1
|
Lu YN, Yue TJ, Ding WL, Xu BW, Li AY, Huang SC. Gut-X Axis and Its Role in Poultry Bone Health: A Review. Microorganisms 2025; 13:757. [PMID: 40284594 PMCID: PMC12029844 DOI: 10.3390/microorganisms13040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
The normal development and growth of bones are critical for poultry health. With the rapid increase in poultry growth rates achieved over the last few decades, juvenile meat-type poultry exhibit a high incidence of leg weakness and lameness. These issues are significant contributors to poor animal welfare and substantial economic losses. Understanding the potential etiology of bone problems in poultry will aid in developing treatments for bone diseases. The gut microbiota represents the largest micro-ecosystem in animals and is closely related to many metabolic disorders, including bone disease. It achieves this by secreting secondary metabolites and coordinating with various tissues and organs through the circulatory system, which leads to the concept of the gut-X axis. Given its importance, modulating gut microbiota to influence the gut-X axis presents new opportunities for understanding and developing innovative therapeutic approaches for poultry bone diseases. In light of the extensive literature on this topic, this review focuses on the effects of gut microbiota on bone density and strength in poultry, both directly and indirectly, through the regulation of the gut-X axis. Our aim is to provide scientific insights into the bone health problems faced by poultry.
Collapse
Affiliation(s)
| | | | | | | | - Ao-Yun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.-N.L.); (T.-J.Y.); (W.-L.D.); (B.-W.X.)
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.-N.L.); (T.-J.Y.); (W.-L.D.); (B.-W.X.)
| |
Collapse
|
2
|
Zhang G, Song B, Pan X, Keerqin C, Hamada O, Song Z. Macleaya cordata extract improves egg quality by altering gut health and microbiota in laying hens. Poult Sci 2024; 103:104394. [PMID: 39442200 PMCID: PMC11538866 DOI: 10.1016/j.psj.2024.104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigated the effect of Macleaya cordata extract (MCE) on the performance, gut health, and microbiota of laying hens. A total of 192 thirty-wk-old Hyline brown laying hens were randomly divided into 4 treatment groups. The CON group received a basal diet, while the low (MCE250), medium (MCE350), and high (MCE450) dose groups were supplemented with 250, 350, and 450 mg/kg MCE, respectively. The egg weight and Haugh unit demonstrated a linear and quadratic increase with the MCE dose during the initial 4-wk period of the experiment (P < 0.05). Furthermore, the dietary supplementation of MCE led to a significant enhancement in eggshell thickness and Haugh unit at wk 8 and the data showed a statistically significant linear and quadratic increase (P < 0.05). Serum cytokine assay showed that dietary supplementation of MCE led to linear and quadratic increases in IL-4 and IL-10 level (P < 0.05). Dietary supplementation of 350 and 450 mg/kg MCE was observed to result in linear and quadratic increase in serum lysozyme levels (P < 0.05). The addition of MCE to the diet resulted in a linear and quadratic increase in the levels of sIgA in the jejunum and ileum (P < 0.05). In terms of gene expression, the addition of MCE to the diet resulted in linear and quadratic increases in the expression of IL-10, IgA, Serpinb14, Serpinb14B, and OIH (P < 0.05). The expression of jejunal genes pIgR and IL-4 was observed to increase in a linear and quadratic manner, respectively, following the dietary addition of 350 mg/kg MCE and IL-1β decreased in a linear manner (P < 0.05). Moreover, these favorable effects were maximized at medium dosage (350 mg/kg) of MCE addition, and intestinal microbial composition in the control and MCE350 groups was assessed. 350 mg/kg MCE increased the relative abundance of Bryobacter and Parasutterella and decreased the relative abundance of Erysipelatoclostridium in the cecum (P < 0.05). Spearman correlation analysis revealed that Bryobacter, Parasutterella, Skermanella, and Erysipelatoclostridium were associated with nonspecific immune functions (P < 0.05). In conclusion, 350 mg/kg MCE supplementation elevated the immune response, and upregulated the expression of genes related to protein production in eggs, thereby improving egg quality. These effects may be associated with changes in the microbiota, specifically Bryobacter, Parasutterella, and Erysipelatoclostridium.
