1
|
Cheng Q, Tian H, Nie WB, Li J, Zuo Y, Nengzi L, Du E, Peng M. Enhanced nitrogen removal from secondary effluent of municipal wastewater using denitrification filter: Feasibility of refractory organics as a carbon source. BIORESOURCE TECHNOLOGY 2024; 414:131660. [PMID: 39424010 DOI: 10.1016/j.biortech.2024.131660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Conventional advanced nitrogen removal in municipal wastewater is hindered by the limited availability of carbon sources in the secondary effluent. However, refractory organics present in it had the potential to serve as intrinsic carbon sources after hydrolysis for nitrogen removal via simultaneous denitrification and partial-denitrification anammox (PDA) processes. To assess this potential, a denitrification filter was set up in this study to evaluate its feasibility of concurrent processes. Results showed that increasing influent ammonium (NH4+-N) from 1.0 to 7.0 mg/L increased total nitrogen (TN) removal from 52.4 % to 89.9 %. Simultaneous occurrence of PDA and denitrification process were confirmed by the actual chemical oxygen demand (COD) consumption (0.8-1.2 mg/mg TN removal) from non-fluorescent organics. The presence of the anammox, hydrolytic and denitrifying bacteria further supported the achievement of nitrogen removal through PDA and denitrification processes by utilizing hydrolytic products biodegraded from refractory organics.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Hui Tian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Wen-Bo Nie
- College of Environmental and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jun Li
- College of Environmental and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yanting Zuo
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Lichao Nengzi
- Academy of Environment and Economics Sciences, Xichang University, Xichang 615000, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Zhang J, Zhou Z, Zeng L, Wang C, Han R, Ren X, Wang W, Xiang M, Chen S, Li H. The molecular binding sequence transformation of soil organic matter and biochar dissolved black carbon antagonizes the transport of 2,4,6-trichlorophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174657. [PMID: 38986700 DOI: 10.1016/j.scitotenv.2024.174657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Dissolved organic matter (DOM) and dissolved black carbon (DBC) are significant environmental factors that influence the transport of organic pollutants. However, the mechanisms by which their molecular diversity affects pollutant transport remain unclear. This study elucidates the molecular binding sequence and adsorption sites through which DOM/DBC compounds antagonize the transport of 2,4,6-trichlorophenol (TCP) using column experiments and modelling. DBC exhibits a high TCP adsorption rate (kn = 5.32 × 10-22 mol1-n∙Ln-1∙min-1) and conditional stability constant (logK = 5.19-5.74), indicating a strong binding affinity and antagonistic effect on TCP. This is attributed to the high relative content of lipid/protein compounds in DBC (25.65 % and 30.28 %, respectively). Moreover, the small molecule lipid compounds showed stronger TCP adsorption energy (Ead = -0.0071 eV/-0.0093 eV) in DOM/DBC, combined with two-dimensional correlation spectroscopy model found that DOM/DBC antagonized TCP transport in the environment through binding sequences that transformed from lipid/protein small molecule compounds to lignin/tannin compounds. This study used a multifaceted approach to comprehensively assess the impact of DOM/DBC on TCP transport. It reveals that the molecular diversity of DOM/DBC is a critical factor affecting pollutant transport, providing important insights into the environmental trend and ecological effects of pollutants.
