1
|
Lepeule J, Broséus L, Jedynak P, Masdoumier C, Philippat C, Guilbert A, Nakamura A. [Environmental exposures and epigenome changes within the first 1000 days of life]. Med Sci (Paris) 2024; 40:947-954. [PMID: 39705565 DOI: 10.1051/medsci/2024178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Early environmental exposures can have long-term effects on child's development and health. Epigenetic modifications may partly explain these effects, and studying them could lead to significant advances in our understanding of the underlying mechanisms. This review summarises recent data on epigenetic and environmental epidemiology during the first 1000 days of life for several common exposures, including tobacco, phenols and phthalates, air pollutants, ambient temperature and vegetation.
Collapse
Affiliation(s)
- Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Lucile Broséus
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Paulina Jedynak
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Chloé Masdoumier
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Claire Philippat
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Ariane Guilbert
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Aurélie Nakamura
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| |
Collapse
|
2
|
Cardenas A, Fadadu R, Bunyavanich S. Climate change and epigenetic biomarkers in allergic and airway diseases. J Allergy Clin Immunol 2023; 152:1060-1072. [PMID: 37741554 PMCID: PMC10843253 DOI: 10.1016/j.jaci.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Human epigenetic variation is associated with both environmental exposures and allergic diseases and can potentially serve as a biomarker connecting climate change with allergy and airway diseases. In this narrative review, we summarize recent human epigenetic studies examining exposure to temperature, precipitation, extreme weather events, and malnutrition to discuss findings as they relate to allergic and airway diseases. Temperature has been the most widely studied exposure, with the studies implicating both short-term and long-term exposures with epigenetic alterations and epigenetic aging. Few studies have examined natural disasters or extreme weather events. The studies available have reported differential DNA methylation of multiple genes and pathways, some of which were previously associated with asthma or allergy. Few studies have integrated climate-related events, epigenetic biomarkers, and allergic disease together. Prospective longitudinal studies are needed along with the collection of target tissues beyond blood samples, such as nasal and skin cells. Finally, global collaboration to increase diverse representation of study participants, particularly those most affected by climate injustice, as well as strengthen replication, validation, and harmonization of measurements will be needed to elucidate the impacts of climate change on the human epigenome.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif.
| | - Raj Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
3
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
4
|
Layton KKS, Bradbury IR. Harnessing the power of multi-omics data for predicting climate change response. J Anim Ecol 2021; 91:1064-1072. [PMID: 34679193 DOI: 10.1111/1365-2656.13619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023]
Abstract
Predicting how species will respond to future climate change is of central importance in the midst of the global biodiversity crisis, and recent work has demonstrated the utility of population genomics for improving these predictions. Here, we suggest a broadening of the approach to include other types of genomic variants that play an important role in adaptation, like structural (e.g. copy number variants) and epigenetic variants (e.g. DNA methylation). These data could provide additional power for forecasting response, especially in weakly structured or panmictic species. Incorporating structural and epigenetic variation into estimates of climate change vulnerability, or maladaptation, may not only improve prediction power but also provide insight into the molecular mechanisms underpinning species' response to climate change.
Collapse
Affiliation(s)
- Kara K S Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ian R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Canada
| |
Collapse
|
5
|
Wang A, Ma Q, Gong B, Sun L, Afrim FK, Sun R, He T, Huang H, Zhu J, Zhou G, Ba Y. DNA methylation and fluoride exposure in school-age children: Epigenome-wide screening and population-based validation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112612. [PMID: 34371455 DOI: 10.1016/j.ecoenv.2021.112612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Excessive fluoride exposure and epigenetic change can induce numerous adverse health outcomes, but the role of epigenetics underneath the harmful health effects induced by fluoride exposure is unclear. In such gap, we evaluated the associations between fluoride exposure and genome-wide DNA methylation, and identified that novel candidate genes associated with fluoride exposure. A total of 931 school-age children (8-12 years) in Tongxu County of Henan Province (China) were recruited in 2017. Urinary fluoride (UF) concentrations were measured using the national standardized ion selective electrode method. Participants were divided into a high fluoride-exposure group (HFG) and control group (CG) according to the UF concentrations. Candidate differentially methylated regions (DMRs) were screened by Infinium-Methylation EPIC BeadChip of DNA samples collected from 16 participants (eight each from each group). Differentially methylated genes (DMGs) containing DMRs associated with skeletal and neuronal development influenced by fluoride exposure were confirmed using MethylTarget™ technology from 100 participants (fifty each from each group). DMGs were verified by quantitative methylation specific PCR from 815 participants. Serum levels of hormones were measured by auto biochemical analyzer. The mediation analysis of methylation in the effect of fluoride exposure on hormone levels was also performed. A total of 237 differentially methylated sites (DMSs) and 212 DMRs were found in different fluoride-exposure groups in the epigenome-wide phase. Methylation of the target sequences of neuronatin (NNAT), calcitonin-related polypeptide alpha (CALCA) and methylenetetrahydrofolate dehydrogenase 1 showed significant difference between the HFG and CG. Each 0.06% (95% CI: -0.11%, -0.01%) decreased in NNAT methylation status correlated with each increase of 1.0 mg/L in UF concentration in 815 school-age children using QMSP. Also, each 1.88% (95% CI: 0.04%, 3.72%) increase in CALCA methylation status correlated with each increase of 1.0 mg/L in UF concentration. The mediating effect of NNAT methylation was found in alterations of ACTH levels influenced by fluoride exposure, with a β value of 11.7% (95% CI: 3.4%, 33.4%). In conclusion, long-term fluoride exposure affected the methylation pattern of genomic DNA. NNAT and CALCA as DMGs might be susceptible to fluoride exposure in school-age children.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qiang Ma
