1
|
Herbet M, Widelski J, Ostrowska-Leśko M, Serefko A, Wojtanowski K, Kurek J, Piątkowska-Chmiel I. Exploring the Toxicity and Therapeutic Potential of A. dahurica and A. pubescens in Zebrafish Larvae: Insights into Anxiety Treatment Mechanisms. Int J Mol Sci 2025; 26:2884. [PMID: 40243462 PMCID: PMC11989099 DOI: 10.3390/ijms26072884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
This study assessed the toxicity and therapeutic potential of Angelica dahurica and Angelica pubescens using Danio rerio (zebrafish) larvae. Toxicity was evaluated through mortality, malformations, and gene expression changes related to stress and the HPA axis. A. dahurica demonstrated low toxicity (LD50 (50% lethal dose) >200 µg/mL), with no significant malformations at 15-30 µg/mL, although higher doses caused edemas and heart defects. A. pubescens exhibited higher toxicity, with 100% mortality at 200 µg/mL and severe malformations. Both species showed potential cardiotoxicity, slowing heart rates after prolonged exposure. Gene expression studies suggested A. dahurica had stress-protective effects, increasing nr3c1 expression, while A. pubescens had dose-dependent effects, with lower concentrations having anxiolytic properties and higher concentrations increasing stress. Interestingly, diazepam showed unexpected gene expression changes, highlighting the influence of environmental and dosage factors. In conclusion, both species show therapeutic potential for anxiety, with A. dahurica showing promising effects at lower concentrations. However, A. pubescens requires careful dosage management due to its higher toxicity risks. Further studies are needed to optimize therapeutic applications and fully understand mechanisms of action.
Collapse
Affiliation(s)
- Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.O.-L.); (J.K.); (I.P.-C.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (K.W.)
| | - Marta Ostrowska-Leśko
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.O.-L.); (J.K.); (I.P.-C.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Wojtanowski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (K.W.)
| | - Joanna Kurek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.O.-L.); (J.K.); (I.P.-C.)
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.O.-L.); (J.K.); (I.P.-C.)
| |
Collapse
|
2
|
Li L, Dong K, Li L, Li Q, Su Y, Zong C. Adverse effects of thimerosal on the early life stages of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110046. [PMID: 39307513 DOI: 10.1016/j.cbpc.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Thimerosal (THI) is an organic mercury compound that is widely used in drugs, vaccines and antibacterial products. Its extensive production and use have resulted in significant environmental contamination, posing a considerable threat to aquatic life. However, the knowledge of the toxicity of THI to aquatic organisms is still insufficient. In this study, we conducted a 5-day THI exposure experiment using zebrafish, from 0 to 5 days post fertilization (dpf). The possible adverse effects of THI on the early-life stages of zebrafish were explored by investigating variations in their physiological parameters, behavioral traits, and neurotransmitter levels. The results showed THI exhibited significant developmental toxicity to aquatic organisms. Exposure to THI significantly induced serious malformation (at 50 μg/L), accelerated hatching, and elevated heart rate (at 5 and 50 μg/L). The behavioral traits of zebrafish larvae had an increased first and then decreased relationship with increasing concentration of THI, which induced hyperactivity at 0.5 μg/L but opposite at 50 μg/L. Furthermore, exposure to 50 μg/L THI significantly raised levels of 5-HT, 5-HIAA, DA, DOPAC and ACH in zebrafish larvae. In addition, several significant correlations between behavioral traits and the neurotransmitter contents were detected, which seemed to reveal an important mechanism of the neurobehavioral toxicity of THI to fish.
Collapse
Affiliation(s)
- Lixia Li
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kejun Dong
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - LeYan Li
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingchen Li
- College of Environment, Hohai University, Nanjing, China
| | - Youqin Su
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenrui Zong
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Abdollahpour H, Jafari Pastaki N, Karimzadeh M, Zamani H. Buspirone administration: Influence on growth, spawning, immune response, and stress in female goldfish ( Carassius auratus). Heliyon 2024; 10:e39754. [PMID: 39524707 PMCID: PMC11543890 DOI: 10.1016/j.heliyon.2024.e39754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The current study evaluated the impact of buspirone supplementation on the growth, physiology, stress response, spawning, and immunity in female goldfish (Carassius auratus). For this purpose, buspirone was dissolved in absolute methanol and sprayed onto the feed to create four experimental groups: B0 (control), B25 (25 mg kg-1), B50 (50 mg kg-1), and B100 (100 mg kg-1). Fish were fed their respective diets for 56 days and subjected to stress using the air exposure method at the end of the experiment. Growth performance analysis revealed that fish in the B100 group exhibited significantly higher final weight, weight gain, specific growth rate, and average daily gain than the other groups (P < 0.05). Plasma stress response indicated that cortisol levels were significantly lower in the B100 group after stress exposure, accompanied by a simultaneous decrease in glucose levels. The mucus stress response also showed lower cortisol and glucose levels in the B100 group compared to the other groups. Immunological analysis revealed significant increases in total protein, albumin, complement C3 and C4, and immunoglobulin M concentrations in both plasma and mucus of the B100 group (P < 0.05). Reproductive performance showed a notable enhancement in the number of eggs, fertilization rate, hatching rate, and survival rate in the B100 group compared to other groups (P < 0.05). Buspirone at higher concentrations, positively impacted various physiological aspects of goldfish, including growth, stress, immune activity, and reproductive performance. The significant improvements observed in growth parameters, cortisol levels, immunological markers, and reproductive outcomes suggest the potential of buspirone supplementation as a beneficial strategy in aquaculture practices.
Collapse
Affiliation(s)
- Hamed Abdollahpour
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Naghmeh Jafari Pastaki
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Milad Karimzadeh
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
- Fisheries, Shahid Dr. Beheshti Sturgeon Fishes Restoration and Genetic Conservation Complex, Sangar, Guilan, Iran
| | - Hosseinali Zamani
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| |
Collapse
|
4
|
Liu W, Li Z, Li F, Zhang Y, Ding S. Bioaccumulation and behavioral response patterns of crucian carp (Carassius carassius) after carbamazepine exposure and elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175519. [PMID: 39168342 DOI: 10.1016/j.scitotenv.2024.175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The antiepileptic drug carbamazepine (CBZ) has been widely detected in freshwater, yet its toxic actions in fish at multiple endpoints and the subsequent recovery patterns of the impacted are less discussed. This study investigated the bioaccumulation, physiological and behavioral changes of crucian carp (Carassius carassius) following CBZ exposure (G1 = 6.15 μg/L, G2 = 61.5 μg/L, G3 = 615 μg/L, G4 = 6150 μg/L) and subsequent recovery. Our results showed that CBZ was more likely to accumulate in the liver and brain than in the gills. A concentration-dependent phenomenon was observed; however, the residual CBZ decreased to similar levels after recovery. The behavioral indicators (i.e. feeding, social and spontaneous swimming) were significantly inhibited after 7-days of CBZ exposure, and only recovered at low concentration treatment (G1) after 7-days recovery in CBZ-free water. The acetylcholinesterase (AChE) activity in the brain and superoxide dismutase (SOD) activity in the liver and gills were induced after CBZ exposure and returned to normal levels after 7-days of recovery. In contrast, the inhibition of catalase (CAT) activity caused by CBZ exposure persisted in the high concentration treatment (G4) after recovery. Furthermore, correlation analysis indicated that changes in feeding behavior were closely related to the variation of CBZ concentrations in tissues, and the persistence of abnormal swimming and social behavior was closely related to gill CAT activity. These findings contribute to explore the toxic mechanisms of CBZ and highlight the recovery process and connections between various endpoints.
