1
|
Dai C, Hao Z, Liu D, Wang Z, Conti GO, Velkov T, Shen J. Deoxynivalenol exposure-related male reproductive toxicity in mammals: Molecular mechanisms, detoxification and future directions. ENVIRONMENT INTERNATIONAL 2025; 199:109478. [PMID: 40252554 DOI: 10.1016/j.envint.2025.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
An increasing body of evidence indicates that exposure to widespread, environmental and food contaminants such as mycotoxins may cause endocrine disorders and infertility. Deoxynivalenol (DON), which is a toxic secondary metabolite produced by Fusarium fungi, can lead to multiple harmful effects in humans and animals, such as hepatotoxicity, nephrotoxicity, immunotoxicity, gastrointestinal toxicity, neurotoxicity, genetic toxicity and carcinogenicity. Recently, there has been growing concern about DON-induced male infertility. Exposure to DON and its metabolites can damage the structure and function of male reproductive organs, resulting in impairment of gametogenesis and thus impaired fertility. Potential molecular mechanisms involve oxidative stress, inflammatory response, mitochondrial dysfunction, apoptosis, cell cycle arrest, pyroptosis, and ferroptosis. Moreover, several signaling pathways, including nuclear factor-kappa B, mitogen-activated protein kinase, NLR family pyrin domain containing 3, nuclear factor erythroid 2-related factor 2, AMP-activated protein kinase, mitochondrial apoptotic pathways, and microRNAs are involved in these detrimental biological processes. Research has shown that several antioxidants, small-molecule inhibitors, or proteins (such as lactoferrin) supplementation can potentially offer protective effects by targeting these signaling pathways. This review comprehensively summarizes the harmful effects of DON exposure on male reproductive function in mammals, the underlying molecular mechanisms and emphasizes the potential of several small molecules as protective therapeutics. In the further, the systematic risk assessment when DON at environmental exposure doses to human reproductive health, the in-depth and precise molecular mechanism investigation using emerging technologies, and the development of more effective intervention strategies warrant urgent investigation.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Victoria 3800, Australia
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
2
|
Cui Y, Okyere SK, Guan H, Hua Z, Deng Y, Deng H, Deng J. Ablation of Gut Microbiota Alleviates DON-Induced Neurobehavioral Abnormalities and Brain Damage in Mice. Toxins (Basel) 2025; 17:144. [PMID: 40137917 PMCID: PMC11946315 DOI: 10.3390/toxins17030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Deoxynivalenol (DON) poses a threat to animal and human health, particularly causing damage to the nervous system. Intestinal flora can regulate the nervous system through the gut-brain axis; however, there is currently a lack of evidence on the effect of changing the intestinal flora on the damage to the nervous system caused by DON. Therefore, this study aims to investigate the effect of gut microbiota ablation on neurotoxicity induced by exposure to deoxynivalenol. METHODS One hundred-twenty (120) specific pathogen-free (SPF) male C57BL/6j mice were randomly divided into four groups (control group, microbiota-uncleaned group + 5 mg/kg/BW DON, microbiota-cleared group, and microbiota-cleared group + 5 mg/kg/BW DON). The open field and Morris behavior tests were used to evaluate behavior changes after DON exposure. After 14 days of treatment, the mice were euthanized and brain tissues were collected for further analysis. RESULTS The tests showed that DON exposure led to anxiety and decreased learning ability in mice with no gut microbiota ablation. We also observed pathological changes including neuronal shrinkage, degeneration, and cortical edema in the mice with no microbiota ablation after DON exposure. In addition, the protein and mRNA levels of tight junction proteins and anti-inflammatory factors were decreased in the mice with no microbiota ablation after DON exposure compared with mice with ablated microbiota. CONCLUSIONS We concluded that the presence of microbiota plays a key role in the neurotoxicity induced by DON; thus, ablation of the intestinal microbiota can effectively improve brain damage caused by DON.
Collapse
Affiliation(s)
- Yujing Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Haoyue Guan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Zixuan Hua
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Youtian Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Huidan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| |
Collapse
|
3
|
Kuć-Szymanek A, Kubik-Machura D, Kościelecka K, Męcik-Kronenberg T, Radko L. Neurotoxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection. Toxins (Basel) 2025; 17:24. [PMID: 39852977 PMCID: PMC11769516 DOI: 10.3390/toxins17010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common Fusarium mycotoxins with neurological diseases. Articles from 2001 to 2024 were analyzed. The mechanisms underlying the neurotoxicity of the described mycotoxins were presented. They are mainly related to the increase in oxidative stress in neuronal cells, which leads to higher levels of pro-inflammatory cytokines as IL-1β, IL-6 and TNF-α, enzymatic activity as GST, GPx, CAT and SOD and neurotransmitter dysfunction (5-HT, serotonin, dopamine and GABA). At the end of the article, based on the literature data, we attempted to present ways to mitigate mycotoxin neurotoxicity using mainly natural substances of plant origin. The data in this review focus on the Fusarium mycotoxins most frequently found in food and will be useful as comparative information for future studies. It is important to conduct further studies to mitigate the neurotoxic effects of Fusarium mycotoxins in order to reduce the development of diseases of the nervous system.
