1
|
Bastos AP, Claessens S, Nelson XJ, Welch D, Atkinson QD, Taylor AH. Evidence of self-care tooling and phylogenetic modeling reveal parrot tool use is not rare. iScience 2025; 28:112156. [PMID: 40171485 PMCID: PMC11960656 DOI: 10.1016/j.isci.2025.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/25/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Putatively rare behaviors like tool use are difficult to study because absence of evidence can arise from a species' inability to produce the behavior or from insufficient research. We combine data from digital platforms and phylogenetic modeling to estimate rates of tool use in parrots. Videos on YouTube revealed novel instances of self-care tooling in 17 parrot species, more than doubling the number of tool-using parrots from 11 (3%) to 28 (7%). Phylogenetic modeling suggests 11-17% of extant parrot species may be capable of tool use and identifies likely candidates. These discoveries impact our understanding of the evolution of tool use in parrots, revealing associations with relative brain size and feeding generalism and indicating likely ancestral tool use in several genera. Our findings challenge the assumption that current sampling efforts fully capture the distribution of putatively rare animal behaviors and offer a fruitful approach for investigating other rare behaviors.
Collapse
Affiliation(s)
- Amalia P.M. Bastos
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Scott Claessens
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Ximena J. Nelson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - David Welch
- School of Computer Science, University of Auckland, Auckland, New Zealand
| | | | - Alex H. Taylor
- School of Psychology, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Komatsu KJ, Avolio ML, Padullés Cubino J, Schrodt F, Auge H, Cavender-Bares J, Clark AT, Flores-Moreno H, Grman E, Harpole WS, Kattge J, Kimmel K, Koerner SE, Korell L, Langley JA, Münkemüller T, Ohlert T, Onstein RE, Roscher C, Soudzilovskaia NA, Taylor BN, Tedersoo L, Terry RS, Wilcox K. CoRRE Trait Data: A dataset of 17 categorical and continuous traits for 4079 grassland species worldwide. Sci Data 2024; 11:795. [PMID: 39025901 PMCID: PMC11258227 DOI: 10.1038/s41597-024-03637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
In our changing world, understanding plant community responses to global change drivers is critical for predicting future ecosystem composition and function. Plant functional traits promise to be a key predictive tool for many ecosystems, including grasslands; however, their use requires both complete plant community and functional trait data. Yet, representation of these data in global databases is sparse, particularly beyond a handful of most used traits and common species. Here we present the CoRRE Trait Data, spanning 17 traits (9 categorical, 8 continuous) anticipated to predict species' responses to global change for 4,079 vascular plant species across 173 plant families present in 390 grassland experiments from around the world. The dataset contains complete categorical trait records for all 4,079 plant species obtained from a comprehensive literature search, as well as nearly complete coverage (99.97%) of imputed continuous trait values for a subset of 2,927 plant species. These data will shed light on mechanisms underlying population, community, and ecosystem responses to global change in grasslands worldwide.
