1
|
Pietropoli E, Bardhi A, Simonato V, Zanella M, Iori S, Barbarossa A, Giantin M, Dacasto M, De Liguoro M, Pauletto M. Comparative toxicity assessment of alternative versus legacy PFAS: Implications for two primary trophic levels in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135269. [PMID: 39068881 DOI: 10.1016/j.jhazmat.2024.135269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC50 s from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC50 of 31 mg L-1, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Valentina Simonato
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Martina Zanella
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marco De Liguoro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| |
Collapse
|
2
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Vehniäinen ER, Juan-García A. Daphnia magna model for the study of mycotoxins present in food: Gliotoxin, ochratoxin A and its combination. Food Chem Toxicol 2024; 189:114740. [PMID: 38759715 DOI: 10.1016/j.fct.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Mycotoxins are low molecular weight compounds present in food and feed. Although their effects on human health have been widely described, their mechanisms of action are still undefined. Gliotoxin (GTX) and ochratoxin A (OTA) are among the most dangerous mycotoxins produced by Aspergillus spp. Therefore, their toxicity was studied in the Daphnia magna model, which has high capacity to predict cytotoxicity and assess ecotoxicity, comparable to mammalian models. The study consisted of a series of tests to evaluate the effects of mycotoxins GTX, OTA and their combinations at different dilutions on Daphnia magna that were conducted according to standardized OECD 202 and 211 guidelines. The following assays were carried out: acute toxicity test, heartbeat, delayed toxicity test, reproduction, growth rate test. Reproducibility was determined by observing the offspring after 21 days of GTX exposure. In acute and delayed toxicity transcript levels of genes involved in xenobiotic metabolism (mox, gst, abcb1, and abcc5), and oxidative stress (vtg-SOD) were analyzed by qPCR. GTX showed acute toxicity and decreased heart rate in D. magna compared to OTA. On the other hand, OTA showed a delayed effect as evidenced by the immobility test. Both mycotoxins showed to increase genes involved in xenobiotic metabolism, while only the mycotoxin mixture increased oxidative stress. These results suggest that the mycotoxins tested could have negative impact on the environment and human health.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain; Department of Biological and Environmental Science, PO Box 35, FI-40014, University of Jyväskylä, Jyväskylä, Finland
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, PO Box 35, FI-40014, University of Jyväskylä, Jyväskylä, Finland
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain.
| |
Collapse
|
3
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
4
|
Jager T. Identifying and Predicting Delayed Mortality with Toxicokinetic-Toxicodynamic Models. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1030-1035. [PMID: 38415798 DOI: 10.1002/etc.5833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
The prevalence of standardized toxicity testing in ecotoxicology has largely obscured the notion that toxicity is a function of time as well. The necessity of considering time is vividly demonstrated by observations of delayed mortality, that is, deaths continue to occur even when animals are no longer exposed to a toxicant. In this contribution, I explore to what extent toxicokinetic-toxicodynamic (TKTD) models from the framework of the General Unified Threshold model for Survival (GUTS) can capture delayed mortality, and to what extent this phenomenon can be predicted from short-term standard tests. I use a previously published data set for fluoroquinolones in Daphnia magna that shows strongly delayed mortality (using immobilization as a proxy for death). The model analysis shows that the GUTS stochastic death models can capture delayed mortality in the complete data set with a long recovery phase, but that the delayed effects would not have been predicted from a 2-day standard test. The study underlines the limited information content of standard acute test designs. Toxicokinetic-toxicodynamic modeling offers a handle on the time aspects of toxicity but cannot always be relied on to provide accurate extrapolations based on severely limited standard tests. The phenomenon of delayed toxicity requires more structured study to clarify its prevalence and impact; I discuss several avenues for further investigation. Environ Toxicol Chem 2024;43:1030-1035. © 2024 SETAC.