Collapse
Affiliation(s)
- Guoxin Zhang
- Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China; Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 50017, China
| | - Bochen Song
- Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xue Pan
- Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chake Keerqin
- Phytobiotics (Jiangsu) Biotech Co. Ltd., Changzhou, Jiangsu 213200, China
| | - Okasha Hamada
- Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China; Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Zhigang Song
- Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
3
|
Goo D, Lee J, Paneru D, Sharma MK, Rafieian-Naeini HR, Mahdavi FS, Gyawali I, Gudidoddi SR, Han G, Kim WK. Effects of branched-chain amino acid imbalance and dietary valine and isoleucine supplementation in modified corn-soybean meal diets with corn distillers dried grains with solubles on growth performance, carcass quality, intestinal health, and cecal microbiome in Cobb 500. Poult Sci 2024; 103:104483. [PMID: 39510006 PMCID: PMC11577229 DOI: 10.1016/j.psj.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
One important feature of corn distillers dried grains with solubles (DDGS) is its high leucine:lysine ratio, which can inhibit chicken growth by causing branched-chain amino acid (BCAA) antagonism. The current study was conducted to investigate the effects of BCAA imbalance of inclusion of DDGS and whether additional dietary valine and isoleucine could alleviate the negative effects in broilers. A total of 640 0-d-old male Cobb 500 broilers were allocated into 4 treatments with 8 replicates and reared until d 42. The four different dietary groups were as follows: 1) control (CON) group (corn-soybean meal-based diet); 2) 30% DDGS (30D) group (replacing soybean meal with 30% DDGS); 3) 30D + additional valine and isoleucine (30DB) group; and 4) the group of 30DB + additional valine and isoleucine to provide the same leucine:valine and leucine:isoleucine ratios as the CON group (30DBB). The analyzed leucine:lysine ratios of the CON group were 1.36/1.41/1.46 (starter/grower/finisher phase), whereas the average leucine:lysine ratios of the 30% DDGS groups were 1.61/1.70/1.78 (starter/grower/finisher phase). The 30% DDGS groups (30D, 30DB, and 30DBB) negatively affected body weight (BW) from d 7 to 42 and BW gain (BWG), feed intake, carcass weight, breast muscle weight, and jejunal and ileal villus height:crypt depth during the overall period (d 0 to 42) (P < 0.05). Furthermore, the 30% DDGS groups significantly altered expression levels of jejunal tight junction proteins, breast muscle mechanistic target of rapamycin (mTOR) pathway-related genes, BCAA catabolism genes, and AA transporters compared to the CON (P < 0.01). The 30% DDGS groups showed differences in beta-diversity indices compared to the CON group (P < 0.05). The 30DBB group showing the lowest d 21 and 42 BW and overall BWG had the largest differences compared to the CON group in most measurements. In conclusion, excessive replacement of soybean meal with DDGS can significantly increase leucine levels, which may negatively affect chicken growth. Additionally, inappropriate ratios of valine and isoleucine can further decrease growth performance.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Fatemeh S Mahdavi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Ishwari Gyawali
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Gippeum Han
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.
| |
Collapse
|
4
|
Xu M, Hu M, Han J, Wang L, He Y, Kulyar MF, Zhang X, Lu Y, Mu S, Su H, Cao J, Li J. The Therapeutic Effects of Lactic Acid Bacteria Isolated from Spotted Hyena on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Nutrients 2024; 16:3682. [PMID: 39519515 PMCID: PMC11547871 DOI: 10.3390/nu16213682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic condition characterized by recurrent episodes and an unclear etiology. Given the limitations of current therapeutic options, which include suboptimal efficacy and significant side effects, there is a pressing need to explore novel treatments. Probiotics derived from diverse species have been identified as a promising approach for managing IBD, owing to their anti-inflammatory properties and their ability to regulate gut flora, among other beneficial effects. METHODS In this study, three strains of lactic acid bacteria (LAB) were isolated from the feces of the scavenger spotted hyena (Crocuta crocuta), a scavenging mammal. Based on their capability to survive within and adhere to the gastrointestinal tract, along with their profile of antibiotic resistance, a high-quality strain of Lactobacillus acidophilus (LA) was selected and demonstrated to be safe for mice. Subsequently, the therapeutic efficacy of LA was evaluated using a dextran sulfate sodium (DSS)-induced model of ulcerative colitis in mice. RESULTS The results indicated that LA restored the disease activity index and improved histopathological lesions in the model group. It also reduced inflammation and oxidative stress and significantly restored the expression of mucins and intestinal tight junction (TJ) proteins (ZO-1, Occludin). Furthermore, LA corrected the DSS-induced disruption of the intestinal flora, leading to a significant decrease in the prevalence of potentially harmful bacterial genera, such as Bacteroides, and an increase in beneficial bacterial genera, including Lactobacillus. In conclusion, Lactobacillus acidophilus LA1, isolated from spotted hyena feces, has potential as a functional supplement for alleviating symptoms of IBD and regulating intestinal flora.