Collapse
Affiliation(s)
- Kimberly J Komatsu
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Meghan L Avolio
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | - Harald Auge
- UFZ, Helmholtz Centre for Environmental Research, Community Ecology, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behaviour, University of Minnesota, Saint Paul, MN, USA
| | - Adam T Clark
- University of Graz, Institute of Biology, Holteigasse 6, 8010, Graz, Austria
| | | | - Emily Grman
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - W Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Sally E Koerner
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Lotte Korell
- UFZ, Helmholtz Centre for Environmental Research, Community Ecology, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - J Adam Langley
- Department of Biology, Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - Tamara Münkemüller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Timothy Ohlert
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany
| | | | - Benton N Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Rosalie S Terry
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kevin Wilcox
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
3
|
Ten Caten C, Dallas T. Latitudinal specificity of plant-avian frugivore interactions. J Anim Ecol 2024; 93:958-969. [PMID: 38826033 DOI: 10.1111/1365-2656.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Broad-scale assessments of plant-frugivore interactions indicate the existence of a latitudinal gradient in interaction specialization. The specificity (i.e. the similarity of the interacting partners) of plant-frugivore interactions could also change latitudinally given that differences in resource availability could favour species to become more or less specific in their interactions across latitudes. Species occurring in the tropics could be more taxonomically, phylogenetically and functionally specific in their interactions because of a wide range of resources that are constantly available in these regions that would allow these species to become more specialized in their resource usage. We used a data set on plant-avian frugivore interactions spanning a wide latitudinal range to examine these predictions, and we evaluated the relationship between latitude and taxonomic, phylogenetic and functional specificity of plant and frugivore interactions. These relationships were assessed using data on population interactions (population level), species means (species level) and community means (community level). We found that the specificity of plant-frugivore interactions is generally not different from null models. Although statistically significant relationships were often observed between latitude and the specificity of plant-frugivore interactions, the direction of these relationships was variable and they also were generally weak and had low explanatory power. These results were consistent across the three specificity measures and levels of organization, suggesting that there might be an interplay between different mechanisms driving the interactions between plants and frugivores across latitudes.
Collapse
Affiliation(s)
- Cleber Ten Caten
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tad Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Etard A, Newbold T. Species-level correlates of land-use responses and climate-change sensitivity in terrestrial vertebrates. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14208. [PMID: 37855148 DOI: 10.1111/cobi.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Land-use and climate change are major pressures on terrestrial biodiversity. Species' extinction risk and responses to human pressures relate to ecological traits and other characteristics in some clades. However, large-scale comparative assessments of the associations between traits and responses to multiple human pressures across multiple clades are needed. We investigated whether a set of ecological characteristics that are commonly measured across terrestrial vertebrates (ecological traits and geographic range area) are associated with species' responses to different land-use types and species' likely sensitivity to climate change. We aimed to test whether generalizable patterns in response to these pressures arise across both pressures and across vertebrate clades, which could inform assessments of the global signature of human pressures on vertebrate biodiversity and guide conservation efforts. At the species level, we investigated associations between land-use responses and ecological characteristics with a space-for-time substitution approach, making use of the PREDICTS database. We investigated associations between ecological characteristics and expected climate-change sensitivity, estimated from properties of species realized climatic niches. Among the characteristics we considered, 3 were consistently associated with strong land-use responses and high climate-change sensitivity across terrestrial vertebrate classes: narrow geographic range, narrow habitat breadth, and specialization on natural habitats (which described whether a species occurs in artificial habitats or not). The associations of other traits with species' land-use responses and climate-change sensitivity often depended on species' class and land-use type, highlighting an important degree of context dependency. In all classes, invertebrate eaters and fruit and nectar eaters tended to be negatively affected in disturbed land-use types, whereas invertebrate-eating and plant- and seed-eating birds were estimated to be more sensitive to climate change, raising concerns about the continuation of ecological processes sustained by these species under global changes. Our results highlight a consistently higher sensitivity of narrowly distributed species and habitat specialists to land-use and climate change, which provides support for capturing such characteristics in large-scale vulnerability assessments.
