1
|
Palomar A, Quiñonero A, Medina-Laver Y, Gonzalez-Martin R, Pérez-Debén S, Alama P, Domínguez F. Antioxidant Supplementation Alleviates Mercury-Induced Cytotoxicity and Restores the Implantation-Related Functions of Primary Human Endometrial Cells. Int J Mol Sci 2023; 24:ijms24108799. [PMID: 37240143 DOI: 10.3390/ijms24108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Mercury (Hg) cytotoxicity, which is largely mediated through oxidative stress (OS), can be relieved with antioxidants. Thus, we aimed to study the effects of Hg alone or in combination with 5 nM N-Acetyl-L-cysteine (NAC) on the primary endometrial cells' viability and function. Primary human endometrial epithelial cells (hEnEC) and stromal cells (hEnSC) were isolated from 44 endometrial biopsies obtained from healthy donors. The viability of treated endometrial and JEG-3 trophoblast cells was evaluated via tetrazolium salt metabolism. Cell death and DNA integrity were quantified following annexin V and TUNEL staining, while the reactive oxygen species (ROS) levels were quantified following DCFDA staining. Decidualization was assessed through secreted prolactin and the insulin-like growth factor-binding protein 1 (IGFBP1) in cultured media. JEG-3 spheroids were co-cultured with the hEnEC and decidual hEnSC to assess trophoblast adhesion and outgrowth on the decidual stroma, respectively. Hg compromised cell viability and amplified ROS production in trophoblast and endometrial cells and exacerbated cell death and DNA damage in trophoblast cells, impairing trophoblast adhesion and outgrowth. NAC supplementation significantly restored cell viability, trophoblast adhesion, and outgrowth. As these effects were accompanied by the significant decline in ROS production, our findings originally describe how implantation-related endometrial cell functions are restored in Hg-treated primary human endometrial co-cultures by antioxidant supplementation.
Collapse
Affiliation(s)
- Andrea Palomar
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Alicia Quiñonero
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Yassmin Medina-Laver
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Roberto Gonzalez-Martin
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | | | - Pilar Alama
- Department of Gynecology, IVIRMA-Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| |
Collapse
|
2
|
Liu T, Man Y, Li P, Zhang H, Cheng H. A Hydroponic Study on Effect of Zinc Against Mercury Uptake by Triticale: Kinetic Process and Accumulation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:359-365. [PMID: 34181031 DOI: 10.1007/s00128-021-03298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We investigated the ability of triticale uptake of Mercury (Hg), clarified whether triticale root uptake of Hg2+ via Zinc (Zn2+) transports, using hydroponic experiments. At 25℃, when Hg exposure in solution was lower than 20 μM, Hg concentration in the roots can be better described by a hyperbolic function, which shows a saturable characteristic. Under ice-cold (< 2℃) conditions, a nonsaturable (linear) component was found. Low exposure of Zn2+ (0-1 μM) inhibited plant Hg uptake when Hg exposure in the solution ranged from 1 to 10 μM, it showed an antagonistic effect of Zn on plant uptake of Hg. When Hg exposure was 20 μM, it revealed a synergistic effect of Zn on plant uptake of Hg, Hg in the root increased at the Zn (1 μM) exposure in the solution. Our results will deepen the understanding of Hg transfer in the soil-plant system.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | | |
Collapse
|
3
|
Wang X, Qiu J, Xu Y, Liao G, Jia Q, Pan Y, Wang T, Qian Y. Integrated non-targeted lipidomics and metabolomics analyses for fluctuations of neonicotinoids imidacloprid and acetamiprid on Neuro-2a cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117327. [PMID: 34030083 DOI: 10.1016/j.envpol.2021.117327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides are widely used for pest control. However, they are highly water-soluble and easily ingested by organisms, posing potential health risks. In this study, cytotoxicity evaluations of imidacloprid and acetamiprid were conducted in Neuro-2a cells by obtaining their half maximal inhibitory concentration (IC50 values) (1152.1 and 936.5 μM, respectively). The toxic effects at the IC10 and IC20 on cell metabolism were determined by integrated non-targeted lipidomics and metabolomics analyses. Changes in the concentration of acetamiprid caused the most drastic perturbations of metabolism in Neuro-2a cells. Altogether, the detected lipids were mainly attributed to triglyceride, phosphatidylcholine (PC), and diglyceride. These three categories of lipids accounted for more than 67% of the sum in Neuro-2a cells. A total of 14 lipids and other 40 metabolites were screened as differential metabolites based on multivariate data analysis, and PCs were most frequently observed with a proportion of 25.9%. The results demonstrated that lipid metabolism should be paid considerable attention after imidacloprid and acetamiprid exposure. Pathway analysis showed that the metabolisms of glycerophospholipid, sphingolipid, and glutathione were the dominant pathways that were interfered. The present study is the first to investigate the cellular toxic mechanisms after separate imidacloprid and acetamiprid exposure by using lipidomics and metabolomics simultaneously. This research also provides novel insights into the evaluation of the ecological risk of imidacloprid and acetamiprid and contribute to the study of toxicity mechanism of these neonicotinoid insecticides to animals and humans in the future.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Guangqin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yecan Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Tiancai Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
4
|
Hao Y, Xing M, Gu X. Research Progress on Oxidative Stress and Its Nutritional Regulation Strategies in Pigs. Animals (Basel) 2021; 11:1384. [PMID: 34068057 PMCID: PMC8152462 DOI: 10.3390/ani11051384] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress refers to the dramatic increase in the production of free radicals in human and animal bodies or the decrease in the ability to scavenging free radicals, thus breaking the antioxidation-oxidation balance. Various factors can induce oxidative stress in pig production. Oxidative stress has an important effect on pig performance and healthy growth, and has become one of the important factors restricting pig production. Based on the overview of the generation of oxidative stress, its effects on pigs, and signal transduction pathways, this paper discussed the nutritional measures to alleviate oxidative stress in pigs, in order to provide ideas for the nutritional research of anti-oxidative stress in pigs.