Collapse
Affiliation(s)
- Wei Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Chang Jiang Ecology (Hubei) Technology Development Co. Ltd., Wuhan 430071, China
| | - Zhao Li
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sen Ding
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
6
|
Zhang Y, Shi Y, Tang J, Chen K, Wu M, Wu X, Qiu X. A transcriptomics-based analysis of mechanisms involved in the sex-dependent effects of diazepam on zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107063. [PMID: 39191072 DOI: 10.1016/j.aquatox.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Diazepam (DZP) is a universally detected emerging pollutant in aquatic ecosystems. Although the sex-dependent effects of DZP on fish have been properly established, the underlying mechanisms remain unclear. In this study, zebrafish of both sexes were separately exposed to DZP (8 μg/L) for 21 days, and the alteration of the behaviors, brain amino acid neurotransmitter contents, and transcriptomic profiles were investigated. Although DZP exposure showed a sedative effect on both sexes, significantly reduced cumulative duration of high mobility and willingness to encounter the opposite sex were only observed in females. However, DZP significantly enhanced the brain levels of glutamate and glutamine in males but not in females. Transcriptome analysis identified more different expression genes (DEGs) in females (322 up-regulated and 311 down-regulated) than in males (138 up-regulated genes and 38 down-regulated). The DEGs in both sexes were significantly enriched in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway of the synaptic vesicle cycle, indicating a possible pathway for the sedative effects of DZP on zebrafish. DZP exhibited different or even opposing regulatory patterns on gene expression in the brains of females and males, providing some insights into its sex-dependent impacts on the behaviors and brain neurotransmitter contents in zebrafish. Moreover, enrichment analysis also suggested that DZP exposure may affect the oocyte maturation in female zebrafish, which highlights the need to study its reproductive and transgenerational toxicity to fish species.
Collapse
Affiliation(s)
- Yibing Zhang
- College of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- College of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Tang
- College of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- College of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Min Wu
- College of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangyang Wu
- College of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuchun Qiu
- College of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
7
|
Wang X, Lu T, Yang B, Cao J, Li M. Exposure to resorcinol bis (diphenyl phosphate) induces colonization of alien microorganisms with potential impacts on the gut microbiota and metabolic disruption in male zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172892. [PMID: 38719053 DOI: 10.1016/j.scitotenv.2024.172892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Organophosphate esters (OPEs) have been demonstrated to induce various forms of toxicity in aquatic organisms. However, a scarcity of evidence impedes the conclusive determination of whether OPEs manifest sex-dependent toxic effects. Here, we investigated the effects of tris (1-chloro-2-propyl) phosphate (TCPP) and resorcinol bis (diphenyl phosphate) (RDP) on the intestines of both female and male zebrafish. The results indicated that, in comparison to TCPP, RDP induced more pronounced intestinal microstructural damage and oxidative stress, particularly in male zebrafish. 16S rRNA sequencing and metabolomics revealed significant alterations in the species richness and oxidative stress-related metabolites in the intestinal microbiota of zebrafish under exposure to both TCPP and RDP, manifesting gender-specific effects. Based on differential species analysis, we defined invasive species and applied invasion theory to analyze the reasons for changes in the male fish intestinal community. Correlation analysis demonstrated that alien species may have potential effects on metabolism. Overall, this study reveals a pronounced gender-dependent impact on both the intestinal microbiota and metabolic disruptions of zebrafish due to OPEs exposure and offers a novel perspective on the influence of pollutants on intestinal microbial communities and metabolism.
Collapse
Affiliation(s)
- Xinwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Environmental Engineering Technology Co. Ltd, Nanjing, Jiangsu 210019, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Lin W, Qin Y, Ren Y. Flunitrazepam and its metabolites induced brain toxicity: Insights from molecular dynamics simulation and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133113. [PMID: 38043427 DOI: 10.1016/j.jhazmat.2023.133113] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Psychoactive drugs frequently contaminate aquatic environments after human consumption, raising concerns about their residues and ecological harm. This study investigates the effects of flunitrazepam (FLZ) and its metabolite 7-aminoflunitrazepam (7-FLZ), benzodiazepine-class psychoactive drugs, on brain accumulation, blood-brain barrier (BBB), and neuroinflammation of the model organism zebrafish. Molecular dynamics simulation and transcriptome sequencing were used to uncover their toxic mechanisms. Results demonstrate that both FLZ and 7-FLZ can accumulate in the brain, increasing Evans blue levels by 3.4 and 0.8 times, respectively. This increase results from abnormal expression of tight junction proteins, particularly ZO-1 and Occludin, leading to elevated BBB permeability. Furthermore, FLZ and 7-FLZ can also induce neuroinflammation, upregulating TNFα by 91% and 39%, respectively, leading to pathological changes and disrupted intracellular ion balance. Molecular dynamics simulation reveals conformational changes in ZO-1 and Occludin proteins, with FLZ exhibiting stronger binding forces and greater toxicity. Weighted gene co-expression network analysis identifies four modules correlated with BBB permeability and neuroinflammation. KEGG enrichment analysis of genes within these modules reveals pathways like protein processing in the endoplasmic reticulum, NOD-like receptor signaling pathway, and arginine and proline metabolism. This study enhances understanding of FLZ and 7-FLZ neurotoxicity and assesses environmental risks of psychoactive substances. ENVIRONMENTAL IMPLICATION: With the increasing prevalence of mental disorders and the discharge of psychoactive drugs into water, even low drug concentrations (ng/L-μg/L) can pose neurological risks. This study, utilizing molecular dynamic (MD) simulations and transcriptome sequencing, investigate the neurotoxicity and mechanisms of flunitrazepam and 7-aminoflunitrazepam. It reveals that they disrupt the blood-brain barrier in zebrafish and induce neuroinflammation primarily by inducing conformational changes in tight junction proteins. MD simulations are valuable for understanding pollutant-protein interactions. This research offers invaluable insights for the environmental risk assessment of psychoactive drugs and informs the development of strategies aimed at prevention and mitigation.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Lin W, Qin Y, Ren Y. Flunitrazepam and its metabolites compromise zebrafish nervous system functionality: An integrated microbiome, metabolome, and genomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122949. [PMID: 37981184 DOI: 10.1016/j.envpol.2023.