1
|
Li Q, Chang Y, Lu J, Wu J, Feng L, Shen G, Feng J. Identification of nutritional characteristics of Haliotis discus hannai in different China sea areas and health risks of heavy metal accumulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3504-3516. [PMID: 39927407 DOI: 10.1002/jsfa.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/22/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND The nutritional compositions of abalones (Haliotis discus hannai) vary with geographical origins and environmental factors. Traceability is an important part of food safety, and the heavy metals in the aquatic environment pose a threat to living organisms. Therefore, we present a comparative analysis of the nutrient and heavy metal content in abalones from three different sea areas in China: the Bohai Sea, East China Sea, and South China Sea. This study uniquely addresses the correlation between nutrient composition and heavy metal accumulation. By employing weighted gene co-expression network analysis, we reveal the biological implications of heavy metal exposure, specifically focusing on chromium, copper (Cu), manganese, zinc, arsenic (As), cadmium, and lead. RESULTS Betaine, glycine, and glycogen appeared in three comparisons. The abalone in the East China Sea had the highest content of betaine, and the abalone in the South China Sea had the highest contents of glycine and glycogen. Among the measured metals, the heavy metals accumulated in the viscera were significantly higher than that in the muscle, except Cu, and As showed a high target hazard quotient and carcinogenic risk. CONCLUSION Betaine, glycine, and glycogen might be important indicators for origin traceability of abalone. Abalones from the South China Sea provide higher nutritional value. Cu had different accumulation patterns and As showed high health risks, and heavy metals brought oxidative stress to abalone. Our findings not only contribute to the understanding of abalone safety and quality but also provide a novel approach to assessing impact of heavy metals on marine food sources. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resource Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Liubin Feng
- College of Chemistry and Chemical Engineering, High-Field NMR Center, Xiamen University, Xiamen, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Muñoz-Fariña O, Roman-Benn A, Lopez-Joven C, González-Pérez de Medina L, Ravanal MC. Seasonal Variations in Heavy Metal Concentrations in Mussels ( Mytilus chilensis) from Southern Chile: Health Risk Implications Associated with Their Consumption. Foods 2025; 14:916. [PMID: 40231905 PMCID: PMC11941752 DOI: 10.3390/foods14060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025] Open
Abstract
Mytilus chilensis is considered an important food source for the Chilean population and represents a considerable fraction of its aquacultural production, mainly in southern Chile's coastal regions. This study aimed to assess the concentrations of total arsenic (tAs), lead (Pb), and cadmium (Cd), their bioaccessibility, and associated health risks in M. chilensis from the Valdivia River Estuary (VRE) in the Los Ríos Region and the Reloncaví Fjord (RF) in the Los Lagos Region. The metal concentrations were quantified using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The concentrations of tAs, Cd, and Pb were 6682 ± 2018, 1592 ± 742, and 1208 ± 639 ng/g d.w., respectively. Variations in the metal concentrations were observed across areas, months, and sampling points but remained below national and international limits. No correlation was found between the metal concentrations and environmental parameters. The bioaccessibility percentages were tAs (68 ± 10%), Cd (45 ± 21%), and Pb (15 ± 4%). The tAs, Pb and Cd levels in M. chilensis from southern Chile do not represent a risk to human health.
Collapse
Affiliation(s)
- Ociel Muñoz-Fariña
- Food Science and Technology Institute (ICYTAL), Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| | | | - Carmen Lopez-Joven
- Institute of Veterinary Preventive Medicine, Faculty of Veterinary Sciences, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| | - Luisbel González-Pérez de Medina
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepción (UdeC), Concepción 4030000, Chile;
| | - María Cristina Ravanal
- Food Science and Technology Institute (ICYTAL), Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| |
Collapse
|
3
|
Zhao S, Su Q, Huang L, Wang C, Ma J, Zhu L, Cheng Y, Yang X, Yang Y, Kang B. Assessment of potentially toxic element contamination in commercially harvested invertebrates from the Beibu Gulf, China. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106744. [PMID: 39288544 DOI: 10.1016/j.marenvres.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Marine pollutants, especially potentially toxic elements (PTEs), increasingly threaten the ecological environment and fishery resources of the Beibu Gulf due to their bioaccumulative nature, toxicity, and persistence. However, the occurrences of multiple PTEs in marine invertebrates within this region remains unclear. Hence, a total of 18 species of commercially harvested invertebrates (shrimp, crab, cephalopod, shellfish, and sea cucumber) were collected from the Beibu Gulf, and the concentrations of nine important PTEs (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) were examined. Subsequent stable isotope analysis for δ13C and δ15N facilitated investigations into biomagnification and human health risk assessment. The results showed that, except for As, the concentrations of the PTEs in the invertebrates were below the national safety limits. Furthermore, significant positive correlations were found between trophic levels (TLs) and log-transformed concentrations of As (P < 0.001, R2 = 0.20) and Cr (P < 0.001, R2 = 0.13), indicating biomagnification of these two metals across trophic positions among species. Finally, the human health risk assessment revealed that the consumption of cephalopod, shellfish, and sea cucumber poses a higher risk of adverse effects compared to shrimp and crab.
