1
|
Andreu-Sanz D, Gregor L, Carlini E, Scarcella D, Marr C, Kobold S. Predictive value of preclinical models for CAR-T cell therapy clinical trials: a systematic review and meta-analysis. J Immunother Cancer 2025; 13:e011698. [PMID: 40514065 DOI: 10.1136/jitc-2025-011698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Background Experimental mouse models are indispensable for the preclinical development of cancer immunotherapies, whereby complex interactions in the tumor microenvironment can be somewhat replicated. Despite the availability of diverse models, their predictive capacity for clinical outcomes remains largely unknown, posing a hurdle in the translation from preclinical to clinical success. Methods This study systematically reviews and meta-analyzes clinical trials of chimeric antigen receptor (CAR)-T cell monotherapies with their corresponding preclinical studies. Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a comprehensive search of PubMed and ClinicalTrials.gov was conducted, identifying 422 clinical trials and 3,157 preclinical studies. From these, 105 clinical trials and 180 preclinical studies, accounting for 44 and 131 distinct CAR constructs, respectively, were included. Results Patients' responses varied based on the target antigen, expectedly with higher efficacy and toxicity rates in hematological cancers. Preclinical data analysis revealed homogeneous and antigen-independent efficacy rates. Our analysis revealed that only 4% (n=12) of mouse studies used syngeneic models, highlighting their scarcity in research. Three logistic regression models were trained on CAR structures, tumor entities, and experimental settings to predict treatment outcomes. While the logistic regression model accurately predicted clinical outcomes based on clinical or preclinical features (Macro F1 and area under the curve (AUC)>0.8), it failed in predicting preclinical outcomes from preclinical features (Macro F1<0.5, AUC<0.6), indicating that preclinical studies may be influenced by experimental factors not accounted for in the model. Conclusion These findings underscore the need to better understand the experimental factors enhancing the predictive accuracy of mouse models in preclinical settings.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, LMU Klinikum, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lisa Gregor
- Division of Clinical Pharmacology, LMU Klinikum, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Emanuele Carlini
- Division of Clinical Pharmacology, LMU Klinikum, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniele Scarcella
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, LMU Klinikum, Member of the German Center for Lung Research (DZL), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Heidelberg, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg, Munich, Germany
| |
Collapse
|
2
|
Li Y, Ladd Z, Xiong Z, Bui-Linh C, Paiboonrungruang C, Subramaniyan B, Li H, Wang H, Balch C, Shersher DD, Spitz F, Chen X. Lymphatic Metastasis of Esophageal Squamous Cell Carcinoma: The Role of NRF2 and Therapeutic Strategies. Cancers (Basel) 2025; 17:1853. [PMID: 40507333 PMCID: PMC12153707 DOI: 10.3390/cancers17111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/26/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
The lethality of esophageal squamous cell carcinoma (ESCC), and other epithelial cancers, is primarily due to its aggressive nature and frequent lymphatic metastasis, both of which impact prognosis. In this review, we explore the underlying molecular mechanisms of ESCC lymphatic metastasis, specifically, the functional role of NRF2 and therapeutic strategies. Current data suggest that NRF2 hyperactivation (NRF2high) may promote lymphatic metastasis of ESCC by affecting the extracellular matrix (ECM), epithelial-mesenchymal transition (EMT), lymphangiogenesis, immune evasion, metabolic programming, and Hippo signaling. We also update the latest developments in NRF2 inhibitors, their mechanisms of action, screening strategies, and approaches for evaluating compound efficacy. Finally, we highlight the utility of animal models for mechanistic studies and therapeutic development. We believe elucidation of the functional role of NRF2 in ESCC lymphatic metastasis and developing proper NRF2 inhibitors will greatly improve the clinical prognosis of ESCC in human patients.
Collapse
Affiliation(s)
- Yahui Li
- Surgical Research Lab, Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Y.L.); (Z.L.); (B.S.); (H.L.); (D.D.S.); (F.S.)
| | - Zachary Ladd
- Surgical Research Lab, Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Y.L.); (Z.L.); (B.S.); (H.L.); (D.D.S.); (F.S.)
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Zhaohui Xiong
- Coriell Institute for Medical Research, Camden, NJ 08103, USA; (Z.X.); (C.B.-L.); (C.P.); (C.B.)
| | - Candice Bui-Linh
- Coriell Institute for Medical Research, Camden, NJ 08103, USA; (Z.X.); (C.B.-L.); (C.P.); (C.B.)
| | | | - Boopathi Subramaniyan
- Surgical Research Lab, Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Y.L.); (Z.L.); (B.S.); (H.L.); (D.D.S.); (F.S.)
| | - Huan Li
- Surgical Research Lab, Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Y.L.); (Z.L.); (B.S.); (H.L.); (D.D.S.); (F.S.)
| | - Haining Wang
- Insilico Medicine Canada Inc., Montreal, QC H3B 4W8, Canada;
| | - Curt Balch
- Coriell Institute for Medical Research, Camden, NJ 08103, USA; (Z.X.); (C.B.-L.); (C.P.); (C.B.)
| | - David D. Shersher
- Surgical Research Lab, Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Y.L.); (Z.L.); (B.S.); (H.L.); (D.D.S.); (F.S.)
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA
| | - Francis Spitz
- Surgical Research Lab, Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Y.L.); (Z.L.); (B.S.); (H.L.); (D.D.S.); (F.S.)
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Y.L.); (Z.L.); (B.S.); (H.L.); (D.D.S.); (F.S.)
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA; (Z.X.); (C.B.-L.); (C.P.); (C.B.)
- MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA
| |
Collapse
|
3
|
Khairani AF, Harmonia S, Chou Y, Alfarafisa NM, Ramadhanti J. Optimizing Xenograft Models for Breast Cancer: A Comparative Analysis of Cell-Derived and Patient-Derived Implantation Techniques in Pre-Clinical Research. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:1-10. [PMID: 39811602 PMCID: PMC11727321 DOI: 10.2147/bctt.s490532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Purpose The high mortality rate of breast cancer motivates researchers to search for effective treatments. Due to their ability to simulate human conditions, xenograft models such as CDX (Cell line-Derived Xenografts) and PDX (Patient-Derived Xenografts) have gained popularity in pre-clinical research. The choice of xenograft technique is influenced by the type of tumor employed, particularly in more aggressive tumor models like TNBC with metastases. Subcutaneous or orthotopic implantation may influence tumor engraftment rates and the applicability of the models for drug testing. To optimize xenograft models and support the development of breast cancer drugs, selecting a suitable transplantation technique is essential to attaining the best results. Methods This scoping review used PRISMA-Scr methodology to summarize findings from eleven articles published between 2012 and 2024 on pre-clinical trials related to xenograft models for breast cancer considering PDX began traction after 2010. Using specific criteria, the review included studies from electronic platforms. The inclusion criteria ensured relevant English sources were available in full text, while the exclusion criteria eliminated certain types of articles and inadequately comprehensive studies. Results Subcutaneous and orthotopic implantation are critical methods for xenograft models in cancer research. Subcutaneous implantation is less invasive and more manageable but does not fully mimic the tumor's natural environment. Orthotopic implantation accurately mimic the migration, invasion, and molecular characteristics of the original tumor, although the procedure is more complex and requires specialized techniques. The specific research objectives determine their choice, the need for accurate tumor replication, and the testing convenience. Conclusion Orthotopic implantation is the preferable method for developing PDX and CDX models of breast cancer because it closely mimics the tumor microenvironment and metastatic behavior, yielding clinically relevant results for drug testing. Subcutaneous implantation may result in higher engraftment rates, but it cannot accurately represent the complexity of tumors.
Collapse
Affiliation(s)
- Astrid Feinisa Khairani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Shella Harmonia
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Nayla Majeda Alfarafisa
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Julia Ramadhanti
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
4
|
Mahendra I, Kurniawan A, Febrian MB, Halimah I, Rizaludin A, Syarif DG. Cell-Derived Allograft Models as a Solution to the Obstacles of Preclinical Studies under Limited Resources: A Systematic Review on Experimental Lung Cancer Animal Models. Curr Rev Clin Exp Pharmacol 2025; 20:49-59. [PMID: 38659262 DOI: 10.2174/0127724328295592240419064719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The use of appropriate animal models for cancer studies is a major challenge, particularly for investigators who lack the resources to maintain and use xenograft animals or genetically engineered mouse models (GEMM). In addition, several countries intending to incorporate these models must conduct importation procedures, posing an additional challenge. OBJECTIVE This review aimed to explore the use of cell-derived allograft or syngeneic models under limited resources. The results can be used by investigators, specifically from low-middle-income countries, to contribute to lung cancer eradication. METHODS A literature search was carried out on various databases, including PubMed, Web of Science, and Scopus. In addition, the publication year of the selected articles was set between 2013 and 2023 with different search components (SC), namely lung cancer (SC1), animal models (SC2), and preclinical studies (SC3). RESULTS This systematic review focused on selecting animals, cells, and methods that could be applied to generating allograft-type lung cancer animal models from 101 included articles. CONCLUSION Based on the results, the use of cell-derived allograft models in cancer studies is feasible and relevant, and it provides valuable insights regarding the conditions with limited resources.
Collapse
Affiliation(s)
- Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Muhamad Basit Febrian
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Asep Rizaludin
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Dani Gustaman Syarif
- Research Center for Radiation Process Technology, National Research and Innovation Agency, Serpong, Indonesia
| |
Collapse
|
5
|
Bhat N, Al-Mathkour M, Maacha S, Lu H, El-Rifai W, Ballout F. Esophageal adenocarcinoma models: a closer look. Front Mol Biosci 2024; 11:1440670. [PMID: 39600303 PMCID: PMC11589788 DOI: 10.3389/fmolb.2024.1440670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a subtype of esophageal cancer with significant morbidity and mortality rates worldwide. Despite advancements in tumor models, the underlying cellular and molecular mechanisms driving EAC pathogenesis are still poorly understood. Therefore, gaining insights into these mechanisms is crucial for improving patient outcomes. Researchers have developed various models to better understand EAC and evaluate clinical management strategies. However, no single model fully recapitulates the complexity of EAC. Emerging technologies, such as patient-derived organoids and immune-competent mouse models, hold promise for personalized EAC research and drug development. In this review, we shed light on the various models for studying EAC and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Nadeem Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marwah Al-Mathkour
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Selma Maacha
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Yang J, Ma C, Quinlan JA, McNaughton K, Lee T, Shin P, Hauser T, Kaluzienski ML, Vig S, Quang TT, Starost MF, Huang H, Mueller JL. Light-activatable minimally invasive ethyl cellulose ethanol ablation: Biodistribution and potential applications. Bioeng Transl Med 2024; 9:e10696. [PMID: 39545085 PMCID: PMC11558191 DOI: 10.1002/btm2.10696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 11/17/2024] Open
Abstract
While surgical resection is a mainstay of cancer treatment, many tumors are unresectable due to stage, location, or comorbidities. Ablative therapies, which cause local destruction of tumors, are effective alternatives to surgical excision in several settings. Ethanol ablation is one such ablative treatment modality in which ethanol is directly injected into tumor nodules. Ethanol, however, tends to leak out of the tumor and into adjacent tissue structures, and its biodistribution is difficult to monitor in vivo. To address these challenges, this study presents a cutting-edge technology known as Light-Activatable Sustained-Exposure Ethanol Injection Technology (LASEIT). LASEIT comprises a three-part formulation: (1) ethanol, (2) benzoporphyrin derivative, which enables fluorescence-based tracking of drug distribution and the potential application of photodynamic therapy, and (3) ethyl cellulose, which forms a gel upon injection into tissue to facilitate drug retention. In vitro drug release studies showed that ethyl cellulose slowed the rate of release in LASEIT by 7×. Injections in liver tissues demonstrated a 6× improvement in volume distribution when using LASEIT compared to controls. In vivo experiments in a mouse pancreatic cancer xenograft model showed LASEIT exhibited significantly stronger average radiant efficiency than controls and persisted in tumors for up to 7 days compared to controls, which only persisted for less than 24 h. In summary, this study introduced LASEIT as a novel technology that enabled real-time fluorescence monitoring of drug distribution both ex vivo and in vivo. Further research exploring the efficacy of LASEIT is strongly warranted.
