1
|
Ma L, Wang Y, Wang H, Ren L, Guo Y, Qin L, Gong Z, Li G, Sang N. Effects of PM 2.5 exposure on hematopoiesis and coupled immune disorder in adult male mice. J Environ Sci (China) 2025; 155:442-453. [PMID: 40246479 DOI: 10.1016/j.jes.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 04/19/2025]
Abstract
Fine particulate matter, namely PM2.5, increases the risk of morbidity and mortality in various systems, including the hematopoietic and immune systems. However, there is limited experimental evidence supporting the association between PM2.5 exposure and hematopoietic outcomes as most studies focus on epidemiological data. In this study, adult male mice were exposed to PM2.5 for a long time to investigate hematopoietic toxicity. There were significant increases in red blood cells (RBC), hemoglobin (HGB), and white blood cells (WBC) in peripheral blood after 5-month real-environmental PM2.5 exposure, indicating elevated circulatory inflammation and potential hematopoietic abnormality. Moreover, we observed abnormal proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs), along with altered mRNA levels of hematopoietic genes and increased proinflammatory factors in the bone marrow (BM). Transcriptomic analysis of BM cells suggested that PM2.5 exposure activated immune responses associated with lymphocytes. Then, PM2.5 exposure via intratracheal instillation was performed for 8 weeks to verify the toxic effect. The results of the complete blood count were similar to those of real-environmental exposure, with drastic changes in the number and function of HSPCs, as well as mRNA levels of the hematopoietic genes and increased inflammatory factors in the BM being detected. Furthermore, lymphocyte subsets changed significantly in the BM and spleen, confirming immune disorder following PM2.5 exposure. In conclusion, PM2.5 interfered with the process of BM hematopoiesis by triggering inflammation and leading to immune disorder. Our study provided experimental evidence for the hematopoietic toxicity of PM2.5 and highlighted the significance of reducing air pollution.
Collapse
Affiliation(s)
- Li Ma
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yang Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Hao Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Lingyu Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yuqiong Guo
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Liyao Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Zhihua Gong
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Thaichana P, Sripan P, Rerkasem A, Tongsong T, Sangsawang S, Kawichai S, Srisukkham W, Wanapirak C, Sirilert S, Mattawanon N, Phanpong C, Ongprasert K, Derraik JGB, Rerkasem K. Association of Maternal PM 2.5 Exposure with Preterm Birth and Low Birth Weight: A Large-Scale Cohort Study in Northern Thailand (2016-2022). TOXICS 2025; 13:304. [PMID: 40278620 PMCID: PMC12031216 DOI: 10.3390/toxics13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Air pollution exposure has been increasingly linked to adverse pregnancy outcomes. This study aimed to investigate the effects of PM2.5 exposure throughout pregnancy on preterm birth, low birth weight (LBW), and small for gestational age (SGA). We analyzed a cohort of 16,965 pregnant women living in northern Thailand between 2016 and 2022. PM2.5 concentration data were collected from two air quality monitoring stations operated by the Pollution Control Department (PCD) of Thailand. Logistic regression models were used to assess the association between daily PM2.5 exposure and pregnancy outcomes. PM2.5 exposure at levels exceeding 37.5 μg/m3 throughout pregnancy significantly increased the risk of preterm birth (aOR = 2.19, p < 0.001) and LBW (aOR = 1.99, p < 0.001) compared to the reference group (15.1-37.5 μg/m3). However, exposure at levels ≤15.0 μg/m3 also increased the risk for both outcomes compared to the same reference group. Subgroup analysis of high-risk pregnant women, including women aged > 35 years, with pre-pregnancy BMI (<18.5), pregnancy-induced hypertension, and nulliparous women, showed that the range of the critical PM2.5 exposure threshold was 32.3-38.4 μg/m3 for preterm birth and 31.2-38.2 μg/m3 for LBW. This study highlights the significant association between PM2.5 exposure and adverse pregnancy outcomes and suggests the need for targeted interventions to mitigate its effects on maternal and child health.
Collapse
Affiliation(s)
- Pak Thaichana
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental-Occupational Health Sciences and Non-Communicable Diseases Research Center, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.K.); (J.G.B.D.)
| | - Patumrat Sripan
- Research Center for Infectious Disease and Substance Use, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Amaraporn Rerkasem
- Environmental-Occupational Health Sciences and Non-Communicable Diseases Research Center, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.K.); (J.G.B.D.)
- Research Center for Infectious Disease and Substance Use, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.T.); (C.W.); (S.S.); (N.M.)
| | - Suraphan Sangsawang
- Regional Health Promotion Center1 Hospital, Chiang Mai 50100, Thailand; (S.S.); (C.P.)
| | - Sawaeng Kawichai
- Environmental-Occupational Health Sciences and Non-Communicable Diseases Research Center, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.K.); (J.G.B.D.)
| | - Worawut Srisukkham
- Department of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chanane Wanapirak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.T.); (C.W.); (S.S.); (N.M.)
| | - Sirinart Sirilert
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.T.); (C.W.); (S.S.); (N.M.)
| | - Natnita Mattawanon
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.T.); (C.W.); (S.S.); (N.M.)
| | - Chotiros Phanpong
- Regional Health Promotion Center1 Hospital, Chiang Mai 50100, Thailand; (S.S.); (C.P.)
| | - Krongporn Ongprasert
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - José G. B. Derraik
- Environmental-Occupational Health Sciences and Non-Communicable Diseases Research Center, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.K.); (J.G.B.D.)
- Department of Pediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, 753 10 Uppsala, Sweden
| | - Kittipan Rerkasem
- Environmental-Occupational Health Sciences and Non-Communicable Diseases Research Center, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.K.); (J.G.B.D.)
