1
|
Lio E, Esposito C, Paini J, Gandolfi S, Secundo F, Ottolina G. Valorizing Agro-Industrial By-Products for Sustainable Cultivation of Chlorella sorokiniana: Enhancing Biomass, Lipid Accumulation, Metabolites, and Antimicrobial Potential. Metabolites 2025; 15:212. [PMID: 40137176 PMCID: PMC11943808 DOI: 10.3390/metabo15030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Mixotrophic cultivation of microalgae using agro-industrial by-products as supplements offers a sustainable strategy to enhance biomass production and bioactive compound synthesis. This study aimed to evaluate the effects of different agro-industrial by-products-orange peel extract, Cladophora glomerata macroalgal hydrolysate, and solid-state fungal fermentation hydrolysate-on the growth and bioactivity of Chlorella sorokiniana. Methods: Microalgae were cultivated under mixotrophic conditions with different agro-industrial by-products as organic carbon sources. Biomass accumulation was monitored through dry weight measurements. Lipid extraction was carried out using dimethyl carbonate. The antimicrobial activity of the extracted compounds was assessed against Escherichia coli, Bacillus megaterium, and Bacillus subtilis by determining the minimal inhibitconcentrations. Results: Orange peel extract supplementation resulted in the highest biomass production. It increased dry weight by 13.86-fold compared to autotrophic conditions. Cladophora glomerata macroalgal hydrolysate followed with a 5.79-fold increase, and solid-state fungal fermentation hydrolysate showed a 4.14-fold increase. The lipophilic fraction extracted from microalgal biomass showed high yields. Orange peel extract supplementation achieved the highest extraction yield (274.36 mg/g DW). Antimicrobial activity varied based on the supplement used: biomass cultivated with orange peel extract exhibited superior activity against E. coli, whereas Cladophora glomerata macroalgal hydrolysate biomass demonstrated potent activity against B. subtilis (MIC: 5.67 g/mL). Conclusions: These findings underscore the potential of agro-industrial by-products for enhancing microalgal biomass and metabolite production. The observed antimicrobial properties highlight the application of microalgal-derived compounds in sustainable bioprocesses, supporting their use in pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Elia Lio
- Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy, via Mario Bianco 9, 20131 Milan, Italy; (J.P.); (S.G.)
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (E.L.)
| | - Carlo Esposito
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (E.L.)
| | - Jacopo Paini
- Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy, via Mario Bianco 9, 20131 Milan, Italy; (J.P.); (S.G.)
| | - Stefano Gandolfi
- Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy, via Mario Bianco 9, 20131 Milan, Italy; (J.P.); (S.G.)
| | - Francesco Secundo
- Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy, via Mario Bianco 9, 20131 Milan, Italy; (J.P.); (S.G.)
| | - Gianluca Ottolina
- Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy, via Mario Bianco 9, 20131 Milan, Italy; (J.P.); (S.G.)
| |
Collapse
|
2
|
Bermudez G, Terenzi C, Medri F, Andrisano V, Montanari S. Extraction and Analytical Methods for the Characterization of Polyphenols in Marine Microalgae: A Review. Mar Drugs 2024; 22:538. [PMID: 39728113 PMCID: PMC11678617 DOI: 10.3390/md22120538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification. It addresses (I) cell disruption techniques, including bead milling, high-speed homogenization, pulsed electric field, ultrasonication, microwave, freeze-thawing, and enzymatic/chemical hydrolysis; (II) extraction techniques, such as solid-liquid extraction, ultrasound and microwave-assisted extraction, pressurized-liquid extraction, and supercritical CO2; (III) analytical methods, including total phenolic and flavonoid content assays and advanced chromatographic techniques like GC-MS, HPLC-DAD, and HPLC-MS. Key findings showed bead milling and chemical hydrolysis as effective cell disruption techniques, pressurized-liquid extraction and microwave-assisted extraction as promising efficient extraction methods, and HPLC-MS as the finest alternative for precise phenolic characterization. Unlike previous reviews, this study uniquely integrates both extractive and analytical approaches in one work, focusing exclusively on marine microalgae, a relatively underexplored area compared to freshwater species, offering actionable insights to guide future research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Serena Montanari
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.B.); (V.A.)
| |
Collapse
|
3
|
İnan B, Mutlu B, Çakır R, Balkanlı D. From ice to neurons: investigating the neuroprotective effects of Antarctic microalgae Chlorella variabilis and Chlorella pyrenoidosa extracts. 3 Biotech 2024; 14:250. [PMID: 39345962 PMCID: PMC11427631 DOI: 10.1007/s13205-024-04094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
In this study, it was aimed to examine the neuroprotective effects of ethanolic extracts of Chlorella variabilis YTU.ANTARCTIC.001 and Chlorella pyrenoidosa OZCIMEN.001 microalgae that were isolated from Antarctica in a H2O2-induced oxidative stress model using SH-SY5Y cell line. In this context, first, Antarctic microalgae were cultivated and characterized. It was determined that C. pyrenoidosa and C. variabilis had specific growth rates of 0.093 and 0.097 day-1, respectively, and doubled their cell concentration in 7 days. With the antioxidant and phenolic content analysis, it was found that 1 mg/mL C. pyrenoidosa and C. variabilis ethanolic extracts had 33-37% radical scavenging activity and 102-107 mg GAE/mg extract phenolic content, respectively. Then, the cytotoxic effects of the microalgae extracts on SH-SY5Y cells were assessed across a concentration range of 6.25-125 µg/mL. The results indicated a concentration-dependent effect on cell viability, with no observed cytotoxicity within the tested range. Notably, the highest neuroprotective activity was recorded with C. variabilis extract at a concentration of 75 µg/mL, which maintained cell viability at 73.7% ± 0.3. These findings showed the significant neuroprotective potential of C. pyrenoidosa and C. variabilis ethanolic extracts, attributed to their substantial antioxidant properties and non-cytotoxic nature at effective concentrations. The promising neuroprotective efficacy of these extracts highlights their potential for therapeutic applications in neurodegenerative disease prevention and treatment.