Collapse
Affiliation(s)
- Adrienne Etard
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
5
|
Pottier P, Noble DWA, Seebacher F, Wu NC, Burke S, Lagisz M, Schwanz LE, Drobniak SM, Nakagawa S. New horizons for comparative studies and meta-analyses. Trends Ecol Evol 2024; 39:435-445. [PMID: 38216408 DOI: 10.1016/j.tree.2023.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
Comparative analyses and meta-analyses are key tools to elucidate broad biological principles, yet the two approaches often appear different in purpose. We propose an integrated approach that can generate deeper insights into ecoevolutionary processes. Marrying comparative and meta-analytic approaches will allow for (i) a more accurate investigation of drivers of biological variation, (ii) a greater ability to account for sources of non-independence in experimental data, (iii) more effective control of publication bias, and (iv) improved transparency and reproducibility. Stronger integration of meta-analytic and comparative studies can also broaden the scope from species-centric investigations to community-level responses and function-valued traits (e.g., reaction norms). We illuminate commonalities, differences, and the transformative potential of combining these methodologies for advancing ecology and evolutionary biology.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales, Australia
| | - Samantha Burke
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Malgorzata Lagisz
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Japan
| | - Lisa E Schwanz
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - Shinichi Nakagawa
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Japan
| |
Collapse
|
6
|
Padullés Cubino J, Lenoir J, Li D, Montaño-Centellas FA, Retana J, Baeten L, Bernhardt-Römermann M, Chudomelová M, Closset D, Decocq G, De Frenne P, Diekmann M, Dirnböck T, Durak T, Hédl R, Heinken T, Jaroszewicz B, Kopecký M, Macek M, Máliš F, Naaf T, Orczewska A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Verheyen K, Vild O, Waller D, Wulf M, Chytrý M. Evaluating plant lineage losses and gains in temperate forest understories: a phylogenetic perspective on climate change and nitrogen deposition. THE NEW PHYTOLOGIST 2024; 241:2287-2299. [PMID: 38126264 DOI: 10.1111/nph.19477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.
Collapse
Affiliation(s)
- Josep Padullés Cubino
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Centre for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, 08193, Spain
| | - Jonathan Lenoir
- UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, Amiens, 80037, France
| | - Daijiang Li
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Flavia A Montaño-Centellas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Javier Retana
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Centre for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, 08193, Spain
| | - Lander Baeten
- Forest & Nature Lab, Ghent University, Melle-Gontrode, B-9090, Belgium
| | - Markus Bernhardt-Römermann
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, 07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Markéta Chudomelová
- Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Déborah Closset
- UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, Amiens, 80037, France
| | - Guillaume Decocq
- UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, Amiens, 80037, France
| | - Pieter De Frenne
- Forest & Nature Lab, Ghent University, Melle-Gontrode, B-9090, Belgium
| | - Martin Diekmann
- Institute of Ecology, University of Bremen, Bremen, 28334, Germany
| | - Thomas Dirnböck
- Environment Agency Austria, Ecosystem Research and Environmental Information Management, Vienna, 1090, Austria
| | - Tomasz Durak
- Institute of Biology, University of Rzeszów, Rzeszów, 35601, Poland
| | - Radim Hédl
- Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Brno, 60200, Czech Republic
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, 78371, Czech Republic
| | - Thilo Heinken
- General Botany, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, 14469, Germany
| | - Bogdan Jaroszewicz
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, 17230, Poland
| | - Martin Kopecký
- Institute of Botany of the Czech Academy of Sciences, Průhonice, 25243, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha, 16521, Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | - František Máliš
- Faculty of Forestry, Technical University in Zvolen, Zvolen, 96001, Slovakia
- National Forest Centre, Zvolen, 96001, Slovakia
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
| | - Anna Orczewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, 40007, Poland
| | - Petr Petřík
- Institute of Botany of the Czech Academy of Sciences, Průhonice, 25243, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, 16500, Czech Republic
| | - Remigiusz Pielech
- Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Kraków, 30387, Poland
| | - Kamila Reczyńska