- Clinical Surgical Research Center, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Ma L, Wang H, Guo Y, Qin L, Ren L, Ku T, Li G, Sang N. Prenatal PM 2.5 exposure affects embryonic hematopoietic development through SOX2-regulated gene expression. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137193. [PMID: 39842112 DOI: 10.1016/j.jhazmat.2025.137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
Fine particulate matter (PM2.5) is one of the most concerning air pollutants, with emerging evidence indicating that it can negatively impact embryonic development and lead to adverse birth outcomes. Hematopoiesis is a critical process essential for the survival and normal development of the embryo, consisting of three temporally overlapping stages and involving multiple hematopoietic loci, including the yolk sac and fetal liver. Therefore, we hypothesized that abnormal embryonic hematopoietic development can significantly influence developmental outcomes. In this study, we established a prenatal PM2.5 exposure model and observed decreased embryo weights and elevated platelet counts at embryonic day 18.5 (E18.5). Additionally, we employed flow cytometry and colony-forming unit assays, which revealed a significant decrease in the proliferative differentiation potential of erythro-myeloid progenitors in the E10.5 yolk sac, as well as a reduction in both the number and function of hematopoietic stem progenitor cells in the E14.5 fetal liver. Through bioinformatic analysis, we identified that these alterations are associated with several typical biological processes and genes regarding cell proliferation, cell differentiation, response to hypoxia, and regulation of hematopoiesis. Importantly, via quantitative real-time PCR, chromatin immunoprecipitation, and immunofluorescence, we further elucidated that prenatal exposure to PM2.5 affects embryonic hematopoiesis by regulating the expression of SOX2, an important transcription factor involved in embryonic development, along with its related genes. Collectively, these findings provide experimental evidence supporting the necessity for controlling regional PM2.5 exposure to promote child well-being in polluted areas.
Collapse
Affiliation(s)
- Li Ma
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hao Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Yuqiong Guo
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Liyao Qin
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Lingyu Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Tingting Ku
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Guangke Li
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Nan Sang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Wan T, Chen Z, Li J, Yuan X, Zheng M, Qin L, Zhang L, Hou T, Liu C, Li R. AMPK agonist AICAR ameliorates maternal hepatic lipid metabolism disorder, inflammation, and fibrosis caused by PM 2.5 exposure during pregnancy. Sci Rep 2025; 15:8689. [PMID: 40082541 PMCID: PMC11906884 DOI: 10.1038/s41598-025-93395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Liver is an important target organ of ambient fine particulate matter (PM2.5). Numerous studies have shown that PM2.5 exposure can cause liver lipid metabolism disorders and other liver damage in mammals. However, the impact of PM2.5 on liver health during pregnancy, a sensitive life stage, remains understudied, and the underlying mechanisms are also unknown. Given the critical role of adenosine 5'-monophosphate activated protein kinase (AMPK) in regulating lipid metabolism and inflammation, we hypothesize that AMPK activation may mitigate maternal hepatic lipid metabolism disorders, reduce inflammation, and attenuate fibrosis induced by PM2.5 exposure during pregnancy. To test this hypothesis, pregnant C57BL/6 mice were randomly assigned to 4 groups: filtered air (FA) + NS (normal saline), PM2.5+NS, FA + AICAR (acadesine, an AMPK activator), and PM2.5+AICAR. PM2.5+NS and PM2.5+AICAR groups were continuously exposed to PM2.5 with a whole-body PM2.5 exposure chamber, while the other two groups were exposed to filtered air in the FA chamber. Simultaneously, the FA + AICAR and PM2.5+AICAR groups received intraperitoneal injections of the AMPK agonist AICAR (200 mg/kg∙bw per day) from gestational day 13 (GD13) to GD17, while mice in the FA + NS and PM2.5+NS groups were administered normal saline injection. We found that gestational PM2.5 exposure induced dyslipidemia in pregnant mice, which was alleviated by AICAR treatment. Histopathological analysis showed that the exposure to PM2.5 during pregnancy induced hepatic lipid deposition and fibrosis in pregnant mice, and biochemical assays revealed that hepatic triglyceride and cholesterol levels were also significantly increased in pregnant mice after exposure to PM2.5, whereas the AICAR treatment ameliorated hepatic lipid deposition and fibrosis induced by the exposure to PM2.5 during pregnancy. Furthermore, PM2.5 exposure during pregnancy disrupted the expression of key genes and proteins associated with hepatic lipid synthesis, cholesterol synthesis, inflammation, and fibrosis, while treatment with AICAR mitigated these effects. These findings demonstrated that AMPK activation ameliorates hepatic lipid metabolism disorders, reduces inflammation, and attenuates fibrosis caused by PM2.5 exposure in mice during pregnancy. AMPK may be a target of action for maternal liver injury induced by PM2.5 exposure during pregnancy.
Collapse
Affiliation(s)
- Teng Wan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuan Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyi Yuan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingmeng Zheng
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Hou
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Zhu J, He M, Li S, Lei Y, Xiang X, Guo Z, Wang Q. Shaping oral and intestinal microbiota and the immune system during the first 1,000 days of life. Front Pediatr 2025; 13:1471743. [PMID: 39906673 PMCID: PMC11790674 DOI: 10.3389/fped.2025.1471743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
The first 1, 000 days of life, from the fetal stage of a woman's pregnancy to 2 years of age after the baby is born, is a critical period for microbial colonization of the body and development of the immune system. The immune system and microbiota exhibit great plasticity at this stage and play a crucial role in subsequent development and future health. Two-way communication and interaction between immune system and microbiota is helpful to maintain human microecological balance and immune homeostasis. Currently, there is a growing interest in the important role of the microbiota in the newborn, and it is believed that the absence or dysbiosis of human commensal microbiota early in life can have lasting health consequences. Thus, this paper summarizes research advances in the establishment of the oral and intestinal microbiome and immune system in early life, emphasizing the substantial impact of microbiota diversity in the prenatal and early postnatal periods, and summarizes that maternal microbes, mode of delivery, feeding practices, antibiotics, probiotics, and the environment shape the oral and intestinal microbiota of infants in the first 1, 000 days of life and their association with the immune system.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Villarroel F, Ponce N, Gómez FA, Muñoz C, Ramírez E, Nualart F, Salinas P. Exposure to fine particulate matter 2.5 from wood combustion smoke causes vascular changes in placenta and reduce fetal size. Reprod Toxicol 2024; 127:108610. [PMID: 38750704 DOI: 10.1016/j.reprotox.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
During gestation, maternal blood flow to the umbilical cord and placenta increases, facilitating efficient nutrient absorption, waste elimination, and effective gas exchange for the developing fetus. However, the effects of exposure to wood smoke during this period on these processes are unknown. We hypothesize that exposure to PM2.5, primarily sourced from wood combustion for home heating, affects placental vascular morphophysiology and fetal size. We used exposure chambers that received either filtered or unfiltered air. Female rats were exposed to PM2.5 during pre-gestational and/or gestational stages. Twenty-one days post-fertilization, placentas were collected via cesarean section. In these placentas, oxygen diffusion capacity was measured, and the expression of angiogenic factors was analyzed using qPCR and immunohistochemistry. In groups exposed to PM2.5 during pre-gestational and/or gestational stages, a decrease in fetal weight, crown-rump length, theoretical and specific diffusion capacity, and an increase in HIF-1α expression were observed. In groups exposed exclusively to PM2.5 during the pre-gestational stage, there was an increase in the expression of placental genes Flt-1, Kdr, and PIGF. Additionally, in the placental labyrinth region, the expression of angiogenic factors was elevated. Changes in angiogenesis and angiogenic factors reflect adaptations to hypoxia, impacting fetal growth and oxygen supply. In conclusion, this study demonstrates that exposure to PM2.5, emitted from wood smoke, in both pre-gestational and gestational stages, affects fetal development and placental health. This underscores the importance of addressing air pollution in areas with high levels of wood smoke, which poses a significant health risk to pregnant women and their fetuses.