Collapse
Affiliation(s)
- Benan İnan
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey
| | - Betül Mutlu
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey
| | - Rabia Çakır
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey
| | - Didem Balkanlı
- Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey
| |
Collapse
|
4
|
Anigboro AA, Avwioroko OJ, Oborirhovo O, Akeghware O, Durugbo EU, Apiamu A, Olaoye VI, Ezealigo US, Tonukari NJ. Characterization, Anti-glycation, Anti-inflammation, and Lipase Inhibitory Properties of Rauvolfia vomitoria Leaf Extract: In Vitro and In Silico Evaluations for Obesity Treatment. Appl Biochem Biotechnol 2024; 196:6864-6892. [PMID: 38416335 DOI: 10.1007/s12010-024-04865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Pancreatic lipase (PLP) is an enzyme responsible for the catalytic hydrolysis of fats and its inhibition is relevant for obesity management. Side effects linked with orthodox inhibitors have, however, paved the way for an increased search for safe natural sources. The present study investigated the anti-glycation, anti-inflammatory, and anti-lipase properties of Rauvolfia vomitoria aqueous (ARV), ethanolic (ERV), and methanolic (MRV) leaf extracts coupled with the molecular interactions of selected bioactive compounds with PLP using in vitro and in silico techniques. Phytochemical constituents were characterized using spectroscopic techniques. Drug-likeness and chemical reactivity profile of selected bioactive compounds were analyzed using SwissADME and quantum chemical calculations. FT-IR and GC-MS affirmed the presence of phenolic compounds including 3-phenyl-2-ethoxypropylphthalimide and 5-methyl-2-phenyl-1H-indole. All extracts showed moderate anti-glycation, anti-inflammatory, and lipase inhibitory capacities relative to standard controls. However, MRV exhibited the highest lipase inhibition (IC50, 0.17 ± 0.01 mg/mL), using a mixed-inhibition pattern. MRV interaction with PLP resulted in decreased secondary structure components of PLP (α-sheet, β-turn). MRV compounds (MCP20, MCP28, etc.) exhibited low chemical hardness, EHOMO-ELUMO energy gap, and high chemical reactivity. Foremost MRV compounds obeyed Lipinski's rule of five for drug-likeness and interacted with PHE-78 amongst others at PLP catalytic domain with high binding affinity (≥ - 9.3 kcal/mol). Pi-alkyl hydrophobic interaction and hydrogen bonding were predominantly involved. Our findings provide scientific insights into the ethnotherapeutic uses of R. vomitoria extracts for the management of obesity and related complications, plus useful information for optimizable drug-like candidates against obesity.
Collapse
Affiliation(s)
- Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria.
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- Center for Chemical and Biochemical Research (CCBR), Redeemer's University, Ede, Osun State, Nigeria.
| | - Omoerere Oborirhovo
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| | - Onoriode Akeghware
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
- Department of Chemical Sciences, Faculty of Science, Edwin Clark University, Kiagbodo, Delta State, Nigeria
| | - Ernest U Durugbo
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Augustine Apiamu
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| | - Victor I Olaoye
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Uchechukwu S Ezealigo
- Department of Material Science Engineering, African University of Science and Technology, Abuja, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B.001, Abraka, Nigeria
| |
Collapse
|
5
|
Mani I, Thangavel M, Surendrababu A, Sneha MJX, Rajagopal R, Alfarhan A, Ponnuraj N, Pandi M. Unveiling the Bioprospecting Efficacy and Textile Dyeing of a Novel Endophytic Mycobial Red Pigment. Indian J Microbiol 2024; 64:618-634. [PMID: 39011001 PMCID: PMC11246333 DOI: 10.1007/s12088-024-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/14/2024] [Indexed: 07/17/2024] Open
Abstract
Natural pigments are becoming increasingly popular owing of their reliability. Microbial pigments provide an alternative to natural colours. A total of 24 fungal cultures were collected from leaf bits of Senna auriculata, with one strain (FNG1) producing an extracellular red orange pigment. Nigrospora oryzae was confirmed by using physical criteria and molecular phylogenetic study by using ITS and β- tubulin analysis. In EtOAc, the crude red pigment was the most soluble. The TLC analysis was used to partly purify the natural pigment. The partially purified fungal pigment was used in successive bioprospecting studies. The antimicrobial activity of the partially purified sample was assessed against eight human pathogens, with Leucobacter AA7 showing the largest zone of inhibition (200-500 µg/mL). The compound's DPPH scavenging activity enhanced from 38.2 to 67.9%, with an IC50 value of 34.195 ± 2.33 µg/mL. Cancer cells were suppressed by partly pure fungal pigment, but non-cancerous HEK 293 cells were unaffected. The GC-MS analysis was used to characterize the molecule present in the partly purified pigment. In addition, the cotton textiles have the greatest staining capability for crude mycobial pigment, which dyes quickly and has a negative cytotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01211-y.
