1
|
Soto JA, Gómez AC, Vásquez M, Barreto AN, Molina KS, Zuniga-Gonzalez CA. Biological properties of Moringa oleifera: A systematic review of the last decade. F1000Res 2025; 13:1390. [PMID: 39895949 PMCID: PMC11782934 DOI: 10.12688/f1000research.157194.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Background The growing incidence of chronic diseases such as cancer and the emergence of drug-resistant microorganisms constitute one of the greatest health challenges of the 21st century. Therefore, it is critical to search for new therapeutic alternatives. Moringa oleifera is a plant well known for the properties of its phytocomponents and its role has been analyzed in a variety of fields, from medicine to biotechnology. Methods In this work, the biological activity of Moringa oleifera in human health was explored through a review of 129 original articles published between 2010 and 2021 related to antitumor activity and its potential uses against chronic and infectious diseases. Results Moringa oleifera extracts showed antioxidant, hypoglycemic, antihypertensive and cytoprotective properties at neuronal, hepatic, renal and cardiac levels. Besides, cytotoxic effects, apoptotic and antiploriferative activity against several cancer cell lines has been demonstrated. On the other hand, the antimicrobial potential of M. oleifera was also evidenced, especially against multidrug-resistant strains. Conclusions Hence, it is supported that there is a wide range of clinical entities in which Moringa oleifera exhibits significant biological activity that could contribute to counteracting metabolic, infectious and chronic diseases in a similar or improved way to the drugs traditionally used.
Collapse
Affiliation(s)
- Javier Andrés Soto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Catalina Gómez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Maryeli Vásquez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Natalia Barreto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Karen Shirley Molina
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - C. A. Zuniga-Gonzalez
- Area of knowledge of Agrarian and Veterinary Sciences Research Centre, Bioeconomy and Climate Change Unit Research, National Autonomous University of Nicaragua, Leon, Leon, Leon, 21000, Nicaragua
| |
Collapse
|
2
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2025; 48:84-97. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
3
|
Hamed M, Abou Khalil NS, Alghriany AA, El-Din H. Sayed A. The protective effects of dietary microalgae against hematological, biochemical, and histopathological alterations in pyrogallol-intoxicated Clarias gariepinus. Heliyon 2024; 10:e40930. [PMID: 39759355 PMCID: PMC11699231 DOI: 10.1016/j.heliyon.2024.e40930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Microalgae have well-established health benefits for farmed fish. Thus, this study aims to explore the potential protective effects of Spirulina platensis, Chlorella vulgaris, and Moringa oleifera against pyrogallol-induced hematological, hepatic, and renal biomarkers in African catfish (Clarias gariepinus), as well as the histopathological changes in the liver and kidney. Fish weighing 200 ± 25 g were divided into several groups: group 1 served as the control, group 2 was exposed to 10 mg/L of pyrogallol, and groups 3, 4, and 5 were exposed to the same concentration of pyrogallol, supplemented with S. platensis at 20 g/kg diet, C. vulgaris at 50 g/kg diet, and M. oleifera at 5 g/kg diet, respectively, for 15 days. Exposure to pyrogallol led to decreased packed cell volume (PCV) and lymphocyte count, but these effects were alleviated by microalgae interventions. C. vulgaris and M. oleifera equally restored PCV and increased lymphocyte counts. Supplementation with C. vulgaris and M. oleifera successfully normalized both neutrophil and eosinophil counts. Pyrogallol intoxication engenders an increase in glycemic status, but C. vulgaris and M. oleifera effectively mitigated this rise. Pyrogallol-exposed fish exhibited signs of renal dysfunction, with increased serum