- Teaching and Research Office, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Biao Gong
- Department of Endemic Disease, Kaifeng Center for Disease Prevention and Control, Kaifeng, Henan 475004, PR China
| | - Long Sun
- Department of Endemic Disease, Kaifeng Center for Disease Prevention and Control, Kaifeng, Henan 475004, PR China
| | - Francis-Kojo Afrim
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Renjie Sun
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Tongkun He
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingyuan Zhu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
6
|
Xu R, Li S, Li S, Wong EM, Southey MC, Hopper JL, Abramson MJ, Guo Y. Ambient temperature and genome-wide DNA methylation: A twin and family study in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117700. [PMID: 34380236 DOI: 10.1016/j.envpol.2021.117700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the association between ambient temperature and DNA methylation, which is a potential biological process through which ambient temperature affects health. This study aimed to evaluate the association between ambient temperature and DNA methylation across human genome. We included 479 Australian women, including 132 twin pairs and 215 sisters of these twins. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on average ambient temperature during eight different exposure windows [lag0d (the blood draw day), lag0-7d (the current day and previous seven days prior to blood draw), lag0-14d, lag0-21d, lag0-28d, lag0-90d, lag0-180d, and lag0-365d)] was linked to each participant's home address. For each cytosine-guanine dinucleotide (CpG), we evaluated the association between its methylation level and temperature using generalized estimating equations (GEE), adjusting for important covariates. We used comb-p and DMRcate to identify differentially methylated regions (DMRs). We identified 31 CpGs at which blood DNA methylation were significantly associated with ambient temperature with false discovery rate [FDR] < 0.05. There were 82 significant DMRs identified by both comb-p (Sidak p-value < 0.01) and DMRcate (FDR < 0.01). Most of these CpGs and DMRs only showed association with temperature during one specific exposure window. These CpGs and DMRs were mapped to 85 genes. These related genes have been related to many human chronic diseases or phenotypes (e.g., diabetes, arthritis, breast cancer, depression, asthma, body height) in previous studies. The signals of short-term windows (lag0d and lag0-21d) showed enrichment in biological processes related to cell adhesion. In conclusion, short-, medium-, and long-term exposures to ambient temperature were all associated with blood DNA methylation, but the target genomic loci varied by exposure window. These differential methylation signals may serve as potential biomarkers to understand the health impacts of temperature.
Collapse
Affiliation(s)
- Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3800, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC, 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
7
|
Li W, Hua R, Wang M, Zhang D, Zhu J, Zhang S, Yang Y, Cheng J, Zhou H, Zhang J, He J. H19 gene polymorphisms and Wilms tumor risk in Chinese children: a four-center case-control study. Mol Genet Genomic Med 2021; 9:e1584. [PMID: 33403826 PMCID: PMC8077085 DOI: 10.1002/mgg3.1584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is the most common pediatric renal cancer. However, genetic bases behind Wilms tumor remain largely unknown. H19 is a critical maternally imprinted gene. Previous studies indicated that single nucleotide polymorphisms (SNPs) in the H19 can modify the risk of several human malignancies. Epigenetic errors at the H19 locus lead to biallelic silencing in Wilms tumors. Genetic variations in the H19 may be related to Wilms tumor susceptibility. METHODS We conducted a four-center study to investigate whether H19 SNP was a predisposing factor to Wilms tumor. Three polymorphisms in the H19 (rs2839698 G > A, rs3024270 C > G, rs217727 G > A) were genotyped in 355 cases and 1070 cancer-free controls, using Taqman method. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the associations. RESULTS We found that all of these three polymorphisms were significantly associated with Wilms tumor risk alterations. The rs2839698 G > A polymorphism (AG vs. GG: adjusted OR = 0.74, 95% CI = 0.57-0.96, p = 0.024; AA vs. GG: adjusted OR = 1.52, 95% CI = 1.05-2.22, p = 0.027), the rs3024270 C > G polymorphism (CG vs. CC: adjusted OR = 0.61, 95% CI = 0.46-0.81, p = 0.0007; and the rs217727 polymorphism (AG vs. GG: adjusted OR = 0.76, 95% CI = 0.58-0.99, p = 0.035). The Carriers of 1, 2, and 1-2 risk genotypes were inclined to develop Wilms tumor compared with those without risk genotype (adjusted OR = 1.36, 95% CI = 1.02-1.80, p = 0.037; adjusted OR = 1.84, 95% CI = 1.27-2.67, p = 0.001; adjusted OR = 1.50, 95% CI = 1.17-1.92, p = 0.002, respectively). The stratified analysis further revealed that rs2839698 AA, rs217727 AA, and 1-2 risk genotypes could strongly increase Wilms tumor risk among children above 18 months of age, males, and with clinical stage I+II disease. CONCLUSION Our findings indicate that genetic variations in the H19 may confer Wilms tumor risk.
Collapse
Affiliation(s)
- Wenya Li
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Rui‐Xi Hua
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Mi Wang
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Da Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jinhong Zhu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Songyang Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Yang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiwen Cheng
- Department of Pediatric Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiao Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|