Collapse
Affiliation(s)
- Israel Mani
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Myithili Thangavel
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Akash Surendrababu
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - M. Joe Xavier Sneha
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box-2455, 11451 Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box-2455, 11451 Riyadh, Saudi Arabia
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illiniois, Urbana, IL 61802 USA
| | - Mohan Pandi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| |
Collapse
|
6
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Wang SM, Chuu JJ, Lee CK, Chang CY. Exploring the therapeutic efficacy of Chlorella pyrenoidosa peptides in ameliorating Alzheimer's disease. Heliyon 2023; 9:e15406. [PMID: 37144207 PMCID: PMC10151262 DOI: 10.1016/j.heliyon.2023.e15406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative disorders, the hallmarks of which include deposits of extracellular beta-amyloid (Aβ) as well as intracellular tau neurofibrillary tangles (NFTs) tangles. With disease progression, neuronal apoptosis combined with cerebral atrophy occurs, leading to cognitive impairment and long-term memory loss. Recently, Chlorella species have been identified as a functional food and are being explored for the prevention of various diseases widely studied to prevent or treat many neurodegenerative diseases. Hence, we for the first time investigated the neuroprotective effects of Chlorella pyrenoidosa short-chain peptides (CPPs) i.e. <1 kDa, 1-3 kDa, 3-10 kDa, and >10 kDa on the in vitro and in vivo neuronal injury models. Our in vitro results showed that CPP with a molecular weight of 1-3 kDa and 3-10 kDa could elevate the survival rate of Aβ1-42 or l-Glutamic acid-injured N2A cells. These treatments also inhibited Aβ and tau NFTs in N2A cells and prevented progressive neuronal cellular damage by suppressing inflammatory cytokines such as PGE2, iNOS, IL-6, TNF-α, COX-2, IL-1β, TGF-β1, and NF-κB. Further, our in vivo Aβ1-42-induced AD mice model demonstrated that 1-3 kDa or 3-10 kDa CPP could improve spatial cognition and learning memory. We also observed a decreased cell loss ratio in CA1-CA3 hippocampal regions. Taken together, our findings imply that CPPs may exert their anti-AD impact through anti-inflammatory, and anti-amyloid activities via reducing APP and tau NFT.
Collapse
Affiliation(s)
- Shu-Mei Wang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Jye Chuu
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ching-Kuo Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Corresponding author. Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Chia-Yu Chang
- Department of Neurology, Chi-Mei Medical Center, Tainan, Taiwan
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Corresponding author. Department of Neurology, Chi-Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
8
|
Hamida RS, Ali MA, Alkhateeb MA, Alfassam HE, Momenah MA, Bin-Meferij MM. Algal-Derived Synthesis of Silver Nanoparticles Using the Unicellular ulvophyte sp. MBIC10591: Optimisation, Characterisation, and Biological Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010279. [PMID: 36615473 PMCID: PMC9821890 DOI: 10.3390/molecules28010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Algal-mediated synthesis of nanoparticles (NPs) is an eco-friendly alternative for producing NPs with potent physicochemical and biological properties. Microalgae represent an ideal bio-nanofactory because they contain several biomolecules acting as passivation and stabilising agents during the biogenesis of NPs. Herein, a novel microalgae sp. was isolated, purified, and identified using light and electron microscopy and 18s rRNA sequencing. The chemical components of their watery extract were assessed using GC-MS. Their dried biomass was used to synthesise silver (Ag) NPs with different optimisation parameters. Ag-NPs were physiochemically characterised, and their anticancer and antibacterial effects were examined. The data showed that the isolated strain was 99% similar to the unicellular ulvophyte sp. MBIC10591; it was ellipsoidal to spherical and had a large cup-shaped spongiomorph chloroplast. The optimum parameters for synthesising Ag-NPs by unicellular ulvophyte sp. MBIC10591 (Uv@Ag-NPs) were as follows: mixture of 1 mM of AgNO3 with an equal volume of algal extract, 100 °C for 1 h, and pH of 7 under illumination for 24 h. TEM, HRTEM, and SEM revealed that Uv@Ag-NPs are cubic to spherical, with an average nanosize of 12.1 ± 1.2 nm. EDx and mapping analysis showed that the sample had 79% of Ag, while FTIR revealed the existence of several functional groups on the NP surface derivatives from the algal extract. The Uv@Ag-NPs had a hydrodynamic diameter of 178.1 nm and a potential charge of -26.7 mV and showed marked antiproliferative activity against PC3, MDA-MB-231, T47D, and MCF-7, with IC50 values of 27.4, 20.3, 23.8, and 40 µg/mL, respectively, and moderate toxicity against HFs (IC50 of 13.3 µg/mL). Uv@Ag-NPs also showed marked biocidal activity against Gram-negative bacteria. Escherichia coli was the most sensitive bacteria to the NPs with an inhibition zone of 18.9 ± 0.03 mm. The current study reports, for the first time, the morphological appearance of the novel unicellular ulvophyte sp., MBIC10591, and its chemical composition and potential to synthesise Uv@Ag-NPs with smaller sizes and high stability to act as anti-tumour and microbial agents.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Nanobiology Lab, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Mohamed Abdelaal Ali