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The psychotropic drug flunitrazepam (FLZ) is frequently detected in aquatic environments, yet its neurotoxicity to aquatic organisms has not received sufficient attention. In this study, microbiome, metabolome, and genome analyses were conducted to study the effects of FLZ and its metabolite 7-aminoflunitrazepam (7-FLZ) on the zebrafish nervous system and understand their toxic mechanisms. The results demonstrated that drug exposure induced gut dysbiosis, decreased short-chain fatty acids and promoted the production of lipopolysaccharides (LPS). LPS entered the brain and interacted with Toll-like receptors to cause neuroinflammation by upregulating the expression of proinflammatory cytokines TNFα and NF-κB. The increased ratio of S-adenosylmethionine to S-adenosylhomocysteine in brain tissues indicated abnormal expression of Dnmt1 gene. Whole-genome bisulfite sequencing displayed an increase in differentially methylated regions (DMRs) associated-genes and pertinent biological pathways encompassed the MAPK signaling pathway, calcium signaling pathway, and Wnt signaling pathway. Correlation analysis confirmed connections between gut microbiota, their metabolites, inflammatory factors, and DNA methylation-related markers in brain tissue. These findings indicate that while the toxicity is somewhat reduced in metabolized products, both FLZ and 7-FLZ can induce DNA methylation in brain tissue and ultimately affect the biological function of the nervous system by disrupting gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Biju A, Ivantsova E, Souders CL, English C, Avidan L, Martyniuk CJ. Exposure to the pharmaceutical buspirone alters locomotor activity, anxiety-related behaviors, and transcripts related to serotonin signaling in larval zebrafish (Danio rerio). Neurotoxicol Teratol 2024; 101:107318. [PMID: 38176600 DOI: 10.1016/j.ntt.2023.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/25/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Buspirone is a pharmaceutical used to treat general anxiety disorder by acting on the dopaminergic and serotoninergic system. Buspirone, like many human pharmaceuticals, has been detected in municipal wastewater; however, the environmental exposure risks are unknown for this psychoactive compound. We studied the effects of buspirone on the behavior of zebrafish, focusing on locomotor and anxiolytic behavior. We also measured transcripts associated with oxidative stress, neurotoxicity, and serotonin signaling to identify potential mechanisms underlying the behavioral changes. Concentrations ranged from environmentally relevant (nM) to physiologically active concentrations typical of human pharmaceuticals (μM). Buspirone treatment did not impact survival, nor did it induce deformities in zebrafish treated for 7 days up to 10 μM. There was a positive relationship between locomotor activity and buspirone concentration in dark periods of the visual motor response test. In the light-dark preference test, both the average time per visit to the dark zone and the percent cumulative duration in the dark zone were increased by 1 μM buspirone. Transcript levels of ache, manf, and mbp were decreased in larvae, while the expression of gap43 was increased following exposure to buspirone, indicating potential neurotoxic effects. There was also reduced expression of serotonin-related genes encoding receptors, transporters, and biosynthesis enzymes (i.e., 5ht1aa, sertb, and tph1a). These data increase understanding of the behavioral and molecular responses in zebrafish following waterborne exposure to neuroactive pharmaceuticals like buspirone.
Collapse
Affiliation(s)
- Angel Biju
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Lev Avidan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
11
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
12
|
Gutkoski JP, Schneider EE, Michels C. How effective is biological activated carbon in removing micropollutants? A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119434. [PMID: 39492392 DOI: 10.1016/j.jenvman.2023.119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Micropollutants (MPs), also called emerging contaminants, are detected in various environmental compartments. Wastewater is their main entry pathway due to the incomplete removal of MPs in wastewater treatment plants (WWTPs). These contaminants are a risk to human health and the integrity of the ecosystem because they are persistent and toxic to organisms. Complementary treatments such as adsorption are studied to increase the efficiency of existing WWTPs. However, a disadvantage of using activated carbon is its high cost of production and regeneration. Biological activated carbon (BAC) is an alternative to overpass this scenario. In BAC, biofilm development occurs on the surface of activated carbon, which enables bioregeneration of the adsorbent and extends its lifetime. This review focused on the studies that applied BAC to remove MPs in aqueous matrices. The review methodology was based on bibliometric and systematic analysis. Tables and thematic maps were presented to investigate trends and gaps in research and related themes. The study points out the leading MPs researched in adsorption in the last ten years. The systematic analysis showed that most studies bring sequential treatments with real wastewater/water, in which BAC is the final process. BAC has the potential to be a complementary treatment for removing MPs. However, there is a lack of articles investigating only BAC as the main tertiary treatment. Topics that should be further investigated in this area are the microbiological community formed in the biofilm, the column's lifetime, and the cost analysis of BAC implementation and operation.
Collapse
Affiliation(s)
- Júlia Pedó Gutkoski
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Elisângela Edila Schneider
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
13
|
Lin W, Qin Y, Wang X, Du M, Wang Y, Chen X, Ren Y. Flunitrazepam and its metabolites exposure disturb the zebrafish gut-liver axis: Combined microbiome and metabolomic analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106688. [PMID: 37699776 DOI: 10.1016/j.aquatox.2023.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Due to clinical treatment and illegal use, psychoactive substances have been widely detected in the aquatic environment. In this study, we investigated the effects of the benzodiazepine drug flunitrazepam (FLZ) and its metabolite 7-aminoflunitrazepam (7-FLZ) on the gut-liver axis of zebrafish. Zebrafish were exposed to two concentrations of FLZ and 7-FLZ (0.05 and 1 μg/L) for 30 days. Results showed that both FLZ and 7-FLZ exposure altered the relative abundance of Proteobacteria at the phylum level, with significant differences observed at the genus level for pathogenic bacteria such as Paracoccus, Shewanella, and Aeromonas. Metabolomics results showed both exposures significantly interfered with nucleotide and amino acid metabolism. The imbalance of gut microbiota and metabolic disorder increased the level of malondialdehyde, which in turn heightened the permeability of the gut mucosal barrier. FLZ and 7-FLZ induced oxidative stress in the liver via the gut-liver axis, leading to decreased levels of glucose, total cholesterol, and triglyceride, as well as the down-regulation of glycolipid metabolism-related genes (PPARα, PPARγ, FABP2, Fabp11, PFKFB3, and LDHA). Metabolomics results revealed that FLZ and 7-FLZ significantly affected the biosynthesis of amino acids and arginine, and other metabolic pathways such as nucleotide, nicotinate and nicotinamide, and purine in the liver. Our results unveiled the mechanisms behind the toxicological effects of psychoactive substances on the gut-liver axis, providing valuable data for ecological and environmental risk assessments.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xinying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Mingluo Du
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Yukai Wang
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Xiaohui Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
14
|
Phukan D, Kumar V. Tracking drugged waters from various sources to drinking water-its persistence, environmental risk assessment, and removal techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86676-86698. [PMID: 37436619 DOI: 10.1007/s11356-023-28421-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Pharmaceuticals have become a major concern due to their nature of persistence and accumulation in the environment. Very few studies have been performed relating to its toxicity and ill effects on the aquatic/terrestrial flora and fauna. The typical wastewater and water treatment processes are not efficient enough to get these persistent pollutants treated, and there are hardly any guidelines followed. Most of them do not get fully metabolized and end up in rivers through human excreta and household discharge. Various methods have been adopted with the advancement in technology, sustainable methods are more in demand as they are usually cost-effective, and hardly any toxic by-products are produced. This paper aims to illustrate the concerns related to pharmaceutical contaminants in water, commonly found drugs in the various rivers and their existing guidelines, ill effects of highly detected pharmaceuticals on aquatic flora and fauna, and its removal and remediation techniques putting more emphasis on sustainable processes.