Collapse
Affiliation(s)
- Shuwen Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qiongyuan Su
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin, 541004, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liang Zhu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Yanan Cheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xi Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yiheng Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
4
|
Fu Y, Du H, Wang P, Yin N, Cai X, Geng Z, Li Y, Cui Y. Effects of foods and food components on the in vitro bioaccessibility of total arsenic and arsenic species from Hizikia fusiforme seaweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165775. [PMID: 37499825 DOI: 10.1016/j.scitotenv.2023.165775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Seaweed is an important food source, especially in many Asian countries, because of its high nutritional value; however, increasing arsenic (As) accumulation may pose serious hazards to human health. The influence of food components on As bioaccessibility and transformation in the high As-containing seaweed Hizikia fusiforme was determined using an in vitro gastrointestinal digestion method. The results showed that co-digestion with several daily foods (such as celery, broccoli, onion, green chili, tomato) produced a higher As bioaccessibility (approximately 6-11 % increase) compared with that of seaweed alone. Vegetables such as fennel (Foeniculum valgare Mill.), celery (Apium grareolens L.), blanched garlic leaves (Allium sativum L.), scallions (Allium fistulosum L.), ginger (Zingiber officinale Rosc.), and green pepper (Capsicum frutescens L. vat. grussum Bailey) decreased bioaccessible inorganic As (18-35 %) in both the gastric and small intestinal phases. Meanwhile, the process of reducing As(V) to As(III) also occurred during co-digestion with some food matrices. Egg white and other animal proteins were the most effective reducing agents, transforming >70 % As(V) into As(III) in the solution system. These results may have important implications for health risk assessment via co-consumption. The present study provides the first evidence showing that the co-consumption of some vegetables and proteins leads to a higher toxicity of inorganic arsenic-containing food. In addition, the positive and negative effects of co-digestion on the bioaccessibility of essential metals (iron, manganese) compared to single digestion were evaluated in this study.
Collapse
Affiliation(s)
- Yaqi Fu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yanshan Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China.
| |
Collapse
|
5
|
Yu Z, Liu E, Lin Q, Zhang Q, Yuan H, Zhang E, Shen J. Integrating indices based on different chemical extractions and bioaccumulation in Bellamya aeruginosa to assess metal pollution and ecological risk in sediment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113853. [PMID: 35809396 DOI: 10.1016/j.ecoenv.2022.113853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/17/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Various indices based on metal chemical data are used to evaluate pollution and ecological risk, but the consistency of the assessment results is usually unsatisfactory, and it is unclear if the ecological risk from sediment metals is accurately represented in in situ zoobenthos. Herein, the pollution and ecological risk associated with As, Cd, Cr, Cu, Ni, Pb and Zn in the sediments of two adjacent lakes (Datun (DT) and Changqiao (CQ)) were comprehensively evaluated by integrating metal concentrations, chemical forms and bioaccumulation in Bellamya aeruginosa (B. aeruginosa). The metal concentrations and chemical compositions varied widely in the sediments. Over 50% of the Cd, Pb and Zn in the sediments was present in bioavailable forms, followed by 28% of Cu and less than 25% of As, Cr and Ni. According to the enrichment factor (EF) and concentration enrichment ratio (CER) assessments, Cr and Ni were natural in origin, while the other metals were at minor to extremely high pollution levels, with average EFs of 1.5-77.6 and CERs of 1.1-113.4. The pollution levels for Cd, Cu and Pb from the EF and CER assessments were similar, while those for As and Zn were higher according to CER than EF (p = 0.05), likely due to the baseline underestimation associated with the potential diagenetic remobilization of bioavailable metals. The ecological risk index (Er), sediment quality guidelines (SQGs) and risk assessment code (RAC) showed a high eco-risk for Cd, while no similar risk was found for the other metals. By integrating risk indices with the chemical forms and pollution levels of metals, we deduced high eco-risks for As and Pb and moderate eco-risks for Cu and Zn in DT Lake and moderate eco-risks for As, Pb and Zn in CQ Lake. The other metals in the sediments of the two lakes presented low eco-risks. No significant positive correlations (p = 0.05) between metal accumulation in B. aeruginosa and the indices of pollution and eco-risk were observed except for the case of As, implying that measuring the metal concentrations in B. aeruginosa would not accurately characterize the metal pollution and ecological risk of sediments.