Collapse
Affiliation(s)
- Aleksandra Kuć-Szymanek
- Faculty of Medical and Health Sciences, University in Siedlce, Stanisława Konarskiego St. 2, 08-110 Siedlce, Poland;
| | - Daria Kubik-Machura
- Provincial Specialist Hospital No. 5 St. Barbara in Sosnowiec, Trauma Center, Plac Medyków St. 1, 41-200 Sosnowiec, Poland;
| | | | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland;
- Collegium Medicum im. Dr. Władysław Biegański, Jan Długosz University, Wahington St. 4/8, 42-200 Czestochowa, Poland
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland
| |
Collapse
|
4
|
Mishra S, Kapoor R, Sushma, Kanchan S, Jha G, Sharma D, Tomar B, Rath SK. Deoxynivalenol Induces Drp-1-Mediated Mitochondrial Dysfunction via Elevating Oxidative Stress. Chem Res Toxicol 2024; 37:1139-1154. [PMID: 38875017 DOI: 10.1021/acs.chemrestox.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Mitochondrial dysfunction is often linked to neurotoxicity and neurological diseases and stems from oxidative stress, yet effective therapies are lacking. Deoxynivalenol (DON or vomitoxin) is one of the most common and hazardous type-B trichothecene mycotoxins, which contaminates crops used for food and animal feed. Despite the abundance of preliminary reports, comprehensive investigations are scarce to explore the relationship between these fungal metabolites and neurodegenerative disorders. The present study aimed to elucidate the precise role of DON in mitochondrial dynamics and cell death in neuronal cells. Excessive mitochondrial fission is associated with the pathology of several neurodegenerative diseases. Human SH-SY5Y cells were treated with different concentrations of DON (250-1000 ng/mL). Post 24 and 48 h DON treatment, the indexes were measured as follows: generation of reactive oxygen species (ROS), ATP levels, mitochondrial membrane potential, calcium levels, and cytotoxicity in SH-SY5Y cells. The results showed that cytotoxicity, intracellular calcium levels, and ROS in the DON-treated group increased, while the ATP levels and mitochondrial membrane potential decreased in a dose-dependent manner. With increasing DON concentrations, the expression levels of P-Drp-1, mitochondrial fission proteins Mff, and Fis-1 were elevated with reduced activities of MFN1, MFN2, and OPA1, further resulting in an increased expression of autophagic marker LC3 and beclin-1. The reciprocal relationship between mitochondrial damage and ROS generation is evident as ROS can instigate structural and functional deficiencies within the mitochondria. Consequently, the impaired mitochondria facilitate the release of ROS, thereby intensifying the cycle of damage and exacerbating the overall process. Using specific hydroxyl, superoxide inhibitors, and calcium chelators, our study confirmed that ROS and Ca2+-mediated signaling pathways played essential roles in DON-induced Drp1 phosphorylation. Therefore, ROS and mitochondrial fission inhibitors could provide critical research tools for drug development in mycotoxin-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Radhika Kapoor
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sushma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sonam Kanchan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Gaurav Jha
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawna Tomar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
5
|
Sauvé B, Chorfi Y, Létourneau-Montminy MP, Guay F. Vitamin 25(OH)D 3, E, and C Supplementation Impact the Inflammatory and Antioxidant Responses in Piglets Fed a Deoxynivalenol-Contaminated Diet and Challenged with Lipopolysaccharides. Toxins (Basel) 2024; 16:297. [PMID: 39057937 PMCID: PMC11281576 DOI: 10.3390/toxins16070297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Using alternative ingredients or low-quality grain grades to reduce feeding costs for pig diets can introduce mycotoxins such as deoxynivalenol (DON) into feed, which is known to induce anorexia, inflammation, and oxidative stress. Adding vitamin 25(OH)D3 or vitamins E and C to the feed could increase piglets' immune system to alleviate the effects of DON. This study used 54 pigs (7.8 ± 0.14 kg) in 27 pens (2 pigs/pen) with a vitamin 25(OH)D3 or vitamin E-C supplementation, or their combination, in DON-contaminated (5.1 mg/kg) feed ingredients over 21 days followed by a lipopolysaccharide (LPS) challenge (20 µg/kg BW) 3 h prior to euthanasia for 1 piglet per pen. DON contamination induced anorexia, which reduced piglet growth. DON also induced immunomodulation, oxidative stress, and downregulated vitamin D status. The vitamin E and C supplementation and the combination of vitamins E, C, and 25(OH)D3 provided protection against DON contamination by not only decreasing blood and liver oxidative stress markers, but also by increasing antioxidant enzymes and tocopherol levels in blood, indicating improved antioxidant defense mechanisms. The combination of vitamins also restored the vitamin D status. After LPS challenge, DON contamination decreased intestinal and liver antioxidant statuses and increased inflammation markers. The addition of vitamins E and C to DON-contaminated feed reduced markers of inflammation and improved the antioxidant status after the LPS immune stimulation. The combination of all these vitamins also reduced the oxidative stress markers and the inflammation in the intestine and mesenteric lymph nodes, suggesting an anti-inflammatory effect.