Collapse
Affiliation(s)
- Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Miao Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Jingbo Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Md. F. Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Yaozhong Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Siyang Mu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Hang Su
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| |
Collapse
|
5
|
Abdeldayem FA, Lestingi A, Abol-Ela SS, Alagawany M, Ismail TA, Mostafa NG, El-Shall NA. Application of butyric acid as a feed additive for improving quail performance and health. Poult Sci 2024; 103:104109. [PMID: 39111236 PMCID: PMC11350500 DOI: 10.1016/j.psj.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 09/22/2024] Open
Abstract
This study evaluated the effects of dietary butyric acid (BA) on the Japanese quail' performance, immunology, lipid profile, cecal microbiota, and antioxidant levels. 250 unsexed, one-week-old quail chicks were divided into 5 groups, each with fifty chicks (5 replicates of 10 chicks). The first group was given the basal diet (BD), while the 2nd to 5th groups were fed BD with 50, 100, 150, and 200 mg BA/kg, respectively. The results indicated that BA improved weight gain and FCR (p < 0.05) and decreased total FI. The 200 mg BA/kg of diet showed the lowest FI (p < 0.05) and the best FCR (p > 0.05). BA boosted immunity through increasing IgA, IgM, IgG, and Complement 3. Significantly lower alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were observed at 150 and 200 mg BA/kg (P < 0.05) than the control group. The BA-supplemented quail showed lower total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) than the control one. This effect was more pronounced for 100 and 200 mg of BA/kg. However, high low-density lipoprotein (HDL) did not differ from the control group (p > 0.05). BA at ≥100 mg/kg diet reduced malondialdehyde (MDA) and induced greater levels of superoxide dismutase (SOD), total antioxidant capacity (TAC), glutathione peroxidase (GPX), globulin, total protein, digestive enzymes than the control group (P < 0.05). BA decreased cecal E. coli, Salmonella, Enterococcus, and Coliforms and increased Lactic acid bacteria (p < 0.05) compared to non-supplemented group. Collectively, the inclusion of 100 mg BA/kg diet is ideal for Japanese quail production and health.
Collapse
Affiliation(s)
- Fayza A Abdeldayem
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Antonia Lestingi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari 70010, Italy
| | - Salah S Abol-Ela
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Nadeen G Mostafa
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| |
Collapse
|
6
|
Chen L, Zhou X, Tian Y, Hu H, Hong S, Wu S, Wei Z, Wang K, Li T, Hua Z, Xia Q, Huang Y, Lv Z, Lv L. Analysis of the causal relationship between gut microbiota and bone remodeling growth factor from the gene association. Microb Pathog 2024; 194:106790. [PMID: 39009103 DOI: 10.1016/j.micpath.2024.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND A growing body of evidence indicates a close association between the gut microbiota (GM) and the bone remodeling (BR) process, raising suspicions that the GM may actively participate in BR by modulating the levels of growth factors. However, the precise causal relationship between them remains unclear. Due to many confounding factors, many microorganisms related to BR growth factors have not been identified. We aimed to elucidate the causal relationship between the GM and BR growth factors. METHODS We evaluated the genome-wide association study (GWAS) summary statistics for GM and five common growth factors associated with BR: namely, bone morphogenetic proteins (BMP), transforming growth factors(TGF), insulin growth factors (IGFs), epidermal growth factors (EGFs), and fibroblast growth factors (FGF). The causal relationship between the GM and BR growth factors was studied by double-sample Mendelian randomized analysis. We used five Mendelian randomization (MR) methods, including inverse variance-weighted (IVW), MR-Egger, simple mode, weighted median, and weighted model methods. RESULTS Through MR analysis, a total of 56 bacterial genera were co-identified as associated with BMP, TGF, IGF, EGF, and FGF. Among them, eight genera were found to have a causal relationship with multiple growth factors: Marvinbryantia was causally associated with BMP-6 (P = 0.018, OR = 1.355) and TGF-β2 (P = 0.002, OR = 1.475); Lachnoclostridium, BMP-7 (P = 0.021, OR = 0.73) and IGF-1 (P = 0.046, OR = 0.804); Terrisporobacter, TGF-β (P = 0.02, OR = 1.726) and FGF-23 levels (P = 0.016, OR = 1.76); Ruminiclostridium5, TGF-β levels (P = 0.024, OR = 0.525) and FGFR-2 (P = 0.003, OR = 0.681); Erysipelatoclostridium, TGF-β2 (P = 0.001, OR = 0.739) and EGF and its receptor (EGFR) (P = 0.012, OR = 0.795); Eubacterium_brachy_group, FGFR-2 (P = 0.045, OR = 1.153) and EGF (P = 0.013, OR = 0.7); Prevotella9 with EGFR (P = 0.022, OR = 0.818) and FGFR-2 (P = 0.011, OR = 1.233) and Faecalibacterium with FGF-23 (P = 0.02, OR = 2.053) and IGF-1 (P = 0.005, OR = 0.843). CONCLUSION We confirmed the causal relationship between the GM and growth factors related to BR, which provides a new perspective for the study of BR, through targeted regulation of specific bacteria to prevent and treat diseases and growth factor-mediated BR disorders.