Collapse
Affiliation(s)
- Zhenzhen Yu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China.
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinghui Zhang
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China
| | - Hezhong Yuan
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ji Shen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
6
|
Xiao J, Shi Y, Deng Y, Liu Y, Feng W, Liao M, Cao H. Incorporating Tenax into the in vitro method to improve the predictive capability of bioaccessibility of triazole fungicides in grape. Food Chem 2022; 396:133740. [PMID: 35878443 DOI: 10.1016/j.foodchem.2022.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/09/2022] [Accepted: 07/16/2022] [Indexed: 12/07/2022]
Abstract
In vitro bioaccessibility assays have been developed for high-throughput prediction of relative bioavailability (RBA). However, methods to reliably and efficiently assess pesticide residues remain limited, hindering the precise estimation of pesticide exposure risk. The inclusion of a sorption sink material to simulate intestinal sorption could be a promising approach to optimize in vitro bioaccessibility methods. The current study aimed to explore the feasibility of incorporating Tenax into the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) method for accurate evaluation of the bioaccessibility of triazole fungicides. The use of 1.0 g of Tenax enabled the valid trapping of triazole fungicides released from grape, resulting in a significant increase of 23.59-38.51 % in the value of bioaccessibility. A strong in vivo-in vitro correlation was observed between pesticide RBA and bioaccessibility, suggesting that the Tenax-assisted RIVM method is a suitable replacement for time-consuming and laborious in vivo alternatives. In addition, the exposure assessment indicated that the hazard quotients for triazole fungicides in grape may be overestimated by 5.79-27.34 % without considering bioaccessibility based on the Tenax-assisted RIVM method. These results provide further insights into the assessment of bioaccessibility-based human exposure to pesticides as well as dietary exposure and related risk for human health.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yajing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Wenzhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
7
|
Li Q, Lu J, Chang Y, Shen G, Feng J. Effect of different cooking methods on nutritional intake and different storage treatments on nutritional losses of abalone. Food Chem 2022; 377:132047. [PMID: 35008016 DOI: 10.1016/j.foodchem.2022.132047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 01/01/2022] [Indexed: 11/26/2022]
Abstract
As the most important marine edible shellfish, the nutritional quality of abalone has been paid attention. In this study, the chemical and nutritional compositions of abalones were obtained, and three cooking methods, steaming, boiling and frying, were evaluated by in vitro gastric digestion simulation to understand their nutritional changes by 1H NMR spectroscopy combined with multivariate statistical analyses. The nutritional losses were also monitored under different cold storage conditions. The results indicated that boiling can keep more amino acids and fatty acids than steaming and frying, thus being recommended as the best cooking method of abalone. The abalone could maintain fresh within one day under 4 °C, and the deterioration process occurred subsequently. These results help to understand the digestion of cooked abalone and the changes of nutrients through storage and cooking process, leading to a scientific recommendation of cooking method and storage condition for healthy eating.
Collapse
Affiliation(s)
- Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resource Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
8
|
Guo J, Zhang Y, Liu W, Zhao J, Yu S, Jia H, Zhang C, Li Y. Incorporating in vitro bioaccessibility into human health risk assessment of heavy metals and metalloid (As) in soil and pak choi (Brassica chinensis L.) from greenhouse vegetable production fields in a megacity in Northwest China. Food Chem 2022; 373:131488. [PMID: 34768107 DOI: 10.1016/j.foodchem.2021.131488] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023]
Abstract
The rapid development of greenhouse vegetable production (GVP) in densely populated areas may cause the heavy metal/metalloid accumulation in soil and pose a threat to human health. In this study, 180 pairs of topsoil and pak choi (Brassica chinensis L.) samples were collected from GVP fields in Xi'an city in Northwest China to analyze health risks of Cd, Cr, Pb, and As in soil and pak choi combining in vitro bioaccessibility investigation. The results showed that Cd and Cr were common pollutants in both soil and pak choi. In the soil-pak choi system, the indexes of non-carcinogenic and carcinogenic risk for adults and children were 1.53, 2.68, and 1.37 × 10-4, 8.14 × 10-5, respectively, thereby indicating the presence of heavy metal/metalloid health risks for both groups. Based on the results, procedures to mitigate heavy metal/metalloid contamination risks should be discussed more during the development of GVP in the largest city in Northwest China.
