zebrafish embryos were exposed to two common BUVSs (UV-234 and UV-326) at 1, 10, and 100 µg/L for up to 7 days. Comparison of their uptake and biotransformation revealed that the bioaccumulation capacity of UV-234 was higher than that of UV-326, while UV-326 was more extensively biotransformed with additional conjugation reactions. However, UV-326 showed low metabolism due to inhibited phase II enzymes, which may result in the comparable internal concentrations of both BUVSs in larval zebrafish. Both BUVSs induced oxidative stress while decreased MDA, suggesting the disturbance of lipid metabolism. The subsequent metabolomic profiling revealed that UV-234 and UV-326 exerted different effects on arachidonic acid, lipid, and energy metabolism. However, both BUVSs negatively impacted the cyclic guanosine monophosphate / protein kinase G pathway. This converged metabolic change resulted in comparable toxicity of UV-234 and UV-326, which was confirmed by the induction of downstream apoptosis, neuroinflammation, and abnormal locomotion behavior. These data have important implications for understanding the metabolism, disposition, and toxicology of BUVSs in aquatic organisms.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ying Huang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Youjun Pei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuyang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Mingwan Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Kirthi AV, Kumar G, Pant G, Pant M, Hossain K, Ahmad A, Alshammari MB. Toxicity of Nanoscaled Zero-Valent Iron Particles on Tilapia, Oreochromis mossambicus. ACS OMEGA 2022; 7:47869-47879. [PMID: 36591132 PMCID: PMC9798762 DOI: 10.1021/acsomega.2c05696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This research effort aims to evaluate the hazardous potential of the redox state (OH-) of zero-valent iron nanoparticles (nZVI) and its histopathological and oxidative stress toward Mozambique tilapia, Oreochromis mossambicus. X-ray powder diffraction (XRD) validated the nZVI nanoparticles' chemical composition, while transmission electron microscopy (TEM) revealed that their physical form is round and oval. The exposure to 10 g/mL of nZVI induced the activation of the cellular superoxide dismutase (SOD) activity. Dose-dependent testing of O. mossambicus had a reduction in SOD and an increase in malondialdehyde (MDA) levels, suggesting that nZVI caused oxidative damage. At a concentration of 100 g/mL, the catalase (CAT) and peroxidase (POD) activities of diverse tissues exhibited a gradual decrease after 2 days of exposure and a fast increase until day 6. The scavenging of reactive oxygen species (ROS) in the epidermis, liver, and gills of O. mossambicus deteriorated and accumulated gradually. MDA levels in the skin, gill, and liver tissues were substantially higher after 8 days of exposure to 100 and 200 g/mL nZVI compared to those of the control group and those exposed to 10 and 50 g/mL nZVI for 2 days. Extreme histological and morphological abnormalities were seen in the skin, gill, and liver tissues of experimental animals, demonstrating that the damage resulted from direct contact with nZVI in water. A one-way ANOVA followed by Dunnett's post-test was performed to investigate significant differences.
Collapse
Affiliation(s)
- Arivarasan Vishnu Kirthi
- Department
of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Pant
- Department
of Life Sciences, Graphic Era (Deemed to
be University), Dehradun 248002, Uttarakhand, India
| | - Manu Pant
- Department
of Life Sciences, Graphic Era (Deemed to
be University), Dehradun 248002, Uttarakhand, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
23
|
Li Q, Liu Y, Li S, Guo X, Fu Y, He N, Ruan G, Wang Q, Gao W, Fang L. Impact of nitrite exposure on oxidative stress and antioxidative-related genes responses in the gills of Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2022; 131:624-630. [PMID: 36330872 DOI: 10.1016/j.fsi.2022.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Nitrite is the major environmental pollutant in the freshwater aquaculture environment, which has a negative impact on aquatic species growth. Currently, we know that the main way nitrite enters crustaceans is through their gills. In this study, a total of 96 h acute nitrite stress (60 mg/L) experiments were conducted, and the impact of the serum biochemical parameters, gill oxidase activity and oxidative-related gene expression of red swamp crayfish were evaluated. After exposure to nitrite for 0, 6, 12, 24, 48, and 96 h, hemolymph and gills samples were taken at each time point. In the serum, acute nitrite stress significantly increased glutamic-oxaloacetic transaminase (GOT) and alanine aminotransferase (ALT) activities after 6 h of exposure, decreased total protein (TP) and albumin (ALB) levels after 24 h and 48 h of exposure, respectively. In the gills, the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were enhanced to the maximum level at 12 h, 24 h and 24 h, respectively. The contents of malondialdehyde (MDA) and lipid peroxide (LPO) were increased significantly after 12 h and 24 h exposure, respectively. In addition, the expression levels of antioxidative-related genes, including hsp70, fer and mt, were significantly upregulated in the gills after 6 h of exposure. The results indicated that acute nitrite stress changed the serum physiological status, induced oxidative stress and caused damage to gill cells in P. clarkii.