Collapse
Affiliation(s)
- Longhao Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xingchen Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu Tian
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huijie Hu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuangwei Hong
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zicheng Wei
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaizheng Wang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tao Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zihan Hua
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiong Xia
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanshen Huang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhizhen Lv
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Lijiang Lv
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Skalny AV, Aschner M, Zhang F, Guo X, Buha Djordevic A, Sotnikova TI, Korobeinikova TV, Domingo JL, Farsky SHP, Tinkov AA. Molecular mechanisms of environmental pollutant-induced cartilage damage: from developmental disorders to osteoarthritis. Arch Toxicol 2024; 98:2763-2796. [PMID: 38758407 DOI: 10.1007/s00204-024-03772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The objective of the present study was to review the molecular mechanisms of the adverse effects of environmental pollutants on chondrocytes and extracellular matrix (ECM). Existing data demonstrate that both heavy metals, including cadmium (Cd), lead (Pb), and arsenic (As), as well as organic pollutants, including polychlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCB), bisphenol A, phthalates, polycyclic aromatic hydrocarbons (PAH), pesticides, and certain other organic pollutants that target cartilage ontogeny and functioning. Overall, environmental pollutants reduce chondrocyte viability through the induction apoptosis, senescence, and inflammatory response, resulting in cell death and impaired ECM production. The effects of organic pollutants on chondrocyte development and viability were shown to be mediated by binding to the aryl hydrocarbon receptor (AhR) signaling and modulation of non-coding RNA expression. Adverse effects of pollutant exposures were observed in articular and growth plate chondrocytes. These mechanisms also damage chondrocyte precursors and subsequently hinder cartilage development. In addition, pollutant exposure was shown to impair chondrogenesis by inhibiting the expression of Sox9 and other regulators. Along with altered Runx2 signaling, these effects also contribute to impaired chondrocyte hypertrophy and chondrocyte-to-osteoblast trans-differentiation, resulting in altered endochondral ossification. Several organic pollutants including PCDD/Fs, PCBs and PAHs, were shown to induce transgenerational adverse effects on cartilage development and the resulting skeletal deformities. Despite of epidemiological evidence linking human environmental pollutant exposure to osteoarthritis or other cartilage pathologies, the data on the molecular mechanisms of adverse effects of environmental pollutant exposure on cartilage tissue were obtained from studies in laboratory rodents, fish, or cell cultures and should be carefully extrapolated to humans, although they clearly demonstrate that cartilage should be considered a putative target for environmental pollutant toxicity.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Tatiana I Sotnikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
- City Clinical Hospital N. a. S.P. Botkin of the Moscow City Health Department, 125284, Moscow, Russia
| | - Tatiana V Korobeinikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 4320, Reus, Catalonia, Spain
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 005508-000, Brazil
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
8
|