Collapse
Affiliation(s)
- Francisca Villarroel
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; MSc. Program in Biological Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nikol Ponce
- PhD Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Surgical and Morphological Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Fernando A Gómez
- Laboratory of Genetics and Molecular Immunology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristián Muñoz
- Laboratory of Genetics and Molecular Immunology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion, Chile; Center for Advanced Microscopy CMA BIO-BIO, Universidad de Concepcion, Concepcion, Chile
| | - Paulo Salinas
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
7
|
Parasin N, Amnuaylojaroen T, Saokaew S. Prenatal PM 2.5 Exposure and Its Association with Low Birth Weight: A Systematic Review and Meta-Analysis. TOXICS 2024; 12:446. [PMID: 39058098 PMCID: PMC11280910 DOI: 10.3390/toxics12070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Exposure to PM2.5 while pregnant is associated with negative effects on low birth weight (LBW). This study employed a systematic review and meta-analysis to investigate the impact of PM2.5 exposure during pregnancy on LBW. A search of databases such as Scopus, ScienceDirect, and PubMed identified thirteen appropriate studies. This study used a random-effects model to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs) for each trimester. The findings revealed a significant relationship between PM2.5 exposure and LBW in both the first and second trimesters (OR 1.05, 95% CI 1.00-1.09, p < 0.001). There was no significant difference between trimesters (p = 0.704). The results emphasize the persistent influence of PM2.5 on fetal development throughout all stages of pregnancy. Reducing air pollution is critical for improving pregnancy outcomes and decreasing the incidence of LBW. Further study is needed to improve exposure assessments and investigate the underlying biological pathways.
Collapse
Affiliation(s)
- Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand;
| | - Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
- Atmospheric Pollution and Climate Change Research Units, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand;
- Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
8
|
Wang Y, Chen Z, Li J, Wan T, Hu R, Zhang L, Qin L, Zang L, Gu W, Chen R, Liu C, Li R. Gestational exposure to PM 2.5 disrupts fetal development by suppressing placental trophoblast syncytialization via progranulin/mTOR signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171101. [PMID: 38387595 DOI: 10.1016/j.scitotenv.2024.171101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Recent epidemiological and animal studies have indicated that ambient fine particulate matter (PM2.5) exposure during pregnancy is closely associated with intrauterine growth restriction (IUGR). However, the underlying mechanisms remain to be revealed. In this study, we found that gestational exposure to PM2.5 significantly decreased fetal weight and crown-rump length in mice, accompanied by insufficient placental trophoblast syncytialization and increased expression of progranulin (PGRN) in mice placenta. Administering PGRN neutralizing antibody to pregnant mice alleviated growth restriction and insufficient placental trophoblast syncytialization caused by PM2.5, accompanied with suppressed activation of the mTOR signaling pathway. Furthermore, in vitro experiments using human placental BeWo cells showed that 10 μg·mL-1 PM2.5 activated PGRN/mTOR signaling and suppressed forskolin-induced cell fusion, which was blocked by knockdown of PGRN. Taken together, our results demonstrated that PM2.5 exposure during pregnancy inhibited placental trophoblast syncytialization by activating PGRN/mTOR signaling, leading to abnormal placental development and IUGR. This study reveals a novel mechanism underlying the developmental toxicity of PM2.5 exposure during pregnancy.
Collapse
Affiliation(s)
- Yirun Wang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuan Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Teng Wan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Renjie Hu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijia Gu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
Krakauer KN, Cevallos PC, Amakiri UO, Saldana GM, Lipman KJ, Howell LK, Wan DC, Khosla RK, Nazerali R, Sheckter CC. US air pollution is associated with increased incidence of non-syndromic cleft lip/palate. J Plast Reconstr Aesthet Surg 2024; 88:344-351. [PMID: 38064913 PMCID: PMC11544580 DOI: 10.1016/j.bjps.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/02/2024]
Abstract
Maternal cigarette use is associated with the fetal development of orofacial clefts. Air pollution should be investigated for similar causation. We hypothesize that the incidence of non-syndromic cleft lip with or without palate (NSCLP) and non-syndromic cleft palate (NSCP) would be positively correlated with air pollution concentration. METHODS The incidence of NSCLP and NSCP per 1000 live births from 2016 to 2020 was extracted from the Centers for Disease Control and Prevention Vital Statistics Database and merged with national reports on air pollution using the Environmental Protection Agency Air Quality Systems annual data. The most commonly reported pollutants were analyzed including benzene, sulfur dioxide (SO2), particulate matter (PM) 2.5, PM 10, ozone (O3), and carbon monoxide (CO). Multivariable negative binomial and Poisson log-linear regression models evaluated the incidence of NSCLP and NSCP as a function of the pollutants, adjusting for race. All p-values are reported with Bonferroni correction. RESULTS The median NSCLP incidence was 0.22/1000 births, and isolated NSCP incidence was 0.18/1000 births. For NSCLP, SO2 had a coefficient estimate (CE) of 0.60 (95% CI [0.23, 0.98], p < 0.007) and PM 2.5 had a CE of 0.20 (95% CI [0.10, 0.31], p < 0.005). Among isolated NSCP, no pollutants were found to be significantly associated. CONCLUSION SO2 and PM 2.5 were significantly correlated with increased incidence of NSCLP. The American people and perinatal practitioners should be aware of the connection to allow for risk reduction and in utero screening.