Collapse
Affiliation(s)
- Jeffrey Yang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Center for Interventional Oncology, Radiology and Imaging SciencesNIH Clinical Center, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Chen‐Hua Ma
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - John A. Quinlan
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Laboratory of Cell BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Kathryn McNaughton
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Taya Lee
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Peter Shin
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Tessa Hauser
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | | | - Shruti Vig
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Tri T. Quang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Matthew F. Starost
- Division of Veterinary ResourcesOffice of Research Services, National Institutes of HealthBethesdaMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Stewart Greenebaum Cancer Center, University of Maryland School of MedicineBaltimoreMarylandUSA
| | - Jenna L. Mueller
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Stewart Greenebaum Cancer Center, University of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Sonkin D, Thomas A, Teicher BA. Cancer treatments: Past, present, and future. Cancer Genet 2024; 286-287:18-24. [PMID: 38909530 PMCID: PMC11338712 DOI: 10.1016/j.cancergen.2024.06.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
There is a rich history of cancer treatments which provides a number of important lessons for present and future cancer therapies. We outline this history by looking in the past, reviewing the current landscape of cancer treatments, and by glancing at the potential future cancer therapies.
Collapse
Affiliation(s)
- Dmitriy Sonkin
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Rockville, MD 20850, USA.
| | - Anish Thomas
- National Cancer Institute, Center for Cancer Research, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Rockville, MD 20850, USA
| |
Collapse
|
8
|
Zhen W, Kang DW, Fan Y, Wang Z, Germanas T, Nash GT, Shen Q, Leech R, Li J, Engel GS, Weichselbaum RR, Lin W. Simultaneous Protonation and Metalation of a Porphyrin Covalent Organic Framework Enhance Photodynamic Therapy. J Am Chem Soc 2024. [PMID: 38837955 DOI: 10.1021/jacs.4c03519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Covalent organic frameworks (COFs) have been explored for photodynamic therapy (PDT) of cancer, but their antitumor efficacy is limited by excited state quenching and low reactive oxygen species generation efficiency. Herein, we report a simultaneous protonation and metalation strategy to significantly enhance the PDT efficacy of a nanoscale two-dimensional imine-linked porphyrin-COF. The neutral and unmetalated porphyrin-COF (Ptp) and the protonated and metalated porphyrin-COF (Ptp-Fe) were synthesized via imine condensation between 5,10,15,20-tetrakis(4-aminophenyl)porphyrin and terephthalaldehyde in the absence and presence of ferric chloride, respectively. The presence of ferric chloride generated both doubly protonated and Fe3+-coordinated porphyrin units, which red-shifted and increased the Q-band absorption and disrupted exciton migration to prevent excited state quenching, respectively. Under light irradiation, rapid energy transfer from protonated porphyrins to Fe3+-coordinated porphyrins in Ptp-Fe enabled 1O2 and hydroxyl radical generation via type II and type I PDT processes. Ptp-Fe also catalyzed the conversion of hydrogen peroxide to hydroxy radical through a photoenhanced Fenton-like reaction under slightly acidic conditions and light illumination. As a result, Ptp-Fe-mediated PDT exhibited much higher cytotoxicity than Ptp-mediated PDT on CT26 and 4T1 cancer cells. Ptp-Fe-mediated PDT afforded potent antitumor efficacy in subcutaneous CT26 murine colon cancer and orthotopic 4T1 murine triple-negative breast tumors and prevented metastasis of 4T1 breast cancer to the lungs. This work underscores the role of fine-tuning the molecular structures of COFs in significantly enhancing their PDT efficacy.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tomas Germanas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Qijie Shen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rachel Leech
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory S Engel
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
10
|
Wang Z, Wang X, Dai X, Xu T, Qian X, Chang M, Chen Y. 2D Catalytic Nanozyme Enables Cascade Enzyodynamic Effect-Boosted and Ca 2+ Overload-Induced Synergistic Ferroptosis/Apoptosis in Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312316. [PMID: 38501540 DOI: 10.1002/adma.202312316] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The introduction of glucose oxidase, exhibiting characteristics of glucose consumption and H2O2 production, represents an emerging antineoplastic therapeutic approach that disrupts nutrient supply and promotes efficient generation of reactive oxygen species (ROS). However, the instability of natural enzymes and their low therapeutic efficacy significantly impede their broader application. In this context, 2D Ca2Mn8O16 nanosheets (CMO NSs) designed and engineered to serve as a high-performance nanozyme, enhancing the enzyodynamic effect for a ferroptosis-apoptosis synergistic tumor therapy, are presented. In addition to mimicking activities of glutathione peroxidase, catalase, oxidase, and peroxidase, the engineered CMO NSs exhibit glucose oxidase-mimicking activities. This feature contributes to their antitumor performance through cascade catalytic reactions, involving the disruption of glucose supply, self-supply of H2O2, and subsequent efficient ROS generation. The exogenous Ca2+ released from CMO NSs, along with the endogenous Ca2+ enrichment induced by ROS from the peroxidase- and oxidase-mimicking activities of CMO NSs, collectively mediate Ca2+ overload, leading to apoptosis. Importantly, the ferroptosis process is triggered synchronously through ROS output and glutathione consumption. The application of exogenous ultrasound stimulation further enhances the efficiency of ferroptosis-apoptosis synergistic tumor treatment. This work underscores the crucial role of enzyodynamic performance in ferroptosis-apoptosis synergistic therapy against tumors.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianming Xu
- Department of Orthopedics, 905th Hospital of PLA Navy, Naval Medical University, Shanghai, 200050, P. R. China
| | - Xiaoqin Qian
- Department of Ultrasound Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225009, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, 325088, P. R. China
| |
Collapse
|
11
