1
|
Martínez-Cisterna D, Rubilar O, Tortella G, Chen L, Chacón-Fuentes M, Lizama M, Parra P, Bardehle L. Silver Nanoparticles as a Potent Nanopesticide: Toxic Effects and Action Mechanisms on Pest Insects of Agricultural Importance-A Review. Molecules 2024; 29:5520. [PMID: 39683679 PMCID: PMC11643678 DOI: 10.3390/molecules29235520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has been a promising plant protection discipline in recent years, attributed to the unique physicochemical properties exhibited at the nanoscale. In this context, silver nanoparticles (AgNPs) have been effective in various applications, including medical, industrial, and agronomic, and during the last few years, the control of insect pests has raised great interest. The present review mainly provides updated information about the use of AgNPs elaborated by different synthesis methods, such as biological (plants, microorganisms), physical, and chemical, and their effect against various insect species of agricultural importance belonging to the order Diptera, Coleoptera, Lepidoptera, and Hemiptera. The physiological and toxic effects of applying AgNPs are reported and characterized by developmental problems, mortality, weight reduction, interference with enzymatic activity, and anomalies in the life cycle. Moreover, in the final section, the action mechanisms through which AgNPs act on insects are also discussed, highlighting mechanisms such as alteration of transmembrane permeability, interruption of DNA replication, alteration of protein synthesis, and production of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Daniel Martínez-Cisterna
- Doctorado en Ciencias de Recursos Naturales, Facultad de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
| | - Olga Rubilar
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Lingyun Chen
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | | | - Marcelo Lizama
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Doctorado en Ciencias Agroalimentarias, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
| | - Pablo Parra
- Doctorado en Ciencias Agroalimentarias, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
| | - Leonardo Bardehle
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| |
Collapse
|
2
|
Abdulazeez R, Highab SM, Onyawole UF, Jeje MT, Musa H, Shehu DM, Ndams IS. Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104470. [PMID: 38763436 DOI: 10.1016/j.etap.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in Drosophila melanogaster. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in D. melanogaster, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in Drosophila melanogaster and may hold therapeutic potential as an agent for managing lead poisoning in humans.
Collapse
Affiliation(s)
- R Abdulazeez
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - S M Highab
- Department of Clinical Pharmacology and Therapeutics, Faculty of Clinical Sciences, College of Medicine and Health Sciences, Federal University, Dutse, Jigawa State, Nigeria
| | - U F Onyawole
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - M T Jeje
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - H Musa
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - D M Shehu
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - I S Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
3
|
Saini S, Rani L, Shukla N, Thakur RS, Patel DK, Ansari MS, Banerjee M, Gautam NK. Hsp27 over expression protect against cadmium induced nephrotoxicity in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109716. [PMID: 37586579 DOI: 10.1016/j.cbpc.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cadmium (Cd) exposure to the animals including humans is reported as nephrotoxic compounds i.e., disturbing redox status (increase oxidative stress), mitochondrial dysfunction, renal cell death and altered transporters in the renal system. Hsp27 (a small heat shock protein) has been shown as one of the modulators in the renal dysfunction and increased against the Cd induced toxicity. However, no studies are reported on the genetic modulation of stress protein against the Cd-induced nephrotoxicity. The current study aimed to examine the protective role of hsp27 overexpression against the Cd-induced nephrotoxicity using Drosophila melanogaster as an animal model. D. melanogaster renal system includes nephrocytes and Malpighian tubules (MTs) that show the functional similarity with mammalian kidney nephron. Overexpression of the hsp27 was found to reduce the Cd induced oxidative stress, rescue cell death in MTs of Cd exposed D. melanogaster larvae. The rescued GSH level, NADPH level and glucose 6 phosphate dehydrogenase (G6PD) activity were also observed in the MTs of the Cd exposed organism. Function (efflux activity and fluid secretion rate) of the MTs was restored in Cd exposed hsp27 overexpressed larvae. Further, results were confirmed by restored brush border microvilli density and reduced uric acid level. Tissue specific knockdown of hsp27 developed Cd like phenotypes in MTs and the phenotypes enhanced in Cd exposed condition. The present study clearly shows the role of hsp27 overexpression in restoration of the MTs function and protection against the Cd induced renal toxicity.