Chen Y, Tian P, Li Y, Tang Z, Zhang H. Thiram exposure: Disruption of the blood-testis barrier and altered apoptosis-autophagy dynamics in testicular cells via the Bcl-2/Bax and mTOR/Atg5/p62 pathways in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106010. [PMID: 39084803 DOI: 10.1016/j.pestbp.2024.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Thiram, a prevalent dithiocarbamate insecticide in agriculture, is widely employed as a crop insecticide and preservative. Chronic exposure to thiram has been linked to various irreversible damages, including tibial cartilage dysplasia, erythrocytotoxicity, renal issues, and immune system compromise. Limited research exists on its effects on reproductive organs. This study investigated the reproductive toxicology in mouse testes exposure to varying concentrations (0, 30, 60, and 120 mg/kg) of thiram. Our study uncovered a series of adverse effects in mice subjected to thiram exposure, including emaciation, stunted growth, decreased water intake, and postponed testicular maturation. Biochemical analysis in thiram-exposed mice showed elevated levels of LDH and AST, while ALP, TG, ALT, and urea were decreased. Histologically, thiram disrupted the testis' microarchitecture and compromised its barrier function by widening the gap between spermatogenic cells and promoting fibrosis. The expression of pro-apoptotic genes (Bax, APAF1, Cytc, and Caspase-3) was downregulated, whereas Bcl-2 expression increased in thiram-treated mice compared to controls. Conversely, the expression of Atg5 was upregulated, and mTOR and p62 expression decreased, with a trend towards lower LC3b levels. Thiram also disrupted the blood-testis barrier, significantly reducing the mRNA expression of zona occludens-1 (ZO-1) and occludin. In conclusion, chronic exposure to high thiram concentrations (120 mg/kg) caused testicular tissue damage, affecting the blood-testis barrier and modulating apoptosis and autophagy through the Bcl-2/Bax and mTOR/Atg5/p62 pathways. This study contributes to understanding the molecular basis of thiram-induced reproductive toxicity and underscores the need for further research and precautions for those chronically exposed to thiram and its environmental residuals.
Collapse
Affiliation(s)
- Yongjian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peipei Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Wang L, Nabi F, Zhang X, Zhou G, Shah QA, Li S, Lu Y, Mu S, Zhu X, Lin Z, Li J. Effects of Lactobacillus plantarum on Broiler Health: Integrated Microbial and Metabolomics Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10336-x. [PMID: 39090454 DOI: 10.1007/s12602-024-10336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Given China's prohibition on the utilization of antibiotics as feed additives in 2020, we aim to investigate nutrition additives that are both efficient and safe. Lactobacillus, a well-recognized beneficial probiotic, has explicitly been investigated for its effects on health status of the host and overall impact on food industry. To evaluate effects of Lactobacillus plantarum (LW) supplementation on broiler chicken, we conducted comprehensive multi-omics analysis, growth performance evaluation, RT-qPCR analysis, and immunofluorescence. The findings revealed that LW supplementation resulted in a substantial progress in growth performance (approximately 205 g increase in final body weight in comparison to the control group (p < 0.01)). Additionally, LW exhibited promising potential for enhancing antioxidant properties of serum and promoting gut integrity and growth as evidenced by improved antioxidant indices (p < 0.01), intestinal villus morphology (p < 0.01), and enhanced gut barrier function (p < 0.01). Meanwhile, the multi-omics analysis, including 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry, revealed an enrichment of beneficial microbes in the gut of broilers that were supplemented with LW, while simultaneously depleting harmful microorganisms. Moreover, a noteworthy modification was observed in gut metabolic profiling subsequent to the execution of the probiotic strategy. Specifically, variations were noticed in the levels of metabolites and metabolic pathways such as parathyroid hormone synthesis, inflammatory mediator regulation of TRP channels, oxidative phosphorylation, and mineral absorption. Taken together, our findings validate that LW administration produces valuable effects on the health and growth performance of broilers owing to its capability to boost the gut microbiota homeostasis and intestinal metabolism. Present findings signify the potential of LW as a dietary additive to promote growth and development in broiler chickens.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Fazul Nabi
