1
|
Lv JJ, Liu YJ, Mo YH, Deng LY, Liu Y, Li HY, Zhang L, Yang WD. The tolerance mechanism of diarrhetic shellfish toxins mediated by the extracellular regulated protein kinase (ERK) pathway in the mussel Perna viridis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138006. [PMID: 40122010 DOI: 10.1016/j.jhazmat.2025.138006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Diarrheic shellfish toxins (DSTs) are a class of lipophilic algal toxins that accumulate excessively in bivalves following harmful algal blooms. Bivalves exhibit tolerance to DSTs, which make people ignore or underestimate the risk of DSTs, leading to the occurrence of seafood poisoning incidents. However, the tolerance mechanism remains unclear in bivalves. We investigated the role of extracellular-regulated protein kinase (ERK) in DSTs tolerance, and observed that the ERK inhibitor PD98059 exacerbated damage of DSTs to the digestive tubules. PD98059 induced the TUNEL fluorescence intensity, and caspase-3 activity inhibited by DSTs were restored to the control. PD98059 enhanced the fluorescence intensity of extracellular Ca-AM and increased the accumulation of esterified DSTs. Transcriptome analysis revealed that PD98059 affected the genes expression related to apoptosis, ABC transporters, and lipid metabolism. qPCR analysis demonstrated that PD98059 down-regulated the DSTs-induced iap and ABCC10 (p = 0.063), and up-regulated ABCB1-like1, ABCC1, ABCC1-like1, and ABCC9. Molecular docking suggested that ABCC10 exhibited high affinity for esterified okadaic acid. Overall, ERK plays a crucial role in DSTs tolerance by regulating the anti-apoptotic system and ABC transporters in bivalves. Our study is of great significance to understand the tolerance mechanism in bivalves and the safety risk caused by DSTs.
Collapse
Affiliation(s)
- Jin-Jin Lv
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yu-Jie Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Yan-Hang Mo
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Li-Yan Deng
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Yang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Blanco J, Estévez-Calvar N, Martín H. Excretion Routes of Okadaic Acid and Dinophysistoxin-2 from Mussels ( Mytilus galloprovincialis) and Cockles ( Cerastoderma edule). Toxins (Basel) 2025; 17:128. [PMID: 40137901 PMCID: PMC11945354 DOI: 10.3390/toxins17030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
The knowledge of the routes of excretion of the toxins accumulated by molluscs is a key step in designing methods that accelerate depuration. In this work, the excretion route, in mussels and cockles, of the main diarrhetic shellfish poisoning (DSP) toxins in Europe (okadaic acid and dinophysistoxin-2) after natural intoxication were studied. During depuration, the amounts of free toxins and their derivatives were quantified in bivalves, faeces, and water. Most toxins (>98%) were excreted through faeces as acyl derivatives (most likely 7-O-acyl esters), independent of the ratio between these derivatives and free toxins in soft tissues. The small proportion of toxins excreted into water mostly constituted the free forms of the toxins. Both species shared the same route even though they contained very different proportions of free toxins in their soft tissues. No substantial changes in this general pattern were observed during the experiment. The esters of fatty acids with 16 carbon atoms were the most abundant in both soft tissues and faeces, but they were not the same in mussels and cockles. Most of the variability in ester proportions can be attributed to the species more than to their differential excretion (water or faeces) suggesting that there are not large differences in the depuration of the different esters.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain; (N.E.-C.); (H.M.)