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY) New Borg El-Arab, Alexandria 21934, Egypt
| | - Mariam Abdulaziz Alkhateeb
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa Essa Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence:
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Histopathology Unit, Research Department, Health Sciences Research Center (HSRC), Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
9
|
Ferdous UT, Nurdin A, Ismail S, Balia Yusof ZN. Evaluation of the antioxidant and cytotoxic activities of crude extracts from marine Chlorella sp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Sustainable Microalgae and Cyanobacteria Biotechnology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marine organisms are a valuable source of new compounds, many of which have remarkable biotechnological properties, such as microalgae and cyanobacteria, which have attracted special attention to develop new industrial production routes. These organisms are a source of many biologically active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics, hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of several technologies to improve biomass production, in the first step, industrial processes schemes have been addressed with different accomplishments. It is critical to consider all steps involved in producing a bioactive valuable compound, such as species and strain selection, nutrient supply required to support productivity, type of photobioreactor, downstream processes, namely extraction, recovery, and purification. In general, two product production schemes can be mentioned; one for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding purposes; the other for when the product will be used in the human health domain, such as antivirals, antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general, the usefulness of an application for each species of microalgae is determined by growth and product production. Furthermore, the use of OMICS technologies enabled the development of a new design for human therapeutic recombinant proteins, including strain selection based on previous proteomic profiles, gene cloning, and the development of expression networks. Microalgal expression systems have an advantage over traditional microbial, plant, and mammalian expression systems for new and sustainable microalga applications, for responsible production and consumption.
Collapse
|
11
|
Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants (Basel) 2022; 11:antiox11071320. [PMID: 35883811 PMCID: PMC9311600 DOI: 10.3390/antiox11071320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
There has been growing interest in microalgal biomolecules for health and cosmetics, as well as in the use of microalgae as aquaculture feed due to the need to replace fishmeal and fish oil with sustainable yet equally nutritious alternatives. Aim of this study is to evaluate the potential of five marine microalgal species, namely Chlorella minutissima, Dunaliella salina, Isochrysis galbana, Nannochloropsis oculata and Tisochrysis lutea, for the co-production of antioxidants and aquaculture feed. Batch cultivation was performed under saturating light intensity and continuous aeration. Freeze-dried biomass was extracted sequentially with water and methanol and evaluated for phenolic content and antioxidant activity, as well as proximate composition and fatty acid profile. Methanolic extracts of C. minutissima presented the highest phenolic content, measured with the Folin–Ciocalteu assay, and antioxidant activity. However, HPLC and LC-MS showed the presence of non-pigment compounds only in T. lutea. Total phenolic content and antioxidant activity were correlated to chlorophyll content. N. oculata and T. lutea were rich in eicosapentaenoic acid and docosahexaenoic acid, respectively, as well as in protein. In conclusion, N. oculata and T. lutea are suitable candidates for further optimization, while the data presented suggest that pigment effects on the Folin–Ciocalteu method require reconsideration.
Collapse
|
12
|
Podsiedlik M, Markowicz-Piasecka M, Sikora J. The Influence of Selected Antipsychotic Drugs on Biochemical Aspects of Alzheimer's Disease. Int J Mol Sci 2022; 23:4621. [PMID: 35563011 PMCID: PMC9102502 DOI: 10.3390/ijms23094621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to assess the potency of selected antipsychotic drugs (haloperidol (HAL), bromperidol (BRMP), benperidol (BNP), penfluridol (PNF), pimozide (PIM), quetiapine (QUET) and promazine (PROM)) on the main pathological hallmarks of Alzheimer's disease (AD). Binary mixtures of donepezil and antipsychotics produce an anti-BuChE effect, which was greater than either compound alone. The combination of rivastigmine and antipsychotic drugs (apart from PNF) enhanced AChE inhibition. The tested antipsychotics (excluding HAL and PNF) significantly reduce the early stage of Aβ aggregation. BRMP, PIM, QUET and PROM were found to substantially inhibit Aβ aggregation after a longer incubation time. A test of human erythrocytes hemolysis showed that short-term incubation of red blood cells (RBCs) with QUET resulted in decreased hemolysis. The antioxidative properties of antipsychotics were also proved in human umbilical vein endothelial cells (HUVEC); all tested drugs were found to significantly increase cell viability. In the case of astrocytes, BNP, PNF, PIM and PROM showed antioxidant potential.