Collapse
|
5
|
Shen M, Hu Y, Zhao K, Li C, Liu B, Li M, Lyu C, Sun L, Zhong S. Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review. TOXICS 2023; 11:966. [PMID: 38133367 PMCID: PMC10747319 DOI: 10.3390/toxics11120966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of "pseudo-persistence". This article provides a comprehensive review of the literature on FQs in water bodies, summarizing and analyzing contamination levels of FQs in global surface water over the past three years, as well as the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity, and the influencing factors. The results show that FQs contamination is widespread in surface water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy contaminants. Furthermore, contamination levels are generally higher in developing and developed countries. It has been observed that compound types, species, and environmental factors influence the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and analyzes the current research status and shortcomings of FQs, providing guidance and theoretical support for future research directions.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Lei Sun
- Liaoning Provincial Mineral Exploration Institute Co., Ltd., Shenyang 110031, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Al-Rosyid LM, Santoso IB, Titah HS, Mangkoedihardjo S, Trihadiningrum Y, Hidayati D. Correlation between BOD/COD Ratio and Octanol/Water Partition Coefficient for Mixture Organic Compounds. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/29141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Correlation between the BOD/COD ratio and Partition coefficient of octanol/ water (Pow) on a single organic substance shows that the Pow value is directly proportional to the toxicity level and inversely proportional to BOD/COD ratio. This research examined the correlation to a mixture of organic substances. The objective is to obtain a varied range of substances, as well as determining the quality of wastewater discharging to fresh waters. Need for analysis of organic substances used as antiseptics during the Covid-19 pandemic. In addition, organic substances from the organophosphate pesticide class, diazinon, were used. BOD5, COD, Pow, and LC50-96h toxicity tests using Daphnia magna were used. Six types of the mixture of organic substances included diazinon-formaldehyde-isopropyl alcohol, ethanol-oxalic acid-formaldehyde, isopropyl alcohol-glycerol-lactose, acetic acid-isopropyl alcohol-formaldehyde, sucrose-glycerol-acetic acid, and oxalic acid-formaldehyde-diazinon, with 3 different concentrations of 10, 100, and 1000 mg/L, three repetitions. The lowest BOD/COD ratio (<0.2) and the highest Pow value (>4) are found in diazinon-formaldehyde-IPA. Its toxicity in D. magna also showed the lowest LC-50 (11.82 mg/L). Whereas, sucrose-glycerol-acetic acid had the highest BOD/COD ratio (>0.7) and lowest Pow (<0.7) with the highest LC- 50 (567.88 mg/L). Other organic substances mixtures have characteristics in the range of these mixtures. Pow variability and the BOD/COD ratio have a negative correlation. A mixture of organic matter is more biodegradable making it has a higher tendency to dissolve in water.
Collapse
|
7
|
Gan W, Guo J, Fu X, Zhang M, Ding C, Hai Y, Lu Y, Li J, Li Z, Sun Z. Dual-defects modified ultrathin 2D/2D TiO2/g-C3N4 heterojunction for efficient removal of levofloxacin: performance, degradation pathway, and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Enrofloxacin—The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections? Int J Mol Sci 2022; 23:ijms23073648. [PMID: 35409007 PMCID: PMC8998546 DOI: 10.3390/ijms23073648] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Enrofloxacin is a compound that originates from a group of fluoroquinolones that is widely used in veterinary medicine as an antibacterial agent (this antibiotic is not approved for use as a drug in humans). It reveals strong antibiotic activity against both Gram-positive and Gram-negative bacteria, mainly due to the inhibition of bacterial gyrase and topoisomerase IV enzymatic actions. The high efficacy of this molecule has been demonstrated in the treatment of various animals on farms and other locations. However, the use of enrofloxacin causes severe adverse effects, including skeletal, reproductive, immune, and digestive disorders. In this review article, we present in detail and discuss the advantageous and disadvantageous properties of enrofloxacin, showing the benefits and risks of the use of this compound in veterinary medicine. Animal health and the environmental effects of this stable antibiotic (with half-life as long as 3–9 years in various natural environments) are analyzed, as are the interesting properties of this molecule that are expressed when present in complexes with metals. Recommendations for further research on enrofloxacin are also proposed.
Collapse
|