| | | | | |
Collapse
|
3
|
Yuan KK, Liu YX, Yang XL, Liu YJ, Li HY, Yang WD. Responses of nuclear receptor HR96 to the toxic dinoflagellate Prorocentrum lima in Crassostrea ariakensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117909. [PMID: 39978102 DOI: 10.1016/j.ecoenv.2025.117909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Diarrhetic shellfish toxins (DSTs) are widely distributed and the most common algal toxins and their metabolic detoxification mechanism in shellfish remains poorly understood. Nuclear receptors are pivotal in regulating the detoxification of xenobiotics across various species. In this study, we identified the homologous sequence HR96 of the PXR/VDR/CAR nuclear receptor gene in Crassostrea ariakensis, and found that it may play an important role in resistance to DSTs. Molecular docking results showed that DSTs could be used as ligands to activate the nuclear receptor HR96. After exposure to Prorocentrum lima (a DST-producing dinoflagellate), the DSTs content in the digestive gland tissue of C. ariakensis increased during the accumulation stage, followed by a decrease and then an increase with time during the depuration stage. With few exceptions, the expression levels and protein content of HR96 and related detoxification genes increased throughout the toxin accumulation and depuration stage, suggesting that HR96 may mediate the regulation of genes involved in metabolic detoxification, thereby protecting oysters from the toxic effects of DSTs. During the depuration stage, the toxin content in digestive gland tissues fluctuated but remained at a high level, and the tissue damage was not significantly reduced, which may be related to the migration of toxins among different tissues. Our findings may provide a new perspective on the response of oysters to DSTs and contribute to a deeper understanding of the role of nuclear receptors in environmental adaptation of bivalves.
Collapse
Affiliation(s)
- Kuan-Kuan Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Xin Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiu-Lin Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Li Z, Bao X, Liu X, Wang Y, Zhu X, Zhang Y, Wang Z, Maslennikov S, Whiteside M, Wang W, Xu X, Li B, Luo Q, Li Y, Wang S, Hu B, Yang J. Transcriptome analysis provides preliminary insights into the response of Sepia esculenta to high salinity stress. AGRICULTURE COMMUNICATIONS 2024; 2:100064. [DOI: 10.1016/j.agrcom.2024.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Yuan KK, Li HY, Yang WD. Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors. Mar Drugs 2024; 22:510. [PMID: 39590790 PMCID: PMC11595774 DOI: 10.3390/md22110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning (CP). Despite being caused by exposure to various toxins or toxin analogs, these clinical syndromes share numerous similarities. Humans are exposed to these toxins mainly through the consumption of fish and shellfish, which serve as the main biological vectors. However, the risk of human diseases linked to toxigenic HABs is on the rise, corresponding to a dramatic increase in the occurrence, frequency, and intensity of toxigenic HABs in coastal regions worldwide. Although a growing body of studies have focused on the toxicological assessment of HAB-related species and their toxins on aquatic organisms, the organization of this information is lacking. Consequently, a comprehensive review of the adverse effects of HAB-associated species and their toxins on those organisms could deepen our understanding of the mechanisms behind their toxic effects, which is crucial to minimizing the risks of toxigenic HABs to human and public health. To this end, this paper summarizes the effects of the five most common HAB toxins on fish, shellfish, and humans and discusses the possible mechanisms.
Collapse
Affiliation(s)
| | | | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (K.-K.Y.); (H.-Y.L.)
| |
Collapse
|
6
|
Zhang M, Kong F, Chen D, Yan X, Ran Z, Xu J. Effects of Light Spectra on Nutritional Composition in Juvenile Sinonovacula constricta (Lamarck 1818) and Transcriptomic Analysis. AQUACULTURE NUTRITION 2024; 2024:5575475. [PMID: 39555527 PMCID: PMC11458319 DOI: 10.1155/2024/5575475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/09/2024] [Accepted: 07/16/2024] [Indexed: 11/19/2024]
Abstract
The razor clam Sinonovacula constricta, a commercially important and nutritionally valuable bivalve species, has been found to display notable responses to different light spectra. While previous research has highlighted the influence of light spectra on the growth, feeding rate, and various physiological characteristics of S. constricta, its impact on the biochemical composition of this species remains unclear. Herein, we investigated the proximate, fatty acid, and amino acid compositions of S. constricta cultured under various light spectra, including white, violet, blue, cyan, green, yellow, red, and darkness. Furthermore, we explored the potential molecular mechanisms underlying these observations through transcriptomic analysis. The results indicate that the light spectrum has a significant impact on the growth, biochemical composition, and gene expression of juvenile S. constricta. Specifically, culturing S. constricta under the yellow light led to improved growth rate (1.09 ± 0.03%/day), higher levels of carbohydrate (26.27% ± 0.49%), crude lipid (11.99% ± 0.23%), energy contents (14,611.34 ± 1,067.01 kJ/kg), and essential amino acids (15.22 ± 0.01 g/kg), as well as increased proportions of polyunsaturated fatty acids (12.38 ± 0.31 µg/mg). These findings suggest that yellow light may play a crucial role in enhancing the nutritional quality of S. constricta. Moreover, the transcriptomic analysis revealed that the yellow light treatment upregulated pathways related to fatty acid biosynthesis, glycine, serine, and threonine metabolism and fatty acid metabolism. This indicates that yellow light may influence nutrient metabolism regulation in S. constricta, potentially leading to the observed changes in biochemical composition. Overall, our study recommends cultivating juvenile S. constricta under yellow light to optimize their growth and nutritional value. Further research could delve deeper into the molecular mechanisms underlying the effects of different light spectra on S. constricta to enhance our understanding of how light influences aquaculture practices and the nutritional quality of seafood products.