Collapse
Affiliation(s)
- Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
13
|
Shaima AF, Mohd Yasin NH, Ibrahim N, Takriff MS, Gunasekaran D, Ismaeel MY. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci 2022; 29:1043-1052. [PMID: 35197773 PMCID: PMC8848016 DOI: 10.1016/j.sjbs.2021.09.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
Microalgae represent promising sources of bioactive compounds for pharmaceutical and industrial applications. The emergence of antibiotic resistant bacteria leads to the need to explore new cost-effective, safe, and potent bioactive compounds from the microalgae. This study aimed to investigate the potential of local microalgae for their antimicrobial properties and bioactive compounds. Three local microalgae namely Chlorella sorokiniana (UKM2), Chlorella sp. UKM8, and Scenedesmus sp. UKM9 biomass methanol extracts (ME) were prepared and tested against Gram-positive and Gram-negative bacteria. Chlorella sp. UKM8-ME showed the highest antibacterial activity. UKM8-ME minimum inhibitory concentrations were in the range of 0.312 to 6.25 mg/mL. Cytotoxicity evaluation using MTT assay showed that the microalgae methanolic extracts did not exhibit cytotoxicity against Vero-cells. The UKM8-ME was mainly containing 28 compounds from the Gas Chromatography-Mass Spectrometry (GC–MS) analysis. Major compounds of UKM8-ME included phenol (18.5%), hexadecanoic acid (18.25%), phytol (14.43%), 9,12-octadecadienoic acid (13.69%), and bicyclo[3.1.1]heptane (7.23%), which have been previously described to possess antimicrobial activity. Hence, Chlorella sp. (UKM8) methanol extracts showed promising antibacterial activity. More comprehensive studies are required to purify these antimicrobial compounds and develop our understanding on their mechanism in UKM8-ME to unleash their specific potential.
Collapse
|
14
|
Sirajunnisa AR, Surendhiran D, Kozani PS, Kozani PS, Hamidi M, Cabrera-Barjas G, Delattre C. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Safavi M, Jafari Olia MS, Abolhasani MH, Amini M, Kianirad M. Optimization of the culture medium and characterization of antioxidant compounds of a marine isolated microalga as a promising source in aquaculture feed. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Vilakazi H, Olasehinde TA, Olaniran AO. Chemical Characterization, Antiproliferative and Antioxidant Activities of Polyunsaturated Fatty Acid-Rich Extracts from Chlorella sp. S14. Molecules 2021; 26:molecules26144109. [PMID: 34299383 PMCID: PMC8303589 DOI: 10.3390/molecules26144109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Microalgae is a rich source of polyunsaturated fatty acid. This study was conducted to identify and isolate microalgal strain with the potentials for producing polyunsaturated fatty acids (PUFAs) and determine its cytotoxic effect on some cancer cells. The algal strain (Chlorella sp. S14) was cultivated using modified BG-11 media, and algal biomass obtained was used for fatty acid extraction. Gas chromatographic–mass spectrometry was used to identify and quantify the levels of the fatty acid constituents. The total content of monounsaturated fatty acids (1.12%) was low compared to polyunsaturated fatty acids (PUFAs) (52.87%). Furthermore, n-3 PUFAs accounted for (12.37%) of total PUFAs with the presence of α-linolenic acid (2.16%) and cis-11,14,17-eicosatrienoic acid (2.16%). The PUFA-rich extract did not exhibit a cytotoxic effect on normal cells. Treatment with the PUFA-rich extract (150 µg/mL) significantly reduced cell viability in MCF-7 (31.58%) and A549 (62.56%) cells after the 48 h treatment. Furthermore, treatment of MCF-7 with fatty acid extracts (125 and 150 µg/mL) showed a significant reduction in MDA levels, increase in catalase activities and decrease in GSH level compared to untreated cells. However, a slight decrease in MDA level was observed in A549 cells after the 48 h treatment. There are no significant changes in catalase activities and GSH level in treated A549 cells. However, a slight reduction of NO levels was observed in treated MCF-7 and A549 cells. These results indicate the potentials of PUFA-rich extracts from Chlorella sp. S14 to reduce viability and modulate redox status in A549 and MCF-7 cells.
Collapse
Affiliation(s)
- Hlengiwe Vilakazi
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (H.V.); (T.A.O.)
| | - Tosin A. Olasehinde
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (H.V.); (T.A.O.)
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos PMB 21023, Nigeria
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (H.V.); (T.A.O.)
- Correspondence:
| |
Collapse
|
17
|
Mahana A, Mehta SK. Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28234-28250. [PMID: 33533000 DOI: 10.1007/s11356-021-12682-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Organic synthetic dyes are widely used in several industries; however, their inherent resistance to biodegradation necessitates to investigate alternative methods for the remediation of this class of hazardous substances. In the present study, a green synthesis of ZnO nanorods was achieved in a fast, environment-friendly, and safe microwave process employing algal extract. Different metabolites like sugars, proteins, fatty acids, amino acids, and vitamins present in the algal extract reduced the Zn2+ into ZnO. The XRD analysis showed that the nanostructure was a crystalline hexagonal nanorod having a crystalline size of 27.37 nm. The XPS spectra of ZnO nanorod showed characteristic peaks at binding energy 1043, 1020, 496, 137, 87, and 8 eV corresponding to Zn2p1/2, Zn2p3/2, ZnLMM, Zn3s, Zn3p, Zn3d, respectively. The synthesized ZnO nanorods were in-situ functionalized and showed strong catalytic activity in photoreduction of a model organic dye methylene blue (MB) under direct sunlight irradiation. Synthesized ZnO nanorods showed a complete (100%) reduction of model dye MB from its 10 mg/L aqueous solution. The photocatalytic degradation of MB followed the Michaelis-Menten kinetics. The rate of ZnO-catalyzed photocatalytic degradation depends on the concentrations of ZnO, pH, and sunlight irradiation. The ZnO nanorod-catalyzed photoreduction of MB involves hydroxyl radicals. Algal-mediated and microwave-assisted synthesis provides a scalable source of metal oxide nanoparticles for the remediation of dye-containing wastewaters under natural sunlight. Apart from application in the removal of dyes, ZnO nanorods are excellent material for applications in semiconductors, electronics, optics, bio-imaging, and drug delivery.