Collapse
Affiliation(s)
- Kelsi N Krakauer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Priscila C Cevallos
- Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Uche O Amakiri
- Icahn School of Medicine at Mt. Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Golddy M Saldana
- University of California Davis School of Medicine, 4610 X Street, Sacramento, CA 95817, USA
| | - Kelsey J Lipman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Lori K Howell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Rohit K Khosla
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Rahim Nazerali
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Clifford C Sheckter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA.
| |
Collapse
|
10
|
Santos JX, Sampaio P, Rasga C, Martiniano H, Faria C, Café C, Oliveira A, Duque F, Oliveira G, Sousa L, Nunes A, Vicente AM. Evidence for an association of prenatal exposure to particulate matter with clinical severity of Autism Spectrum Disorder. ENVIRONMENTAL RESEARCH 2023; 228:115795. [PMID: 37028534 DOI: 10.1016/j.envres.2023.115795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Early-life exposure to air pollutants, including ozone (O3), particulate matter (PM2.5 or PM10, depending on diameter of particles), nitrogen dioxide (NO2) and sulfur dioxide (SO2) has been suggested to contribute to the etiology of Autism Spectrum Disorder (ASD). In this study, we used air quality monitoring data to examine whether mothers of children with ASD were exposed to high levels of air pollutants during critical periods of pregnancy, and if higher exposure levels may lead to a higher clinical severity in their offspring. We used public data from the Portuguese Environment Agency to estimate exposure to these pollutants during the first, second and third trimesters of pregnancy, full pregnancy and first year of life of the child, for 217 subjects with ASD born between 2003 and 2016. These subjects were stratified in two subgroups according to clinical severity, as defined by the Autism Diagnostic Observational Schedule (ADOS). For all time periods, the average levels of PM2.5, PM10 and NO2 to which the subjects were exposed were within the admissible levels defined by the European Union. However, a fraction of these subjects showed exposure to levels of PM2.5 and PM10 above the admissible threshold. A higher clinical severity was associated with higher exposure to PM2.5 (p = 0.001), NO2 (p = 0.011) and PM10 (p = 0.041) during the first trimester of pregnancy, when compared with milder clinical severity. After logistic regression, associations with higher clinical severity were identified for PM2.5 exposure during the first trimester (p = 0.002; OR = 1.14, 95%CI: 1.05-1.23) and full pregnancy (p = 0.04; OR = 1.07, 95%CI: 1.00-1.15) and for PM10 (p = 0.02; OR = 1.07, 95%CI: 1.01-1.14) exposure during the third trimester. Exposure to PM is known to elicit neuropathological mechanisms associated with ASD, including neuroinflammation, mitochondrial disruptions, oxidative stress and epigenetic changes. These results offer new insights on the impact of early-life exposure to PM in ASD clinical severity.
Collapse
Affiliation(s)
- João Xavier Santos
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Pedro Sampaio
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Célia Rasga
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Hugo Martiniano
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Clarissa Faria
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Cátia Café
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Alexandra Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Frederico Duque
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Ana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Astrid Moura Vicente
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| |
Collapse
|
11
|
Fernández ACG, Basilio E, Benmarhnia T, Roger J, Gaw SL, Robinson JF, Padula AM. Retrospective analysis of wildfire smoke exposure and birth weight outcomes in the San Francisco Bay Area of California. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:025009. [PMID: 37324234 PMCID: PMC10261910 DOI: 10.1088/2752-5309/acd5f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Despite the occurrence of wildfires quadrupling over the past four decades, the health effects associated with wildfire smoke exposures during pregnancy remains unknown. Particulate matter less than 2.5 μms (PM2.5) is among the major pollutants emitted in wildfire smoke. Previous studies found PM2.5 associated with lower birthweight, however, the relationship between wildfire-specific PM2.5 and birthweight is uncertain. Our study of 7923 singleton births in San Francisco between January 1, 2017 and March 12, 2020 examines associations between wildfire smoke exposure during pregnancy and birthweight. We linked daily estimates of wildfire-specific PM2.5 to maternal residence at the ZIP code level. We used linear and log-binomial regression to examine the relationship between wildfire smoke exposure by trimester and birthweight and adjusted for gestational age, maternal age, race/ethnicity, and educational attainment. We stratified by infant sex to examine potential effect modification. Exposure to wildfire-specific PM2.5 during the second trimester of pregnancy was positively associated with increased risk of large for gestational age (OR = 1.13; 95% CI: 1.03, 1.24), as was the number of days of wildfire-specific PM2.5 above 5 μg m-3 in the second trimester (OR = 1.03; 95% CI: 1.01, 1.06). We found consistent results with wildfire smoke exposure in the second trimester and increased continuous birthweight-for-gestational age z-score. Differences by infant sex were not consistent. Counter to our hypothesis, results suggest that wildfire smoke exposures are associated with increased risk for higher birthweight. We observed strongest associations during the second trimester. These investigations should be expanded to other populations exposed to wildfire smoke and aim to identify vulnerable communities. Additional research is needed to clarify the biological mechanisms in this relationship between wildfire smoke exposure and adverse birth outcomes.