Collapse
Affiliation(s)
- Qingsong Li
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China
| | - Yulin Liu
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China
| | - Shengxuan Li
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China
| | - Xiaoze Guo
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Science, Nanchang, Jiangxi, 330200, China
| | - Yunyin Fu
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China
| | - Naijuan He
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China
| | - Guoliang Ruan
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China
| | - Qian Wang
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China
| | - Weihua Gao
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China
| | - Liu Fang
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou, 434024, China.
| |
Collapse
|
24
|
Assessment of the Effect of Cold Atmospheric Plasma (CAP) on the Hairtail ( Trichiurus lepturus) Quality under Cold Storage Conditions. Foods 2022; 11:foods11223683. [PMID: 36429278 PMCID: PMC9689270 DOI: 10.3390/foods11223683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Cold Atmospheric Plasma (CAP) is a novel non-thermal preservation method that extends the shelf-life of food. Therefore, this study investigated the effect of CAP on the quality parameters of hairtail (Trichiurus lepturus) during cold storage conditions (at 4 °C and RH range 45−55%). For that reason, different quality parameters including the total bacteria count (TBC), total volatile basic nitrogen (TVB-N), pH, thiobarbituric acid reacting substances value (TBARS), color, texture, and sensory evaluation have been measured. The hairtail was exposed to CAP at 50 kV voltage for 2, 3, 4, and 5 min. The results showed that the samples treated with CAP at 50 kV for 5 min had significantly lower (p < 0.05) TBC (7.04 ± 0.26 log CFU/g) compared with the control sample (8.69 ± 0.06 log CFU/g). Similar results were found concerning TVB-N, which strongly decreased in the treated samples (16.63 ± 0.03 mg N/100 g) in comparison with the control sample (22.79 ± 0.03 mg N/100 g). In addition, the CAP-treated samples had lower (p < 0.05) changes in color than those of the control group. With reference to the sensory evaluation, the shelf-life of CAP-treated samples (at 50 kV for 5 min) was longer than the untreated samples by about 6 days. These results led us to the conclusion that CAP can effectively delay spoilage and deterioration, slow the rise in pH, and maintain the sensory attributes of hairtail during cold storage conditions.