- Department of Botany, Faculty of Biological Sciences, University of Wrocław, Wrocław, 50328, Poland
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Tibor Standovár
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Krzysztof Świerkosz
- Museum of Natural History, Faculty of Biological Sciences, University of Wrocław, Wrocław, 50335, Poland
| | - Balázs Teleki
- HUN-REN-UD Biodiversity and Ecosystem Services Research Group, Debrecen, 4032, Hungary
| | - Kris Verheyen
- Forest & Nature Lab, Ghent University, Melle-Gontrode, B-9090, Belgium
| | - Ondřej Vild
- Institute of Botany of the Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | - Donald Waller
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Monika Wulf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| |
Collapse
|
7
|
Premate E, Fišer C. Functional trait dataset of European groundwater Amphipoda: Niphargidae and Typhlogammaridae. Sci Data 2024; 11:188. [PMID: 38341425 PMCID: PMC10858915 DOI: 10.1038/s41597-024-03020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Groundwater represents a vast, but mostly hidden and inaccessible ecosystem. Although often overlooked in freshwater research, groundwater organisms form a significant part of freshwater biodiversity, whereas their functions are crucial in different ecosystem processes. Knowledge on functional traits is generally lacking for most groundwater species worldwide, yet European groundwater amphipods, particularly the family Niphargidae, are an exception. They are well-researched and used as a model system in ecological and evolutionary studies. We focused on this group to assemble a first functional trait dataset dedicated to groundwater species. We gathered data for eight morphological functional traits quantified through 27 measurements for 1123 individuals which represent 180 species and 314 MOTUs. Besides functional trait data, every entry is accompanied with locality information, including habitat type, and DNA sequences if available. The structure of the dataset and data processing information provided along enable wide applicability and extension to other amphipod taxa. When coupled with phylogeny, the dataset may further enhance different aspects of groundwater research, including biodiversity patterns, community assembly processes, and trait evolution.
Collapse
Grants
- PhD grant Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- Program P1-0184 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- J1-2464 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- Biodiversa+ (grant number 101052342): co-funded by the European Commission and with the funding organizations Ministry of Universities and Research (Italy), Agencia Estatal de Investigación—Fundación Biodiversidad (Spain), Fundo Regional para a Ciência e Tecnologia (Portugal), Suomen Akatemia—Ministry of the Environment (Finland), Belgian Science Policy Office (Belgium), Agence Nationale de la Recherche (France), Deutsche Forschungsgemeinschaft e.V. –BMBF-VDI/ VDE INNOVATION + TECHNIK GMBH (Germany), Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung (Switzerland), Fonds zur Förderung der Wissenschaftlichen Forschung (Austria), Ministry of Higher Education, Science and Innovation (Slovenia) and the Executive Agency for Higher Education, Research, Development and Innovation Funding (Romania)
Collapse
Affiliation(s)
- Ester Premate
- University of Ljubljana, Biotechnical Faculty, Department of Biology, SubBioLab, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Cene Fišer
- University of Ljubljana, Biotechnical Faculty, Department of Biology, SubBioLab, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
8
|
Gumbs R, Gray CL, Hoffmann M, Molina-Venegas R, Owen NR, Pollock LJ. Conserving avian evolutionary history can effectively safeguard future benefits for people. SCIENCE ADVANCES 2023; 9:eadh4686. [PMID: 37729417 PMCID: PMC10511189 DOI: 10.1126/sciadv.adh4686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Phylogenetic diversity (PD)-the evolutionary history of a set of species-is conceptually linked to the maintenance of yet-to-be-discovered benefits from biodiversity or "option value." We used global phylogenetic and utilization data for birds to test the PD option value link, under the assumption that the performance of sets of PD-maximizing species at capturing known benefits is analogous to selecting the same species at a point in human history before these benefits were realized. PD performed better than random at capturing utilized bird species across 60% of tests, with performance linked to the phylogenetic dispersion and prevalence of each utilization category. Prioritizing threatened species for conservation by the PD they encapsulate performs comparably to prioritizing by their functional distinctiveness. However, species selected by each metric show low overlap, indicating that we should conserve both components of biodiversity to effectively conserve a variety of uses. Our findings provide empirical support for the link between evolutionary history and benefits for future generations.