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, University of Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Xu P, Zhao Y, Feng Y, Zhao M, Zhao R. Deoxynivalenol induces m 6A-mediated upregulation of p21 and growth arrest of mouse hippocampal neuron cells in vitro. Cell Biol Toxicol 2024; 40:41. [PMID: 38833095 PMCID: PMC11150311 DOI: 10.1007/s10565-024-09872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Hippocampal neurons maintain the ability of proliferation throughout life to support neurogenesis. Deoxynivalenol (DON) is a mycotoxin that exhibits brain toxicity, yet whether and how DON affects hippocampal neurogenesis remains unknown. Here, we use mouse hippocampal neuron cells (HT-22) as a model to illustrate the effects of DON on neuron proliferation and to explore underlying mechanisms. DON exposure significantly inhibits the proliferation of HT-22 cells, which is associated with an up-regulation of cell cycle inhibitor p21 at both mRNA and protein levels. Global and site-specific m6A methylation levels on the 3'UTR of p21 mRNA are significantly increased in response to DON treatment, whereas inhibition of m6A hypermethylation significantly alleviates DON-induced cell cycle arrest. Further mechanistic studies indicate that the m6A readers YTHDF1 and IGF2BP1 are responsible for m6A-mediated increase in p21 mRNA stability. Meanwhile, 3'UTR of E3 ubiquitin ligase TRIM21 mRNA is also m6A hypermethylated, and another m6A reader YTHDF2 binds to the m6A sites, leading to decreased TRIM21 mRNA stability. Consequently, TRIM21 suppression impairs ubiquitin-mediated p21 protein degradation. Taken together, m6A-mediated upregulation of p21, at both post-transcriptional and post-translational levels, contributes to DON-induced inhibition of hippocampal neuron proliferation. These results may provide new insights for epigenetic therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Peirong Xu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yulan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mindie Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Yao F, Du Y, Tian S, Chang G, Zhang Y, Zhu R, Cai C, Shao S, Zhou T. Identification and characterization of Achromobacter spanius P-9 and elucidation of its deoxynivalenol-degrading potential. Arch Microbiol 2024; 206:178. [PMID: 38498224 DOI: 10.1007/s00203-024-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024]
Abstract
Deoxynivalenol (DON) poses significant challenges due to its frequent contamination of grains and associated products. Microbial strategies for mitigating DON toxicity showed application potential. Eight bacterial isolates with DON degradation activity over 5% were obtained from various samples of organic fertilizer in this study. One of the isolates emerged as a standout, demonstrating a substantial degradation capability, achieving a 99.21% reduction in DON levels. This isolate, underwent thorough morphological, biochemical, and molecular characterization to confirm its identity, and was identified as a new strain of Achromobacter spanius P-9. Subsequent evaluations revealed that the strain P-9 retains its degradation activity after a 24-h incubation, reaching optimal performance at 35 °C with a pH of 8.0. Further studies indicated that Ca2+ ions enhance the degradation process, whereas Zn2+ ions exert an inhibitory effect. This is the pioneering report of DON degradation by Achromobacter spanius, illuminating its prospective utility in addressing DON contamination challenges.
Collapse
Affiliation(s)
- Feng Yao
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yaowen Du
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Siyi Tian
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Guoli Chang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yanping Zhang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chenggang Cai
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| |
Collapse
|
8
|
Galvez-Llompart M, Zanni R, Manyes L, Meca G. Elucidating the mechanism of action of mycotoxins through machine learning-driven QSAR models: Focus on lipid peroxidation. Food Chem Toxicol 2023; 182:114120. [PMID: 37944785 DOI: 10.1016/j.fct.2023.114120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Understanding the mechanisms of mycotoxin toxicity is crucial for establishing effective guidelines and preventive strategies. In this study, machine learning models based on quantitative structure-activity relationship (QSAR) were employed to predict the lipid peroxidation activity of mycotoxins. Two different algorithms using Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANNs) have been trained using a dataset of 70 mycotoxins. The LDA model had an average correct classification rate of 91%, while the ANN model achieved a perfect 100% classification rate. Following an internal validation process, the models were utilized to predict mycotoxins with known lipid peroxidation activity. The machine learning models achieved an 88% correct classification rate for these mycotoxins. Finally, by utilizing classified algorithms, the study aimed to infer the mechanism of action related to lipid peroxidation for 91 unstudied mycotoxins. These models provide a fast, accurate, and cost-effective means to assess the potential toxicity and mechanism of action of mycotoxins. The findings of this study contribute to a comprehensive understanding of mycotoxin toxicology and assist researchers and toxicologists in evaluating health risks associated with mycotoxin exposure and developing appropriate preventive strategies and potential therapeutic interventions to mitigate the effects of mycotoxins.