Collapse
Affiliation(s)
- Sanjay Saini
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Lavi Rani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Neha Shukla
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - M S Ansari
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
4
|
Rani L, Saini S, Thakur RS, Patel DK, Chowdhuri DK, Gautam NK. Single and combined effect of bisphenol A with high sucrose diet on the diabetic and renal tubular dysfunction phenotypes in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103977. [PMID: 36210596 DOI: 10.1016/j.etap.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In the present study, effect of exposure of bisphenol A (BPA) and combined exposure of BPA + HSD has been investigated on the glucose homeostasis and associated renal complications in Drosophila. Exposure of 1.0 mM BPA alone induced type 2 diabetes like condition (T2D) in adult male D. melanogaster via oxidative stress. Elevated TGF-β signaling was evident by increased expression of baboon (babo) in BPA exposed organism that stimulated the modulation of extracellular matrix (ECM) component collagen IV resulting in the fibrosis of the Malpighian tubules (MTs). Combined exposure of BPA + HSD (high sucrose diet) resulted in the increased magnitude of T2D and MTs dysfunction parameters. Taken together, the study illustrates that BPA has diabetogenic potential in exposed Drosophila that caused adverse effects on their MTs and combined exposure with BPA and HSD could aggravate the renal tubular dysfunction. The study further suggests the use of Drosophila model to study the environmental chemicals induced diabetes mediated renal dysfunction.
Collapse
Affiliation(s)
- Lavi Rani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Sanjay Saini
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
5
|
Histomorphological and ultrastructural cadmium-induced kidney injuries and precancerous lesions in rats and screening for biomarkers. Biosci Rep 2022; 42:231305. [PMID: 35678542 PMCID: PMC9202506 DOI: 10.1042/bsr20212516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Long-term exposure to cadmium (Cd) can severely damage the kidney, where orally absorbed Cd accumulates. However, the molecular mechanisms of Cd-induced kidney damage, especially the early biomarkers of Cd-induced renal carcinogenesis, are unclear. In the present study, we established a rat kidney injury model by intragastric administration of Cd to evaluate the morphological and biochemical aspects of kidney injury. We randomly divided Sprague-Dawley rats into control, low Cd (3 mg/kg), and high Cd (6 mg/kg) groups and measured biochemical indices associated with renal toxicity after 2, 4, and 8 weeks of treatment. The Cd-exposed mice had significantly higher Cd concentrations in blood and renal tissues as well as blood urea nitrogen (BUN), β2-microglobulin (β2-MG), urinary protein excretion, and tumor necrosis factor-α (TNF-α) levels. Furthermore, histopathological and transmission electron microscopy (TEM) observations revealed structural disruption of renal tubules and glomeruli after 8 weeks of exposure to the high Cd regimen. Besides, microarray technology experiments showed that Cd increased the expression of genes related to the chemical carcinogenesis pathway in kidney tissue. Finally, combining the protein–protein interaction (PPI) network of the Cd carcinogenesis pathway genes with the microarray and Comparative Toxicogenomics Database (CTD) results revealed two overlapping genes, CYP1B1 and UGT2B. Therefore, the combined molecular and bioinformatics experiments’ results suggest that CYP1B1 and UGT2B are biomarkers of Cd-induced kidney injury with precancerous lesions.