Collapse
Affiliation(s)
- Anna Claire G Fernández
- School of Public Health, University of California, Berkeley
- School of Medicine, University of California, San Francisco
| | - Emilia Basilio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego
| | | | - Stephanie L Gaw
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Joshua F Robinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| |
Collapse
|
12
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
13
|
Wang VA, Leung M, Li L, Modest AM, Schwartz J, Coull BA, Hacker MR, Wylie BJ, Koutrakis P, Papatheodorou S. Prenatal Exposure to Ambient Particle Radioactivity and Fetal Growth in Eastern Massachusetts. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:805-815. [PMID: 40291789 PMCID: PMC12029881 DOI: 10.1007/s11869-023-01311-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/17/2023] [Indexed: 04/30/2025]
Abstract
Background The radioactive component of particulate matter (PM), particle radioactivity (PR), can continue to emit radiation after inhalation. While PR has been associated with other adverse pregnancy outcomes, no studies have examined the association with fetal growth. Methods Our retrospective cohort included singleton pregnancies that underwent obstetric ultrasounds at an academic medical center in Massachusetts from 2011 through 2016. PR was represented by particle gross β-activity estimated from an ensemble model and was assigned based on residential zip-code. We considered the cumulative (conception until date of fetal growth measurement) and first 16 weeks of gestation PR exposure windows. Standardized z-scores were constructed for biparietal diameter (BPD), head circumference, femur length (FL), abdominal circumference (AC), and birth weight. We used linear mixed regression models adjusted for PM ≤2.5 μm exposure, maternal sociodemographic factors, meteorological variables, and long-term trends. Results Among 9,404 pregnancies, an interquartile range increase in cumulative PR exposure was associated with reduced BPD (-0.06 [95% CI: -0.12, -0.01] z-score) and FL (-0.06 [95% CI: -0.12, -0.01] z-score) in scans conducted before 24 weeks' gestation, with increased AC (0.05 [95% CI: 0.01, 0.09]) in scans conducted on or after 24 weeks' gestation, and with lower birth weight (-0.05 [95% CI: -0.11, -0.001] z-score). The first 16 weeks of gestation was not a critical exposure window. Conclusions Prenatal PR was associated with fetal growth, with associations generally negative before 24 weeks' gestation and positive later in pregnancy. Our findings bring awareness to a novel environmental exposure.
Collapse
Affiliation(s)
- Veronica A. Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Leung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anna M. Modest
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michele R. Hacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Blair J. Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
14
|
Yan W, Xie M, Liu X, Han S, Xu J, Zhang G. Exposure-lag response of fine particulate matter on intrauterine fetal death: an analysis using a distributed lag non-linear model in Linxia Hui Autonomous Prefecture, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45184-45194. [PMID: 36705830 DOI: 10.1007/s11356-023-25526-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The results of studies on intrauterine fetal death (IUFD) caused by exposure to fine particulate matter (PM2.5) during pregnancy are inconsistent. Further exploration of the dose-response relationship and exposure window is required. We aimed to provide a reference for policy formulation by estimating the exposure-lag relationship of PM2.5 on IUFD and looking for sensitive exposure windows. IUFD data was obtained from China Children Under 5 Death Surveillance Network in Linxia Hui Autonomous Prefecture from 2016 to 2020. Air pollution data and temperature data were obtained from ambient air monitoring stations and China Meteorological Data Network, respectively. The moving average is used to describe the trend and seasonality of PM2.5 exposure; the distributed lag non-linear model (DLNM) is used to estimate the exposure-lag effect; the sandwich estimators are used to correct the variance-covariance matrix; and the model selected by Akaike's Information Criterion (AIC) finally adjusts gender, temperature, and district. About 180,622 infants were enrolled in the study, including 952 IUFDs (5.27‰). The median of PM2.5 exposure is 34.08 μg/m3. There is an exposure-lag effect of PM2.5 on IUFD approximate to a wavy shape; the concentration with effect is 40-90 μg/m3; and the sensitive lag time is 1, 2, 3, 8, 9, and 10 months. The maximum RR value of the exposure-lag effect of PM2.5 on IUFD is 1.61 [95% CI 1.19, 2.19], in which the concentration of PM2.5 is 62 μg/m3, and the lag month is 9 months. In the case of less than 6 months lag, the maximum RR value of the exposure-lag effect of PM2.5 on IUFD is 1.43 [95% CI 1.24, 1.67], in which the concentration of PM2.5 is 73 μg/m3, and the lag month is 3 months. Exposure to PM2.5 concentrations above 40 μg/m3 may increase the risk of IUFD, especially in the first and third trimesters.
Collapse
Affiliation(s)
- Wenshan Yan
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Mingjun Xie
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xinwei Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternal and Child Health Hospital, Linxia, 731100, People's Republic of China
| | - Juanjuan Xu
- Linxia Hui Autonomous Prefecture Maternal and Child Health Hospital, Linxia, 731100, People's Republic of China
| | - Gexiang Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
15
|
Ke L, Feng G, Zhang Y, Ma X, Zhao B, Sun Y, Dong Z, Xing J, Wang S, Di Q. Causal effects of prenatal and chronic PM 2.5 exposures on cognitive function. ENVIRONMENTAL RESEARCH 2023; 219:115138. [PMID: 36565844 DOI: 10.1016/j.envres.2022.115138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Growing evidence indicated an association between PM2.5 exposure and cognitive function, but the causal effect and the cognitive effect of prenatal PM2.5 exposure remain elusive. We obtained 15,099 subjects from a nationally representative sample of China and measured their cognitive performance. We ascertained subjects' prenatal PM2.5 exposure and chronic PM2.5 exposure of the recent two years. Using this national sample, we found that PM2.5 exposure during the mid- to late-pregnancy was significantly associated with declined cognition and income; chronic PM2.5 exposure was also independently associated with cognition and income measured at adulthood with greater magnitude. Negative effect modification was observed between prenatal and chronic PM2.5 exposure. Instrumental variable approach and difference-in-difference study verified causal effects: every 1 μg/m3 increase in prenatal and chronic PM2.5 exposures were causally associated with -0.22% (-0.38%, -0.06%) and -0.17% (-0.31%, -0.03%) changes in cognitive function, respectively. People with low cognition and low income were more vulnerable to PM2.5 exposure with greater cognitive and income decline. In the future, although China's improved air quality continues to benefit people and reduce cognitive decline induced by chronic PM2.5 exposure, high prenatal PM2.5 exposure will continue to hurt the overall cognition of Chinese population, since in total 360 million people were born during the 2000-2020 polluted era. Prenatal PM2.5-induced cognitive decline would remain largely unchanged before 2050 and gradually reduce after 2065, regardless of environmental policy scenarios. The long-lasting cognitive impact of PM2.5 is worth considering while enacting environmental policies.