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 PMCID: PMC11781865 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
12
|
Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release 2024; 367:135-147. [PMID: 38237687 PMCID: PMC11700473 DOI: 10.1016/j.jconrel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe M Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
13
|
Nittayacharn P, Abenojar E, Cooley M, Berg F, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555196. [PMID: 37732235 PMCID: PMC10508722 DOI: 10.1101/2023.09.01.555196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe Berg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
14
|
Mahmoudian RA, Farshchian M, Golyan FF, Mahmoudian P, Alasti A, Moghimi V, Maftooh M, Khazaei M, Hassanian SM, Ferns GA, Mahaki H, Shahidsales S, Avan A. Preclinical tumor mouse models for studying esophageal cancer. Crit Rev Oncol Hematol 2023; 189:104068. [PMID: 37468084 DOI: 10.1016/j.critrevonc.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Alasti
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
15
|
Penny MK, Lerario AM, Basham KJ, Chukkapalli S, Mohan DR, LaPensee C, Converso-Baran K, Hoenerhoff MJ, Suárez-Fernández L, del Rey CG, Giordano TJ, Han R, Newman EA, Hammer GD. Targeting Oncogenic Wnt/β-Catenin Signaling in Adrenocortical Carcinoma Disrupts ECM Expression and Impairs Tumor Growth. Cancers (Basel) 2023; 15:3559. [PMID: 37509222 PMCID: PMC10377252 DOI: 10.3390/cancers15143559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but highly aggressive cancer with limited treatment options and poor survival for patients with advanced disease. An improved understanding of the transcriptional programs engaged in ACC will help direct rational, targeted therapies. Whereas activating mutations in Wnt/β-catenin signaling are frequently observed, the β-catenin-dependent transcriptional targets that promote tumor progression are poorly understood. To address this question, we analyzed ACC transcriptome data and identified a novel Wnt/β-catenin-associated signature in ACC enriched for the extracellular matrix (ECM) and predictive of poor survival. This suggested an oncogenic role for Wnt/β-catenin in regulating the ACC microenvironment. We further investigated the minor fibrillar collagen, collagen XI alpha 1 (COL11A1), and found that COL11A1 expression originates specifically from cancer cells and is strongly correlated with both Wnt/β-catenin activation and poor patient survival. Inhibition of constitutively active Wnt/β-catenin signaling in the human ACC cell line, NCI-H295R, significantly reduced the expression of COL11A1 and other ECM components and decreased cancer cell viability. To investigate the preclinical potential of Wnt/β-catenin inhibition in the adrenal microenvironment, we developed a minimally invasive orthotopic xenograft model of ACC and demonstrated that treatment with the newly developed Wnt/β-catenin:TBL1 inhibitor Tegavivint significantly reduced tumor growth. Together, our data support that the inhibition of aberrantly active Wnt/β-catenin disrupts transcriptional reprogramming of the microenvironment and reduces ACC growth and survival. Furthermore, this β-catenin-dependent oncogenic program can be therapeutically targeted with a newly developed Wnt/β-catenin inhibitor. These results show promise for the further clinical development of Wnt/β-catenin inhibitors in ACC and unveil a novel Wnt/β-catenin-regulated transcriptome.
Collapse
Affiliation(s)
- Morgan K. Penny
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Antonio M. Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaitlin J. Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sahiti Chukkapalli
- Mott Solid Tumor Oncology Program, C.S. Mott Children’s and Women’s Hospital, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dipika R. Mohan
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chris LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kimber Converso-Baran
- UMH Frankel Cardiovascular Center Physiology and Phenotyping Core, Ann Arbor, MI 48109, USA
| | - Mark J. Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Laura Suárez-Fernández
- Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Carmen González del Rey
- Department of Pathology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Thomas J. Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ruolan Han
- Iterion Therapeutics, Inc., Houston, TX 77021, USA
| | - Erika A. Newman
- Mott Solid Tumor Oncology Program, C.S. Mott Children’s and Women’s Hospital, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Luke JJ, Piha-Paul SA, Medina T, Verschraegen CF, Varterasian M, Brennan AM, Riese RJ, Sokolovska A, Strauss J, Hava DL, Janku F. Phase I Study of SYNB1891, an Engineered E. coli Nissle Strain Expressing STING Agonist, with and without Atezolizumab in Advanced Malignancies. Clin Cancer Res 2023; 29:2435-2444. [PMID: 37227176 PMCID: PMC11225568 DOI: 10.1158/1078-0432.ccr-23-0118] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE SYNB1891 is a live, modified strain of the probiotic Escherichia coli Nissle 1917 (EcN) engineered to produce cyclic dinucleotides under hypoxia, leading to STimulator of INterferon Genes (STING) activation in phagocytic antigen-presenting cells in tumors and activating complementary innate immune pathways. PATIENTS AND METHODS This first-in-human study (NCT04167137) enrolled participants with refractory advanced cancers to receive repeat intratumoral injections of SYNB1891 either alone or in combination with atezolizumab, with the primary objective of evaluating the safety and tolerability of both regimens. RESULTS Twenty-four participants received monotherapy across six cohorts, and 8 participants received combination therapy in two cohorts. Five cytokine release syndrome events occurred with monotherapy, including one that met the criteria for dose-limiting toxicity at the highest dose; no other SYNB1891-related serious adverse events occurred, and no SYNB1891-related infections were observed. SYNB1891 was not detected in the blood at 6 or 24 hours after the first intratumoral dose or in tumor tissue 7 days following the first dose. Treatment with SYNB1891 resulted in activation of the STING pathway and target engagement as assessed by upregulation of IFN-stimulated genes, chemokines/cytokines, and T-cell response genes in core biopsies obtained predose and 7 days following the third weekly dose. In addition, a dose-related increase in serum cytokines was observed, as well as stable disease in 4 participants refractory to prior PD-1/L1 antibodies. CONCLUSIONS Repeat intratumoral injection of SYNB1891 as monotherapy and in combination with atezolizumab was safe and well tolerated, and evidence of STING pathway target engagement was observed.