Collapse
|
6
|
Güneş E, Şensoy E. Is Turkish coffee protects Drosophila melanogaster on cadmium acetate toxicity by promoting antioxidant enzymes? CHEMOSPHERE 2022; 296:133972. [PMID: 35192850 DOI: 10.1016/j.chemosphere.2022.133972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
With their increasing use in today's industry, heavy metals cause biochemical and biophysical changes by affecting the control and regulatory systems of living things. Cadmium (Cd), a heavy metal, spreads to the environment through both natural sources and industrial activities. It is taken into the organism through water, food, skin contact or smoke. Systems and organs of living things are directly or indirectly affected by Cd toxicity. Besides their recreational usage, herbal products such as coffee are preferred in alternative medicine because of their antioxidant, anti-inflammatory, anticancer and antidiabetic effects. Turkish coffee (TK) is a drink rich in flavorings, phenolic compounds and antioxidant compounds. The study evaluated the possible antioxidant role of TK against oxidative stress induced by Cadmium acetate (CdA) in the fat tissues of old-young female individuals of Drosophila melanogaster. The female flies were fed with either a standard diet, or CdA (10-30 mg), or TK (2%), or both (CdA + TK) for 3 and 10 days. Following the completion of the feeding period, the amounts of fatbody and oxidative stress markers (oxidative stress index, malondialdehyde), activities of antioxidant enzymes (Glutathione-S-transferase, Catalase, and Superoxide dismutase) and their levels were measured. Fat body lipid droplets were high in the individuals exposed to high concentrations of CdA. It was determined that lipid droplets decreased but did not significantly alter oxidative stress in the individuals treated with TK (p = 0.05). This article may be of help in terms of the use of TK compounds as antioxidants to evaluate their effects in preventing heavy metal accumulation and stress in the aging process.
Collapse
Affiliation(s)
- Eda Güneş
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Necmettin Erbakan University, Konya, Turkey.
| | - Erhan Şensoy
- Department of Midwifery, Faculty of Health Science, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| |
Collapse
|
7
|
Fasae KD, Abolaji AO. Interactions and toxicity of non-essential heavy metals (Cd, Pb and Hg): lessons from Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100900. [PMID: 35272079 DOI: 10.1016/j.cois.2022.100900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Some heavy metals are essential in trace amounts, enhancing enzyme functioning and other intracellular molecules. Others are explicitly toxic at low concentrations, increasing the risk of organ-related toxicity. Non-essential metals have similar mechanisms of toxicity to essential metals. These include the modifiable change in oxidation states, interaction with sulfhydryl moieties of proteins and indirect modification of nucleic acids. Ultimately, oxidative stress is generated, and potentiation of damage ensues. The susceptibility, sensitivity, genetic resources, and cellular response of Drosophila melanogaster to heavy metal exposure and toxicity have made this insect appropriate for toxicological studies. In this review, we focus on the toxicological impacts of non-essential metals (Cd, Pb, and Hg) in Drosophila and discuss its cellular and developmental responses to increasing concentrations of these metals. We also suggest current or proposed therapeutic alternatives, as well as dimensions that may improve the studies of non-essential metal biology.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria; Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Amos O Abolaji
- Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria.
| |
Collapse
|
8
|
Paithankar JG, Kushalan S, S N, Hegde S, Kini S, Sharma A. Systematic toxicity assessment of CdTe quantum dots in Drosophila melanogaster. CHEMOSPHERE 2022; 295:133836. [PMID: 35120950 DOI: 10.1016/j.chemosphere.2022.133836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The risk assessment of cadmium (Cd)-based quantum dots (QDs) used for biomedical nanotechnology applications has stern toxicity concerns. Despite cytotoxicity studies of cadmium telluride (CdTe) QDs, the systematic in vivo study focusing on its organismal effects are more relevant to public health. Therefore, the present study aims to investigate the effect of chemically synthesized 3-mercapto propionic acid-functionalized CdTe QDs on organisms' survival, development, reproduction, and behaviour using Drosophila melanogaster as a model. The sub-cellular impact on the larval gut was also evaluated. First/third instar larvae or the adult Drosophila were exposed orally to green fluorescence emitting CdTe QDs (0.2-100 μM), and organisms' longevity, emergence, reproductive performance, locomotion, and reactive oxygen species (ROS), and cell death were assessed. Uptake of semiconductor CdTe QDs was observed as green fluorescence in the gut. A significant decline in percentage survivability up to 80% was evident at high CdTe QDs concentrations (25 and 100 μM). The developmental toxicity was marked by delayed and reduced fly emergence after CdTe exposure. The teratogenic effect was evident