Collapse
Affiliation(s)
- Maria Galvez-Llompart
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain; Department of Physical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - Riccardo Zanni
- Department of Physical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Lara Manyes
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Giuseppe Meca
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
9
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Sauvé B, Chorfi Y, Montminy MPL, Guay F. Vitamin D Supplementation Impacts Calcium and Phosphorus Metabolism in Piglets Fed a Diet Contaminated with Deoxynivalenol and Challenged with Lipopolysaccharides. Toxins (Basel) 2023; 15:394. [PMID: 37368695 DOI: 10.3390/toxins15060394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Using alternative feed ingredients in pig diets can lead to deoxynivalenol (DON) contamination. DON has been shown to induce anorexia, inflammation, and-more recently-alterations in the vitamin D, calcium, and phosphorus metabolisms. Adding vitamin D supplementation in the form of vitamin D3 and 25-OH-D3 to the feed could modify the effects of DON in piglets. In this study, vitamin D3 or 25-OH-D3 supplementation was used in a control or DON-contaminated treatment. A repetitive exposure over 21 days to DON in the piglets led to disruptions in the vitamin D, calcium, and phosphorus metabolisms, resulting in a decreased growth performance, increased bone mineralization, and the downregulation of genes related to calcium and to phosphorus intestinal and renal absorption. The DON challenge also decreased blood concentrations of 25-OH-D3, 1,25-(OH)2-D3, and phosphate. The DON contamination likely decreased the piglets' vitamin D status indirectly by modifying the calcium metabolism response. Vitamin D supplementations did not restore vitamin D status or bone mineralization. After a lipopolysaccharide-induced inflammatory stimulation, feeding a 25-OH-D3 supplementation increased 25-OH-D3 concentration and 1,25-(OH)2-D3 regulations during the DON challenge. DON contamination likely induced a Ca afflux by altering the intestinal barrier, which resulted in hypercalcemia and hypovitaminosis D. The vitamin D supplementation could increase the calcitriol production to face the combined LPS and DON challenge.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, Montreal University, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Zhao J, Hai S, Chen J, Ma L, Rahman SU, Zhao C, Feng S, Li Y, Wu J, Wang X. Zearalenone Induces Apoptosis in Porcine Endometrial Stromal Cells through JNK Signaling Pathway Based on Endoplasmic Reticulum Stress. Toxins (Basel) 2022; 14:toxins14110758. [PMID: 36356008 PMCID: PMC9694026 DOI: 10.3390/toxins14110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Zearalenone (ZEA) is an estrogen-like mycotoxin characterized mainly by reproductive toxicity, to which pigs are particularly sensitive. The aim of this study was to investigate the molecular mechanism of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) by activating the JNK signaling pathway through endoplasmic reticulum stress (ERS). In this study, ESCs were exposed to ZEA, with the ERS inhibitor sodium 4-Phenylbutyrate (4-PBA) as a reference. The results showed that ZEA could damage cell structures, induce endoplasmic reticulum swelling and fragmentation, and decreased the ratio of live cells to dead cells significantly. In addition, ZEA could increase reactive oxygen species and Ca2+ levels; upregulate the expression of GRP78, CHOP, PERK, ASK1 and JNK; activate JNK phosphorylation and its high expression in the nucleus; upregulate the expression Caspase 3 and Caspase 9; and increase the Bax/Bcl-2 ratio, resulting in increased apoptosis. After 3 h of 4-PBA-pretreatment, ZEA was added for mixed culture, which showed that the inhibition of ERS could reduce the cytotoxicity of ZEA toward ESCs. Compared with the ZEA group, ERS inhibition increased cell viability; downregulated the expression of GRP78, CHOP, PERK, ASK1 and JNK; and decreased the nuclear level of p-JNK. The Bax/Bcl-2 ratio and the expression of Caspase 3 and Caspase 9 were downregulated, significantly alleviating apoptosis. These results demonstrate that ZEA can alter the morphology of ESCs, destroy their ultrastructure, and activate the JNK signaling via the ERS pathway, leading to apoptosis.