Collapse
Affiliation(s)
- Dixita Phukan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
15
|
Jin L, Wang S, Chen C, Qiu X, Wang CC. ZIF-8 Nanoparticles Induce Behavior Abnormality and Brain Oxidative Stress in Adult Zebrafish ( Danio rerio). Antioxidants (Basel) 2023; 12:1345. [PMID: 37507885 PMCID: PMC10376529 DOI: 10.3390/antiox12071345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) are typical metal-organic framework (MOF) materials and have been intensively studied for their potential application in drug delivery and environmental remediation. However, knowledge of their potential risks to health and the environment is still limited. Therefore, this study exposed female and male zebrafish to ZIF-8 NPs (0, 9.0, and 90 mg L-1) for four days. Subsequently, variations in their behavioral traits and brain oxidative stress levels were investigated. The behavioral assay showed that ZIF-8 NPs at 90 mg/L could significantly decrease the locomotor activity (i.e., hypoactivity) of both genders. After a ball falling stimulation, zebrafish exposed to ZIF-8 NPs (9.0 and 90 mg L-1) exhibited more freezing states (i.e., temporary cessations of movement), and males were more sensitive than females. Regardless of gender, ZIF-8 NPs exposure significantly reduced the SOD, CAT, and GST activities in the brain of zebrafish. Correlation analysis revealed that the brain oxidative stress induced by ZIF-8 NPs exposure might play an important role in their behavioral toxicity to zebrafish. These findings highlight the necessity for further assessment of the potential risks of MOF nanoparticles to aquatic species and the environment.
Collapse
Affiliation(s)
- Liang Jin
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China
| | - Sijing Wang
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
16
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
17
|
Luo M, Wu Z, Xu T, Ding Y, Qian X, Okeke ES, Mao G, Chen Y, Feng W, Wu X. The neurotoxicity and mechanism of TBBPA-DHEE exposure in mature zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109572. [PMID: 36828348 DOI: 10.1016/j.cbpc.2023.109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/13/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023]
Abstract
Tetrabromobisphenol A-bis (2-hydroxyethyl) ether (TBBPA-DHEE) has been detected in various environmental media and organisms, and its ecological risks and health hazards have attracted great attention, but sufficient toxicological data have not proved the toxic effects of TBBPA-DHEE exposure on aquatic organism. In this study, the neurotoxicity and mechanism of zebrafish (3-month-old) exposed to TBBPA-DHEE (0.86 μg/L, 12.9 μg/L, 193.5 μg/L) were studied. Furthermore, the neurotoxicity susceptibility of different sexes of zebrafish was revealed. Behavioral studies revealed that TBBPA-DHEE exposure has significant differences in average speed, duration of mania, the distance between objects, and ATP content between male and female zebrafish. Slight damage in brain tissue of male zebrafish was found. The transcriptome analysis revealed that the molecular mechanism of neurotoxicity in mature female and male zebrafish is different. For mature female zebrafish, TBBPA-DHEE significantly affected the expression of genes related to behavior and development, and its mechanism may be that it can produce neurotoxicity by affecting related genes in the hormone, synapse, and Ca2+ signaling pathway. For mature male zebrafish, TBBPA-DHEE can significantly affect their behavior and expression of nerve-related genes. Results from the transcriptomic analysis suggests that the possible molecular mechanism may be through the inhibition of Ca2+ signal transmission and produce neurotoxicity by affecting the expression of related genes in neural synapses, Ca2+ signal, and MAPK signal in brain tissue of zebrafish. The results suggested that exposure to low-dose TBBPA-DHEE could induce neurotoxicity in zebrafish, and female and male zebrafish showed different toxic effects and molecular mechanisms.
Collapse
Affiliation(s)
- Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhaoqiong Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Tong Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yangyang Ding
- Laboratory animal research center, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
18
|
Xie CT, Tan ML, Li YW, Chen QL, Shen YJ, Liu ZH. Chronic exposure to environmentally relevant concentrations of carbamazepine interferes with anxiety response of adult female zebrafish through GABA /5-HT pathway and HPI axis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109574. [PMID: 36781090 DOI: 10.1016/j.cbpc.2023.109574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Carbamazepine (CBZ) is one of the widely distributed pharmaceutical residues in aquatic environments, yet few researches have addressed its chronic effect on the anxiety of fish, and the mechanisms possibly involved remained elusive. In this study, adult female zebrafish (Danio rerio) were exposed to environmental relevant concentrations of CBZ (CBZ-low, 10 μg/L; CBZ-high, 100 μg/L) for 28 days. After exposure, CBZ-high didn't affect the anxiety of fish. However, the onset time to the higher half of the tank was delayed and the total duration in the lower half of the tank was increased in CBZ-low fish, suggesting an increased anxiety. Further investigation indicated that CBZ-low significantly decreased the gamma-aminobutyric acid (GABA) level in the brain, while increased the serotonin (5-HT) level in the brain and cortisol level in plasma. Accordingly, the mRNA levels of genes in GABA (gad2, abat, gabrb2, gabrg2, gria1a and slc12a2) pathway and HPI (crha, actha, pc1 and pc2) axis were also altered. Despite the upregulation of tph2 was consistent with increased 5-HT level in the brain, significantly downregulated htr1aa and htr1b may indicate attenuated 5-HT potency. Although CBZ-high significantly reduced GABA level in the brain and increased cortisol level in plasma, the effects were dramatically alleviated than that of CBZ-low. Consistently, the expression of genes in HPI (crha, actha, pc1 and pc2) axis and GABA (gad2 and abat) pathway were also altered by CBZ-high, probably due to inconspicuous anxiety response of CBZ-high. Briefly, our data suggested that low concentration of CBZ disrupted zebrafish anxiety by interfering with neurotransmission and endocrine system, thereby bringing about adverse ecological consequences.