with significant wing deformities at 25 and 100 μM concentrations. However, at the reproductive level, adult flies' fecundity, fertility, and hatchability were highly affected even at low concentrations (1 μM). Surprisingly, the climbing ability of Drosophila was unaffected at any of the used CdTe QDs concentrations. In addition to organismal toxicity, the ROS level and cell death were elevated in gut cells, confirming the sub-cellular toxicity of CdTe QDs. Furthermore, we observed a significant rescue in CdTe QDs-associated developmental, reproductive, and survival adversities when organisms were co-exposed with N-acetyl-cysteine (NAC, an antioxidant) and CdTe QDs. Overall, our findings indicate that the environmental release of aqueously dispersible CdTe QDs raises a long-lasting health concern on the development, reproduction, and survivability of an organism.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sharanya Kushalan
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Nijil S
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Nanobiotechnology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Smitha Hegde
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sudarshan Kini
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Nanobiotechnology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
9
|
Wildner G, Loreto JS, de Almeida P, Claro MT, Ferreira SA, Barbosa NV. Short exposure to ethyl and methylmercury prompts similar toxic responses in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109216. [PMID: 34710619 DOI: 10.1016/j.cbpc.2021.109216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022]
Abstract
Methylmercury (MeHg) and ethylmercury (EtHg) are important mercury organic forms in terms of human poisoning. Since the comparative effects of compounds are mainly in vitro, this study was designed to investigate the toxicities induced by MeHg and EtHg in an in vivo study using adult Drosophila melanogaster (D. melanogaster). Firstly, we performed a survival curve, where the flies were fed on a medium containing MeHg and EtHg at concentrations ranging from 2.5 to 200 μM, until the end of their lifespan. After that, the concentrations 25 and 200 μM of MeHg and EtHg were chosen to be tested in a short exposure for 5 days. The analysis of survival by Kaplan-Meier plot revealed that all concentrations of MeHg and EtHg reduced significantly the lifespan of the flies. Short exposure to both concentrations of MeHg and EtHg impaired the ability of flies in the climbing assay and induced lipid peroxidation. Only the flies exposed to the highest concentration had viability loss, thiol depletion, and increased reactive species (RS) and Hg levels in the whole body. Our findings indicate that MeHg and EtHg exhibit similar toxic effects in vivo, and that oxidative stress is a phenomenon behind the toxicity of both mercurials. The data obtained also reinforce the use of D. melanogaster as a useful organism for basic toxicological research.
Collapse
Affiliation(s)
- Guilherme Wildner
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Julia Sepel Loreto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Pamela de Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Mariana Torri Claro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Sabrina Antunes Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
10
|
Branco AJ, Vattamparambil AS, Landry GM. Lead (Pb 2+)-induced calcium oxalate crystallization ex vivo is ameliorated via inositol 1,4,5-trisphosphate receptor (InsP 3R) knockdown in a Drosophila melanogaster model of nephrolithiasis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103695. [PMID: 34171488 DOI: 10.1016/j.etap.2021.103695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Nephrolithiasis causes severe pain and is a highly recurrent pathophysiological state. Calcium-containing stones, specifically calcium oxalate (CaOx), is the most common type accounting for approximately 75 % of stone composition. Genetic predisposition, gender, geographic region, diet, and low fluid intake all contribute to disease pathogenesis. However, exposure to environmental pollutants as a contribution to kidney stone formation remains insufficiently studied. Lead (Pb2+) is of particular interest as epidemiological data indicate that low-level exposure (BLL = 0.48-3.85 μM) confers a 35 % increased risk of developing CaOx nephrolithiasis. However, mechanisms underlying this association have yet to be elucidated. Drosophila melanogaster provide a useful genetic model where major molecular pathophysiological pathways can be efficiently studied. Malpighian tubules (MT) were isolated from either Wild-Type or InsP3R knockdown flies and treated with oxalate (5 mM) ± Pb2+ (2μM) for 1 h. Following exposure, MTs were imaged and crystals quantified. CaOx crystal number and total area were significantly increased (˜5-fold) in Pb2+(pre-treatment) + oxalate-exposed MTs when compared to oxalate alone controls. However, CaOx crystal number and total crystal area in Pb2+ + oxalate-exposed InsP3R knockdown MTs were significantly decreased (˜3-fold) indicating the role for principal cell-specific InsP3R-mediated Ca2+ mobilization as a mechanism for Pb2+-induced increases in CaOx crystallization inset model of nephrolithiasis.