creatinine and total cholesterol levels. A significant decrease in both erythrocytic cellular and nuclear abnormalities was observed following supplementation with microalgae. C. vulgaris and M. oleifera showed promise in decreasing serum glucose and creatinine levels, and improving hematological parameters, while S. platensis exhibited limited efficacy in this regard. Exposure to pyrogallol led to a notable decrease in serum superoxide dismutase activity and total antioxidant capacity (TAC), accompanied by an increase in serum malondialdehyde (MDA) levels. Diets enriched with C. vulgaris and M. oleifera effectively restored these parameters to normal levels, whereas S. platensis did not induce significant changes. None of the microalgae improved TAC except for M. oleifera, which significantly enhanced it. MDA levels returned to control levels equally and significantly across all groups. Interleukin-6 levels did not exhibit significant differences between any of the groups. Collectively, the histopathological changes induced by pyrogallol were most prominently alleviated in the pyrogallol + C. vulgaris and pyrogallol + M. oleifera groups, and to a limited degree in the pyrogallol + S. platensis group. While the tested microalgae did not cause hepatic or renal dysfunction, they did lead to metabolic abnormalities. The incorporation of microalgae into the diet holds significant importance in mitigating the metabolic and histological toxicity of pyrogallol and should be considered in the formulation of fish feed.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt
| | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of veterinary Medicine, Badr University, Assuit, Egypt
| | | | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Molecular Biology Research & Studies Institute, Assiut University, 71516, Assiut, Egypt
| |
Collapse
|
4
|
Isik B, Suleyman B, Mammadov R, Bulut S, Yavuzer B, Altuner D, Coban TA, Suleyman H. Protective effect of cinnamon extract against cobalt-induced multiple organ damage in rats. Front Pharmacol 2024; 15:1384181. [PMID: 38783942 PMCID: PMC11111945 DOI: 10.3389/fphar.2024.1384181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background The role of oxidative stress and inflammation in cobalt (Co) toxicity has been the focus of previous studies. Cinnamon and its main components have been reported to have protective effects in various tissues with antioxidant and anti-inflammatory effects. Aims In this study, the protective effect of cinnamon extract (CE) against possible Co-induced heart, kidney, and liver damage in rats was investigated biochemically. Methods Eighteen albino Wistar-type male rats were categorized into three groups (n = 6 per group): control (CG), CoCL2-administered (CoCL2), and CE + CoCL2-administered (CE + Co) groups. The CE + CoCL2 group was administered CE (100 mg/kg), and the CoCL2 and CG groups were administered distilled water orally by gavage. One hour after the administration, Co (150 mg/kg) was administered orally to the CE + CoCL2 and CoCL2 groups. This procedure was repeated once daily for 7 days. Then, biochemical markers were studied in the excised heart, kidney, and liver tissues. Results CoCL2 increased oxidants and proinflammatory cytokines and decreased antioxidants in heart, kidney, and liver tissues. Heart, kidney, and liver tissue were affected by Co damage. CE treatment suppressed the CoCL2-induced increase in oxidants and proinflammatory cytokines and decrease in antioxidants in heart, kidney, and liver tissues. CE treatment has been shown to attenuate cardiac damage by reducing serum troponin I (TpI) and creatine kinase-MB (CK-MB), renal damage by reducing creatinine and blood urea nitrogen (BUN), and liver damage by reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Conclusion Co induced the production of oxidants and proinflammatory parameters and antioxidant depletion in heart, kidney, and liver tissues of rats. Our experimental results show that CE protects heart, kidney, and liver tissues against oxidative and inflammatory changes induced by CoCLl2.