Collapse
|
25
|
Rutkoski CF, Grott SC, Israel NG, Carneiro FE, de Campos Guerreiro F, Santos S, Horn PA, Trentini AA, Barbosa da Silva E, Coelho de Albuquerque CA, Alves TC, Alves de Almeida E. Hepatic and blood alterations in Lithobates catesbeianus tadpoles exposed to sulfamethoxazole and oxytetracycline. CHEMOSPHERE 2022; 307:136215. [PMID: 36041517 DOI: 10.1016/j.chemosphere.2022.136215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this study the effects of environmentally realistic concentrations of the antibiotics sulfamethoxazole (SMX) and oxytetracyclyne (OTC) on Lithobates catesbeianus tadpoles were evaluated, through the analyzes of the frequencies of micronucleus and nuclear abnormalities in erythrocytes, alterations in leucocytes, liver histopathology, and changes in hepatic esterase activities and oxidative stress biomarkers. The animals were exposed for 16 days at concentrations of 0 (control), 20, 90 and 460 ng L-1. No significant difference was found in the frequencies of micronucleus and nuclear abnormalities. The two highest concentrations of SMX and all concentrations of OTC caused a significant increase in the number of lymphocytes. A significant decrease in the number of neutrophils compared to the control group was observed for all concentrations tested of both antibiotics. Also, decrease in the activity of glutathione S-transferase and high histopathological severity scores, indicating liver damage, were found in tadpoles exposed to the two highest concentrations of SMX and all concentrations of OTC. The main changes in the liver histopathology were the presence of inflammatory infiltrate, melanomacrophages, vascular congestion, blood cells and eosinophils. Esterase activities were unchanged. Indeed, the two highest concentrations of OTC caused a reduction in the activities of superoxide dismutase and glucose 6-phosphate dehydrogenase, while the highest concentration inhibited the activity of glutathione peroxidase and increased protein carbonyl levels. These results evidences that environmentally realistic concentrations of SMX and OTC in aquatic environments are capable to significantly disrupt tadpoles' physiology, possibly affecting negatively their survival rate in natural environments.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Sabrina Santos
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Amanda Alves Trentini
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
26
|
Turhan DO, Güngördü A. Developmental, toxicological effects and recovery patterns in Xenopus laevis after exposure to penconazole-based fungicide during the metamorphosis process. CHEMOSPHERE 2022; 303:135302. [PMID: 35697111 DOI: 10.1016/j.chemosphere.2022.135302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Fungicides are a group of chemicals causing pollution of freshwater ecosystems due to their widespread use in agriculture. However, their endocrine disrupting effects are less studied than herbicides and insecticides. The aim of this study was to evaluate the developmental and toxicological effects and recovery patterns of penconazole-based fungicide (PBF) during Xenopus laevis metamorphosis. For this purpose, firstly, the 96 h median lethal (LC50) and effective (EC50) concentrations and minimum concentration to inhibit growth (MCIG) values of PBF were estimated for X. laevis as 4.97, 3.55 and 2.31 mg/L respectively, using Frog Embryo Teratogenesis Assay-Xenopus (FETAX) on Nieuwkoop-Faber (NF) stage 8 embryos. FETAX results showed PBF formulation was slightly teratogenic with a 1.4 teratogenic index; most recorded malformations were gut, abdominal edema, and tail curvature. The Subacute Amphibian Metamorphosis Assay (AMA) was modified based on acute FETAX results, and used to evaluate toxic effects and recovery patterns of relatively low PBF concentrations on metamorphosis using morphological and biochemical markers. NF Stage 51 tadpoles were exposed to two separate groups of each concentration for seven days in the AMA. Secondly, tadpoles of one group of each concentration continued to be exposed to PBF for the next 7 and 14 days while the other group was kept in a pesticide-free environment (depuration/recovery). Various morphological and biochemical markers were measured homogenate samples of tadpoles from exposure and recovery groups. Continuous exposure to relatively low PBF concentrations caused oxidative stress, toxic, and endocrine disrupting effects in the AMA, leading us to conclude that it has negative effects on frog health and development during the recovery period when PBF exposure is terminated. The glutathione S-transferase, glutathione reductase, catalase, carboxylesterase, and acetylcholinesterase activities were higher than the control group transferred to pesticide-free media for 14 days after the 7 days exposure and indicate persistent PBF impact.