Collapse
Affiliation(s)
- Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zhikang Zhou
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xinlei Ren
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wenbing Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shuai Chen
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, PR China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
3
|
Zhang J, Huang N, Li H, Cheng B, Zhou X, Wang C. Interaction between biochar-dissolved organic matter and chlorophenols during biochar adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40375-40387. [PMID: 36609760 DOI: 10.1007/s11356-022-25083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) has been widely applied in the remediation of chlorophenols (CPs) from contaminated sites in which the role and mechanisms of BC dissolved organic matter (BDOM), as a crucial component of BC, with CPs are largely unknown and thus need to be investigated. In this study, DOM was derived from peanut hulls (PDOM) and corn stalks (CDOM) as BC sources, and the interactions between PDOM/CDOM and 2,4,6-trichlorophenol (TCP) were analysed using excitation-emission matrix spectroscopy (EEM) in combination with multiple models. EEM combined with fluorescence region integration (EEM-FRI) indicated that humic-like materials were the major materials of both PDOM and CDOM (percentage fluorescence response Ri,n > 60%), and CDOM contained more protein- and fulvic-like materials than PDOM. Based on EEM in combination with parallel factor analysis (EEM-PARAFAC), 4 components were obtained, and the percentage decrease in maximum fluorescence intensities (Fmax) showed that the main components interacting with TCP in PDOM/CDOM were protein- and fulvic-like components (> 25%). Moreover, the modified Stern-Volmer model was used to calculate the stability constants (Log KTCP) of PDOM/CDOM and TCP for the first time, and the mechanism of static quenching was dominant for interacting with TCP in PDOM (Log KTCP: 4.36-4.65) and CDOM (Log KTCP: 3.53-4.73). Furthermore, the sequential TCP binding of fluorescent components in BDOM generally followed the order of protein-like → short-wavelength fulvic-like → long-wavelength fulvic-like → humic-like components. These findings will provide a basis for screening biochar as a functional material for CP remediation applications and for understanding the environmental chemical behaviour of leached DOM during biochar application.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, People's Republic of China
| | - Hui Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Biao Cheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xuan Zhou
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chen Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
4
|
He C, He X, Yuan R, Li N, Jiang J. Binding characteristics of Pb and Zn to low-temperature feces-based biochar-derived DOM revealed by EEM-PARAFAC combined with general and moving-window two-dimensional correlation analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27525-27538. [PMID: 36380180 DOI: 10.1007/s11356-022-24132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Pyrolysis carbonization of human feces has shown potential for converting feces biomass into a soil amendment. However, little is known about the interactions of DOM derived from feces-based biochar produced at low-temperature with heavy metals (HMs). In this study, the binding properties of Pb(II) and Zn(II) with DOM derived from feces-based biochar produced at low pyrolysis temperatures were investigated using EEM-PARAFAC combined with general, and moving-window two-dimensional correlation analyses (2D-COS). The results revealed that DOM from biochar produced at 280 °C exhibited a higher Pb(II) and Zn(II) affinity and more binding sites than DOM produced at 380 °C. The fulvic-like and humic-like components exhibited obvious fluorescence quenching after the heavy metal addition, and the complexes formed with Pb(II) and Zn(II) were more stable. C-H groups exhibited the fastest response to Pb(II) and Zn(II) binding in the FB280 DOM, while the COO- groups of carboxylic acids in the FB380 DOM exhibited the fastest response to Pb(II) and Zn(II). Moreover, the mutation concentration range of components and functional groups in DOM, as analyzed by MW2D-COS, was greater for Zn(II) than for Pb(II). These results provide a more detailed molecular-level understanding of the interaction mechanisms between heavy metals and feces-based biochar-derived DOM and the effect of HM concentration on DOM binding. Further, these results will help to provide a reasonable reference for feces management and feces-based biochar in controlling soil HMs.
Collapse
Affiliation(s)
- Changjun He
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Run Yuan
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Na Li
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jinyuan Jiang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| |
Collapse
|
5
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS), part II. Recent noteworthy developments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121750. [PMID: 36030669 DOI: 10.1016/j.saa.2022.121750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive survey review compiles noteworthy developments and new concepts of two-dimensional correlation spectroscopy (2D-COS) for the last two years. It covers review articles, books, proceedings, and numerous research papers published on 2D-COS, as well as patent and publication trends. 2D-COS continues to evolve and grow with new significant developments and versatile applications in diverse scientific fields. The healthy, vigorous, and diverse progress of 2D-COS studies in many fields strongly confirms that it is well accepted as a powerful analytical technique to provide an in-depth understanding of systems of interest.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
6
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
7
|