Collapse
Affiliation(s)
- Bahar Isik
- Department of Emergency Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bulent Yavuzer
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| |
Collapse
|
5
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Tragia plukenetii-Assisted Omega-Decenol as Potential Anticancer Agent: its Isolation, Characterization, and Validation. Appl Biochem Biotechnol 2023; 195:1699-1722. [PMID: 36367619 DOI: 10.1007/s12010-022-04221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
The second most common and lethal disease is lung cancer. To combat the negative effects of today's synthetic medications, natural phytomedicines are required. Tragia plukenetii is a medicinal plant native to India that belongs to the Euphorbiaceae family. The purpose of this research is to isolate bioactive compounds from T. plukenetii leaves and then test them for anticancer property. A single compound (CH: ME-20:80) was separated using TLC, and an RF value of 0.55 was determined. Spectral analyses utilizing UV-Visible Spectrophotometer and FT-IR were used to examine the absorbance and functional groups. 13C-NMR and 1H-NMR studies revealed the tentative name of the purified phytochemical as omega-decenol (OD). Further antioxidant and anticancer properties of OD were tested for in vitro. In comparison to conventional L-ascorbic acid, the DPPH radical scavenging assay experiment yielded an IC50 of 147.48 g/ml. With an IC50 value of 24 µg/ml (Omega-decenol) and 32 µg/ml (doxorubicin), the MTT assay demonstrated the cytotoxic capability against the A549 lung cancer cell line. FACS revealed the cell cycle arrest of A549 at S phase compared to control with the high-dose IC50 (250 µg/ml) of omega-decenol. Twelve major compounds were detected in the active fraction using GC-MS analysis, where n-hexadecanoic acid was found as a major. Omega-decenol showed good binding affinity against EGFR, amongst other receptors in the in silico docking study. This research reveals the potent anticancer activity of the isolated compound omega-decenol from T. plukenetii leaves and provides a key path to understanding the molecular interaction in anticancer aspects against adenocarcinoma.
Collapse
|
7
|
Mahmoud HK, Farag MR, Reda FM, Alagawany M, Abdel-Latif HMR. Dietary supplementation with Moringa oleifera leaves extract reduces the impacts of sub-lethal fipronil in Nile tilapia, Oreochromis niloticus. Sci Rep 2022; 12:21748. [PMID: 36526884 PMCID: PMC9758223 DOI: 10.1038/s41598-022-25611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
This study assessed the restorative dietary effects of Moringa oleifera (MO) leaves extract against the negative impacts of sub-lethal fipronil (FIP) toxicity in Nile tilapia. To achieve this purpose, the growth, body composition, haemato-biochemical measurements, serum immunity, and antioxidant condition of Nile tilapia have been examined. Fish were arranged into 6 experimental groups in quadruplicates. Three groups were fed on diets supplemented with 0.0 (reference group), 1.0 (MO1), and 2.0 (MO2) g kg-1 of MO leaf extract. The other three groups were fed on the same MO levels and concomitantly subjected to a sub-lethal FIP concentration (4.2 µg L-1 for 3 h only per day) and defined as FIP, FIP + MO1, and FIP + MO2. The experiment lasted for 8 weeks. Results unveiled that growth parameters were significantly decreased alongside an increased feed conversion ratio in the FIP-intoxicated group. The moisture and crude protein (%) were decreased significantly together with a significant increase of the crude lipids (%) in the fish body of the FIP group. Sub-lethal FIP toxicity induced hypochromic anemia, leukopenia, hypoproteinemia, hypoalbuminemia, hypoglobulinemia, and hepato-renal failure (increased urea and creatinine concentrations, as well as ALT and AST enzymes). Exposure to sub-lethal FIP also induced (a) immunosuppression manifested by a decline in total IgM, complement C3, and lysozyme activities, (b) enzymatic antioxidant misbalance manifested by decreases in SOD and CAT activities, and (c) oxidative stress (declined T-AOC and elevated of MDA concentrations). On the other side, dietary supplementation with MO leaf extract in FIP + MO1 and FIP + MO2 groups noticeably modulated the aforementioned parameters. Therefore, we can conclude that dietary MO could reduce sub-lethal FIP toxicity in Nile tilapia with a possible recommendation for regular prophylaxis supplementation in Nile tilapia diets.