Collapse
Affiliation(s)
- Cheng-Ting Xie
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Mei-Ling Tan
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
19
|
Salahinejad A, Meuthen D, Attaran A, Chivers DP, Ferrari MCO. Effects of common antiepileptic drugs on teleost fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161324. [PMID: 36608821 DOI: 10.1016/j.scitotenv.2022.161324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antiepileptic drugs (AEDs) are globally prescribed to treat epilepsy and many other psychiatric disorders in humans. Their high consumption, low metabolic rate in the human body and low efficiency of wastewater treatment plants (WWTPs) in eliminating these chemicals results in the frequent occurrence of these pharmaceutical drugs in aquatic systems. Therefore, aquatic organisms, including ecologically and economically important teleost fishes, may be inadvertently exposed to these chemicals. Due to their physiological similarity with humans, fishes may be particularly vulnerable to AEDs. Almost all AED drugs are detectable in natural aquatic ecosystems, but diazepam (DZP) and carbamazepine (CBZ) are among the most widely detected AEDs to date. Recent studies suggest that these drugs have a substantial capacity to induce neurotoxicity and behavioral abnormality in fishes. Here we review the current state of knowledge regarding the potential mode of action of DZP and CBZ as well as that of some other AEDs on teleosts and put observable behavioral effects into a mechanistic context. We find that following their intended mode of action in humans, AEDs also disrupt the GABAergic, glutamatergic and serotonergic systems as well as parasympathetic neurotransmitters in fishes. Moreover, AEDs have non-specific modes of action in teleosts ranging from estrogenic activity to oxidative stress. These physiological changes are often accompanied by dose-dependent disruptions of anxiety, locomotor activity, social behaviors, food uptake, and learning and memory, but DZP and CBZ consistently induced anxiolytic effects. Thereby, AED exposure severely compromises individual fitness across teleost fish species, which may lead to population and ecosystem impairment. We also showcase promising avenues for future research by highlighting where we lack data when it comes to effects of certain AEDs, AED concentrations and behavioral endpoints.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
20
|
Feng W, Xu T, Zuo J, Luo M, Mao G, Chen Y, Ding Y, Okeke ES, Wu X, Yang L. The potential mechanisms of TBBPA bis(2-hydroxyethyl) ether induced developmental neurotoxicity in juvenile zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 265:109530. [PMID: 36473636 DOI: 10.1016/j.cbpc.2022.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE), one of the main derivatives of TBBPA, has been widely detected in environmental samples and been discovered to be potential neurotoxic. In this study, the juvenile zebrafish were selected as the research subject to explore the neurotoxicity and its mechanism of low-dose TBBPA-DHEE exposure, and to reveal the neurotoxicity susceptibility in different sexes. Behavioral studies revealed that TBBPA-DHEE could significantly reduce the swimming velocity, maximum acceleration and cumulative duration of high-speed mobility, significantly increasing the cumulative duration of low-speed mobility and average social distance. It significantly reduced the contents of ATP, glutamate and Ca2+ in the whole brain. The histopathological study demonstrated that TBBPA-DHEE could cause brain tissue damage in female and male juvenile zebrafish. The comprehensive data analysis indicated that female zebrafish were more susceptible to TBBPA-DHEE exposure than male zebrafish. Transcriptomic analysis showed that TBBPA-DHEE could significantly affect the expressions of behavioral and development-related genes. Furthermore, female and male juvenile zebrafish have different molecular mechanisms of neurotoxicity. For female juvenile zebrafish, the potential mechanism of neurotoxicity could be that it interfered with the feedback regulation of nerves by affecting the related genes expressions in the signaling pathways such as Ca2+ signaling, Wnt signaling and synapses. For male juvenile zebrafish, the potential mechanism of neurotoxicity may be through affecting the expression of related genes in hormones and neuro-related genes. This research could reveal the potential neurotoxicity of TBBPA-DHEE to aquatic organisms, which will be helpful to reveal the health effects of the emerging environmental pollutants.
Collapse
Affiliation(s)
- Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Tong Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jiali Zuo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yangyang Ding
- Laboratory Animal Research Center, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
21
|
Rao C, Cao X, Li L, Zhou J, Sun D, Li B, Guo S, Yuan R, Cui H, Chen J. Bisphenol AF induces multiple behavioral and biochemical changes in zebrafish (Danio rerio) at different life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106345. [PMID: 36351319 DOI: 10.1016/j.aquatox.2022.106345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
As common environmental endocrine-disrupting chemicals (EDCs), bisphenol AF (BPAF) raises potential concerns for aquatic organisms due to its widespread presence and continued release in the aquatic environment. This research aimed to use zebrafish embryos and adult fish to explore the effects of environmentally relevant concentrations (5 μg/L), 50 μg/L and 500 μg/L of BPAF on zebrafish embryonic development, behavioral alterations, and the potential mechanisms driving these effects. The results showed that 500 μg/L of BPAF severely affected the growth and development of embryos. In behavioral experiments, all concentrations of BPAF significantly inhibited the locomotor activity of larvae, 50 and 500 μg/L BPAF significantly altered the anxiety-like and aggressive behavior of adult zebrafish. Furthermore, environmentally relevant concentrations and higher concentrations of BPAF induced varying degrees of oxidative stress in both embryonic and adult fish. The most significant histopathological changes and decreased acetylcholinesterase (AChE) activity were observed in the brain at 50 and 500 μg/L of BPAF. We hypothesized that oxidative stress is an important cause of behavioral disturbances in larvae and adult fish. To our best knowledge, the present experiment is a pioneer in studying the effects of BPAF on a variety of complex behaviors (swimming performance, anxiety-like, social behavior, aggression) in zebrafish, which emphasizes the potential health risk of higher concentrations of BPAF in terms of induced neurotoxicity.
Collapse
Affiliation(s)
- Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Baohua Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
22
|
Shi Y, Chen C, Wu X, Han Z, Zhang S, Chen K, Qiu X. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109417. [PMID: 35872240 DOI: 10.1016/j.cbpc.2022.109417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Amitriptyline (AMI), the most commonly prescribed tricyclic antidepressant, is widely detected in water environments. Exposure to AMI may lead to diverse adverse effects on aquatic organisms, but little is known about the effect of short-term exposure to AMI on the gut microbiota of aquatic organisms and their recovery characteristics. In the present study, adult zebrafish (Danio rerio) were exposed to AMI (0, 2.5, 10, and 40 μg/L) for seven days, and then allowed to recover in AMI-free culture water for 21 days. The exposure caused gut damages in all the AMI treated groups of zebrafish, which became more severe after recovery compared to the control group. AMI exposure also disturbed the microbiota of zebrafish guts and rearing water even after the 21-day recovery period. Furthermore, AMI exposure affected microbes involved in the substance and energy metabolic functions in zebrafish guts and tended to increase the abundance of microbial genera associated with opportunistic pathogens. In addition, the microbial predicted metabolic functions in AMI-exposed guts of zebrafish were significantly altered after the 21-day recovery period, explaining the persistent effects of short-term exposure to AMI. The results of this study suggest that acute exposure to AMI may have persistent impacts on the gut histomorphology and the gut microbiota in aquatic organisms.