Collapse
Affiliation(s)
- Abhijeet Mahana
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Surya Kant Mehta
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Botany, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
18
|
Anti-obesity, antioxidant and in silico evaluation of Justicia carnea bioactive compounds as potential inhibitors of an enzyme linked with obesity: Insights from kinetics, semi-empirical quantum mechanics and molecular docking analysis. Biophys Chem 2021; 274:106607. [PMID: 33957576 DOI: 10.1016/j.bpc.2021.106607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/18/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Obesity is a global health problem characterized by excessive fat deposition in adipose tissues and can be managed by targeting pancreatic lipase (PL) activity. In the present study, we investigated the in vitro antioxidant and anti-obesity potentials of methanolic leaf extract of Justicia carnea(MEJC) using lipase inhibition kinetics model. In silico evaluations of MEJC bioactive compounds as potential drug-like agents and inhibitors of PL were also investigated using SwissADME prediction tool, semi-empirical quantum mechanics(SQM), molecular electrostatic potential(MEP) and molecular docking analysis. Gas chromatography-mass spectrometry(GC-MS) revealed presence of campesterol, stigmasterol, beta-amyrin etc. MEJC scavenged reactive species and inhibited PL activity via a mixed inhibition pattern (Ki = 107.69 μg/mL; Kii = 398.00 μg/mL) with IC50 > orlistat's IC50. Molecular docking of GC-MS identified compounds with porcine PL showed compounds 8,10,12 and 14 having high PL-binding affinity and similar binding pose with orlistat. Hydrophobic interactions and van der Waals forces were predominantly involved in the ligands' interactions with some key catalytic site amino acid residues (Ser-153,His-264). Compounds 10,12,13 and 14 indicated high drug-likeness, bioavailability, electronegativity, ELUMO-EHOMO energy gaps and MEP. Our findings show that MEJC is a rich natural source of antioxidant and anti-obesity agents which could be optimized for development of new anti-obesity drugs.
Collapse
|
19
|
Shchemelinina TN, Anchugova EM, Kotova OB, Shushkov DA. The analcime-bearing rock immobilized microalgae: Stress resistance, psychrotolerance, phenol removal. BIORESOURCE TECHNOLOGY 2021; 322:124560. [PMID: 33371957 DOI: 10.1016/j.biortech.2020.124560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The development of synergetic biogeocomplices for biodegradation of recalcitrant organic pollutants is an urgently needed to achieve the environmental sustainability. The biogeosorbent based on the analcime-bearing rock immobilized Chlorella vulgaris f. globosa was developed to remove phenol from polluted waterbodies. The microalgae biofilm formation on the ABR resulted in 1.6 × 104 cells/mm2. Stress testing showed that low temperatures up to -30 °C did not adversely affect the cell viability, the dehydrogenase activity of the biogeosorbent exposed was 5.1 mg of formazan/mL. Under phenol-stress conditions, aggregation of suspended cells was observed. The biogeosorbent was more stress resistant than the microalgal suspension, and also reduced the time of exposure and had no secondary waste in comparison with the ABR. After having been treated, phenol removal was found to increase from 70 to 72% for MA, from 27 to 93% for ABR, from 82 to 93% for the biogeosorbent.
Collapse
Affiliation(s)
- Tatyana N Shchemelinina
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Elena M Anchugova
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia.
| | - Olga B Kotova
- Institute of Geology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 54 Pervomayskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Dmitry A Shushkov
- Institute of Geology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 54 Pervomayskaya St., 167982 Syktyvkar, Komi Republic, Russia
| |
Collapse
|
20
|
Anigboro AA, Avwioroko OJ, Ohwokevwo OA, Pessu B, Tonukari NJ. Phytochemical profile, antioxidant, α-amylase inhibition, binding interaction and docking studies of Justicia carnea bioactive compounds with α-amylase. Biophys Chem 2021; 269:106529. [PMID: 33360111 DOI: 10.1016/j.bpc.2020.106529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The present study investigated the antioxidant and invitro antidiabetic capacities of Justicia carnea aqueous leaf extract (JCAE) using α-amylase inhibition model. α-Amylase binding-interaction with JCAE was also investigated using fluorescence spectroscopy and molecular docking. Phytochemical screening and Gas Chromatography-Mass Spectrometry (GC-MS) analysis indicated presence of bioactive compounds. Phenolic (132 mg GAE/g) and flavonoid contents (31.08 mg CE/g) were high. JCAE exhibited high antioxidant capacity and effectively inhibited α-amylase activity (IC50, 671.43 ± 1.88 μg/mL), though lesser than acarbose effect (IC50, 108.91 ± 0.61 μg/mL). α-Amylase intrinsic fluorescence was quenched in the presence of JCAE. Ultraviolet-visible and FT-IR spectroscopies affirmed mild changes in α-amylase conformation. Synchronous fluorescence analysis indicated alterations in the microenvironments of tryptophan residues near α-amylase active site. Molecular docking affirmed non-polar interactions of compounds 6 and 7 in JCAE with Asp-197 and Trp-58 residues of α-amylase, respectively. Overall, JCAE indicated potential to prevent postprandial hyperglycemia by slowing down carbohydrate hydrolysis.