Collapse
Affiliation(s)
- Mengqi Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Fei Kong
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Deshui Chen
- Fujian Dalai Seedling Technology Co. Ltd., Luoyuan 350600, Fujian, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, Zhejiang, China
| | - Zhaoshou Ran
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, Zhejiang, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
- Fujian Dalai Seedling Technology Co. Ltd., Luoyuan 350600, Fujian, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, Zhejiang, China
| |
Collapse
|
7
|
Xu SY, Mo YH, Liu YJ, Wang X, Li HY, Yang WD. Physiological and genetic responses of the benthic dinoflagellate Prorocentrum lima to polystyrene microplastics. HARMFUL ALGAE 2024; 136:102652. [PMID: 38876530 DOI: 10.1016/j.hal.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 μm and 100 μm PS, and set three concentrations of 1 mg L-1, 10 mg L-1 and 100 mg L-1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Si-Yuan Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
8
|
Beauclercq S, Grenier O, Arnold AA, Warschawski DE, Wikfors GH, Genard B, Tremblay R, Marcotte I. Metabolomics and lipidomics reveal the effects of the toxic dinoflagellate Alexandrium catenella on immune cells of the blue mussel, Mytilus edulis. HARMFUL ALGAE 2023; 129:102529. [PMID: 37951624 DOI: 10.1016/j.hal.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
The increasing occurrence of harmful algal blooms, mostly of the dinoflagellate Alexandrium catenella in Canada, profoundly disrupts mussel aquaculture. These filter-feeding shellfish feed on A. catenella and accumulate paralytic shellfish toxins, such as saxitoxin, in tissues, making them unsafe for human consumption. Algal toxins also have detrimental effects upon several physiological functions in mussels, but particularly on the activity of hemocytes - the mussel immune cells. The objective of this work was to determine the effects of experimental exposure to A. catenella upon hemocyte metabolism and activity in the blue mussel, Mytilus edulis. To do so, mussels were exposed to cultures of the toxic dinoflagellate A. catenella for 120 h. The resulting mussel saxitoxin load had measurable effects upon survival of hemocytes and induced a stress response measured as increased ROS production. The neutral lipid fraction of mussel hemocytes decreased two-fold, suggesting a differential use of lipids. Metabolomic 1H nuclear magnetic resonance (NMR) analysis showed that A. catenella modified the energy metabolism of hemocytes as well as hemocyte osmolyte composition. The modified energy metabolism was reenforced by contrasting plasma metabolomes between control and exposed mussels, suggesting that the blue mussel may reduce feed assimilation when exposed to A. catenella.