Collapse
Affiliation(s)
- Rikki Gumbs
- Conservation and Policy, Zoological Society of London, London NW1 4RY, UK
- Science and Solutions for a Changing Planet DTP, Grantham Institute, Imperial College London, London SW7 2AZ, UK
- IUCN SSC Phylogenetic Diversity Task Force, London, UK
| | - Claudia L Gray
- Conservation and Policy, Zoological Society of London, London NW1 4RY, UK
- IUCN SSC Phylogenetic Diversity Task Force, London, UK
| | - Michael Hoffmann
- Conservation and Policy, Zoological Society of London, London NW1 4RY, UK
| | - Rafael Molina-Venegas
- Department of Ecology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nisha R Owen
- IUCN SSC Phylogenetic Diversity Task Force, London, UK
- On the Edge Conservation, London SW3 2JJ, UK
| | - Laura J Pollock
- IUCN SSC Phylogenetic Diversity Task Force, London, UK
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| |
Collapse
|
9
|
Klipel J, Bergamin RS, Cianciaruso MV, da Silva AC, Jurinitz CF, Jarenkow JA, Bordin KM, Molz M, Higuchi P, Picolotto RC, Debastiani VJ, Müller SC. How do distinct facets of tree diversity and community assembly respond to environmental variables in the subtropical Atlantic Forest? Ecol Evol 2023; 13:e10321. [PMID: 37465611 PMCID: PMC10350641 DOI: 10.1002/ece3.10321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
This study assessed the impact of altitude, precipitation, and soil conditions on species richness (SR), phylogenetic diversity (PD), and functional diversity (FD) standardized effect sizes in subtropical Brazilian Atlantic Forest tree communities. We considered specific trait information (FDs) for FD, reflecting recent adaptive evolution, contrasting with deeper phylogenetic constraints in FD. Three functional traits (leaf area-LA, wood density-WD, and seed mass-SM) were examined for their response to these gradients. Generalized least squares models with environmental variables as predictors and diversity metrics as response variables were used, and a fourth-corner correlation test explored trait-environmental relationships. SR decreased with altitude, while PD increased, indicating niche convergence at higher altitudes. Leaf area and seed mass diversity also decreased with altitude. For LA, both FD and FDs were significant, reflecting filtering processes influenced by phylogenetic inheritance and recent trait evolution. For SM, only the specific trait structure responded to altitude. LA and SM showed significant trait-environmental relationships, with smaller-leaved and lighter-seeded species dominant at higher altitudes. Soil gradients affect diversity. Fertile soils have a wider range of LA, indicating coexistence of species with different nutrient acquisition strategies. WD variation is lower for FDs. SM diversity has different relationships with soil fertility for FDs and FD, suggesting phylogeny influences trait variation. Soil pH influences WD and LA under acidic soils, with deeper phylogenetic constraints (FD). Environmental factors impact tree communities, with evidence of trait variation constraints driven by conditions and resources. Subtropical Atlantic forests' tree assemblies are mainly influenced by altitude, pH, and soil fertility, selecting fewer species and narrower trait spectra under specific conditions (e.g., higher altitudes, pH). Functional diversity patterns reflect both phylogenetic and recent evolution constraints, with varying strength across traits and conditions. These findings highlight the intricate processes shaping long-lived species assembly across diverse environments in the Southern Brazilian Atlantic Forest.