Collapse
Affiliation(s)
- Jason J. Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Theresa Medina
- University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | | | | | | - Filip Janku
- University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Kondratyev M, Pesic A, Ketela T, Stickle N, Beswick C, Shalev Z, Marastoni S, Samadian S, Dvorkin-Gheva A, Sayad A, Bashkurov M, Boasquevisque P, Datti A, Pugh TJ, Virtanen C, Moffat J, Grénman RA, Koritzinsky M, Wouters BG. Identification of acquired Notch3 dependency in metastatic Head and Neck Cancer. Commun Biol 2023; 6:538. [PMID: 37202533 DOI: 10.1038/s42003-023-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
During cancer development, tumor cells acquire changes that enable them to invade surrounding tissues and seed metastasis at distant sites. These changes contribute to the aggressiveness of metastatic cancer and interfere with success of therapy. Our comprehensive analysis of "matched" pairs of HNSCC lines derived from primary tumors and corresponding metastatic sites identified several components of Notch3 signaling that are differentially expressed and/or altered in metastatic lines and confer a dependency on this pathway. These components were also shown to be differentially expressed between early and late stages of tumors in a TMA constructed from over 200 HNSCC patients. Finally, we show that suppression of Notch3 improves survival in mice in both subcutaneous and orthotopic models of metastatic HNSCC. Novel treatments targeting components of this pathway may prove effective in targeting metastatic HNSCC cells alone or in combination with conventional therapies.
Collapse
Affiliation(s)
- Maria Kondratyev
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada.
| | - Aleksandra Pesic
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Natalie Stickle
- Princess Margaret Cancer Center, Bioinformatics and HPC Core, Toronto, ON, Canada
| | - Christine Beswick
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Zvi Shalev
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Stefano Marastoni
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Soroush Samadian
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Anna Dvorkin-Gheva
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Azin Sayad
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Mikhail Bashkurov
- SMART High-Content Screening facility at Network Biology Collaborative Centre, Toronto, ON, Canada
| | - Pedro Boasquevisque
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Alessandro Datti
- SMART High-Content Screening facility at Network Biology Collaborative Centre, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada
| | - Carl Virtanen
- Princess Margaret Cancer Center, Bioinformatics and HPC Core, Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | - Bradly G Wouters
- Princess Margaret Cancer Centre University Health Network, Toronto, ON, Canada.
| |
Collapse
|
19
|
Watterson A, Coelho MA. Cancer immune evasion through KRAS and PD-L1 and potential therapeutic interventions. Cell Commun Signal 2023; 21:45. [PMID: 36864508 PMCID: PMC9979509 DOI: 10.1186/s12964-023-01063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
Oncogenic driver mutations have implications that extend beyond cancer cells themselves. Aberrant tumour cell signalling has various effects on the tumour microenvironment and anti-tumour immunity, with important consequences for therapy response and resistance. We provide an overview of how mutant RAS, one of the most prevalent oncogenic drivers in cancer, can instigate immune evasion programs at the tumour cell level and through remodelling interactions with the innate and adaptive immune cell compartments. Finally, we describe how immune evasion networks focused on RAS, and the immune checkpoint molecule PD-L1 can be disrupted through therapeutic intervention, and discuss potential strategies for combinatorial treatment. Video abstract.
Collapse
Affiliation(s)
- Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.,Open Targets, Cambridge, UK
| | - Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK. .,Open Targets, Cambridge, UK.
| |
Collapse
|
20
|
Jacoberger-Foissac C, Allard B, Allard D, Stagg J. Assessing the Efficacy of Immune Checkpoint Inhibitors in Preclinical Tumor Models. Methods Mol Biol 2023; 2614:151-169. [PMID: 36587125 DOI: 10.1007/978-1-0716-2914-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The identification of novel immune-related targets that can reactivate or enhance antitumor immunity is a very active field of cancer research. In this context, syngeneic tumor models are often used during the preclinical development of immunotherapies to assess their efficacy and analyze the immune system and tumor cell interaction. Here, we present the practical procedures to generate subcutaneous tumors and experimental lung metastases used to evaluate the antitumor activity of your immunotherapy of interest. We also describe a method to quantify contrasted lung metastasis burden by imaging. Finally, we present a protocol to perform orthotopic injection of breast tumor cells in the mammary fat pad followed by tumor resection for the study of spontaneous metastases and evaluation of neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Celia Jacoberger-Foissac
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, QC, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, QC, Canada
| | - David Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, QC, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, QC, Canada.
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
21
|
Fuochi S, Galligioni V. Disease Animal Models for Cancer Research. Methods Mol Biol 2023; 2645:105-125. [PMID: 37202613 DOI: 10.1007/978-1-0716-3056-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite nonanimal methods (NAMs) are more and more exploited and new NAMs are developed and validated, animal models are still used in cancer research. Animals are used at multiple levels, from understanding molecular traits and pathways, to mimicking clinical aspects of tumor progression, to drug testing. In vivo approaches are not trivial and involve cross-disciplinary knowledge: animal biology and physiology, genetics, pathology, and animal welfare.The aim of this chapter is not to list and address all animal models used in cancer research. Instead, the authors would like to guide experimenters in the strategies to adopt in both planning and performing in vivo experimental procedures, including the choice of cancer animal models.
Collapse
Affiliation(s)
- Sara Fuochi
- Universität Bern, Experimental Animal Center, Bern, Switzerland
| | - Viola Galligioni
- Netherlands Institute for Neuroscience - KNAW, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Takeuchi Y, Inoue S, Odaka A. Expression of programmed cell death-1 on neuroblastoma cells in TH-MYCN transgenic mice. Pediatr Surg Int 2022; 39:6. [PMID: 36441248 DOI: 10.1007/s00383-022-05292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Immunotherapy may improve the poor prognosis of high-risk neuroblastoma. Programmed cell death-1 (PD-1) is expressed in several cancers. The tyrosine hydroxylase MYCN (TH-MYCN) transgenic mouse model is widely used in neuroblastoma research, but detailed information on its immunological background is lacking. Therefore, we studied the immunological tumor microenvironment and tumor cell surface antigen expression in homozygote and hemizygote mice and effects of antibody therapy against PD-1. METHODS CD4, CD8, CD11b, and CD11c expression in immune cells from retroperitoneal lymph nodes and spleen was analyzed by flow cytometry. Tumor cell surface antigen expression was confirmed, and data from homozygote and hemizygote mice were compared. Effects of anti-PD-1 antibody were evaluated. RESULTS CD4-, CD8-, CD11b-, and CD11c-positive cells were not significantly different in homozygote and hemizygote mice, and CD11b- and CD11c-positive cells were identified in the tumor microenvironment in both. Tumor cells expressed PD-1, and anti-PD-1 antibody had anti-tumor effects and significantly reduced the percentage of living tumor cells in cultures after 2 h. CONCLUSION The immunological background is similar in homozygote and hemizygote TH-MYCN transgenic mice, and both have PD-1-positive tumor cells. Anti-PD-1 antibody suppresses tumor growth. This mouse model may be a useful for studying immunotherapy of neuroblastoma.