Collapse
Affiliation(s)
- Stéphane Beauclercq
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada
| | - Olivier Grenier
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada
| | - Dror E Warschawski
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, France
| | - Gary H Wikfors
- Northeast Fisheries Science Center (NEFSC), NOAA Fisheries, Milford, CT, USA
| | - Bertrand Genard
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada; Les laboratoires Iso-BioKem Inc., 367 rue Gratien-Gélinas, Rimouski, QC, Canada
| | - Réjean Tremblay
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada.
| |
Collapse
|
9
|
Gao Y, Xie Z, Qian J, Tu Z, Yang C, Deng Y, Xue Y, Shang Y, Hu M, Wang Y. Effects of diel-cycling hypoxia and salinity on lipid metabolism and fatty acid composition of the oyster Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106124. [PMID: 37586224 DOI: 10.1016/j.marenvres.2023.106124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
For marine animals living in estuarine, coastal, and intertidal areas, salinity changes and periodic hypoxia are typical stressors; however, how the varying salinity and dissolved oxygen affect the quality and nutrition of marine aquaculture species, such as oysters remains unknown. In this study, we evaluated the diel-cycling hypoxia under different salinities on fatty acid composition and lipid metabolism in oyster Crassostrea hongkongensis digestive glands. After 28 days of exposure, both hypoxia and elevated salinity caused a decrease in the saturated fatty acid (SFA)/polyunsaturated fatty acid (PUFA) ratio of C. hongkongensis, salinity mainly causes changes in C17:0, C17:1, C18:1n9, C20:1n9, C20:4n6, C21:5n3, C22:5n3, with high salinity being more damaging to the fatty acid fractions. Also, Hypoxia accelerates the synthesis of C18:1n9 and C20:4n6. Fatty acid synthase (FAS) synthesis is increased by reduced salinity or hypoxia, but Acetyl CoA carboxylase (ACC) only weakly promotes fatty acid synthesis. Under hypoxic conditions, the activity of both hepatic lipase (HL) and lipoprotein lipase activity (LPL) decreases, which is contrary to the results for dissolved oxygen. The increase in salinity under dissolved oxygen leads to a decrease in LPL activity and an increase in HL activity. Our findings highlighted that exposure to a combination of salinity and hypoxia stressors, can disrupt the protective mechanisms of the oyster and affect the function of its lipid metabolism. Therefore, long-term exposure to periodic hypoxia with salinity changes poses a risk to the nutritional quality of C. hongkongensis, affecting oyster aquaculture and the coastal ecosystem.
Collapse
Affiliation(s)
- Yiming Gao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jin Qian
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yucai Xue
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
10
|
Qin Y, Li J, Kuang J, Shen S, Zhou X, Zhao X, Huang B, Han B. Okadaic Acid Detection through a Rapid and Sensitive Amplified Luminescent Proximity Homogeneous Assay. Toxins (Basel) 2023; 15:501. [PMID: 37624258 PMCID: PMC10467062 DOI: 10.3390/toxins15080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Okadaic acid (OA), a marine biotoxin produced by microalgae, poses a significant threat to mariculture, seafood safety, and human health. The establishment of a novel, highly sensitive detection method for OA would have significant practical and scientific implications. Therefore, the purpose of this study was to develop an innovative approach for OA detection. A competitive amplified luminescent proximity homogeneous assay (AlphaLISA) was developed using the principle of specific antigen-antibody binding based on the energy transfer between chemiluminescent microspheres. The method was non-washable, sensitive, and rapid, which could detect 2 × 10-2-200 ng/mL of OA within 15 min, and the detection limit was 4.55 × 10-3 ng/mL. The average intra- and inter-assay coefficients of variation were 2.54% and 6.26%, respectively. Detection of the actual sample results exhibited a good correlation with high-performance liquid chromatography. In conclusion, a simple, rapid, sensitive, and accurate AlphaLISA method was established for detecting OA and is expected to significantly contribute to marine biotoxin research.