Collapse
Affiliation(s)
- Joice Klipel
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós‐Graduação em Ecologia, Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Rodrigo Scarton Bergamin
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós‐Graduação em Ecologia, Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
- Birmingham Institute of Forest Research (BIFoR)University of BirminghamBirminghamUK
| | | | - Ana Carolina da Silva
- Departamento de Engenharia Florestal, Centro de Ciências AgroveterináriasUniversidade do Estado de Santa CatarinaLagesBrazil
| | - Cristiane Follmann Jurinitz
- Escola de Ciências da Saúde e da VidaPontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
| | - João André Jarenkow
- Laboratório de Ecologia Vegetal e Fitogeografia, Departamento de BotânicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Kauane Maiara Bordin
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós‐Graduação em Ecologia, Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Martin Molz
- Museu de Ciências Naturais‐SEMA/RSPorto AlegreBrazil
| | - Pedro Higuchi
- Departamento de Engenharia Florestal, Centro de Ciências AgroveterináriasUniversidade do Estado de Santa CatarinaLagesBrazil
| | - Rayana Caroline Picolotto
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós‐Graduação em Ecologia, Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Vanderlei Júlio Debastiani
- Laboratório de Ecologia Quantitativa, Programa de Pós‐Graduação em Ecologia, Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Sandra Cristina Müller
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós‐Graduação em Ecologia, Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| |
Collapse
|
10
|
Thorson JT, Maureaud AA, Frelat R, Mérigot B, Bigman JS, Friedman ST, Palomares MLD, Pinsky ML, Price SA, Wainwright P. Identifying direct and indirect associations among traits by merging phylogenetic comparative methods and structural equation models. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Molina-Venegas R, Morales-Castilla I, Rodríguez MÁ. Unreliable prediction of B-vitamin source species. NATURE PLANTS 2023; 9:31-33. [PMID: 36543936 DOI: 10.1038/s41477-022-01299-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Rafael Molina-Venegas
- Department of Ecology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Life Sciences, Global Change Ecology and Evolution Group, Universidad de Alcalá, Alcalá de Henares, Spain.
| | - Ignacio Morales-Castilla
- Department of Life Sciences, Global Change Ecology and Evolution Group, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Miguel Á Rodríguez
- Department of Life Sciences, Global Change Ecology and Evolution Group, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
12
|
Currie J, Burant JB, Marconi V, Blain SA, Emry S, Hébert K, Xie G, Moore NA, Wang X, Brown A, Grevstad L, McRae L, Mezzini S, Pata P, Freeman R. Assessing the representation of species included within the Canadian Living Planet Index. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To effectively combat the biodiversity crisis, we need ambitious targets and reliable indicators to accurately track trends and measure conservation impact. In Canada, the Living Planet Index (LPI) has been adapted to produce a national indicator by both World Wildlife Fund-Canada (Canadian Living Planet Index; C-LPI) and Environment and Climate Change Canada (Canadian Species Index) to provide insight into the status of Canadian wildlife, by evaluating temporal trends in vertebrate population abundance. The indicator includes data for just over 50% of Canadian vertebrate species. To assess whether the current dataset is representative of the distribution of life history characteristics of Canadian wildlife, we analyzed the representation of species-specific biotic variables (i.e., body size, trophic level, lifespan) for vertebrates within the C-LPI compared to native vertebrates lacking LPI data. Generally, there was considerable overlap in the distribution of biotic variables for species in the C-LPI compared to native Canadian vertebrate species lacking LPI data. Nevertheless, some differences among distributions were found, driven in large part by discrepancy in the representation of fishes—where the C-LPI included larger-bodied and longer-lived species. We provide recommendations for targeted data collection and additional analyses to further strengthen the applicability, accuracy, and representativity of biodiversity indicators.