Collapse
Affiliation(s)
- Yuta Takeuchi
- Department of Pediatric Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Seiichiro Inoue
- Department of Pediatric Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan.
| | - Akio Odaka
- Department of Pediatric Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| |
Collapse
|
23
|
Miyata R, Hasegawa K, Menju T, Yoshizawa A, Watanabe A, Hirai T, Date H, Sato A. Lung fibrogenic microenvironment in mouse reconstitutes human alveolar structure and lung tumor. iScience 2022; 25:104912. [PMID: 36060050 PMCID: PMC9436761 DOI: 10.1016/j.isci.2022.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
A mesenchymal cell activation is a hallmark event of pulmonary fibrosis. Alveolar type 2 (AT2) cells are progenitor cells that maintain alveolar homeostasis, and their damage is assumed to be an initiating event for pulmonary fibrosis. However, the interaction between the lung fibrogenic microenvironment and AT2 cell dynamics remains to be elucidated. Here, we report a unique role of the lung fibrogenic microenvironment, where cell type-specific tissue reconstruction is achieved by exogenous cell transplantation. We found that in the lung fibrogenic microenvironment the AT2 cell pool was depleted, whereas mesenchymal cells could promote intact AT2 cell proliferation in vitro. Furthermore, exogenously transplanted AT2 cells formed alveolar colonies and ameliorated pulmonary fibrosis. Exogenous tumor cells formed tumor nests with relevant histological and transcriptional properties. Human primary cells were adaptable to this microenvironment, facilitating epithelial cell-targeted therapy in pulmonary fibrosis and the establishment of patient-derived xenografts for precision medicine in lung cancer. Severe bleomycin-induced lung injury causes a significant AT2 cell loss Mesenchymal cells in the fibrogenic lung supports AT2 cell proliferation AT2 cell transplantation ameliorates bleomycin-induced pulmonary fibrosis Novel orthotopic lung cancer models are established for patient-derived xenografts
Collapse
Affiliation(s)
- Ryo Miyata
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichi Hasegawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Center for iPS Cell Research & Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Corresponding author
| |
Collapse
|
24
|
Cao J, Zhang Y, Zhang P, Zhang Z, Zhang B, Feng Y, Li Z, Yang Y, Meng Q, He L, Cai Y, Wang Z, Li J, Chen X, Liu H, Hong A, Zheng W, Chen X. Turning gray selenium into a nanoaccelerator of tissue regeneration by PEG modification. Bioact Mater 2022; 15:131-144. [PMID: 35386336 PMCID: PMC8940942 DOI: 10.1016/j.bioactmat.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in nearly all human physiological processes but suffers from a narrow margin between benefit and toxicity. The nanoform of selenium has been proven shown to be more bioavailable and less toxic, yet significant challenges remain regarding the efficient and feasible synthesis of biologically active nanoselenium. In addition, although nanoselenium has shown a variety of biological activities, more interesting nanoselenium features are expected. In this work, hydrosoluble nanoselenium termed Nano-Se in the zero oxidation state was synthesized between gray Se and PEG. A zebrafish screen was carried out in zebrafish larvae cocultured with Nano-Se. Excitingly, Nano-Se promoted the action of the FGFR, Wnt, and VEGF signaling pathways, which play crucial roles in tissue regeneration. As expected, Nano-Se not only achieved the regeneration of zebrafish tail fins and mouse skin but also promoted the repair of skin in diabetic mice while maintaining a profitable safe profile. In brief, the Nano-Se reported here provided an efficient and feasible method for bioactive nanoselenium synthesis and not only expanded the application of nanoselenium to regenerative medicine but also likely reinvigorated efforts for discovering more peculiarunique biofunctions of nanoselenium in a great variety of human diseases. It was found that selenium nanoparticles through FGFR、Wnt、VEGFR signal pathway to promote tissue regeneration; Development a new water-soluble, bio-compatible, zero oxidation state Nano-Se; Development a new efficient and safe nano-biologic agent for promoting tissue regeneration.
Collapse
Affiliation(s)
- Jieqiong Cao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zilei Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zhixin Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qilin Meng
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jie Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xue Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Corresponding author.
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
- Corresponding author.
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510240, China
- Corresponding author. Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
| |
Collapse
|
25
|
Liu S, Huang F, Ru G, Wang Y, Zhang B, Chen X, Chu L. Mouse Models of Hepatocellular Carcinoma: Classification, Advancement, and Application. Front Oncol 2022; 12:902820. [PMID: 35847898 PMCID: PMC9279915 DOI: 10.3389/fonc.2022.902820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.
Collapse
Affiliation(s)
- Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Chu,
| |
Collapse
|
26
|
Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer. Int J Mol Sci 2022; 23:ijms23116271. [PMID: 35682953 PMCID: PMC9181003 DOI: 10.3390/ijms23116271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis formation and metastatic outgrowth. Whole-genome sequencing analyses of primary BC and metastases revealed that BC metastatization is a non-genetically selected trait, rather the result of transcriptional and metabolic adaptation to the unfavorable microenvironmental conditions which cancer cells are exposed to (e.g., hypoxia, low nutrients, endoplasmic reticulum stress and chemotherapy administration). In this regard, the latest multi-omics analyses unveiled intra-tumor phenotypic heterogeneity, which determines the polyclonal nature of breast tumors and constitutes a challenge for clinicians, correlating with patient poor prognosis. The present work reviews BC classification and epidemiology, focusing on the impact of metastatic disease on patient prognosis and survival, while describing general principles and current in vitro/in vivo models of the BC metastatic cascade. The authors address here both genetic and phenotypic intrinsic heterogeneity of breast tumors, reporting the latest studies that support the role of the latter in metastatic spreading. Finally, the review illustrates the mechanisms underlying adaptive stress responses during BC metastatic progression.