Collapse
Affiliation(s)
- Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanshuo Zhang
- Henan Division GRG Metrology and Test Co., Ltd, Zhengzhou 450001, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
23
|
Dong K, Li L, Chen C, Tengbe MS, Chen K, Shi Y, Wu X, Qiu X. Impacts of cetylpyridinium chloride on the behavior and brain neurotransmitter levels of juvenile and adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109393. [PMID: 35700941 DOI: 10.1016/j.cbpc.2022.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Cetylpyridinium chloride (CPC) is a cationic surfactant that has been widely used as an antibacterial ingredient in pharmaceutical and personal care products. Due to its high residue in surface waters, there is increasing concern over the potential risk of CPC to aquatic ecosystems. However, knowledge of its impacts on fish is still limited. Therefore, this study exposed juvenile and adult zebrafish to CPC (0, 10, and 40 μg/L) for four days. Subsequently, changes in their behavioral traits and brain levels of several neurotransmitters were investigated. The behavioral assay showed that CPC exposure significantly decreased the locomotor activity and social interaction of zebrafish at both life stages, and juveniles were more sensitive to CPC exposure than adults. In the control groups, the brain neurotransmitters concentrations increased with age in zebrafish. However, CPC exposure tended to increase the brain neurotransmitter levels of juveniles but decreased their levels in adults. Correlation analysis revealed that the brain monoamine neurotransmitters and their turnover might play important roles in the life stage-dependent behavioral response to CPC. In particular, the DOPAC/DA ratio was significantly associated with CPC-induced hypoactivity and reduced social interactions in juveniles but not adults. Our findings demonstrated that CPC exposure could cause abnormal behavior in juvenile and adult zebrafish and disturb their brain neurotransmitters, even at environmentally relevant concentrations, and thus highlighted the necessity for further assessing its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Kejun Dong
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lixia Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Michaela Sia Tengbe
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
24
|
Cao X, Rao C, Cui H, Sun D, Li L, Guo S, Zhou J, Yuan R, Yang S, Chen J. Toxic effects of glyphosate on the intestine, liver, brain of carp and on epithelioma papulosum cyprinid cells: Evidence from in vivo and in vitro research. CHEMOSPHERE 2022; 302:134691. [PMID: 35489457 DOI: 10.1016/j.chemosphere.2022.134691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate (GLY) is the most widely used organophosphorus herbicide in agriculture. The present study aimed to analyze the comprehensive toxicological effects of GLY on juvenile common carp and an epithelioma papulosum cyprinid (EPC) cell line. In the in vivo experiments, exposure to GLY (5 and 15 mg/L) for 30 days induced liver inflammation and oxidative damage in common carp and changed the physical barrier of the intestine. Histopathological analysis of the intestine, liver, brain, and changes in oxidative stress biomarkers provided evidence of damage and immune system responses to GLY. Moreover, an inhibitory effect of 15 mg/L GLY on acetylcholinesterase (AChE) activity was found in the brain, which may be an important reason for the significant decrease in both swimming distance and average acceleration of common carp. Cell experiments showed that 0.65 and 3.25 mg/L GLY inhibited the viability of EPCs. Furthermore, oxidative DNA damage, mitochondrial dysfunction, and reactive oxygen species (ROS) production were observed in EPC cells following GLY exposure. Taken together, this study not only highlights the negative effects of GLY on common carp but also enriches the knowledge of the cytotoxicity mechanism to further clarify the comprehensive toxicity of GLY in common carp.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Shuai Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
25
|
Cardoso-Vera JD, Gómez-Oliván LM, Islas-Flores H, García-Medina S, Elizalde-Velázquez GA, Orozco-Hernández JM, Heredia-García G, Rosales-Pérez KE, Galar-Martínez M. Multi-biomarker approach to evaluate the neurotoxic effects of environmentally relevant concentrations of phenytoin on adult zebrafish Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155359. [PMID: 35460791 DOI: 10.1016/j.scitotenv.2022.155359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Several studies have reported the presence of phenytoin (PHE) in wastewater treatment plant effluents, hospital effluents, surface water, and even drinking water. However, published studies on the toxic effects of PHE at environmentally relevant concentrations in aquatic organisms are scarce. The present study aimed to determine the effect of three environmentally relevant concentrations of PHE (25, 282, and 1500 ng L-1) on behavioral parameters using the novel tank test. Moreover, we also aimed to determine whether or not these concentrations of PHE may impair acetylcholinesterase (AChE) activity and oxidative status in the brain of Danio rerio adults. Behavioral responses suggested an anxiolytic effect in PHE-exposed organisms, mainly observed in organisms exposed to 1500 ng L-1, with a significant decrease in fish mobility and a significant increase in activity at the top of the tank. Besides the behavioral impairment, PHE-exposed fish also showed a significant increase in the levels of lipid peroxidation, hydroperoxides, and protein carbonyl content compared to the control group. Moreover, a significant increase in brain AChE levels was observed in fish exposed to 282 and 1500 ng L-1. The results obtained in the present study show that PHE triggers a harmful response in the brain of fish, which in turn generates fish have an anxiety-like behavior.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
26
|
Takai Y, Tokusumi H, Sato M, Inoue D, Chen K, Takamura T, Enoki S, Ueno Y, Kang IJ, Shimasaki Y, Qiu X, Oshima Y. Combined effect of diazepam and polystyrene microplastics on the social behavior of medaka (Oryzias latipes). CHEMOSPHERE 2022; 299:134403. [PMID: 35341767 DOI: 10.1016/j.chemosphere.2022.134403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The combined effect of microplastics and pharmaceuticals on aquatic organisms is an issue of concern. In this laboratory study, we evaluated the combined effect of polystyrene microplastics (2-μm diameter) and diazepam on the social behavior of medaka (Oryzias latipes) by using the shoaling behavior test with five treatment groups: solvent control, polystyrene microplastics exposure (0.04 mg/L), low-concentration diazepam exposure (0.03 mg/L), high-concentration diazepam exposure (0.3 mg/L), and polystyrene microplastics and low-concentration diazepam co-exposure. After 7 days of exposure, the shoal-leaving behavior of the high-concentration diazepam exposure group (8.9 ± 8.3 counts/medaka) and the co-exposure group (6.8 ± 6.7 counts/medaka) was significantly greater than that in the solvent control group (1.8 ± 2.6 counts/medaka). Even after 5 days of recovery, medaka in the co-exposure group left the shoal more often (7.3 ± 5.0 counts/medaka) than those in the solvent control group (2.6 ± 2.6 counts/medaka), whereas the shoal-leaving behavior in other exposure groups, except for the high-concentration diazepam exposure group, was restored. Our findings show that the combined effects of diazepam and polystyrene microplastics suppressed medaka social behavior, suggesting that the presence of microplastics can enhance the adverse effects of pollutants on the social behavior of aquatic organisms.
Collapse
Affiliation(s)
- Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hideaki Tokusumi
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Moeko Sato
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daishi Inoue
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Takumi Takamura
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shintaro Enoki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yu Ueno
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ik Joon Kang
- School of Interdisciplinary Science and Innovation, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
27
|
Removal of Chromium(VI) by Nanoscale Zero-Valent Iron Supported on Melamine Carbon Foam. NANOMATERIALS 2022; 12:nano12111866. [PMID: 35683722 PMCID: PMC9181856 DOI: 10.3390/nano12111866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
The overuse of chromium (Cr) has significantly negatively impacted human life and environmental sustainability. Recently, the employment of nano zero-valent iron (nZVI) for Cr(VI) removal is becoming an emerging approach. In this study, carbonized melamine foam-supported nZVI composites, prepared by a simple impregnation–carbonization–reduction method, were assessed for efficient Cr(VI) removal. The prepared composites were characterized by XPS, SEM, TEM, BET and XRD. Batch experiments at different conditions revealed that the amount of iron added, the temperature of carbonization and the initial Cr(VI) concentration were critical factors. Fe@MF-12.5-800 exhibited the highest removal efficiency of 99% Cr(VI) (10 mg/L) at neutral pH among the carbonized melamine foam-supported nZVI composites. Its iron particles were effectively soldered onto the carbonaceous surfaces within the pore networks. Moreover, Fe@MF-12.5-800 demonstrated remarkable stability (60%, 7 days) in an open environment compared with nZVI particles.