Collapse
Affiliation(s)
- Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yi Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Wenjian Liu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Jin Zhao
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Shenghui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
9
|
Lin C, Ping M, Zhang X, Wang X, Chen L, Wu Y, Fu F. In vitro bio-accessibility and distribution characteristic of each arsenic species in different fishes and shellfishes/shrimps collected from Fujian of China. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126660. [PMID: 34329088 DOI: 10.1016/j.jhazmat.2021.126660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
It is very important to consider the bio-accessibilities and concentrations of each arsenic species, not total arsenic, in seafood in order to accurately assess internal exposure level and health risk of arsenic from seafood. Herein, the concentrations and in vitro bio-accessibilities of each arsenic species in various fishes and shellfishes/shrimps were extensively investigated. Experimental results showed that arsenic species and contents in shellfishes/fishes remarkably varied with the difference of fish/shellfish species or individuals and sampling area, and arsenobetaine (AsB) is dominant arsenic species for fishes and shellfishes/shrimps. Different arsenic species in the same fish/shellfish have quite different bio-accessibilities, and the bio-accessibilities of each arsenic species also varied with fish/shellfish species or individuals. As3+ in fishes/shellfishes was partly oxidized to form As5+ during gastrointestinal digestion, and thus it is more reasonable and practicable to evaluate the bio-accessibilities of inorganic arsenic (iAs, total As3+ and As5+), not individual As3+ and As5+. Fishes and shellfishes/shrimps have similar bio-accessibilities of iAs, AsB and total arsenic, whereas have different bio-accessibilities of MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), and two un-identified arsenic (Ui-As1 and Ui-As2). The results of this study provided a valuable knowledge for accurately assessing the health risk of arsenic in seafood.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Meiling Ping
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xu Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xusheng Wang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lian Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
10
|
Fu Y, Yin N, Cai X, Du H, Wang P, Sultana MS, Sun G, Cui Y. Arsenic speciation and bioaccessibility in raw and cooked seafood: Influence of seafood species and gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116958. [PMID: 33774548 DOI: 10.1016/j.envpol.2021.116958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Seafood is an important source of arsenic (As) exposure for humans. In this study, 34 seafood samples (fishes, shellfishes, and seaweeds) collected from different markets in China were analysed for total and speciated As before and after boiling. Furthermore, the As bioaccessibility was also assessed using a physiologically based extraction test combined with the Simulator of Human Intestinal Microbial Ecosystems. The results showed that the total As (tAs) contents of seaweeds (raw: 44.12; boiled: 31.13, μg·g-1 dw) were higher than those of shellfishes (raw: 8.34; boiled: 5.14, μg·g-1 dw) and fishes (raw: 6.01; boiled: 3.25, μg·g-1 dw). Boiling significantly decreased the As content by 22.24% for seaweeds, 32.27% for shellfishes, and 41.42% in fishes, respectively (p < 0.05). During in vitro digestion, the bioaccessibility of tAs and arsenobetaine (AsB) significantly varied between the investigated species of seafood samples in gastric (G) and small intestinal phases (I) (p < 0.05). Higher tAs bioaccessibility (G: 68.6%, I: 81.9%) were obtained in fishes than shellfishes (G: 40.9%, I: 52.5%) and seaweeds (G: 31%, I: 53.6%). However, there was no significant differences in colonic phase (C) (p > 0.05). With the effect of gut microbiota, arsenate (AsⅤ) was transformed into monomethylarsonic acid (MMA) and arsenite (AsⅢ) in C. Moreover, as for seaweeds, an unknown As compound was produced.
Collapse
Affiliation(s)
- Yaqi Fu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Mst Sharmin Sultana
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Guoxin Sun
- Research Center for Eco-environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Science, Beijing, 100085, China.
| |
Collapse
|