Collapse
|
27
|
Qi Y, Zhao T, Li R, Han M. Macrophage-Secreted S100A4 Supports Breast Cancer Metastasis by Remodeling the Extracellular Matrix in the Premetastatic Niche. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9895504. [PMID: 35496059 PMCID: PMC9046007 DOI: 10.1155/2022/9895504] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022]
Abstract
Metastasis is the major cause of cancer-related mortalities. A tumor-supportive microenvironment, also known as the premetastatic niche at secondary tumor sites, plays a crucial role in metastasis. Remodeling of the extracellular matrix (ECM) is essential for premetastatic niche formation, especially for circulating tumor cell colonization. However, the underlying molecular mechanism that contributes to this effect remains unclear. Here, we developed a lung metastasis model with 4T1 breast cancer cells and found that the metastasis critically depended on the early recruitment of macrophages to the lung. Disruption of macrophage recruitment reduced fibroblast activation and lung metastasis. Furthermore, we identified the secreted protein S100A4, which is produced by M2 macrophages and participates in fibroblast activation and ECM protein deposition via the ERK signaling pathway. Collectively, these results indicate that recruiting S100A4-expressing inflammatory macrophages plays a vital role in ECM remodeling in the premetastatic niche and may act as a potential therapeutic target for breast cancer lung metastasis.
Collapse
Affiliation(s)
- Yana Qi
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Tingting Zhao
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Ranran Li
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| |
Collapse
|
28
|
Oekchuae S, Sirirak J, Charoensuksai P, Wongprayoon P, Chuaypen N, Boonsombat J, Ruchirawat S, Tangkijvanich P, Suksamrarn A, Limpachayaporn P. The Design and Synthesis of a New Series of 1,2,3-Triazole-Cored Structures Tethering Aryl Urea and Their Highly Selective Cytotoxicity toward HepG2. Pharmaceuticals (Basel) 2022; 15:ph15050504. [PMID: 35631331 PMCID: PMC9147274 DOI: 10.3390/ph15050504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/02/2023] Open
Abstract
Target cancer drug therapy is an alternative treatment for advanced hepatocellular carcinoma (HCC) patients. However, the treatment using approved targeted drugs has encountered a number of limitations, including the poor pharmacological properties of drugs, therapy efficiency, adverse effects, and drug resistance. As a consequence, the discovery and development of anti-HCC drug structures are therefore still in high demand. Herein, we designed and synthesized a new series of 1,2,3-triazole-cored structures incorporating aryl urea as anti-HepG2 agents. Forty-nine analogs were prepared via nucleophilic addition and copper-catalyzed azide-alkyne cycloaddition (CuAAC) with excellent yields. Significantly, almost all triazole-cored analogs exhibited less cytotoxicity toward normal cells, human embryonal lung fibroblast cell MRC-5, compared to Sorafenib and Doxorubicin. Among them, 2m’ and 2e exhibited the highest selectivity indexes (SI = 14.7 and 12.2), which were ca. 4.4- and 3.7-fold superior to that of Sorafenib (SI = 3.30) and ca. 3.8- and 3.2-fold superior to that of Doxorubicin (SI = 3.83), respectively. Additionally, excellent inhibitory activity against hepatocellular carcinoma HepG2, comparable to Sorafenib, was still maintained. A cell-cycle analysis and apoptosis induction study suggested that 2m’ and 2e likely share a similar mechanism of action to Sorafenib. Furthermore, compounds 2m’ and 2e exhibit appropriate drug-likeness, analyzed by SwissADME. With their excellent anti-HepG2 activity, improved selectivity indexes, and appropriate druggability, the triazole-cored analogs 2m’ and 2e are suggested to be promising candidates for development as targeted cancer agents and drugs used in combination therapy for the treatment of HCC.
Collapse
Affiliation(s)
- Sittisak Oekchuae
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.O.); (J.S.)
- Chulabhorn Research Institute, Bangkok 10210, Thailand; (J.B.); (S.R.)
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.O.); (J.S.)
| | - Purin Charoensuksai
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.C.); (P.W.)
| | - Pawaris Wongprayoon
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.C.); (P.W.)
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (P.T.)
| | - Jutatip Boonsombat
- Chulabhorn Research Institute, Bangkok 10210, Thailand; (J.B.); (S.R.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Research Institute, Bangkok 10210, Thailand; (J.B.); (S.R.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (P.T.)
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand;
| | - Panupun Limpachayaporn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.O.); (J.S.)
- Correspondence: or ; Tel.: +66-34-255797; Fax: +66-34-271356
| |
Collapse
|
29
|
Chen Y, Zhang X, Lu X, Wu H, Zhang D, Zhu B, Huang S. Ultra-sensitive responsive near-infrared fluorescent nitroreductase probe with strong specificity for imaging tumor and detecting the invasiveness of tumor cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120634. [PMID: 34836811 DOI: 10.1016/j.saa.2021.120634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Hypoxia plays an important role in cancer progression, which is a characteristic feature of the tumor micro-environment and reflects the invasiveness of tumor cells. Nitroreductase (NTR) is overexpressed in hypoxic tumors, which making it an efficient target for detecting the hypoxic state in tumor. In this work, a new type of nitro-based fluorescent probe, named HNT-NTR, has been proposed, HNT-NTR could detect specifically and rapidly the NTR degree, which reflects the level of hypoxia in bidimensional (2D) tumor cells, three-dimensional (3D) tumor spheres and even the real tumors in vivo without biological toxicity. Most importantly, according to the research, HNT-NTR even could distinguish tumor cells from other normal cells in vivo and reflect the invasiveness of tumor cells by the near-infrared fluorescence intensity, which provides a new way of clinical pathologic diagnosis. All in all, HNT-NTR not only is proven to be an ideal probe for detecting solid tumors in vivo, but also has great potential to distinguish if cells are benign or malignant and even guide therapeutic applications in the clinic.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaoya Lu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
30
|
Yajima S, Sugawara K, Iwai M, Tanaka M, Seto Y, Todo T. Efficacy and safety of a third-generation oncolytic herpes virus G47Δ in models of human esophageal carcinoma. Mol Ther Oncolytics 2021; 23:402-411. [PMID: 34853811 PMCID: PMC8605086 DOI: 10.1016/j.omto.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Treatment options are limited for esophageal carcinoma (EC). G47Δ, a triple-mutated, conditionally replicating herpes simplex virus type 1 (HSV-1), exhibits enhanced killing of tumor cells with high safety features. Here, we studied the efficacy of G47Δ using preclinical models of human EC. In vitro, G47Δ showed efficient cytopathic effects and replication capabilities in all eight human esophageal cancer cell lines tested. In athymic mice harboring subcutaneous tumors of human EC (KYSE180, TE8, and OE19), two intratumoral injections with G47Δ significantly inhibited the tumor growth. To mimic the clinical treatment situations, we established an orthotopic EC model using luciferase-expressing TE8 cells (TE8-luc). An intratumoral injection with G47Δ markedly inhibited the growth of orthotopic TE8-luc tumors in athymic mice. Furthermore, we evaluated the safety of applying G47Δ to the esophagus in mice. A/J mice inoculated intraesophageally or administered orally with G47Δ (107 plaque-forming units [pfu]) survived for more than 2 months without remarkable symptoms, whereas the majority with wild-type HSV-1 (106 pfu) deteriorated within 10 days. PCR analyses showed that the G47Δ DNA was confined to the esophagus after intraesophageal inoculation and was not detected in major organs after oral administration. Our results provide a rationale for the clinical use of G47Δ for treating EC.