Collapse
Affiliation(s)
- Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria.
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria; Center for Chemical and Biochemical Research (CCBR), Redeemer's University, Ede, Osun State, Nigeria.
| | - Oghenenyore A Ohwokevwo
- Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Choba, Rivers State, Nigeria
| | - Beruoritse Pessu
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
21
|
Di Caprio F, Pipitone LM, Altimari P, Pagnanelli F. Extracellular and intracellular phenol production by microalgae during photoautotrophic batch cultivation. N Biotechnol 2020; 62:1-9. [PMID: 33358937 DOI: 10.1016/j.nbt.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022]
Abstract
Understanding the mechanisms of phenol production by microalgae can contribute to the development of microalgal biorefinery processes with higher economic and environmental sustainability. However, little is known about how phenols are produced and accumulate during microalgal cultivation. In this study, both extracellular and intracellular phenol production by two microalgal strains (Tetradesmus obliquus and Chlorella sp.) were investigated throughout a conventional photoautotrophic batch cultivation. The highest intracellular phenol content (10-25 mg g-1) and productivity (12-18 mg L-1 d-1) were attained for both strains in the first part of the batch, indicating a positive relation with nutrient availability and biomass productivity. Extracellular phenol production was 2-20 fold lower than intracellular phenols, but reached up to 27 mg L-1 for T. obliquus and 13 mg L-1 for Chlorella sp. The latter finding highlights relevant issues about the management of the exhausted culture medium, due to likely antimicrobial effects.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- University Sapienza of Rome, Department of Chemistry, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Luca Maria Pipitone
- University Sapienza of Rome, Department of Chemistry, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pietro Altimari
- University Sapienza of Rome, Department of Chemistry, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Pagnanelli
- University Sapienza of Rome, Department of Chemistry, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
22
|
Avwioroko OJ, Anigboro AA, Atanu FO, Otuechere CA, Alfred MO, Abugo JN, Omorogie MO. Investigation of the binding interaction of α-amylase with Chrysophyllum albidum seed extract and its silver nanoparticles: A multi-spectroscopic approach. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Olasehinde TA, Olaniran AO, Okoh AI. Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. J Food Biochem 2020; 45:e13395. [PMID: 32720328 DOI: 10.1111/jfbc.13395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
In this study, Chlorococcum sp. was investigated for its cholinesterase inhibitory potentials and antioxidant activity. The algal sample was cultivated, harvested, and extracted sequentially using n-hexane, dichloromethane, and ethanol. The extracts were characterized using Fourier transmission infra-red (FTIR) and Gas Chromatography-Mass Spectrometry. The metal chelating, radical scavenging activities, as well as anticholinesterase potentials of the algal extract, was also investigated. FTIR characterization of the microalgal biomass revealed the presence of phenolic compounds, alkaloids, polysaccharides, and fatty acids. The extracts showed the presence of phytol, neophytadiene, butylated hydroxyl toluene, and 3-tert-butyl-4-hydroxyanisole. The ethanol extract showed the highest DPPH (IC50 = 147.40 µg/ml) and OH (IC50 = 493.90 µg/ml) radical scavenging and metal chelating (IC50 = 83.25 µg/ml) activities. Similarly, the ethanol extract (IC50 = 13.83 µg/ml) exhibited the highest acetylcholinesterase inhibitory activity, while the dichloromethane extract showed the highest butyrylcholinesterase inhibitory activity. All the extracts exhibited antioxidant properties and inhibitory effects against butyrylcholinesterase and acetylcholinesterase; however, ethanol extracts showed better activity. PRACTICAL APPLICATIONS: Biomass obtained from some microalgal species is commonly used as dietary supplements and nutraceuticals due to the presence of high-valued products. However, the antioxidant and anticholinesterase activities of biomass from Chlorococcum sp. have not been explored. Chlorococcum sp. extracts contain some antioxidants such as 3-tert-Butyl-4-hydroxyanisole, butylated hydroxytoluene, phytol, and neophytadiene. Characterization of the extracts also revealed the presence of phenolic compounds, polysaccharides, and fatty acids. These compounds may contribute to the observed antioxidant and anticholinesterase activities of Chlorococcum sp. The result of this study suggests that Chlorococcum sp. may contain some nutraceuticals which could be used as antioxidants and cholinesterase inhibitors.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
24
|
Olasehinde TA, Olaniran AO, Okoh AI. Phenolic composition, antioxidant activity, anticholinesterase potential and modulatory effects of aqueous extracts of some seaweeds on β-amyloid aggregation and disaggregation. PHARMACEUTICAL BIOLOGY 2019; 57:460-469. [PMID: 31335235 PMCID: PMC6691876 DOI: 10.1080/13880209.2019.1634741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 05/03/2023]
Abstract