Collapse
Affiliation(s)
- Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sirao Hai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiawen Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
- Correspondence:
| |
Collapse
|
12
|
Afsheen N, Rafique S, Rafeeq H, Irshad K, Hussain A, Huma Z, Kumar V, Bilal M, Aleya L, Iqbal HMN. Neurotoxic effects of environmental contaminants-measurements, mechanistic insight, and environmental relevance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70808-70821. [PMID: 36059010 DOI: 10.1007/s11356-022-22779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a significant and growing concern for any population regardless of age because these environmental contaminants exhibit different neurodegenerative effects on persons of different ages. These environmental contaminants are the products of human welfare projects like industry, automobile exhaust, clinical and research laboratory extrudes, and agricultural chemicals. These contaminants are found in various forms in environmental matrices like nanoparticles, particulate matter, lipophilic vaporized toxicants, and ultrafine particulate matter. Because of their small size, they can easily cross blood-brain barriers or use different cellular mechanisms for assistance. Other than this, these contaminants cause an innate immune response in different cells of the central nervous system and cause neurotoxicity. Considering the above critiques and current needs, this review summarizes different protective strategies based on bioactive compounds present in plants. Various bioactive compounds from medicinal plants with neuroprotective capacities are discussed with relevant examples. Many in vitro studies on clinical trials have shown promising outcomes using plant-based bioactive compounds against neurological disorders.
Collapse
Affiliation(s)
- Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Department of Pharmacy, Riphah International University, Faisalabad, 38000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zille Huma
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
13
|
Wan S, Sun N, Li H, Khan A, Zheng X, Sun Y, Fan R. Deoxynivalenol damages the intestinal barrier and biota of the broiler chickens. BMC Vet Res 2022; 18:311. [PMID: 35965338 PMCID: PMC9377127 DOI: 10.1186/s12917-022-03392-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background In the livestock feed industry, feed and feed raw materials are extremely susceptible to mycotoxin contamination. Deoxynivalenol (DON) is one of the main risk factors for mycotoxin contamination in broiler feed and feedstuff, however, there is still little knowledge about this. Hence, the purpose of this study was to explore the toxicity effect of DON on the intestinal barrier and the microecological balance of the biota in broiler chickens. Results In our present study, we compared the pathological scores of the small intestines of broilers on the 5th, 7th, and 10th day, and chose the 7th day to analyze the small intestine histomorphology, tight junctions, and cecal biota of the broilers. The results showed the damage to the small intestine worsened over time, the small intestinal villi of broilers were breakage, the tight junctions of the small intestine were destroyed, the cecal biota was unbalanced, and the growth performance of broilers was reduced on the 7th day. Conclusions DON could damage the functional and structural completeness of the intestinal tract, disorder the Intestinal biota, and finally lead to declined broiler performance. Our study provided a basis for the prevention and treatment of DON in broiler production. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03392-4.
Collapse
Affiliation(s)
- Shuangxiu Wan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,College of Pharmacy, Heze University, Heze, Shangdong, 274000, People's Republic of China
| | - Na Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hongquan Li
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ajab Khan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Yaogui Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
14
|
Fang M, Hu W, Liu B. Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022; 9:956814. [PMID: 35982930 PMCID: PMC9378959 DOI: 10.3389/fvets.2022.956814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
- *Correspondence: Manxin Fang
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
15
|
Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are fungi-produced secondary metabolites that can contaminate many foods eaten by humans and animals. Deoxynivalenol (DON), which is formed by Fusarium, is one of the most common occurring predominantly in cereal grains and thus poses a significant health risk. When DON is ingested, it can cause both acute and chronic toxicity. Acute signs include abdominal pain, anorexia, diarrhea, increased salivation, vomiting, and malaise. The most common effects of chronic DON exposure include changes in dietary efficacy, weight loss, and anorexia. This review provides a succinct overview of various sources, biosynthetic mechanisms, and genes governing DON production, along with its consequences on human and animal health. It also covers the effect of environmental factors on its production with potential detection, management, and control strategies.
Collapse
|
16
|
Pinto ACSM, De Pierri CR, Evangelista AG, Gomes ASDLPB, Luciano FB. Deoxynivalenol: Toxicology, Degradation by Bacteria, and Phylogenetic Analysis. Toxins (Basel) 2022; 14:toxins14020090. [PMID: 35202118 PMCID: PMC8876347 DOI: 10.3390/toxins14020090] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Deoxynivalenol (DON) is a toxic secondary metabolite produced by fungi that contaminates many crops, mainly wheat, maize, and barley. It affects animal health, causing intestinal barrier impairment and immunostimulatory effect in low doses and emesis, reduction in feed conversion rate, and immunosuppression in high doses. As it is very hard to completely avoid DON’s production in the field, mitigatory methods have been developed. Biodegradation has become a promising method as new microorganisms are studied and new enzymatic routes are described. Understanding the common root of bacteria with DON degradation capability and the relationship with their place of isolation may bring insights for more effective ways to find DON-degrading microorganisms. The purpose of this review is to bring an overview of the occurrence, regulation, metabolism, and toxicology of DON as addressed in recent publications focusing on animal production, as well as to explore the enzymatic routes described for DON’s degradation by microorganisms and the phylogenetic relationship among them.