Collapse
Affiliation(s)
- Duygu Ozhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44210, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44210, Malatya, Turkey.
| |
Collapse
|
27
|
Xu A, Han F, Zhang Y, Zhou T, Gao T. Comparative Transcriptomic Analyses Revealed the Effects of Poly (I:C) on the Liver and Spleen of Argyrosomus japonicus. Int J Mol Sci 2022; 23:ijms23179801. [PMID: 36077207 PMCID: PMC9455969 DOI: 10.3390/ijms23179801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Poly (I:C) can work as an immunostimulant and a viral vaccine; however, its functional mechanism in aquatic animals needs to be further investigated. In this study, comparative transcriptomic analyses were performed to investigate the effects of poly (I:C) on Argyrosomus japonicus at 12 h and 48 h postinjection. A total of 194 and 294 differentially expressed genes were obtained in the liver and spleen, respectively. At 12 h, poly (I:C) injection could significantly influence the function of the metabolism-related pathways and immune-related pathways in the liver through the upregulation of the genes GST, LPIN, FOXO1, CYP24A1, ECM1, and SGK1, and the downregulation of the genes IL-1β, CXC19, TNFAIP3, and IRF1. At 48 h, poly (I:C) could enhance the liver energy metabolism by upregulating the genes TXNRD and ECM1, while it also induced some injury in the cells with the downregulation of the genes HBA and CYP24A1. In the spleen, poly (I:C) could regulate the fish immunity and inflammatory response by upregulating the genes DDIT4, C3, EFNA, and MNK, and by downregulating the genes ABCA1, SORT1, TNF, TLR2, IL8, and MHCII at 12 h, and at 48 h, the poly (I:C) had a similar influence as that in the liver. Intersection analyses demonstrated that CYP24A1 and ECM1 were the main functional genes that contributed to the health of the liver. Ten and four genes participated in maintaining the health of the two tissues after 12 h and 48 h, respectively. In summary, our results provided a new insight into ploy (I:C) application in A. japonicus, and it also helped us to better understand the fish response mechanism to the viral vaccine injection.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fei Han
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yuan Zhang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Tao Zhou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: ; Tel.: +86-1-35-8707-2063
| |
Collapse
|
28
|
Naiel MA, Abd El-hameed SA, Arisha AH, Negm SS. Gum Arabic-enriched diet modulates growth, antioxidant defenses, innate immune response, intestinal microbiota and immune related genes expression in tilapia fish. AQUACULTURE 2022; 556:738249. [DOI: 10.1016/j.aquaculture.2022.738249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
29
|
Hamidi S, Banaee M, Pourkhabbaz HR, Sureda A, Khodadoust S, Pourkhabbaz AR. Effect of petroleum wastewater treated with gravity separation and magnetite nanoparticles adsorption methods on the blood biochemical response of mrigal fish (Cirrhinus cirrhosus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3718-3732. [PMID: 34389959 DOI: 10.1007/s11356-021-15106-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/21/2021] [Indexed: 04/16/2023]
Abstract
Drainage of treated wastewater to surface water is a severe threat to the health of aquatic organisms. This study aimed to evaluate the effects of 0.5 and 1% water-soluble fractions of crude oil (WSFO), WSFO treated with magnetic nanoparticles of Fe3O4 (TWSFO-Fe3O4) and with the gravity separation method (TWSFO-GSM) on Cirrhinus cirrhosis for 21 days. The rate of erythrocyte hemolysis in fish exposed to untreated 0.5 and 1% WSFO were significantly high. The activities of alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP) were significantly increased in the groups exposed to TWSFO-GSM compared to the control group, while lactate dehydrogenase (LDH) was reduced. No significant differences in LDH, ALT, ALP, and GGT activities were observed in the fish treated with TWSFO-Fe3O4. The aspartate aminotransferase activity was significantly increased after exposure to TWSFO-Fe3O4 (1%) and TWSFO-GSM. The levels of triglyceride were decreased, whereas glucose, cholesterol, and cholinesterase activity increased in fish after both treatments. The total protein and albumin contents significantly decreased in fish under exposure to both doses of TWSFO-Fe3O4 and TWSFO-GSM. The globulin level decreased in fish exposed to TWSFO-Fe3O4 (1%) and TWSFO-GSM. Glutathione peroxidase, catalase, glucose-6-phosphate dehydrogenase activities, and total antioxidant levels were significantly reduced in the hepatocytes of fish exposed to TWSFO-Fe3O4, TWSFO-GSM, and WSFO, while superoxide dismutase activity and malondialdehyde content were increased. This study showed that despite removing oil drips from the WSFO, the xenobiotics present in the effluent treated by gravitational or nano-magnetite methods caused changes in biochemical parameters and induced oxidative stress. Therefore, it is recommended to prevent the discharge of treated effluent from the oil and petrochemical industries to aquatic ecosystems.