Collapse
Affiliation(s)
- Yuan Qin
- Correspondence: (Y.Q.); (B.H.); (B.H.)
| | | | | | | | | | | | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; (J.L.); (J.K.); (S.S.); (X.Z.); (X.Z.)
| | - Bingnan Han
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; (J.L.); (J.K.); (S.S.); (X.Z.); (X.Z.)
| |
Collapse
|
11
|
Hort V, Bastardo-Fernández I, Nicolas M. Exploration of Vulcanodinium rugosum Toxins and their Metabolism Products in Mussels from the Ingril Lagoon Hotspot in France. Mar Drugs 2023; 21:429. [PMID: 37623710 PMCID: PMC10455521 DOI: 10.3390/md21080429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Over the year 2018, we assessed toxin contamination of shellfish collected on a monthly basis in Ingril Lagoon, France, a site known as a hotspot for Vulcanodinium rugosum growth. This short time-series study gave an overview of the presence and seasonal variability of pinnatoxins, pteriatoxins, portimines and kabirimine, all associated with V. rugosum, in shellfish. Suspect screening and targeted analysis approaches were implemented by means of liquid chromatography coupled to both low- and high-resolution mass spectrometry. We detected pinnatoxin-A and pinnatoxin-G throughout the year, with maximum levels for each one observed in June (6.7 µg/kg for pinnatoxin-A; 467.5 µg/kg for pinnatoxin-G), whereas portimine-A was detected between May and September (maximum level = 75.6 µg/kg). One of the main findings was the identification of a series of fatty acid esters of pinnatoxin-G (n = 13) although the levels detected were low. The profile was dominated by the palmitic acid conjugation of pinnatoxin-G. The other 12 fatty acid esters had not been reported in European shellfish to date. In addition, after thorough investigations, two compounds were detected, with one being probably identified as portimine-B, and the other one putatively attributed to pteriatoxins. If available, reference materials would have ensured full identification. Monitoring of these V. rugosum emerging toxins and their biotransformation products will contribute towards filling the data gaps pointed out in risk assessments and in particular the need for more contamination data for shellfish.
Collapse
Affiliation(s)
- Vincent Hort
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Paris-Est University, 14 Rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France; (I.B.-F.); (M.N.)
| | | | | |
Collapse
|
12
|
Pan Y, Meng R, Li Y, Yang L, Mei L, Wu Y, Xu J, Zhou C, Yan X. Changes in biochemical metabolites in manila clam after a temporary culture with high-quality microalgal feed mixed with the dinoflagellate species Karlodinium veneficum and K. zhouanum. HARMFUL ALGAE 2023; 125:102422. [PMID: 37220975 DOI: 10.1016/j.hal.2023.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 05/25/2023]
Abstract
Phytoplankton composition is an important factor affecting the growth and physiological biochemical characteristics of filter-feeding bivalves. With the increasing trend in dinoflagellate biomass and blooms in mariculture areas, how the physio-biochemical traits and seafood quality of the mariculture organism are affected by the dinoflagellates, especially those at nonfatal levels, is not well understood. Different densities of two Karlodinium species, namely K. veneficum (KV) and K. zhouanum (KZ), mixed with high quality microalgal food Isochrysis galbana was applied in feeding manila clam Ruditapes philippinarum in a 14-day temporary culture, to comparatively study how the critical biochemical metabolites such as glycogen, free amino acids (FAAs), fatty acids (FAs), volatile organic compounds (VOCs) in the clam were affected. The survival rate of the clam showed dinoflagellate density and species specificity. The high-density KV group inhibited survival to 32% lower than that of the pure I. galbana control, respectively, while KZ at low concentrations did not significantly affect the survival compared with the control. In the high-density KV group, the glycogen and FAA contents decreased (p < 0.05), indicating that energy and protein metabolism were significantly affected. Amount of carnosine (49.91 ± 14.64 to 84.74 ± 8.59 μg/g of muscle wet weight) was detected in all the dinoflagellate-mixed groups, while it was not present in the field samples or in the pure I. galbana control, showing that carnosine participated in the anti-stress activities when the clam was exposed to the dinoflagellates. The global composition of FAs did not significantly vary among the groups. However, contents of the endogenous C18 PUFA precursors linoleic acid and α-linolenic acid significantly decreased in the high-density KV group compared to all the other groups, indicating that high density of KV affected the metabolisms of fatty acids. From the results of the changed VOC composition, oxidation of fatty acids and degradation of free amino acids might occur in the clams exposed to dinoflagellates. The increased VOCs, such as aldehydes, and decreased 1-octen-3-ol probably produced a more fishy taste and reduced food flavor quality when the clam was exposed to the dinoflagellates. This present study demonstrated that the biochemical metabolism and seafood qulity of the clam were affected. However, KZ with moderate density in the feed seemed to be beneficial in aquaculture for increasing the content of carnosine, a high-valued substance with multiple bioactivities.