Collapse
Affiliation(s)
- Anthony J Branco
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States
| | - Anoushka S Vattamparambil
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States
| | - Greg M Landry
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States.
| |
Collapse
|
11
|
da Silva Araújo JR, Silva Morais JG, Santos CM, Araújo Rocha KC, Rios Fagundes ADCA, E Silva Filho FA, Martins FA, de Almeida PM. Phytochemical prospecting, isolation, and protective effect of the ethanolic extract of the leaves of Jatropha mollissima (Pohl) Baill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:743-760. [PMID: 34120581 DOI: 10.1080/15287394.2021.1938767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Jatropha mollissima is used in folk medicine as antimicrobial, antiparasitic, and larvicidal. However, few toxicogenetic studies have been carried out. Therefore, the aim of this study was to determine the phytochemical profile of ethanolic leaf extract of J. mollissima (EEJM) as well as potential cytotoxic, mutagenic, and antimutagenic properties. The EEJM was subjected to successive fractionation for the isolation of secondary metabolites, and five concentrations (0.01; 0.1; 1; 10 and 100 mg/ml) of extract were investigated using Allium cepa assay and the Somatic Mutation and Recombination (SMART) test. The mitotic index and % damage reduction were analyzed for A. cepa and the frequency of mutant hair for SMART. The presence of coumarins, alkaloids, flavonoids, saponins, and tannins was detected, while spinasterol and n-triacontane were the isolates identified for the first time for this species. EEJM did not exhibit cytotoxicity and was not mutagenic at 1 or 10 mg/ml using A. cepa and all concentrations of EEJM were not mutagenic in the SMART test. A cytoprotective effect was found at all concentrations. At 1 or 10 mg/ml EEJM exhibited antimutagenicity in A. cepa. In SMART, the protective effect was observed at 0.1 to 100 mg/ml EEJM. Our results demonstrate the important chemopreventive activity of EEJM, a desired quality in the search for natural anticarcinogenic compounds.
Collapse
Affiliation(s)
- José Rafael da Silva Araújo
- Department Genetics, Laboratory of Genetics and Vegetal Biotechnology, Federal University of Pernambuco, Recife, Brazil
| | - João Gabriel Silva Morais
- Department of Biology, Center of Agrarian Sciences, Laboratory of Molecular Biology, Federal University of Piauí, Teresina, Brazil
| | - Cleidiane Macêdo Santos
- Department of Biology, Center of Agrarian Sciences, Laboratory of Molecular Biology, Federal University of Piauí, Teresina, Brazil
| | - Kelvim Crist Araújo Rocha
- Department of Biology, Center of Agrarian Sciences, Laboratory of Molecular Biology, Federal University of Piauí, Teresina, Brazil
| | | | - Francisco Artur E Silva Filho
- Department of Biology, Bioprospecting Laboratory for Bioactive Molecules, State University of Piauí, Teresina, Brazil
| | - Francielle Alline Martins
- Department of Biology, Center of Agrarian Sciences, Laboratory of Molecular Biology, Federal University of Piauí, Teresina, Brazil
| | - Pedro Marcos de Almeida
- Department of Biology, Center of Natural Sciences (CCN), Laboratory of Genetics, State University of Piauí, Teresina, Brazil
| |
Collapse
|
12
|
Liu K, Liang X, Li C, Wang L, He X, Qin R, Li Y, Yu F. Hydrocotyle vulgaris L.: a new cadmium-tolerant landscape species and its physiological responses to cadmium exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26045-26054. [PMID: 33483923 DOI: 10.1007/s11356-021-12511-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Landscape plants have both ecological and aesthetic value and may also represent ideal candidates for phytoremediation. In the present study, one round of hydroponic culture for 14 days with different cadmium (Cd) concentrations (0, 0.5, 1, and 2 mg L-1 Cd) was carried out to test whether Hydrocotyle vulgaris L. is a Cd-tolerant plant. Furthermore, physiological parameters, including pigment concentrations, photosynthesis, antioxidant enzyme activities (AEAs), and nutrient