Collapse
Affiliation(s)
- Sakineh Hamidi
- Environmental Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Hamid Reza Pourkhabbaz
- Environmental Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, the Balearic Islands Health Research Institute (IdISBa), and CIBEROBN Physiopathology of Obesity and Nutrition, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Saeid Khodadoust
- Chemistry Department, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Ali Reza Pourkhabbaz
- Department of Environmental Sciences, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
30
|
Cañizares-Martínez MA, Quintanilla-Mena M, Del-Río-García M, Rivas-Reyes I, Patiño-Suárez MV, Vidal-Martínez VM, Aguirre-Macedo ML, Puch-Hau CA. Acute Exposure to Crude Oil Induces Epigenetic, Transcriptional and Metabolic Changes in Juvenile Sciaenops ocellatus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:85-92. [PMID: 33914098 DOI: 10.1007/s00128-021-03241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
In this study, we report molecular and metabolic responses of Sciaenops ocellatus during an acute oil exposure bioassay (100, 800 and 8000 mg 1-1 of crude oil). The global DNA methylation and expression profiles of key genes of the xenobiotic biotransformation system (cytochrome P450 1A [cyp1a] and glutathione S-tranferase [gst]), oxidative stress system (glutathione peroxidase [gpx], catalase [cat], aldehyde dehydrogenase [aldh]) and reproductive system (vitellogenin [vtg]) were evaluated. At the metabolic level, we evaluated the concentration of four polycyclic aromatic hydrocarbon (PAH) metabolites -hydroxybenzo[a]pyrene, hydroxypyrene, hydroxynaphthalene and hydroxyphenanthrene- in fish bile. The results of this study revealed that fish exposed to crude oil exhibited hypomethylation of DNA, up-regulation of cyp1a and gst and down-regulation of gpx, cat, aldh and vtg and high concentrations of PAH metabolites with respect to the control.
Collapse
Affiliation(s)
- Mayra A Cañizares-Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Mercedes Quintanilla-Mena
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Marcela Del-Río-García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Isajav Rivas-Reyes
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - María V Patiño-Suárez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Victor M Vidal-Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - M Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Carlos A Puch-Hau
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
31
|
Hossain Z, Hossain MS, Ema NS, Omri A. Heavy metal toxicity in Buriganga river alters the immunology of Nile tilapia ( Oreochromis niloticus L). Heliyon 2021; 7:e08285. [PMID: 34765796 PMCID: PMC8571707 DOI: 10.1016/j.heliyon.2021.e08285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023] Open
Abstract
The objective of the current study was to evaluate the biochemical and immunological responses of tilapia, Oreochromis niloticus due to heavy metals pollution. Histomorphological alterations in the liver and kidney suggested tissue damages due to this polluted water exposure. The brain acetylcholinesterase (AChE) as an indicator of neurotoxicity was significantly (P < 0.01) decreased after 10 days exposure of fish to heavy metal contained river water, while plasma glutamate oxalacetate transaminase and plasma glutamate pyruvate transaminase were significantly increased (P < 0.01). Moreover, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase enzyme activities, as well as reduced glutathione and malondialdehyde levels were significantly increased in heavy metals contained river water treated fish compared to the control. Additionally, glucose level and blood serum Ca2+ concentrations were significantly (P < 0.01) decreased in fish exposed to heavy metal contained river water compared to the control. Hematological indices such as Hemoglobin, RBC, WBC, MCV etc. of polluted river water treated fish were significantly (P < 0.01) different in comparison to that of control fish. The cytokines i.e. IL-1β, IL-6, and TNF-α level were significantly (P < 0.01) increased in the fish exposed to heavy metals contained river water in comparison to that of control fish. The present findings explored the detrimental effects of heavy metal contained river water on fish at biochemical and immunological levels.