Collapse
Affiliation(s)
- Anne Caroline Schoch Marques Pinto
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Camilla Reginatto De Pierri
- Graduate Program in Sciences—Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Paraná, 100 Coronel Francisco H. dos Santos Avenue, Jardim das Américas, Curitiba 81530-000, Brazil;
| | - Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Ana Silvia de Lara Pires Batista Gomes
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
- Correspondence:
| |
Collapse
|
17
|
Fæste CK, Solhaug A, Gaborit M, Pierre F, Massotte D. Neurotoxic Potential of Deoxynivalenol in Murine Brain Cell Lines and Primary Hippocampal Cultures. Toxins (Basel) 2022; 14:48. [PMID: 35051025 PMCID: PMC8778863 DOI: 10.3390/toxins14010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic exposure to the mycotoxin deoxynivalenol (DON) from grain-based food and feed affects human and animal health. Known consequences include entereopathogenic and immunotoxic defects; however, the neurotoxic potential of DON has only come into focus more recently due to the observation of behavioural disorders in exposed farm animals. DON can cross the blood-brain barrier and interfere with the homeostasis/functioning of the nervous system, but the underlying mechanisms of action remain elusive. Here, we have investigated the impact of DON on mouse astrocyte and microglia cell lines, as well as on primary hippocampal cultures by analysing different toxicological endpoints. We found that DON has an impact on the viability of both glial cell types, as shown by a significant decrease of metabolic activity, and a notable cytotoxic effect, which was stronger in the microglia. In astrocytes, DON caused a G1 phase arrest in the cell cycle and a decrease of cyclic-adenosine monophosphate (cAMP) levels. The pro-inflammatory cytokine tumour necrosis factor (TNF)-α was secreted in the microglia in response to DON exposure. Furthermore, the intermediate filaments of the astrocytic cytoskeleton were disturbed in primary hippocampal cultures, and the dendrite lengths of neurons were shortened. The combined results indicated DON's considerable potential to interfere with the brain cell physiology, which helps explain the observed in vivo neurotoxicological effects.
Collapse
Affiliation(s)
| | - Anita Solhaug
- Toxinology Research Group, Norwegian Veterinary Institute, 1433 Ås, Norway;
| | - Marion Gaborit
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (M.G.); (F.P.)
| | - Florian Pierre
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (M.G.); (F.P.)
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (M.G.); (F.P.)
| |
Collapse
|
18
|
Gacem MA, Abd-Elsalam KA. Nanomaterials for the Reduction of Mycotoxins in Cereals. CEREAL DISEASES: NANOBIOTECHNOLOGICAL APPROACHES FOR DIAGNOSIS AND MANAGEMENT 2022:371-406. [DOI: 10.1007/978-981-19-3120-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Li F, Huang L, Liu Q, Wang P, Chen H, Wang C. Different metabolites induced by deoxynivalenol in the serum and urine of weaned rabbits detected using LC-MS-based metabolomics. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109184. [PMID: 34500088 DOI: 10.1016/j.cbpc.2021.109184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
The main toxic effects of deoxynivalenol (DON) are the result of long-term accumulation, and there are no obvious clinical signs at the early stage. Specific metabolites in blood and urine can be used as biomarkers and become an important diagnostic indicator for DON poisoning monitoring. This study aimed to reveal the differences in DON-induced metabolites in the serum and urine of weaned rabbits. Thirty-two weaned rabbits were divided into two groups: control group and DON group. Both groups of rabbits were fed a basic diet. Rabbits in the DON group were administered 1.5 mg/kg b.w. DON by intraperitoneal injection on an empty stomach in the morning every two days. Rabbits in the control group were injected with the same amount of saline every two days in the same way. After the 25-day trial, serum and urine samples from different experimental periods were collected. The results based on the LC-MS/MS method showed that DON can be metabolized rapidly in blood, and urine is the main metabolic pathway for DON. Data based on metabolomics illustrated that underlying biomarkers in serum were mainly involved in glycerophospholipid metabolism, tryptophan metabolism and pentose and glucuronate interconversions, while those in urine samples were involved in caffeine metabolism, glycine, serine and threonine metabolism, and terpenoid backbone biosynthesis. Correlation analysis suggested that DON can induce changes in certain disease-related metabolites in serum and urine. In conclusion, the pathogenic mechanism of DON includes multiple levels, indicating that DON poisoning is caused by multiple factors acting on multiple links.