Zhou Q, He L, Yuan D, Meng R, Zhao H, Zhao H, Zhang Y, Du S. Pollutant-removal and DOM characteristics in an urban stormwater wetland. ENVIRONMENTAL TECHNOLOGY 2023; 44:45-56. [PMID: 34324410 DOI: 10.1080/09593330.2021.1962413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Stormwater wetlands play a crucial role in the urban environment, providing many ecosystem services. In this work, a stormwater wetland was developed to study the effects on the removal of pollutants and the characteristics of dissolved organic matter (DOM) under different operating conditions, such as hydraulic retention time (HRT) and water depth. The results showed that the stormwater wetland exhibited excellent pollutant-removal performance, such as NH4+_N, TN, TP, COD, and suspended solids (SS). The removal rates for these substances reached 79.1%, 73.2%, 89.0%, 84.3%, 80.4%, and 73.77, respectively, with 24 h of HRT and 15 cm of water depth. An increase in HRT can improve the removal rates of TN, TP, COD, and TOC. The removal rates for these parameters decreased with increasing water depth, though, except for TP; the UV-VIS spectral parameters indicated that an obvious decrease occurred in the degrees of humification and aromaticity of DOM with increasing HRT and water depth after the stormwater wetland treatment. Parallel factor (PARAFAC) analysis identified six fluorescent components (one combination of freshly produced biologically labile matter and a tryptophan-like component, one fulvic-like, one humic-like, and three tryptophan-like), whose fluorescence intensity was weakened after the stormwater wetland treatment. The lowest intensity appeared with 24 h of HRT and 15 cm of water depth. This study could be beneficial for understanding and managing stormwater wetlands, thus alleviating the impacts of pollutants on urban environments.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Liansheng He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Donghai Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Rui Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Hao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Hangchen Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Yahui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Shilin Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| |
Collapse
|
8
|
Miao X, Liang J, Hao Y, Zhang W, Xie Y, Zhang H. The Influence of the Reduction in Clay Sediments in the Level of Metals Bioavailability-An Investigation in Liujiang River Basin after Wet Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14988. [PMID: 36429705 PMCID: PMC9690423 DOI: 10.3390/ijerph192214988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The seasonal elevation of metals' bioavailability can aggravate the threat of metal contamination in the aquatic environment. Nevertheless, their regulations have rarely been studied, particularly the connections between metals' transformation and environmental variations. Therefore, the catchment area of Liujiang River was taken as an example in this study, their seasonal variations in metals' bioavailability in sediments, especially during the wet season, was investigated to recover the processes associated with metals' speciations and multiple environmental factors. The results revealed that the concentration of metals in sediments were high overall in the wet season, but low in the dry season. The significantly reduced ratio of metals in non-residual forms was largely related to the overall reduction in metals in oxidizable and reducible forms after the wet season. However, the elevated BI indexes of most metals suggested their increased bioavailability in the dry season, which should be closely related to their corresponding elevations in carbonate-bound and exchangeable forms after the wet season. The variations in metals' bioavailability were primarily related to their predominance of exchangeable and carbonate-bound form. The higher correlation coefficients suggested the destabilization of the oxidizable form should be treated as a critical approach to the impact of metals' bioavailability after the wet season. In view of that, sediments' coarsening would pose the impacts on the destabilization of exogenous metals in sediments, the reduction in clay sediments should be responsible for the elevation of metals bioavailability after the wet season. Therefore, the monitoring of metals' bioavailability in sediments should be indispensable to prevent metal contamination from enlarging the scope of their threat to the aquatic environment of the river, especially after the wet season.
Collapse
Affiliation(s)
- Xiongyi Miao
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, China
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Jianping Liang
- Guilin Meteorological Bureau of Guangxi, Guilin 541000, China
| | - Yupei Hao
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Wanjun Zhang
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Yincai Xie
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
9
|
Pan S, Guo X, Li R, Hu H, Yuan J, Liu B, Hei S, Zhang Y. Activation of peroxymonosulfate via a novel UV/hydrated Fe(III) oxide coupling strategy for norfloxacin removal: Performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Zhou X, Wang Q, Guo Y, Sun X, Li T, Yang C. Spectroscopic characterization of dissolved organic matter from macroalgae Ulva pertusa decomposition and its binding behaviors with Cu(II). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112811. [PMID: 34563880 DOI: 10.1016/j.ecoenv.2021.112811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) from macroalgae is regarded a crucial source of autochthonous DOM in coastal ocean. In the present study, the characteristics of DOM from the macroalgae Ulva pertusa decomposition (U. pertusa-DOM) and its binding behaviors with Cu(II) using multiple spectroscopic techniques and chemometric analyses. The labile U. pertusa-DOM could be consumed and transformed by microorganisms. The absorption spectroscopic descriptors indicate that the hydrophobicity, aromaticity, and molecular weight of the U. pertusa-DOM increase during the 27-day incubation period. Fluorescence excitation-emission matrix spectroscopy combined with parallel factor analysis suggests that the relative abundance of the protein-like component (C1) (96.10-84.96%) sequentially decreases, whereas the humic-like components (C2) (2.16-9.73%) and (C3) (1.75-5.31%) in the U. pertusa-DOM increase with the U. pertusa decomposition. The Cu(II) binding properties of the U. pertusa-DOM are dependent on the decomposition time. The order of the conditional stability constant (logKM) is C2 > C1 > C3. The complexation capacity (f) of C1 is higher than those of C2 and C3 at a specific time. Synchronous fluorescence spectroscopy coupled with two-dimensional correlation spectroscopy reveals that the microbial degradation could accelerate the Cu(II) binding to humic-like fractions in the U. pertusa-DOM. These findings will help us better understand the biogeochemical behaviors of macroalgal DOM and heavy metal in coastal ecosystems.
Collapse
Affiliation(s)
- Xiaotian Zhou
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Qilu Wang
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Yuanming Guo
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Xiumei Sun
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Tiejun Li
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Chenghu Yang
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| |
Collapse
|