Collapse
Affiliation(s)
- Zakir Hossain
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Saddam Hossain
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Noore Safa Ema
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, P3E 2C6, Ontario, Canada
| |
Collapse
|
32
|
Koroglu OF, Gunata M, Vardi N, Yildiz A, Ates B, Colak C, Tanriverdi LH, Parlakpinar H. Protective effects of naringin on valproic acid-induced hepatotoxicity in rats. Tissue Cell 2021; 72:101526. [PMID: 33756270 DOI: 10.1016/j.tice.2021.101526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA) is mainly prescribed to treat epilepsy. VPA has been reported to be associated with many adverse effects, including hepatotoxicity. Naringin (NRG) is a natural, therapeutically active flavanone glycoside with anti-inflammatory, anti-apoptotic, and antioxidant. The current study was therefore designed to investigate the protective effect of NRG against the VPA-induced experimental hepatotoxicity model. For this purpose, 24 Wistar albino rats were randomly divided into three groups as control (Vehicle), VPA (500 mg/kg), and NRG + VPA (100 mg/kg NRG + 500 mg/kg VPA) groups. The agents were administered via oral gavage for 14 days. Blood and liver tissue samples were taken on the end of the experiment. Biochemical analyzes were performed on the blood and liver samples. Also, malondialdehyde (MDA), superoxide dismutase (SOD) enzyme, glutathione (GSH) content, catalase (CAT) enzyme levels were examined in the liver tissue samples. Histopathological changes (hydropic degeneration and congestion) in the VPA group were increased significantly when compared to the control group (p < 0.05). We also found a decrease in enzymes of serum liver function in the VPA group. However, NRG has been shown not to prevent histopathological changes in the VPA group. According to our results with this experiment protocol, NRG could not exert sufficient protection against VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Omer Faruk Koroglu
- Medical Student, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Azibe Yildiz
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science and Arts, İnonu University, Malatya, 44280, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Lokman Hekim Tanriverdi
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey.
| |
Collapse
|
33
|
Almeida ÉC, Passos LS, Vieira CED, Acayaba RD, Montagner CC, Pinto E, Martinez CBDR, Fonseca AL. Can the insecticide Imidacloprid affect the health of the Neotropical freshwater fish Astyanax altiparanae (Teleostei: Characidae)? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103634. [PMID: 33741518 DOI: 10.1016/j.etap.2021.103634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Female juveniles of the Neotropical fish Astyanax altiparanae were exposed for 96 h to four treatments containing the active ingredient from Imidacloprid® commercial formulation (IMI 1, IMI 2, IMI 3, and IMI 4) and to a control treatment (only dechlorinated tap water). Glutathione content, glutathione S-transferase activity, lipid peroxidation (LPO) and protein carbonylation levels, acetylcholinesterase (AChE) activity, and frequency of micronuclei and erythrocyte nuclear abnormalities (ENA) were measured in the fish. The muscle and gills were the most affected organs; their antioxidant defense was not enough to prevent oxidative damage (LPO) in the IMI 2 and IMI 4 treatment fish. IMI also inhibited AChE activity in the muscle (IMI 3 and IMI 4) and increased ENA frequency (IMI 4). IMI can affect the health of A. altiparanae in environmentally relevant concentrations, causing oxidative damage in different organs, neurotoxic effects in the muscle, and genotoxicity.