uptake, were also examined to determine the tolerance of H. vulgaris to Cd exposure. The results showed that H. vulgaris could grow normally under all Cd supply levels. The Cd removal efficiency reached 100% at Cd concentrations ≤1.0 mg L-1. The concentrations of Cd in roots and shoots increased (P < 0.05) with Cd supplementation. The maximum concentrations of Cd reached 26.4 and 118 mg kg-1 in shoots and roots, respectively. The translocation factor values were similar under all Cd treatments. The highest mean daily increase in biomass (MDIB) was obtained under 1 mg L-1 Cd exposure, which increased by 69.86% compared to that in the control, which may be due to the increased photosynthetic pigments, photosynthetic rate, and the consistent nutrient concentrations under this Cd level, as there were positive relationships between these parameters and MDIB. Moreover, the activities of AEA also generally explicated highest among all Cd levels. All these results indicate that the above physiological parameters play a positive role in promoting plant growth and alleviating Cd stress. In summary, H. vulgaris was verified as a potential Cd-tolerant plant, providing new information for Cd phytoremediation. Furthermore, given its extensive habitat distribution, this species might be tested for phytoremediation of contaminated soils in future work.
Collapse
Affiliation(s)
- Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Xiaolu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Chunming Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Leyi Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Xiaoyu He
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Rilan Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
13
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
14
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
15
|
Rani L, Saini S, Shukla N, Chowdhuri DK, Gautam NK. High sucrose diet induces morphological, structural and functional impairments in the renal tubules of Drosophila melanogaster: A model for studying type-2 diabetes mediated renal tubular dysfunction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103441. [PMID: 32735915 DOI: 10.1016/j.ibmb.2020.103441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Continuous feeding of high dietary sugar is strongly associated with type 2 diabetes (T2D) and its secondary complications. Diabetic nephropathy (DN) is a major secondary complication that leads to glomerular and renal tubular dysfunction. The present study is aimed to investigate the effects of chronic exposure of high sugar diet (HSD) on renal tubules. Malpighian tubules (MTs), a renal organ of Drosophila, were used as a model in the study. Feeding of HSD develops T2D condition in Drosophila. The MTs showed structural abnormalities in 20 days of HSD fed flies. Impaired insulin signaling, oxidative stress, enhanced levels of AGE-RAGE and induction of apoptosis were observed in the MTs of these flies. Further, altered expression of transporters, enhanced uric acid level and reduced fluid secretion rate confirmed the impaired function of MTs in these flies. RNA-seq and RT-PCR analyses in the MTs of HSD fed-and control-flies revealed the altered expression of candidate genes that regulate several important pathways including extracellular matrix (ECM), advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE), transforming growth factor β (TGF-β), galactose, starch and sucrose metabolism that are well known mediators of renal tubular dysfunction in DN patients. Disruption of insulin signaling in the MTs also causes renal tubular dysfunction similar to HSD fed flies. Overall, the study suggests that phenotypes observed in the MTs of HSD fed flies recapitulate several hallmarks of renal tubular dysfunction in DN patients. Therefore, we conclude that MTs of HSD fed flies may be used for deciphering the underlying mechanisms of T2D mediated renal tubular dysfunction.
Collapse
Affiliation(s)
- Lavi Rani
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Neha Shukla
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|