Collapse
Affiliation(s)
- Yuanbo Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Ran Meng
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo 315832, China
| | - Ling Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Limin Mei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Yanhua Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Jilin Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China.
| | - Xiaojun Yan
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China; Ningbo Institute of Oceanography, Ningbo 315832, China; Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
13
|
Lv JJ, Yuan KK, Lu GX, Li HY, Kwok HF, Yang WD. Responses of ABCB and ABCC transporters to the toxic dinoflagellate Prorocentrum lima in the mussel Perna viridis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106368. [PMID: 36493563 DOI: 10.1016/j.aquatox.2022.106368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Bivalve mollusks can accumulate diarrheic shellfish poisoning (DSP) toxins through filter-feeding, but they exhibit some resistance to the toxins. Previous studies have suggested that the ABC transporters may have an important role in the resistance to DSP toxins, but comprehensive studies are lacking. In this study, we comprehensively analyzed the distribution of ABC transporters in the mussel Perna viridis, and observed responses of ABCB and ABCC transporters to the DSP toxins-producing dinoflagellate Prorocentrum lima. Total 39 members of ABC transporters were identified in P. viridis, including 3 full PvABCBs, 3 half PvABCBs, and 7 PvABCCs transporters. We found that PvABCBs and PvABCCs subfamilies were expressed in hemocytes, gills and digestive gland with some difference, especially in hemocytes. After exposure to P. lima, PvABCBs and PvABCCs displayed different expression changes in different tissues. The short-term (3 h) exposure to P. lima induced the transcription of PvABCB1_like1, PvABCB6, PvABCC1, PvABCC1_like and PvABCC1/3, and the longer-term (96 h) exposure increased the transcription of PvABCB1, PvABCB1_like, PvABCB10, PvABCC1 and PvABCC1_like1 in gills and PvABCC10 in digestive gland. These results suggest that different types of PvABCBs and PvABCCs in P. viridis may contribute to the detoxification of DSP toxins in different tissues at different time after exposure to DSP toxins. Our finding provides new evidence for further understanding the role of ABC transporters in the tolerance of mussel to DSP toxins.
Collapse
Affiliation(s)
- Jin-Jin Lv
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Kuan-Kuan Yuan
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Guan-Xiu Lu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Rourke WA, Justason A, Martin JL, Murphy CJ. Shellfish Toxin Uptake and Depuration in Multiple Atlantic Canadian Molluscan Species: Application to Selection of Sentinel Species in Monitoring Programs. Toxins (Basel) 2021; 13:toxins13020168. [PMID: 33671640 PMCID: PMC7926447 DOI: 10.3390/toxins13020168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/25/2023] Open
Abstract
Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.
Collapse
Affiliation(s)
- Wade A. Rourke
- Dartmouth Laboratory, Canadian Food Inspection Agency, 1992 Agency Drive, Dartmouth, NS B3B 1Y9, Canada;
- Correspondence:
| | - Andrew Justason
- New Brunswick Operations, Canadian Food Inspection Agency, 99 Mount Pleasant Road, P.O. Box 1036, St. George, NB E5C 3S9, Canada;
| | - Jennifer L. Martin
- St. Andrews Biological Station, Fisheries and Oceans Canada, 125 Marine Science Drive, St. Andrews, NB E5B 0E4, Canada;
| | - Cory J. Murphy
- Dartmouth Laboratory, Canadian Food Inspection Agency, 1992 Agency Drive, Dartmouth, NS B3B 1Y9, Canada;
| |
Collapse
|