Collapse
Affiliation(s)
- Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Quancheng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Pengwei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongju Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chunyang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
20
|
Cao L, Zhao J, Ma L, Chen J, Xu J, Rahman SU, Feng S, Li Y, Wu J, Wang X. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112737. [PMID: 34482067 DOI: 10.1016/j.ecoenv.2021.112737] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) has an estrogenic effect and often causes reproductive damage. Pigs are particularly sensitive to it. Lycopene (LYC) is a type of fat-soluble natural carotenoid that has antioxidant, anti-inflammatory, anti-cancer, anti-cardiovascular and detoxifying effects. In this study, piglet sertoli cells (SCs) were used as research objects to investigate the mechanism of ZEA induced damage to piglet SCs and to evaluate the protective effect of LYC on ZEA induced toxic damage to piglet SCs. The results showed that ZEA damaged the cell structure and inhibited the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) in the nucleus, which down-regulated the relative mRNA expression of heme oxygenase 1 (HO-1) and glutathione peroxidase 1 (GPX1) and decreased the activity of HO-1, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD), resulting in an increase in malondialdehyde (MDA) and reactive oxygen species (ROS) content. ZEA downregulated the relative mRNA and protein expression of bcl-2 in piglet SCs, promoted cell apoptosis, and upregulated the relative mRNA and protein expression of LC3, beclin-1, and bax. After 3 h LYC-pretreatment, ZEA was added for mixed culture. The results of pretreatment with LYC showed that LYC could alleviate the cytotoxicity of ZEA to porlets SCs. Compared with ZEA group, improved the cell survival rate, promoted the expression of Nrf2 in the nucleus, upregulated the relative mRNA expression of HO-1 and GPX1, increased the activity of antioxidant enzymes, and reduced the levels of MDA and ROS. Moreover, after pretreatment with LYC, the mRNA expression of bcl-2 was upregulated, the apoptosis rate was decreased, the relative mRNA and protein expressions of LC3, beclin-1 and bax were downregulated, and autophagy was alleviated. In conclusion, LYC alleviated the oxidative damage of SCs caused by ZEA by promoting the expression of Nrf2 pathway and decreased autophagy and apoptosis.
Collapse
Affiliation(s)
- Li Cao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jiawen Chen
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jingru Xu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| |
Collapse
|
21
|
Zha A, Tu R, Cui Z, Qi M, Liao S, Wang J, Tan B, Liao P. Baicalin-Zinc Complex Alleviates Inflammatory Responses and Hormone Profiles by Microbiome in Deoxynivalenol Induced Piglets. Front Nutr 2021; 8:738281. [PMID: 34692749 PMCID: PMC8534294 DOI: 10.3389/fnut.2021.738281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the beneficial effect of baicalin–zinc complex (BZN) on intestinal microorganisms in deoxynivalenol (DON)-challenged piglets and the association between intestinal microorganisms and host immunity and hormone secretion. Forty weaned piglets were randomly divided into four treatments with 10 piglets in each treatment: (1) control (Con) group (pigs fed basal diet); (2) DON group (pigs fed 4 mg DON/kg basal diet); (3) BZN group (pigs fed 0.5% BZN basal diet); and (4) DBZN group (pigs fed 4 mg DON/kg and 0.5% BZN basal diet). The experiment lasted for 14 days. The BZN supplementation in DON-contaminated diets changed the intestinal microbiota composition and increased intestinal microbial richness and diversity of piglets. The BZN supplementation in DON-contaminated diets also alleviated the inflammatory responses of piglets and modulated the secretion of hormones related to the growth axis. Moreover, microbiota composition was associated with inflammatory and hormone secretion. In conclusion, BZN alleviated inflammatory response and hormone secretion in piglets, which is associated with the intestinal microbiome.