Collapse
Affiliation(s)
- Hemat K. Mahmoud
- grid.31451.320000 0001 2158 2757Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Mayada R. Farag
- grid.31451.320000 0001 2158 2757Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511 Egypt
| | - Fayiz M. Reda
- grid.31451.320000 0001 2158 2757Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Mahmoud Alagawany
- grid.31451.320000 0001 2158 2757Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Hany M. R. Abdel-Latif
- grid.7155.60000 0001 2260 6941Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Singh J, Gautam DNS, Sourav S, Sharma R. Role of
Moringa oleifera
Lam. in cancer: Phytochemistry and pharmacological insights. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jyoti Singh
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Simant Sourav
- Department of Sharira Kriya, Government Ayurvedic College and Hospital Patna India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| |
Collapse
|
9
|
Luo Z, Gao Q, Zhang H, Zhang Y, Zhou S, Zhang J, Xu W, Xu J. Microbe-derived antioxidants attenuate cobalt chloride-induced mitochondrial function, autophagy and BNIP3-dependent mitophagy pathways in BRL3A cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113219. [PMID: 35104775 DOI: 10.1016/j.ecoenv.2022.113219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Environmental excessive cobalt (Co) exposure increases risks of public health. This study aimed to evaluate the potential mechanism of microbe-derived antioxidants (MA) blend fermented by probiotics in attenuating cobalt chloride (CoCl2)-induced toxicology in buffalo rat liver (BRL3A) cells. Herein, results showed that some phenolic acids increased in MA compared with the samples before fermentation through UHPLC-QTOF-MS analysis. Also, the contents of essential and non-essential amino acids, their derivatives and minerals were rich in MA. The DPPH, O2-, OH- and ABTS+ scavenging ability of MA is comparable to those of vitamin C and better than mitoquinone mesylate (mitoQ). In vitro cell experiments showed that CoCl2 treatment increased the percentage of apoptosis cells, lactate dehydrogenase and genes involved in glycolysis, increased ATP production and decreased mitochondrial membrane potential, increased genes involved in canonical autophagy process (including initiation, autophagosomes maturation and fusion with lysosome) and BNIP3-dependent mitophagy pathways in BRL3A cells, while MA attenuated CoCl2-induced reactive oxygen species (ROS) production, apoptosis, mitochondrial protein expression and dysfunction, and BNIP3-dependent mitophagy. Collectively, these results provide insights into the role of MA in reversing CoCl2-induced toxicology in BRL3A cells, providing the promising constituents for decreasing Co-induced toxicology in functional foods.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Qingying Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Yitian Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Shujie Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Weina Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China.
| |
Collapse
|
10
|
DeiviArunachalam K, Kuruva JK, Pradhoshini KP, Musthafa MS, Faggio C. Antioxidant and antigenotoxic potential of Morinda tinctoria Roxb. leaf extract succeeding cadmium exposure in Asian catfish, Pangasius sutchi. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109149. [PMID: 34352397 DOI: 10.1016/j.cbpc.2021.109149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
The present study investigated the protective effect of methanolic leaf extract of Morinda tinctoria. Roxb (MEMT) (200 mg/kg) via feed in supplementation with standard compound silymarin (400 mg/kg). M. tinctoria (Roxb.) belonging to Rubiaceae, is an evergreen shrub indigenous to unfarmed lands of tropical countries. It is considered as an essential traditional medicine attributing for the potential antioxidant and anti-inflammatory properties. The enhancements of antioxidant and antigenotoxic status in different tissues of cadmium (Cd) intoxicated Pangasius sutchi were evaluated by using various antioxidant assays (superoxide dismutase (SOD) and catalase (CAT) and lipid peroxidation) in addition to micronuclei (MN), binuclei (BN) and comet assay. The cadmium toxicated fish showed a significant (p < 0.001) increase in lipid peroxidation (LPO) activities in liver, gills, muscle and kidney whereas significant (p < 0.001) decline were observed in superoxide dismutase (SOD) and catalase (CAT) contents in all fish tissues. The results also revealed that, Cd exposure induced the formation of genotoxic endpoints like MN, BN, notched nuclei, kidney shaped nuclei and DNA damage in the fish erythrocytes. Maximum of 26.8% MN frequencies and maximum of 66.74% tail DNA damage were observed on the 7th day of Cd exposure. A time-dependent significant increase (p < 0.001) in the frequencies of MN, BN and tail DNA damage were observed in all treated groups against the control which started to decline from 14th day onwards. There was a decline in the LPO content, frequencies of MN, BN and percentage of tail DNA in contrast to significant elevation in SOD and CAT content in all tissues due to the combined treatment of M. tinctoria feed and water borne Cd exposure. It can be concluded from our observations that, supplementation of M. tinctoria leaf extract through feed alone produced enhanced antioxidant and antigenotoxic status in cadmium treated fish by diminishing oxidative stress and genotoxicity effects in a time dependent manner.