Collapse
Affiliation(s)
- Limei Ke
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Guoqing Feng
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou, 215006, China; Division of Sports Science & Physical Education, Tsinghua University, Beijing, 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| | - Yisheng Sun
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China.
| | - Zhaoxin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China.
| | - Jia Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China; Institute for Healthy China, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Tao S, Yang M, Pan B, Wang Y, Tian F, Han D, Shao W, Yang W, Xie Y, Fang X, Xia M, Hu J, Kan H, Li W, Xu Y. Maternal exposure to ambient PM 2.5 perturbs the metabolic homeostasis of maternal serum and placenta in mice. ENVIRONMENTAL RESEARCH 2023; 216:114648. [PMID: 36341790 DOI: 10.1016/j.envres.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological and animal studies have shown that maternal fine particulate matters (PM2.5) exposure correlates with various adverse pregnancy outcomes such as low birth weight (LBW) of offspring. However, the underlying biological mechanisms have not been fully understood. In this study, female C57Bl/6 J mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) during pregestational and gestational periods, and metabolomics was performed to analyze the metabolic features in maternal serum and placenta by liquid chromatography-mass spectrometry (LC-MS). The partial least squares discriminate analysis (PLS-DA) displayed evident clustering of FA- and CAP-exposed samples for both maternal serum and placenta. In addition, pathway analysis identified that vitamin digestion and absorption was perturbed in maternal serum, while metabolic pathways including arachidonic acid metabolism, serotonergic synapse, 2-oxocarboxylic acid metabolism and cAMP signaling pathway were perturbed in placenta. Further analysis indicated that CAP exposure influenced the nutrient transportation capacity of placenta, by not only changing the ratios of some critical metabolites in placenta to maternal serum but also significantly altering the expressions of nutrition transporters in placenta. These findings reaffirm the importance of protecting women from PM2.5 exposure, and also advance our understanding of the toxic actions of ambient PM2.5.
Collapse
Affiliation(s)
- Shimin Tao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Mingjun Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Yuzhu Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yuanting Xie
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Minjie Xia
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Jingying Hu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Yin F, Ge P, Wei W, Wang H, Cheng Y, Zhao F, Li D. WITHDRAWN: Human placental barrier-brain organoid-on-a-chip for modeling maternal PM2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022:160565. [PMID: 36464052 DOI: 10.1016/j.scitotenv.2022.160565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Fangchao Yin
- Medical School, Nantong University, Nantong 226001, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, China
| | - Pinghua Ge
- Shanghai Yuanhao Environmental Technology Co., Ltd., Shanghai 201100, China
| | - Wenbo Wei
- First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hui Wang
- Medical School, Nantong University, Nantong 226001, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yan Cheng
- Medical School, Nantong University, Nantong 226001, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Dong Li
- Medical School, Nantong University, Nantong 226001, China.
| |
Collapse
|
18
|
Bai G, Jiang X, Qin J, Zou Y, Zhang W, Teng T, Shi B, Sun H. Perinatal exposure to glyphosate-based herbicides impairs progeny health and placental angiogenesis by disturbing mitochondrial function. ENVIRONMENT INTERNATIONAL 2022; 170:107579. [PMID: 36265358 DOI: 10.1016/j.envint.2022.107579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide worldwide and can provoke placental injury. However, whether and how GBHs damage angiogenesis in the placenta is not yet known. This work evaluated the safety of glyphosate on pregnant sows based on the limit level by governments and investigated the effects and mechanism of Low-GBHs (20 mg/kg) and High-GBHs (100 mg/kg) exposure on placental angiogenesis. Results showed that gestational exposure to GBHs decreased placental vessel density and cell multiplication by interfering with the expression of VEGFA, PLGF, VEGFr2 and Hand2 (indicators of angiogenesis), which may be in relation to oxidative stress-induced disorders of mitochondrial fission and fusion as well as the impaired function of the mitochondrial respiratory chain. Additionally, GBHs destroyed barrier function and nutrient transport in the placenta, and was accompanied by jejunum oxidative stress in newborn piglets. However, GBHs exposure had no significant differences on sow reproductive performance. As a natural antioxidant, betaine treatment protected placenta and newborn piglets against GBHs-induced damage. In conclusion, GBHs impaired placental angiogenesis and function and further damaged the health of postnatal progeny, these effects may be linked to mitochondrial dysfunction. Betaine treatment following glyphosate exposure provided modest relief.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianwei Qin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Wentao Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haoyang Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Basilio E, Chen R, Fernandez AC, Padula AM, Robinson JF, Gaw SL. Wildfire Smoke Exposure during Pregnancy: A Review of Potential Mechanisms of Placental Toxicity, Impact on Obstetric Outcomes, and Strategies to Reduce Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13727. [PMID: 36360613 PMCID: PMC9657128 DOI: 10.3390/ijerph192113727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Climate change is accelerating the intensity and frequency of wildfires globally. Understanding how wildfire smoke (WS) may lead to adverse pregnancy outcomes and alterations in placental function via biological mechanisms is critical to mitigate the harms of exposure. We aim to review the literature surrounding WS, placental biology, biological mechanisms underlying adverse pregnancy outcomes as well as interventions and strategies to avoid WS exposure in pregnancy. This review includes epidemiologic and experimental laboratory-based studies of WS, air pollution, particulate matter (PM), and other chemicals related to combustion in relation to obstetric outcomes and placental biology. We summarized the available clinical, animal, and placental studies with WS and other combustion products such as tobacco, diesel, and wood smoke. Additionally, we reviewed current recommendations for prevention of WS exposure. We found that there is limited data specific to WS; however, studies on air pollution and other combustion sources suggest a link to inflammation, oxidative stress, endocrine disruption, DNA damage, telomere shortening, epigenetic changes, as well as metabolic, vascular, and endothelial dysregulation in the maternal-fetal unit. These alterations in placental biology contribute to adverse obstetric outcomes that disproportionally affect the most vulnerable. Limiting time outdoors, wearing N95 respirator face masks and using high quality indoor air filters during wildfire events reduces exposure to related environmental exposures and may mitigate morbidities attributable to WS.