Collapse
Affiliation(s)
- Andong Zha
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiqi Tu
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Zhijuan Cui
- Department of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ming Qi
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Simeng Liao
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bie Tan
- Department of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peng Liao
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, China
| |
Collapse
|
22
|
Verma R, Hoda F, Arshad M, Iqubal A, Siddiqui AN, Khan MA, Haque SE, Akhtar M, Najmi AK. Cannabis, a Miracle Drug with Polyvalent Therapeutic Utility: Preclinical and Clinical-Based Evidence. Med Cannabis Cannabinoids 2021; 4:43-60. [PMID: 34676349 DOI: 10.1159/000515042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
Cannabis sativa L. is an annual herbaceous dioecious plant which was first cultivated by agricultural human societies in Asia. Over the period of time, various parts of the plant like leaf, flower, and seed were used for recreational as well as therapeutic purposes. The main chemical components of Cannabis sativa are termed as cannabinoids, among them the key psychoactive constituent is Δ-9-tetrahydrocannabinol and cannabidiol (CBD) as active nonpsychotic constituent. Upon doing extensive literature review, it was found that cannabis has been widely studied for a number of disorders. Very recently, a pure CBD formulation, named Epidiolex, got a green flag from both United States Food and Drug Administration and Drug Enforcement Administration for 2 rare types of epilepsies. This laid a milestone in medical cannabis research. This review intends to give a basic and extensive assessment, from past till present, of the ethnological, plant, chemical, pharmacological, and legal aspects of C. sativa. Further, this review contemplates the evidence the studies obtained of cannabis components on Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, multiple sclerosis, emesis, epilepsy, chronic pain, and cancer as a cytotoxic agent as well as a palliative therapy. The assessment in this study was done by reviewing in extensive details from studies on historical importance, ethnopharmacological aspects, and legal grounds of C. sativa from extensive literature available on the scientific databases, with a vision for elevating further pharmaceutical research to investigate its total potential as a therapeutic agent.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Farazul Hoda
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mawrah Arshad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
23
|
Annunziata L, Schirone M, Visciano P, Campana G, De Massis MR, Migliorati G. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in organic wheat flour under different storage conditions. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Loredana Annunziata
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale Unit of Bromatologia e Residui Via Campo Boario Teramo64100Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Via R. Balzarini 1 Teramo64100Italy
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Via R. Balzarini 1 Teramo64100Italy
| | - Guido Campana
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale Unit of Bromatologia e Residui Via Campo Boario Teramo64100Italy
| | - Maria Rosaria De Massis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale Unit of Bromatologia e Residui Via Campo Boario Teramo64100Italy
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale Unit of Bromatologia e Residui Via Campo Boario Teramo64100Italy
| |
Collapse
|
24
|
Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Cao L, Jiang Y, Zhu L, Xu W, Chu X, Zhang Y, Rahman SU, Feng S, Li Y, Wu J, Wang X. Deoxynivalenol Induces Caspase-8-Mediated Apoptosis through the Mitochondrial Pathway in Hippocampal Nerve Cells of Piglet. Toxins (Basel) 2021; 13:toxins13020073. [PMID: 33498252 PMCID: PMC7909276 DOI: 10.3390/toxins13020073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Deoxynivalenol (DON) is a common trichothecene mycotoxin found worldwide. DON has broad toxicity towards animals and humans. However, the mechanism of DON-induced neurotoxicity in vitro has not been fully understood. This study investigated the hypothesis that DON toxicity in neurons occurs via the mitochondrial apoptotic pathway. Using piglet hippocampal nerve cells (PHNCs), we evaluated the effects of different concentrations of DON on typical indicators of apoptosis. The obtained results demonstrated that DON treatment inhibited PHNC proliferation and led to morphological, biochemical, and transcriptional changes consistent with apoptosis, including decreased mitochondrial membrane potential, mitochondrial release of cytochrome C (CYCS) and apoptosis inducing factor (AIF), and increased abundance of active cleaved-caspase-9 and cleaved-caspase-3. Increasing concentrations of DON led to decreased B-cell lymphoma-2 (Bcl-2) expression and increased expression of BCL2-associated X (Bax) and B-cell lymphoma-2 homology 3 interacting domain death agonist (Bid), which in turn increased transcriptional activity of the transcription factors AIF and P53 (a tumor suppressor gene, promotes apoptosis). The addition of a caspase-8 inhibitor abrogated these effects. These results reveal that DON induces apoptosis in PHNCs via the mitochondrial apoptosis pathway, and caspase-8 is shown to play an important role during apoptosis regulation.
Collapse
|
26
|
Jia R, Sadiq FA, Liu W, Cao L, Shen Z. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed deoxynivalenol contaminated diets. Food Chem Toxicol 2021; 148:111962. [PMID: 33412236 DOI: 10.1016/j.fct.2020.111962] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022]
Abstract
Deoxynivalenol (DON) poses a serious health threat to animals and humans consuming DON-contaminated food and feed. Biological means of detoxification of DON are considered as one of the effective strategies. The aim of the work was to study ameliorative effects of Bacillus subtilis ASAG 216 on DON-induced toxicosis in piglets. A decrease in average daily gain and average daily feed intake was observed in piglets fed DON-contaminated feed. In addition, DON exposure increased the serum concentrations of aspartate aminotransferase, immunoglobulin A, diamine oxidase, endotoxin, and peptide YY. Moreover, DON exposure caused oxidative stress in the serum, liver and jejunum, induced intestinal inflammation, impaired the intestinal barrier, and disturbed the gut microbiota homeostasis. Supplementation of B. subtilis ASAG 216 effectively attenuated the aforementioned effects of DON on piglets. Moreover, DON and de-epoxy-DON (DOM-1) in the serum, liver and kidney were significantly decreased when B. subtilis ASAG 216 was added to DON-contaminated diet. Our results imply that B. subtilis ASAG 216 can protect against DON-induced toxicosis in piglets, and thus this strain has a potential to be used as an animal feed ingredient to counteract harmful effects of DON in animals.
Collapse
Affiliation(s)
- Ru Jia
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China.
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenbin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lirong Cao
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Zhuoyu Shen
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| |
Collapse
|