Collapse
|
28
|
Qiu X, Liu L, Xu W, Chen C, Li M, Shi Y, Wu X, Chen K, Wang C. Zeolitic Imidazolate Framework-8 Nanoparticles Exhibit More Severe Toxicity to the Embryo/Larvae of Zebrafish ( Danio rerio) When Co-Exposed with Cetylpyridinium Chloride. Antioxidants (Basel) 2022; 11:945. [PMID: 35624808 PMCID: PMC9138101 DOI: 10.3390/antiox11050945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
The combined application of nanoparticles and surfactants has attracted tremendous attention in basic research and industry. However, knowledge of their combined toxicity remains scarce. In this study, we exposed zebrafish embryos to cetylpyridinium chloride (CPC, a cationic surfactant, at 0 and 20 μg/L), zeolitic imidazolate framework nanoparticles (ZIF-NPs, at 0, 30, and 60 mg/L), and their mixtures until 120 h post-fertilization (hpf). Within the used concentration range, both single and combined exposures exhibited limited effects on the survival and hatching of zebrafish. However, the combined exposure of ZIF-NPs and CPC caused more severe effects on the heart rate at both 48 and 72 hpf. The combined exposure also induced significant hyperactivity (i.e., increasing the average swimming velocity) and oxidative stress in zebrafish larvae (at 120 hpf), although all single exposure treatments exhibited limited impacts. Furthermore, the level of reactive oxygen species (or malondialdehyde) exhibited a significantly positive correlation with the heart rate (or average swimming velocity) of zebrafish, suggesting that oxidative stress plays a role in mediating the combined toxicity of CPC and ZIF-NPs to zebrafish. Our findings suggest that the interaction of CPC and ZIF-NPs should not be ignored when assessing the potential risks of their mixtures.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Wei Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chongchen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
29
|
Qiu X, Chen C, Shi Y, Chen K, Li M, Xu H, Wu X, Takai Y, Shimasaki Y, Oshima Y. Persistent impact of amitriptyline on the behavior, brain neurotransmitter, and transcriptional profile of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106129. [PMID: 35248893 DOI: 10.1016/j.aquatox.2022.106129] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Discontinuation of amitriptyline (AMI) has been demonstrated to induce long-term withdrawal syndromes in mammals. However, no studies have focused on the persistent impacts of short-term AMI exposure on teleosts. Here, following exposure to AMI (2.5 and 40 μg/L) for 7 days (E7), zebrafish were transferred into AMI-free water to recover for 21 days (R21). The behavior, brain neurotransmitters, and brain transcriptional profiles were investigated on E7 and R21. AMI exposure induced persistent hypoactivity (2.5 and 40 μg/L) and abnormal schooling behavior (40 μg/L). AMI also induced long-term impacts on the brain serotonin (5-HT), 5-hydroxyindoleacetic acid, norepinephrine, and acetylcholine levels, several of which showed significant correlations with the locomotor activity or schooling behavior. Transcriptional analysis revealed persistent dysregulation in the pathways involved in the circadian rhythm, glycan biosynthesis and metabolism, and axon guidance in brain samples. Twelve genes were predicted as key driver genes in response to AMI exposure, and their significantly differential expression may direct changes across the related molecular networks. Moreover, upregulated brain 5-HT may serve as the central modulator of the persistent AMI pathogenesis in zebrafish. Considering AMI residues in natural waters may temporarily exceed μg/L, corresponding persistent adverse effects on teleosts should not be ignored.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
30
|
Impacts of Cetylpyridinium Chloride on the Survival, Development, Behavior, and Oxidative Stress of Early-Life-Stage Zebrafish (Danio rerio). Antioxidants (Basel) 2022; 11:antiox11040676. [PMID: 35453362 PMCID: PMC9032156 DOI: 10.3390/antiox11040676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cetylpyridinium chloride (CPC) is a widely used surfactant that has been detected in various water ecosystems. However, knowledge on the toxicity of CPC to fish remains scarce. Here, we examined the survival, development, behavior, and oxidative stress in the early life stages of zebrafish exposed to CPC (0, 4, 40, 400, and 1200 μg/L) until 120 h post-fertilization (hpf). Results showed that CPC induced significant mortality at 400 and 1200 μg/L, with a 120 h-EC50 value of 175.9 μg/L. CPC significantly decreased the heart rate of embryos (48 hpf; 4–400 μg/L) and larvae (72 hpf; 40 and 400 μg/L). At 120 hpf, CPC exhibited a dual effect on the locomotion activity (decreased at 400 μg/L and increased at 4 and 40 μg/L) and elevated the reactive oxygen species, superoxide dismutase, and glutathione levels in zebrafish larvae at 400 µg/L. In addition, a correlation analysis revealed that CPC-induced oxidative stress might play a critical role in mediating the cardiac and behavioral toxicity of CPC to zebrafish larvae. Our findings suggest that CPC may disturb the fish’s development, behavior, and oxidative status at environmentally relevant concentrations, which should not be ignored when assessing its potential risks to aquatic ecosystems.
Collapse
|
31
|
Adeola AO, Ore OT, Fapohunda O, Adewole AH, Akerele DD, Akingboye AS, Oloye FF. Psychotropic Drugs of Emerging Concerns in Aquatic Systems: Ecotoxicology and Remediation Approaches. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Gao S, Yang F. Behavioral changes and neurochemical responses in Chinese rare minnow exposed to four psychoactive substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152100. [PMID: 34863758 DOI: 10.1016/j.scitotenv.2021.152100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
With the increase use of psychoactive pharmaceuticals, these substances and their metabolites are frequently detected in aquatic environment. However, there is still a knowledge gap in the neurotoxicity of these pollutants on aquatic organisms as well as related behavioral effects. In this study, the effects of four psychoactive substances alprazolam (ALPZ), lorazepam (LORZ), codeine (COD) and morphine (MOR) were investigated on 23 neurochemicals and 5 behaviors in Chinese rare minnow (Gobiocypris rarus). The comprehensive neurotoxicity was then evaluated at three levels of neurochemical, neurotransmitter system and comprehensive index. The results indicated that ALPZ and LORZ not only increased serotonin and dopamine along with the decrease of glutamic acid, but also depressed the locomotory activity of Chinese rare minnow although without significance. Exposure to COD and MOR increased acetylcholine, dopamine and adrenaline, and significantly increased anxiety-related behaviors of Chinese rare minnow. Comprehensive evaluation showed that COD has the lowest neurotoxic effect on Chinese rare minnow. LORZ shows a stronger neurotoxicity at low concentration of exposure than the other three substances. MOR has the highest neurotoxic effect at high concentration of exposure among the four drugs. The findings revealed the comprehensive neurotoxicity of these psychoactive substances in fish and suggested ecological risks of these pollutants in aquatic environment.
Collapse
Affiliation(s)
- Siyue Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
33
|
Shi Y, Chen C, Li M, Liu L, Dong K, Chen K, Qiu X. Oral Exposure to Tributyltin Induced Behavioral Abnormality and Oxidative Stress in the Eyes and Brains of Juvenile Japanese Medaka ( Oryzias latipes). Antioxidants (Basel) 2021; 10:antiox10111647. [PMID: 34829518 PMCID: PMC8615197 DOI: 10.3390/antiox10111647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
The widely used compound tributyltin (TBT), which can be continuously detected in aquatic species and seafood, may induce diverse adverse effects on aquatic organisms. However, little is known regarding the mechanistic links between behavioral abnormality and oxidative stress in different fish tissues in response to oral TBT exposure. Herein, juvenile Japanese medaka (Oryzias latipes) were orally exposed to TBT at 1 and 10 ng/g-bw/d for four weeks. After exposure, the locomotor activity and social interaction of juvenile medaka were found to be significantly reduced in the 10 ng/g-bw/d TBT-exposed group. Furthermore, the antioxidant biomarkers in different tissues of juvenile medaka showed different levels of sensitivity to TBT exposure. The eye superoxide dismutase (SOD) activities markedly increased in both groups exposed to 1 and 10 ng/g-bw/d TBT, while the eye and brain malondialdehyde (MDA) levels increased in the higher dose group. Furthermore, the eye and brain ATPase activities markedly declined in the 1 ng/g-bw/d TBT-exposed group. A correlation analysis revealed that the decreased locomotor activity and social interaction in medaka were associated with the eye antioxidant enzyme (i.e., SOD and catalase (CAT)) activity and brain oxidative damage level. Thus, our findings suggested that there might be some mechanistic links between the behavioral abnormality induced by TBT exposure and oxidative stress in the eyes and brains of medaka. Thus, our findings indicate that the impacts of oral exposure to TBT should be considered to better assess its risk to the aquatic ecosystem and human health.