Collapse
Affiliation(s)
- Kantha DeiviArunachalam
- Center for Environmental and Nuclear Research (CENR), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jaya Krishna Kuruva
- Center for Environmental and Nuclear Research (CENR), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
11
|
Bakare AA, Akpofure A, Gbadebo AM, Fagbenro OS, Oyeyemi IT. Aqueous extract of Moringa oleifera Lam. induced mitodepression and chromosomal aberration in Allium cepa, and reproductive genotoxicity in male mice. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
El Bohi KM, Abdel-Motal SM, Khalil SR, Abd-Elaal MM, Metwally MMM, ELhady WM. The efficiency of pomegranate (Punica granatum) peel ethanolic extract in attenuating the vancomycin-triggered liver and kidney tissues injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7134-7150. [PMID: 33029776 DOI: 10.1007/s11356-020-10999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the potential of Punica granatum peel ethanol extract (PPEE) in attenuating the liver and kidney tissue injury induced by vancomycin (VM) treatment in rats. Fifty rats were distributed equally into five groups: control group, PPEE-administered group (100 mg/kg BW/day for 2 weeks; orally), VM-treated group (443.6 mg/kg BW, every alternate day for 2 weeks; intraperitoneally), pre-treated group, and concomitant-treated group. The biochemical response and the histopathology of the hepatic and renal tissue of the treated animals were assessed. The results showed that VM treatment induced substantial hepatotoxicity and nephrotoxicity, evidenced by a significant elevation in tissue injury and lipid oxidative (malondialdehyde) and inflammatory response (C-reactive protein) biomarkers, with lowered antioxidants and protein levels. Additionally, VM treatment induced various morphological, cytotoxic, vascular, and inflammatory perturbations as well as upregulation in the immune-expression of Caspase-3 and downregulation of BCL-2. Moreover, PPEE co-treatment was found to reduce the VM-induced toxicity by protecting the tissue against reactive oxygen species (ROS)-mediated oxidative damage, and inflammation as well as hinder the apoptotic cell death by modulating the expression of apoptosis-related proteins. Thus, we conclude that the PPEE administration showed more restoring efficacy when administered prior to VM medication.
Collapse
Affiliation(s)
- Khlood M El Bohi
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mayar Mahmoud Abd-Elaal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa M ELhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
13
|
Albrakati A. Aged garlic extract rescues ethephon-induced kidney damage by modulating oxidative stress, apoptosis, inflammation, and histopathological changes in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6818-6829. [PMID: 33011947 DOI: 10.1007/s11356-020-10997-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Ethephon is an organophosphorus plant growth regulator used to accelerate the ripening process and decrease the duration of cultivation. Here, the potential protective role of aged garlic extract (AGE) was investigated against ethephon-mediated nephrotoxicity. Four experimental groups were established (n = 15), including control, AGE (250 mg/kg), ethephon (200 mg/kg), and AGE + ethephon. In the current work, kidney function parameters (urea, creatinine, and KIM-1) along with oxidative stress biomarkers, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, glutathione, and its related enzymes, superoxide dismutase, catalase, malondialdehyde, and nitric oxide, were determined. The expression of inflammatory mediators namely tumor necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B, and apoptotic markers (caspase 3, Bax, and Bcl2) were determined in the renal tissue. Additionally, the histopathological alterations in response to treatments were examined. Ethephon exposure increased the levels of kidney function markers along with relative kidney weight coupled with histological changes in the kidney tissue. Additionally, ethephon increased the levels of the tested pro-oxidant markers and decreased the antioxidant indices, resulting in oxidative damage to renal tissues. An elevation in the pro-inflammatory mediators was also recorded following ethephon intoxication. Furthermore, renal cell loss was observed through histological examinations and biochemical measurements upon ethephon administration. On the other hand, AGE significantly ameliorated the molecular, biochemical, and structural changes elicited by ethephon. These findings suggest that AGE may be used to decrease or prevent the side effects of ethephon exposure in kidneys, through the activation of Nrf2 and inhibition of inflammation and apoptotic response.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