Collapse
Affiliation(s)
- Emilia Basilio
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Rebecca Chen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | | | - Amy M. Padula
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Zhu N, Geng X, Ji X, Gao R, Li D, Yue H, Li G, Sang N. Gestational exposure to NO 2 aggravates placental senescence. ENVIRONMENTAL RESEARCH 2022; 212:113263. [PMID: 35430275 DOI: 10.1016/j.envres.2022.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Placental senescence is a normal physiological process of placenta, while premature placental senescence has been confirmed to be associated with some adverse pregnancy complications. Epidemiological studies indicate that NO2 exposure can aggravate placental senescence which is represented by fibrosis and abnormal telomere homeostasis, etc. In this study, pregnant C57BL/6 mice were exposed to NO2 (2.5 ppm, 5 h/day) daily in a dynamic exposure chamber throughout the gestation period, and were sacrificed at embryonic day 13.5 (E13.5), E15.5 and E18.5. Placenta were harvested and conducted for histopathological examination and telomere evaluation. Our results showed that gestational NO2 exposure significantly aggravated placental fibrosis and calcification, and up-regulated the related bio-markers (connective tissue growth factor (Ctgf) and transforming growth factor-β1 (Tgf-β1)) at E18.5. In addition, gestational exposure to NO2 also activated senescence related pathway (p53/p21) at E18.5. Furthermore, gestational NO2 exposure significantly shortened telomere length at E18.5, and the expression of telomere homeostasis regulation genes telomeric repeat binding factor 1 (Trf1), protection of telomeres 1a (Pot1a) and Pot1b were significantly increased while telomerase reverse transcriptase (Tert) was suppressed after NO2 exposure at E13.5 or E18.5, respectively. Importantly, DNA methylation status of the 22nd at E13.5 and 32nd at E18.5 site in sub-telomeric region of chromosome 1 was significantly altered. Based on the above results, our present study indicated that gestational NO2 exposure could lead to premature placental senescence during the late trimester of pregnancy via aggravation of fibrosis and telomere length shortening regulated by telomere regulatory enzyme and DNA methylation.
Collapse
Affiliation(s)
- Na Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
21
|
Li R, Peng J, Zhang W, Wu Y, Hu R, Chen R, Gu W, Zhang L, Qin L, Zhong M, Chen LC, Sun Q, Liu C. Ambient fine particulate matter exposure disrupts placental autophagy and fetal development in gestational mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113680. [PMID: 35617897 DOI: 10.1016/j.ecoenv.2022.113680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that some adverse pregnancy outcomes, especially intrauterine growth restriction (IUGR), are associated with gestational exposure to ambient fine particulate matter (PM2.5). However, potential mechanism remains to be elucidated. In the present study, pregnant C57BL/6 mice were randomly assigned to be exposed to either filtered air or ambient PM2.5 in the gestation period via a concentrated whole-body exposure system. We found that gestational PM2.5 exposure exerted no effect on implantation, preterm delivery, as well as fetal resorption and death. However, in utero fetal exposure to PM2.5 showed a significant reduction in body weight and crown-rump length on GD13 and GD18. Meanwhile, maternal blood sinusoid in placenta was markedly reduced along with abnormal expression of placental nutrient transporters and growth hormone in dams exposed to PM2.5. Additional tests showed gestational PM2.5 exposure decreased autophagy-related protein levels and inhibited autophagy flux mainly on GD15. Correspondingly, AMPK/mTOR signaling pathway, a critical negative regulator of autophagy, was activated in placenta on GD15 by PM2.5 exposure as well. These findings provide evidences that placental developmental disorder caused by autophagy inhibition might be an important mechanism for the growth restriction caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Peng
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yunlu Wu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Renjie Hu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weijia Gu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mianhua Zhong
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Qinghua Sun
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
22
|
Tao S, Zhang X, Tian F, Pan B, Peng R, Wang Y, Xia M, Yang M, Hu J, Kan H, Xu Y, Li W. Maternal exposure to ambient PM 2.5 causes fetal growth restriction via the inhibition of spiral artery remodeling in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113512. [PMID: 35429798 DOI: 10.1016/j.ecoenv.2022.113512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Maternal exposure to ambient fine particulate matters (PM2.5) is associated with low birth weight (LBW) in offspring, but the underlying biological mechanisms are not yet fully understood. As the bridge that connects mother and fetus, the placenta plays a crucial role in fetal development by providing the fetus with nutrients and oxygen. However, whether PM2.5 exposure would impact the placental development and the related mechanisms are unclear. RESULTS In the present study, female C57Bl/6j mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) during pregestational and gestational periods, and the fetal development and placental structure were investigated. Our results showed that maternal exposure to CAP induced fetal growth restriction (FGR) and LBW. The placenta from CAP-exposed mice exhibited abnormal development including significant decrease of surface area, smaller junctional zone and impaired spiral artery remodeling. Meanwhile, CAP exposure altered trophoblast lineage differentiation and disrupted the balance between angiogenic and angiostatic factors in placenta. In addition, the inflammatory cytokines levels in lung, placenta and serum were significantly increased after ambient PM2.5 exposure. CONCLUSION Our findings indicate that maternal exposure to PM2.5 disrupts normal structure and spiral artery remodeling of placenta and further induces FGR and LBW. This effect may be caused by the placental inflammation response subsequent to the pulmonary and systemic inflammation induced by ambient PM2.5 exposure.
Collapse
Affiliation(s)
- Shimin Tao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Xuan Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yuzhu Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Minjie Xia
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Mingjun Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Jingying Hu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Li L, Zhang N, Wu X, Feng T, Zhao Z, Pang Y, Zhang Y, Wang N, Ning J, Zhao S, Jiang T, Shi B, Niu Y, Zhang R, Hao G. Exposure to air pollution is associated with congenital anomalies in the population born by in vitro fertilization. ENVIRONMENTAL RESEARCH 2022; 207:112161. [PMID: 34626591 DOI: 10.1016/j.envres.2021.112161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Congenital anomalies (CAs) are the leading causes for children's disabilities and mortalities worldwide. The associations between air pollution and CAs are not fully characterized in fetuses born by in vitro fertilization (IVF) who are at high risk of congenital anomalies. METHODS We conducted a cross-sectional study including 16,971 IVF cycles from three hospitals in Hebei Province, China, 2014-2019. Air quality data was obtained from 149 air monitoring stations. Individual average daily concentrations of PM2.5, PM10, NO2, SO2, CO, and O3 were estimated by spatiotemporal kriging method. Exposure windows were divided into 5: preantral follicle period, antral follicle period, germinal period, embryonic period and early fetal period. Logistic generalized estimating equations were used to estimate the associations between air pollutants and overall or organ-system specific congenital anomalies. Negative control exposure method was used to detect and reduce bias of estimation. RESULTS We found increasing levels of PM2.5 and PM10 were associated with higher risk of overall congenital anomalies during early fetal period, equating gestation 10-12 weeks (OR: 1.05, 95% CI: 1.02-1.09, p = 0.013 for a 10 μg/m3 increase of PM2.5; OR: 1.03, 95% CI: 1.01-1.06, p = 0.021 for a 10 μg/m3 increase of PM10). Cleft lip and cleft palate were associated with PM10 in germinal period and early fetal period. The CAs of eye, ear, face and neck were related to CO in preantral follicle stage. We did not find an association between chromosome abnormalities and air pollution exposure. CONCLUSIONS We concluded that ambient air pollution was a risk factor for congenital anomalies in the fetuses conceived through IVF, especially exposure in early fetal period.