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangyu Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Siyuan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaozhong Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Siyang Mu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaohui Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Zhang M, Du P, Wan J, Chen Y, Chen X, Zhang Y. Effects of sodium dehydroacetate on broiler chicken bones. Poult Sci 2024; 103:103834. [PMID: 38805999 PMCID: PMC11150974 DOI: 10.1016/j.psj.2024.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Sodium dehydroacetate (DHA-Na) is a fungicidal preservative widely used in food and animal feed. DHA-Na can induce coagulation disorders in rats and poultry by inhibiting carboxylation of vitamin K-dependent proteins; it can also impair bone development in zebrafish. However, the effects of DHA-Na on broiler chicken bones remain unknown. Here, we assessed whether DHA-Na impairs bone development in broiler chickens. We administered Suji yellow chickens with 200 to 800 mg/kg DHA-Na, 2 mg/kg vitamin K, or both for 2 mo. Bone metabolite-related serum indicators, tissue micromorphology, and relevant protein expression were monitored during the treatment period. We also assessed primary chicken osteoblast activity, differentiation, and bone metabolite-related proteins after treatment with DHA-Na, vitamin K, or both. The results demonstrated that DHA-Na reduced bone index values and serum and bone osteoblast differentiation marker levels but blocked bone vitamin K cycle. DHA-Na also increased serum osteoclast differentiation marker levels, as well as the bone ratio of receptor activator of nuclear factor kappa-Β ligand to osteoprotegerin ratio. Moreover, DHA-Na reduced bone trabecular number, thickness, and area and increased trabecular separation considerably. In general, compared with the control group, the DHA-Na group demonstrated impairments in osteoblast activity and differentiation, as well as in the vitamin K cycle. By contrast, vitamin K supplementation led to considerable attenuation of the DHA-Na-induced decrease in osteogenic marker levels, along with a considerable increase in serum bone absorption marker levels and restoration of DHA-Na-induced bone microstructure damage. Vitamin K also attenuated DHA-Na-induced impairment in osteoclasts. In conclusion, the results indicated that in broiler chickens, DHA-Na supplementation can damage bones by inhibiting osteoblast function and increasing osteoclast activity; this damage can be prevented through vitamin K supplementation.
Collapse
Affiliation(s)
- Meng Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Pengfei Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Wan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yimeng Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yumei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
11
|
Zhou S, Quan C, Zhang Z, Gong S, Nawaz S, Zhang Y, Kulyar MFEA, Mo Q, Li J. Leucine improves thiram-induced tibial dyschondroplasia and gut microbiota dysbiosis in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116260. [PMID: 38564867 DOI: 10.1016/j.ecoenv.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.
Collapse
Affiliation(s)
- Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
12
|
Wang L, Lin Z, Ali M, Zhu X, Zhang Y, Li S, Li K, Kebzhai F, Li J. Effects of lactic acid bacteria isolated from Tibetan chickens on the growth performance and gut microbiota of broiler. Front Microbiol 2023; 14:1171074. [PMID: 37547685 PMCID: PMC10397386 DOI: 10.3389/fmicb.2023.1171074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Lactic acid bacteria (LAB) are organic supplements that have several advantages for the health of the host. Tibetan chickens are an ancient breed, which evolve unique gut microbiota due to their adaptation to the hypoxic environment of high altitude. However, knowledge of LAB isolated from Tibetan chickens is very limited. Thus, the purpose of this study was to assess the probiotic properties of Lactobacillus Plantarum (LP1), Weissella criteria (WT1), and Pediococcus pentosaceus (PT2) isolated from Tibetan chickens and investigate their effects on growth performance, immunoregulation and intestinal microbiome in broiler chickens. Growth performance, serum biochemical analysis, real-time PCR, and 16S rRNA sequencing were performed to study the probiotic effects of LP1, WT1, and PT2 in broiler chickens. Results showed that LP1, WT1 and PT2 were excellent inhibitors against Escherichia coli (E. coli ATCC25922), meanwhile, LP1, WT1, and PT2 significantly increased weekly weight gain, villus height, antioxidant ability and gut microbiota diversity indexes in broilers. In addition, LP1 and PT2 increased the relative abundance of Lactobacillus and decreased Desulfovibrio in comparison with T1 (control group). Additionally, oral LAB can reduce cholesterol and regulate the expression of tight junction genes in broiler chickens, suggesting that LAB can improve the integrity of the cecal barrier and immune response. In conclusion, LAB improved the growth performance, gut barrier health, intestinal flora balance and immune protection of broiler chickens. Our findings revealed the uniqueness of LAB isolated from Tibetan chickens and its potential as a probiotic additive in poultry field.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mahboob Ali