Context: Seaweeds contain bioactive compounds with different biological activities. They are used as functional ingredients for the development of therapeutic agents to combat degenerative diseases. Objective: This study investigated the phenolic composition, antioxidant activity, cholinesterase inhibitory and anti-amyloidogenic activities of aqueous extracts of Gracilaria beckeri (J.Agardh) Papenfuss (Gracilariaceae) (RED-AQ), Ecklonia maxima (Osbeck) Papenfuss (Lessoniaceae) (ECK-AQ), Ulva rigida (C.Agardh) Linnaeus (Ulvaceae) (URL-AQ) and Gelidium pristoides (Turner) Kützing (Gelidiaceae) (GEL-AQ). Materials and methods: Phenolic composition of the seaweed extracts was determined using liquid chromatography mass spectrometry. Radical scavenging and metal chelating activities were assessed in vitro. The effect of the extracts (21-84 µg/mL) on acetylcholinesterase and butyrylcholinesterase activities were also investigated using an in vitro colorimetric assay. Transmission electron microscope and thioflavin-T fluorescence assay were used to examine the anti-amyloidogenic activities of the extracts. Results: Phloroglucinol, catechin, epicatechin 3-glucoside were identified in the extracts. ECK-AQ (IC50=30.42 and 280.47 µg/mL) exhibited the highest OH• scavenging and metal chelating activities, while RED-AQ (41.23 and 334.45 µg/mL) exhibited the lowest. Similarly, ECK-AQ (IC50 = 49.41 and 52.11 µg/mL) exhibited higher inhibitory effects on acetylcholinesterase and butyrylcholinesterase activities, while RED-AQ (64.56 and 63.03 µg/mL) showed the least activities. Rapid formation of β-amyloid (Aβ1-42) fibrils and aggregates was observed in electron micrographs of the control after 72 and 96 h. The reduction of Aβ1-42 aggregates occurred after co-treatment with the seaweed extracts. Discussion and conclusion: ECK-AQ, GEL-AQ, URL-AQ and RED-AQ may possess neuroprotective potential and could be explored for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Tosin A. Olasehinde
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Food Technology Department, Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Anthony I. Okoh
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
25
|
Hao S, Li X, Han A, Yang Y, Fang G, Liu J, Wang S. CLVFFA-Functionalized Gold Nanoclusters Inhibit Aβ40 Fibrillation, Fibrils' Prolongation, and Mature Fibrils' Disaggregation. ACS Chem Neurosci 2019; 10:4633-4642. [PMID: 31637909 DOI: 10.1021/acschemneuro.9b00469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The abnormal aggregation of amyloid beta (Aβ or A beta) from monomeric proteins into amyloid fibrils is an important pathological contact to Alzheimer's disease (AD). Amyloid beta 40 (Aβ40), the pivotal biomarker of AD, aggregates to form amyloid plaques. For this reason, inhibition of amyloid fibrillation had become a crucial prevention and therapeutic strategy. Usually, LVFFA is the central hydrophobic fragment of Aβ and can inhibit the aggregation of Aβ40. In this work, in order to improve the inhibitory ability of LVFFA, hexapeptide CLVFFA were conjugated at the surface of Au clusters (AuNCs) to manufacture a nanosized inhibitor, AuNCs-CLVFFA. Thioflavin T fluorescence and transmission electron microscope results showed that AuNCs-CLVFFA inhibited Aβ40 fibrillogenesis, fibrils' prolongation, and mature fibrils' disaggregation. Furthermore, AuNCs as the backbone of the inhibitor showed extraordinary inhibition ability for Aβ40 aggregation at a low AuNCs-CLVFFA concentration. Free hexapeptide CLVFFA, at the same concentration, showed almost no inhibition. Additionally, the inhibitor could maintain the optical properties of nanoclusters, and the cell viability demonstrated that the inhibitor had good biocompatibility and may potentially be applied into AD therapy or treatment.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xia Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
26
|
Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer's Disease. Mar Drugs 2019; 17:md17110609. [PMID: 31731422 PMCID: PMC6891758 DOI: 10.3390/md17110609] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects mostly aged individuals. Evidence suggests that pathological mechanisms involved in the development of AD are associated with cholinergic deficit, glutamate excitotoxicity, beta-amyloid aggregation, tau phosphorylation, neuro-inflammation, and oxidative damage to neurons. Currently there is no cure for AD; however, synthetic therapies have been developed to effectively manage some of the symptoms at the early stage of the disease. Natural products from plants and marine organisms have been identified as important sources of bioactive compounds with neuroprotective potentials and less adverse effects compared to synthetic agents. Seaweeds contain several kinds of secondary metabolites such as phlorotannins, carotenoids, sterols, fucoidans, and poly unsaturated fatty acids. However, their neuroprotective effects and mechanisms of action have not been fully explored. This review discusses recent investigations and/or updates on interactions of bioactive compounds from seaweeds with biomarkers involved in the pathogenesis of AD using reports in electronic databases such as Web of science, Scopus, PubMed, Science direct, Scifinder, Taylor and Francis, Wiley, Springer, and Google scholar between 2015 and 2019. Phlorotannins, fucoidans, sterols, and carotenoids showed strong neuroprotective potentials in different experimental models. However, there are no data from human studies and/or clinical trials.
Collapse
|