Collapse
Affiliation(s)
- Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Lei Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Kejun Dong
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (K.C.); (X.Q.)
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (K.C.); (X.Q.)
| |
Collapse
|
34
|
Chen K, Iwasaki N, Qiu X, Xu H, Takai Y, Tashiro K, Shimasaki Y, Oshima Y. Obesogenic and developmental effects of TBT on the gene expression of juvenile Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105907. [PMID: 34274867 DOI: 10.1016/j.aquatox.2021.105907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The widely used antifoulant tributyltin chloride (TBT) is highly toxic to aquatic organisms. In the present study, four-week-old Japanese medaka (Oryzias latipes) juveniles were orally exposed to TBT at 1 and 10 ng/g bw/d for 1, 2, and 4 weeks, respectively. Half of the tested medaka juveniles showed bone morphology alterations in both 1 and 10 ng/g bw/d TBT 4-week exposure groups. Nile Red (NR) staining showed that the juveniles exposed to 1 ng/g bw/d TBT for 2 and 4 weeks had significantly enlarged adipocyte areas. The mRNA-Seq analysis indicated that 1 ng/g bw/d TBT exposure for 2 weeks affected bone morphology through developmental processes. The GO and KEGG analyses suggested that the adipogenic effect of TBT observed in this study may be induced by metabolic processes, oxidative phosphorylation, and fatty acid degradation and metabolism pathways. Therefore, both morphological observation and mRNA-Seq analysis showed obesogenic effects and developmental toxicity of TBT to juvenile Japanese medaka.
Collapse
Affiliation(s)
- Kun Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Naoto Iwasaki
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
35
|
Chen H, Feng W, Chen K, Qiu X, Xu H, Mao G, Zhao T, Wu X, Yang L. Transcriptomic responses predict the toxic effect of parental co-exposure to dibutyl phthalate and diisobutyl phthalate on the early development of zebrafish offspring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105838. [PMID: 33910148 DOI: 10.1016/j.aquatox.2021.105838] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Dibutyl phthalate (DBP) and diisobutyl phthalate (DiBP) have been reported to exhibit reproductive toxicity in vertebrates. However, the combined effect of DBP and DiBP on offspring of exposed parents remains unclear, especially for aquatic organisms such as fish. The aims of this study were to assess the effects of parental co-exposure to DBP and DiBP on early development of zebrafish offspring, and to explore the potential molecular mechanisms involved. The early developmental indicators and transcriptomic profiles of F1 larvae were examined after parental exposure to DBP, DiBP and their mixtures (Mix) for 30 days. Results showed that parental exposure to DBP and DiBP, alone or in combination, resulted in increased hatchability at 48 hpf and heart rate at 96 hpf, and increased the prevalence of malformations and mortality in F1 larvae. Generalized linear model (GLM) suggested an antagonistic interactive effect between DBP and DiBP on mortality and malformations of F1 larvae. The transcriptomic analysis revealed that the molecular mechanisms of parental co-exposure were different from those of either chemical alone. Disruption of molecular functions involved unfolded protein binding, E-box binding and photoreceptor activity in F1 larvae. These findings provide initial insights in the potential mechanism of action of parental co-exposure to DBP and DiBP.
Collapse
Affiliation(s)
- Hui Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hai Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Ting Zhao
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Liuqing Yang
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
36
|
Liu Y, Qiu X, Xu X, Takai Y, Ogawa H, Shimasaki Y, Oshima Y. Uptake and depuration kinetics of microplastics with different polymer types and particle sizes in Japanese medaka (Oryzias latipes). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112007. [PMID: 33540337 DOI: 10.1016/j.ecoenv.2021.112007] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Microplastic (MP) pollution and the related impacts on aquatic species have drawn worldwide attention. However, knowledge of the kinetic profiles of MPs in fish remains fragmentary. In this study, we conducted exposure and depuration tests of the following fluorescent-labeled MPs: polyethylene (PE; sphere with 200 or 20 µm diameter) and polystyrene (PS; sphere with 20 or 2 µm diameter) using juvenile Japanese medaka (Oryzias latipes). The distribution and concentration of MPs in medaka were directly determined in-situ after tissue transparency. During the 14-day exposure, MPs was mainly detected in the gastrointestinal tract, while some MPs at the size of ≤ 20 µm were located in the area of the gills and head. The bioconcentration factor (BCF; L/kg) for MPs in medaka was estimated as 74.4 (200 µm PE), 25.7 (20 µm PE), 16.8 (20 µm PS), and 139.9 (2 µm PS). Within the first five days of depuration, MPs were exponentially eliminated from the fish body, but 2 µm PS-MPs could be still detected in the gastrointestinal tract at the end of the 10-day depuration phase. Our results suggest that MPs 2 µm in diameter may pose ecological risks to aquatic species due to their relatively higher BCF and the potential for long-term persistence in the body.
Collapse
Affiliation(s)
- Yangqing Liu
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Xuchun Qiu
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xinning Xu
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hijiri Ogawa
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
37
|
Ding Y, Xu T, Mao G, Chen Y, Qiu X, Yang L, Zhao T, Xu X, Feng W, Wu X. Di-(2-ethylhexyl) phthalate-induced hepatotoxicity exacerbated type 2 diabetes mellitus (T2DM) in female pubertal T2DM mice. Food Chem Toxicol 2021; 149:112003. [PMID: 33484791 DOI: 10.1016/j.fct.2021.112003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), one of the most common plasticizers, is closely associated with a high prevalence of pubertal type 2 diabetes mellitus (T2DM). Numerous studies have indicated that DEHP-induced metabolic toxicity exhibits sex differences. In this study, the sex differences in the effect of DEHP on pubertal T2DM (P-T2DM) mice, the susceptibility of female P-T2DM mice to DEHP-induced metabolic toxicity, and the underlying mechanisms were investigated. DEHP exposure exacerbated metabolic disorders in female P-T2DM mice. Factorial analysis showed that female P-T2DM mice were more sensitive to DEHP exposure than female normal mice and male P-T2DM mice. It was determined by integrated biomarker response results that female P-T2DM mice had higher risks of developing T2DM, metabolic disorders, cardiovascular events and hepatotoxicity than male P-T2DM mice. Moreover, hepatic transcriptome analysis emphasized the effects of DEHP on the expression of oxidative injury- and metabolic function-related genes. Western blotting indicated that DEHP activated Jun-N-terminal kinase (JNK) and impaired insulin sensitivity in the liver, which were the main causes of DEHP-exacerbated metabolic abnormalities in P-T2DM mice. Our study revealed that compared with normal mice and male P-T2DM mice, female P-T2DM mice tend to suffer from increased DEHP-induced metabolic toxicity, which was primarily attributed to hepatotoxicity.
Collapse
Affiliation(s)
- Yangyang Ding
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tong Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoxiao Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|