Collapse
Affiliation(s)
- Éryka Costa Almeida
- Natural Resources Institute, Federal University of Itajubá, Av. BPS, Pinheirinho, Itajubá, MG, CEP 37500-903, Brazil; Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bl. 17, São Paulo, SP, CEP 05508-900, Brazil.
| | - Larissa Souza Passos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bl. 17, São Paulo, SP, CEP 05508-900, Brazil.
| | - Carlos Eduardo Delfino Vieira
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Londrina, PR, CEP 86057-970, Brazil.
| | - Raphael Danna Acayaba
- Environmental Chemistry Laboratory, Institute of Chemistry, State University of Campinas. Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, CEP 13083-970, Brazil.
| | - Cassiana Carolina Montagner
- Environmental Chemistry Laboratory, Institute of Chemistry, State University of Campinas. Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, CEP 13083-970, Brazil.
| | - Ernani Pinto
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bl. 17, São Paulo, SP, CEP 05508-900, Brazil.
| | - Claudia Bueno Dos Reis Martinez
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Londrina, PR, CEP 86057-970, Brazil.
| | - Ana Lúcia Fonseca
- Natural Resources Institute, Federal University of Itajubá, Av. BPS, Pinheirinho, Itajubá, MG, CEP 37500-903, Brazil.
| |
Collapse
|
34
|
Rutkoski CF, Macagnan N, Folador A, Skovronski VJ, do Amaral AMB, Leitemperger J, Costa MD, Hartmann PA, Müller C, Loro VL, Hartmann MT. Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide chlorpyrifos. CHEMOSPHERE 2020; 250:126162. [PMID: 32092566 DOI: 10.1016/j.chemosphere.2020.126162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Organophosphate insecticides such as chlorpyrifos are commonly detected in surface waters around the world, where they are highly toxic to many organisms. The frog Physalaemus gracilis uses water sources located in open fields as reproductive sites, where it is exposed to insecticides. The study aimed to evaluate the lethal and sublethal effect of a commercial chlorpyrifos formulation on P. gracilis tadpoles (Anura: Leptodactylidae). In acute toxicity tests, five chlorpyrifos concentrations between 750 and 2,000 μg L-1 were tested. Chronic toxicity, swimming activity, morphological and enzymatic changes, as well as levels of non-protein thiols (NPSH), carbonyl proteins and lipid peroxidation were evaluated at five insecticide concentrations between 11 and 500 μg L-1. The highest mortality rate of P. gracilis tadpoles occurred at 24 and 48 h, with an LC50 of 893.59 μg L-1. At all chlorpyrifos concentrations, tadpoles displayed reduced mobility and spasms. Morphological anomalies were observed in the mouth and intestine, especially at the highest concentrations used. Acetylcholinesterase activity decreased at 250 and 500 μg L-1, catalase activity increased at all concentrations, and superoxide dismutase and glutathione S-transferase increased from 90 μg L-1 to 30 μg L-1, respectively. We also observed increases in NPSH levels at chlorpyrifos concentration starting at 30 μg L-1 and increases in carbonyl proteins from 90 μg L-1 of pesticide. Taken together, these data suggest that the insecticide chlorpyrifos presents acute and chronic risks for P. gracilis, causing neurotoxic effects and oxidative damage, culminating in high risk for this species.
Collapse
Affiliation(s)
- Camila F Rutkoski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, No 200, 99700-000, Erechim, RS, Brazil.
| | - Natani Macagnan
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, No 200, 99700-000, Erechim, RS, Brazil.
| | - Alexandre Folador
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, No 200, 99700-000, Erechim, RS, Brazil.
| | - Vrandrieli J Skovronski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, No 200, 99700-000, Erechim, RS, Brazil.
| | - Aline M B do Amaral
- Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Camobi Campus, Av Roraima, No 1423, 97105-340, Camobi, RS, Brazil.
| | - Jossiele Leitemperger
- Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Camobi Campus, Av Roraima, No 1423, 97105-340, Camobi, RS, Brazil.
| | - Maiara D Costa
- Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Camobi Campus, Av Roraima, No 1423, 97105-340, Camobi, RS, Brazil.
| | - Paulo A Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, No 200, 99700-000, Erechim, RS, Brazil.
| | - Caroline Müller
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, No 200, 99700-000, Erechim, RS, Brazil.
| | - Vania L Loro
- Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Camobi Campus, Av Roraima, No 1423, 97105-340, Camobi, RS, Brazil.
| | - Marilia T Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, No 200, 99700-000, Erechim, RS, Brazil.
| |
Collapse
|