Collapse
Affiliation(s)
- Jessica Currie
- World Wildlife Fund Canada, 410 Adelaide Street West, Toronto ON M5V 1S8, Canada
| | - Joseph B. Burant
- Department of Biology, McGill University, 1205 Docteur Penfield Avenue, Montreal QC H3A 1B1, Canada
- Département de sciences biologiques, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal QC H2V 0B3, Canada
- Living Data Project, Canadian Institute of Ecology and Evolution, Vancouver BC V6T 124, Canada
| | - Valentina Marconi
- Indicators and Assessments Unit, Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom
- Department of Life Sciences (Silwood Park), Imperial College London, Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom
| | - Stephanie A. Blain
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver BC V6T 1Z4, Canada
| | - Sandra Emry
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver BC V6T 1Z4, Canada
| | - Katherine Hébert
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke QC J1K 2R1, Canada
| | - Garland Xie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto ON M1C 1A4, Canada
| | - Nikki A. Moore
- Department of Biology, McGill University, 1205 Docteur Penfield Avenue, Montreal QC H3A 1B1, Canada
| | - Xueqi Wang
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph ON N1G 2W1, Canada
| | - Andrea Brown
- Department of Biology, McGill University, 1205 Docteur Penfield Avenue, Montreal QC H3A 1B1, Canada
| | - Lara Grevstad
- Department of Geography, University of British Columbia, 2329 West Mall, Vancouver BC V6T 1Z4, Canada
| | - Louise McRae
- Indicators and Assessments Unit, Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom
| | - Stefano Mezzini
- Department of Biology, University of British Columbia, 1177 Research Road, Kelowna BC V1V 1V7, Canada
| | - Patrick Pata
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver BC V6T 1Z4, Canada
| | - Robin Freeman
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph ON N1G 2W1, Canada
| |
Collapse
|
13
|
Luza AL, Maestri R, Debastiani VJ, Patterson BD, Hartz SM, Duarte LDS. Is evolution faster at ecotones? A test using rates and tempo of diet transitions in Neotropical Sigmodontinae (Rodentia, Cricetidae). Ecol Evol 2021; 11:18676-18690. [PMID: 35003701 PMCID: PMC8717272 DOI: 10.1002/ece3.8476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
We evaluated whether evolution is faster at ecotones as niche shifts may be needed to persist under unstable environment. We mapped diet evolution along the evolutionary history of 350 sigmodontine species. Mapping was used in three new tip-based metrics of trait evolution - Transition Rates, Stasis Time, and Last Transition Time - which were spatialized at the assemblage level (aTR, aST, aTL). Assemblages were obtained by superimposing range maps on points located at core and ecotone of the 93 South American ecoregions. Using Linear Mixed Models, we tested whether ecotones have species with more changes from the ancestral diet (higher aTR), have maintained the current diet for a shorter time (lower aST), and have more recent transitions to the current diet (lower aLT) than cores. We found lower aTR, and higher aST and aLT at ecotones than at cores. Although ecotones are more heterogeneous, both environmentally and in relation to selection pressures they exert on organisms, ecotone species change little from the ancestral diet as generalist habits are necessary toward feeding in ephemeral environments. The need to incorporate phylogenetic uncertainty in tip-based metrics was evident from large uncertainty detected. Our study integrates ecology and evolution by analyzing how fast trait evolution is across space.
Collapse
Affiliation(s)
- André Luís Luza
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
- Departamento de Ecologia e EvoluçãoUniversidade Federal de Santa MariaSanta MariaRio Grande do SulCEP 97105‐900Brazil
| | - Renan Maestri
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Vanderlei Júlio Debastiani
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| | - Bruce D. Patterson
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Sandra Maria Hartz
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| | - Leandro D. S. Duarte
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| |
Collapse
|
14
|
Etard A, Pigot AL, Newbold T. Intensive human land uses negatively affect vertebrate functional diversity. Ecol Lett 2021; 25:330-343. [PMID: 34816566 DOI: 10.1111/ele.13926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Land-use change is the leading driver of global biodiversity loss thus characterising its impacts on the functional structure of ecological communities is an urgent challenge. Using a database describing vertebrate assemblages in different land uses, we assess how the type and intensity of land use affect the functional diversity of vertebrates globally. We find that human land uses alter local functional structure by driving declines in functional diversity, with the strongest effects in the most disturbed land uses (intensely used urban sites, cropland and pastures), and among amphibians and birds. Both tropical and temperate areas experience important functional losses, which are only partially offset by functional gains. Tropical assemblages are more likely to show decreases in functional diversity that exceed those expected from species loss alone. Our results indicate that land-use change non-randomly reshapes the functional structure of vertebrate assemblages, raising concerns about the continuation of ecological processes sustained by vertebrates.
Collapse
Affiliation(s)
- Adrienne Etard
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Alex L Pigot
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Tim Newbold
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| |
Collapse
|