Collapse
Affiliation(s)
| | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (M.X.)
| |
Collapse
|
5
|
Hossain KFB, Akter M, Rahman MM, Sikder MT, Rahaman MS, Yamasaki S, Kimura G, Tomihara T, Kurasaki M, Saito T. Amelioration of Metal-Induced Cellular Stress by α-Lipoic Acid and Dihydrolipoic Acid through Antioxidative Effects in PC12 Cells and Caco-2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042126. [PMID: 33671655 PMCID: PMC7926869 DOI: 10.3390/ijerph18042126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
α-Lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are endogenous dithiol compounds with significant antioxidant properties, both of which have the potential to detoxify cells. In this study, ALA (250 μM) and DHLA (50 μM) were applied to reduce metal (As, Cd, and Pb)-induced toxicity in PC12 and Caco-2 cells as simultaneous exposure. Both significantly decreased Cd (5 μM)-, As (5 μM)-, and Pb (5 μM)-induced cell death. Subsequently, both ALA and DHLA restored cell membrane integrity and intracellular glutathione (GSH) levels, which were affected by metal-induced toxicity. In addition, DHLA protected PC12 cells from metal-induced DNA damage upon co-exposure to metals. Furthermore, ALA and DHLA upregulated the expression of survival-related proteins mTOR (mammalian target of rapamycin), Akt (protein kinase B), and Nrf2 (nuclear factor erythroid 2-related factor 2) in PC12 cells, which were previously downregulated by metal exposure. In contrast, in Caco-2 cells, upon co-exposure to metals and ALA, Nrf2 was upregulated and cleaved PARP-1 (poly (ADP-ribose) polymerase-1) was downregulated. These findings suggest that ALA and DHLA can counterbalance the toxic effects of metals. The protection of ALA or DHLA against metal toxicity may be largely due to an enhancement of antioxidant defense along with reduced glutathione level, which ultimately reduces the cellular oxidative stress.
Collapse
Affiliation(s)
- Kaniz Fatima Binte Hossain
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; (K.F.B.H.); (M.A.); (M.S.R.); (M.K.)
| | - Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; (K.F.B.H.); (M.A.); (M.S.R.); (M.K.)
| | - Md. Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Savar 1342, Bangladesh
- Correspondence: (M.M.R.); (M.T.S.); Tel.: +88-02-7791045-51 (M.M.R. & M.T.S.); Fax: +88-02-7791052 (M.M.R. & M.T.S.)
| | - Md. Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Savar 1342, Bangladesh
- Correspondence: (M.M.R.); (M.T.S.); Tel.: +88-02-7791045-51 (M.M.R. & M.T.S.); Fax: +88-02-7791052 (M.M.R. & M.T.S.)
| | - Md. Shiblur Rahaman
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; (K.F.B.H.); (M.A.); (M.S.R.); (M.K.)
| | - Shojiro Yamasaki
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0810, Japan; (S.Y.); (G.K.); (T.T.); (T.S.)
| | - Goh Kimura
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0810, Japan; (S.Y.); (G.K.); (T.T.); (T.S.)
| | - Tomomi Tomihara
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0810, Japan; (S.Y.); (G.K.); (T.T.); (T.S.)
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; (K.F.B.H.); (M.A.); (M.S.R.); (M.K.)
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0810, Japan; (S.Y.); (G.K.); (T.T.); (T.S.)
| |
Collapse
|
6
|
Hossain KFB, Hosokawa T, Saito T, Kurasaki M. Amelioration of butylated hydroxytoluene against inorganic mercury induced cytotoxicity and mitochondrial apoptosis in PC12 cells via antioxidant effects. Food Chem Toxicol 2020; 146:111819. [PMID: 33091556 DOI: 10.1016/j.fct.2020.111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Mercury (Hg) is a toxic metal, well-known for its dangerous health effects on human. Butylated hydroxytoluene (BHT) is a phenolic component generally consumed as a food additive as an antioxidant. However, BHT induced antioxidant properties against heavy metals-influenced toxicity are little studied. We hypothesized that BHT has a regulatory effect on Hg-induced cytotoxicity. The objective of this research was to assess the protecting effects of BHT against inorganic Hg (iHg)-toxicity in PC12 cells, where cells were treated with/without HgCl2 (Hg2+) (5 μM) and BHT (100 μM) for 48 h and analyzed further. Cells treated by Hg caused a significant cell viability reduction, membrane damage, glutathione reduction, DNA fragmentation, ROS generation, with suppressed expressions of akt, mTOR, ERK1, Nrf2 and HO1; and elevated apoptotic expressions of p53, Bax, cytochrome c and active caspase 3. However, BHT and Hg2+ co-exposure showed prevention against Hg2+-toxicity by improving GSH content and inhibiting ROS generation and oxidative stress mediated damages. Additionally, BHT co-treatment inverted the pro-apoptotic proteins by augmenting pro-survival regulatory proteins akt, mTOR, ERK1, Nrf2 and HO1. These findings proved that BHT inhibits Hg2+-toxicity, hindering ROS generation and intrinsic apoptosis, via enhancing glutathione and antioxidants; and suggested BHT implications as therapeutic.
Collapse
Affiliation(s)
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|