14
|
Abou-Zeid SM, Ahmed AI, Awad A, Mohammed WA, Metwally MMM, Almeer R, Abdel-Daim MM, Khalil SR. Moringa oleifera ethanolic extract attenuates tilmicosin-induced renal damage in male rats via suppression of oxidative stress, inflammatory injury, and intermediate filament proteins mRNA expression. Biomed Pharmacother 2021; 133:110997. [PMID: 33197759 DOI: 10.1016/j.biopha.2020.110997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
Tilmicosin (Til) is a popular macrolide antibiotic, widely used in veterinary practice. The present study was designed to address the efficacy of Moringa oleifera ethanolic extract (MOE) in protecting against Tilmicosin (Til) - induced nephrotoxicity in Sprague Dawley rats. Animals were treated once with Til (75 mg/kg bw, subcutaneously), and/or MOE for 7 days (400 or 800 mg/kg bw, by oral gavage). Til-treatment was associated with significantly increased serum levels of creatinine, urea, sodium, potassium and GGT activity, as well as decreased total protein and albumin concentrations. Renal tissue hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were elevated, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes were diminished. The levels of renal tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and the mRNA expression of intermediate filament protein encoding genes (desmin, nestin and vimentin) in the kidney were up- regulated with histopathological alterations in renal glomeruli, tubules and interstitial tissue. These toxic effects were markedly ameliorated by co-treatment of MOE with Til, in a dose dependent manner. Taken together, these results indicate that MO at 800 mg/kg protects against Til-induced renal injury, likely by its potent antioxidant and anti-inflammatory properties, which make it suitable to be used as a protective supplement with Til therapy.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt.
| | - Amany I Ahmed
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Wafaa A Mohammed
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Mohamed M M Metwally
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| |
Collapse
|
15
|
Abdel Fattah ME, Sobhy HM, Reda A, Abdelrazek HMA. Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate-induced liver injury in male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43028-43043. [PMID: 32725563 DOI: 10.1007/s11356-020-10161-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Current research was performed to explore the hepatoprotective potential of Moringa oleifera leaves extract on lead acetate-induced hepatic injury. Twenty-four male Wistar rats were divided equally into 4 groups. The first group was control, while the second, third, and fourth groups were given 200 mg/kg aqueous Moringa extract only, 100 mg/kg lead only, and 100 mg/kg lead plus 200 mg/kg aqueous Moringa leaves extract, respectively, via oral gavage for 4 weeks. Weight gain and feed efficiency ratio were recorded. Serum lipid profiles, liver enzyme activities, and proteins beside hepatic superoxide dismutase activity, reduced glutathione, tumor necrosis factor alpha (TNF-α), and deoxyribonucleic acid fragmentation were assessed. Liver histopathological examination and nuclear factor kappa B (NF-kB) immunohistochemistry were performed. Administration of lead lowered (P < 0.05) weight gain, feed efficiency ratio, and perturbed lipid profile than control. Lead increased liver enzyme activities and TNF-α, while reduced serum proteins and hepatic antioxidant markers compared to control. Lead aggravated hepatic DNA fragmentation beside the presence of histopathological lesions. Co-administration of aqueous Moringa extract with lead significantly alleviated lead-induced adverse effects. The administration of aqueous Moringa extract with its antioxidant significantly restored the lead perturbations through reduction of oxidative stress-induced DNA damage via amelioration of NF-kB and TNF-α which kept hepatocyte integrity and reduced serum hepatic enzyme activities.
Collapse
Affiliation(s)
- Mohy E Abdel Fattah
- Department of Organic Chemistry, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Hanan M Sobhy
- Department of Biochemistry and Food Deficiency, Animal Health research Institute, Giza, Egypt
| | - Areeg Reda
- Department of Biochemistry and Food Deficiency, Animal Health research Institute, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|