Collapse
Affiliation(s)
- Lipeng Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Na Zhang
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Xiaohua Wu
- Department of Reproductive Medicine, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, 050000, PR China
| | - Tengfei Feng
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ning Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Shibin Zhao
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Baojun Shi
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
| |
Collapse
|
24
|
Sun X, Zhang R, Wang G. Spatial-Temporal Evolution of Health Impact and Economic Loss upon Exposure to PM 2.5 in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041922. [PMID: 35206108 PMCID: PMC8872114 DOI: 10.3390/ijerph19041922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
Exposure to PM2.5 can seriously endanger public health. Policies for controlling PM2.5 need to consider health hazards under different circumstances. Unlike most studies on the concentration, distribution, and influencing factors of PM2.5, the present study focuses on the impact of PM2.5 on human health. We analysed the spatial-temporal evolution of health impact and economic loss caused by PM2.5 exposure using the log-linear exposure-response function and benefit transfer method. The results indicate that the number of people affected by PM2.5 pollution fluctuated and began to decline after reaching a peak in 2014, benefiting from the Air Pollution Prevention and Control Action Plan. Regarding the total economic loss, the temporal pattern continued to rise until 2014 and then declined, with an annual mean of 86,886.94 million USD, accounting for 1.71% of China’s GDP. For the spatial pattern, the health impact and economic loss show a strong spatial correlation and remarkable polarisation phenomena, with high values in East China, North China, Central China, and South China, but low values in Southwest China, Northwest China, and Northeast China. The spatial-temporal characterisation of PM2.5 health hazards is visualised and analysed accordingly, which can provide a reference for more comprehensive and effective policy decisions.
Collapse
|
25
|
Wang C, Liu Y, Wang H, Gao F, Guan X, Shi B. Maternal Exposure to Oxidized Soybean Oil Impairs Placental Development by Modulating Nutrient Transporters in a Rat Model. Mol Nutr Food Res 2021; 65:e2100301. [PMID: 34289236 DOI: 10.1002/mnfr.202100301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/13/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION As an exogenous food contaminant, dietary oxidized lipid impairs growth and development, and triggers chronic diseases in humans or animals. This study explores the effects of soybean oil with different oxidative degree on the placental injury of gestational rats. METHODS AND RESULTS Thirty-two female adult rats are randomly assigned to four groups. The control group is fed the purified diet with fresh soybean oil (FSO), and the treatment groups are fed purified diets with lipid content replaced by oxidized soybean oil (OSO) at 200, 400, and 800 mEqO2 kg-1 from conception until delivery. On day 20 of gestation, OSO decreased placental and embryonic weights as the oxidative degree increased linearly and quadratically. The expression of Bax showed a linear increase, and Bcl-2 decreased as the oxidative degree increased. The expression of Fosl1 and Esx1 is linearly and quadratically decreased in OSO-treated groups than FSO group. OSO decreased the level of IL-10 but increased expression of IL-1β in placenta and plasma. OSO remarkably upregulates levels of Fatp1 and Glut1 and decreases expression of Snat2 and Glut3. CONCLUSION OSO aggravates placental injury by modulating nutrient transporters and apoptosis-related genes, impedes placental growth and development, and ultimately leads to the decrease of fetal weight.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huiting Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin Guan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
26
|
Winter Air Pollution from Domestic Coal Fired Heating in Ulaanbaatar, Mongolia, Is Strongly Associated with a Major Seasonal Cyclic Decrease in Successful Fecundity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052750. [PMID: 33803108 PMCID: PMC7967474 DOI: 10.3390/ijerph18052750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Pollution of the environment is increasing and threatens the health and wellbeing of adults and children around the globe. The impact of air pollution on pulmonary and cardiovascular disease has been well documented, but it also has a deleterious effect on reproductive health. Ulaanbaatar, the capital city of Mongolia, has one of the highest levels of air pollution in the world. During the extreme winters when temperatures routinely fall below -20 °C the level of air pollution can reach 80 times the WHO recommended safe levels. Heating mainly comes from coal, which is burned both in power stations, and in stoves in the traditional Ger housing. We studied the impact of air pollution on conception rates and birth outcomes in Ulaanbaatar using a retrospective analysis of health data collected from the Urguu Maternity hospital in Ulaanbaatar, Mongolia. Daily levels of SO2, NO2, PM10, and PM2.5 were collected from the government Air Quality Monitoring Stations in Ulaanbaatar for the same period as the study. In January, the month of highest pollution, there is a 3.2-fold decrease in conceptions that lead to the successfully delivered infants compared to October. The seasonal variations in conceptions resulting in live births in this study in Ulaanbaatar are shown to be 2.03 ± 0.20 (10-sigma) times greater than those in the Denmark/North America study of Wesselink et al., 2020. The two obvious differences between Ulaanbaatar and Europe/North America are pollution and temperature both of which are extreme in Ulaanbaatar. The extreme low temperature is mitigated by burning coal, which is the main source of domestic heat especially in the ger districts. This drives the level of pollution so the two are inextricably linked. Infants conceived in the months of June-October had the greatest cumulative PM2.5 pollution exposure over total gestation, yet these were also the pregnancies with the lowest PM2.5 exposure for the month of conception and three months prior to conception. The delivered-infant conception rate shows a markedly negative association with exposure to PM2.5 prior to and during the first month of pregnancy. This overall reduction in fecundity of the population of Ulaanbaatar is therefore a preventable health risk. It is of great consequence that the air pollution in Ulaanbaatar affects health over an entire lifespan including reproductive health. This could be remedied with a clean source of heating.
Collapse
|