- Department of Health, Rural Health Center Akhtarabad, Okara, Pakistan
| | - Xiaohui Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siyuan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fareeda Kebzhai
- Directorate Planning and Development, Livestock and Dairy Development Department Balochistan, Quetta, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Miao S, Li Y, Mu T, Wang X, Zhao W, Li R, Dong X, Zou X. Dietary Coated Sodium Butyrate Ameliorates Hepatic Lipid Accumulation and Inflammation via Enhancing Antioxidative Function in Post-Peaking Laying Hens. Metabolites 2023; 13:metabo13050650. [PMID: 37233691 DOI: 10.3390/metabo13050650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
During the aging process of laying hens, hepatic oxidative stress damage and lipid accumulation are prone to occur, leading to the deterioration of egg quality and a decline in production properties. This research was designed to explore the effects of different levels of coated sodium butyrate (CSB) addition on oxidation resistance, inflammatory reaction, lipid metabolism and hepatic oxidative damage-related gene expression in aged laying hens. A total of 720 healthy 52 weeks old Huafeng laying hens were arbitrarily divided into 5 groups of 6 replicates with 24 birds each and fed a basal diet supplemented with 0, 250, 500, 750 and 1000 mg/kg CSB for 8 weeks, respectively. The CSB quadratically upgraded GSH-Px activities and downgraded MDA content in the liver and serum. The LDL-C, NEFA and TG contents decreased quadratically in CSB groups and significantly reduced the fatty vacuoles as well as the formation of fat granules in the liver (p < 0.05). Meanwhile, the CSB quadratically upregulated the gene expression of IL-10, Nrf2 and HO1, but downregulated the gene expression of IFN-γ, TNF-α and Keap1 in a quadratic manner (p < 0.05). Moreover, the CSB quadratically degraded the mRNA level of fatty acid synthesis but increased the gene level of key enzymes of fatty acid catabolism (p < 0.05). In conclusion, dietary CSB supplementation has a favorable effect in protecting against liver injury and alleviating lipid accumulation and inflammation by enhancing hepatic antioxidative function in aged laying hens.
Collapse
Affiliation(s)
- Sasa Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianming Mu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyan Zhao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ru Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Beldowska A, Barszcz M, Dunislawska A. State of the art in research on the gut-liver and gut-brain axis in poultry. J Anim Sci Biotechnol 2023; 14:37. [PMID: 37038205 PMCID: PMC10088153 DOI: 10.1186/s40104-023-00853-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/12/2023] [Indexed: 04/12/2023] Open
Abstract
The relationship between the intestines and their microbiota, the liver, and the neuronal system is called the gut-liver-brain axis. This relationship has been studied and observed for a relatively short time but is considered in the development of research focused on, e.g., liver diseases and intestinal dysbiosis. The role of the gut microbiota in this relationship is crucial, as it acts on poultry's performance and feed utilization, affecting meat and egg quality. The correct composition of the intestinal microbiota makes it possible to determine the essential metabolic pathways and biological processes of the individual components of the microbiota, allowing further speculation of the role of microbial populations on internal organs such as the liver and brain in the organism. The gut microbiota forms a complex, dense axis with the autonomic and enteric nervous systems. The symbiotic relationship between the liver and gut microbiota is based on immune, metabolic and neuroendocrine regulation, and stabilization. On the other hand, the gut-brain axis is a bidirectional interaction and information transfer system between the gastrointestinal tract and the central nervous system. The following paper will discuss the current state of knowledge of the gut-liver-brain axis of poultry, including factors that may affect this complex relationship.
Collapse
Affiliation(s)
- Aleksandra Beldowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland.
| |
Collapse
|