Collapse
Affiliation(s)
- Shoh Yajima
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Sugawara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Chen TJ, Mydel P, Benedyk‐Machaczka M, Kamińska M, Kalucka U, Blø M, Furriol J, Gausdal G, Lorens J, Osman T, Marti H. AXL targeting by a specific small molecule or monoclonal antibody inhibits renal cell carcinoma progression in an orthotopic mice model. Physiol Rep 2021; 9:e15140. [PMID: 34877810 PMCID: PMC8652404 DOI: 10.14814/phy2.15140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
AXL tyrosine kinase activation enhances cancer cell survival, migration, invasiveness, and promotes drug resistance. AXL overexpression is typically detected in a high percentage of renal cell carcinomas (RCCs) and is strongly associated with poor prognosis. Therefore, AXL inhibition represents an attractive treatment option in these cancers. In this preclinical study, we investigated the antitumor role of a highly selective small molecule AXL inhibitor bemcentinib (BGB324, BerGenBio), and a newly developed humanized anti-AXL monoclonal function blocking antibody tilvestamab, (BGB149, BerGenBio), in vitro and an orthotopic RCC mice model. The 786-0-Luc human RCC cells showed high AXL expression. Both bemcentinib and tilvestamab significantly inhibited AXL activation induced by Gas6 stimulation in vitro. Furthermore, tilvestamab inhibited the downstream AKT phosphorylation in these cells. The 786-0-Luc human RCC cells generated tumors with high Ki67 and vimentin expression upon orthotopic implantation in athymic BALB/c nude mice. Most importantly, both bemcentinib and tilvestamab inhibited the progression of tumors induced by the orthotopically implanted 786-0 RCC cells. Remarkably, their in vivo antitumor effectiveness was not significantly enhanced by concomitant administration of a multi-target tyrosine kinase inhibitor. Bemcentinib and tilvestamab qualify as compounds of potentially high clinical interest in AXL overexpressing RCC.
Collapse
Affiliation(s)
- Tony J. Chen
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Piotr Mydel
- Department of Clinical ScienceUniversity of BergenBergenNorway
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | | | - Marta Kamińska
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | - Urszula Kalucka
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | | | - Jessica Furriol
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - James Lorens
- Department of BiomedicineCentre for Cancer BiomarkersNorwegian Centre of ExcellenceUniversity of BergenBergenNorway
| | - Tarig Osman
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| |
Collapse
|
32
|
Wong RLY, Wong MRE, Kuick CH, Saffari SE, Wong MK, Tan SH, Merchant K, Chang KTE, Thangavelu M, Periyasamy G, Chen ZX, Iyer P, Tan EEK, Soh SY, Iyer NG, Fan Q, Loh AHP. Integrated Genomic Profiling and Drug Screening of Patient-Derived Cultures Identifies Individualized Copy Number-Dependent Susceptibilities Involving PI3K Pathway and 17q Genes in Neuroblastoma. Front Oncol 2021; 11:709525. [PMID: 34722256 PMCID: PMC8551924 DOI: 10.3389/fonc.2021.709525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma is the commonest extracranial pediatric malignancy. With few recurrent single nucleotide variations (SNVs), mutation-based precision oncology approaches have limited utility, but its frequent and heterogenous copy number variations (CNVs) could represent genomic dependencies that may be exploited for personalized therapy. Patient-derived cell culture (PDC) models can facilitate rapid testing of multiple agents to determine such individualized drug-responses. Thus, to study the relationship between individual genomic aberrations and therapeutic susceptibilities, we integrated comprehensive genomic profiling of neuroblastoma tumors with drug screening of corresponding PDCs against 418 targeted inhibitors. We quantified the strength of association between copy number and cytotoxicity, and validated significantly correlated gene-drug pairs in public data and using machine learning models. Somatic mutations were infrequent (3.1 per case), but copy number losses in 1p (31%) and 11q (38%), and gains in 17q (69%) were prevalent. Critically, in-vitro cytotoxicity significantly correlated only with CNVs, but not SNVs. Among 1278 significantly correlated gene-drug pairs, copy number of GNA13 and DNA damage response genes CBL, DNMT3A, and PPM1D were most significantly correlated with cytotoxicity; the drugs most commonly associated with these genes were PI3K/mTOR inhibitor PIK-75, and CDK inhibitors P276-00, SNS-032, AT7519, flavopiridol and dinaciclib. Predictive Markov random field models constructed from CNVs alone recapitulated the true z-score-weighted associations, with the strongest gene-drug functional interactions in subnetworks involving PI3K and JAK-STAT pathways. Together, our data defined individualized dose-dependent relationships between copy number gains of PI3K and STAT family genes particularly on 17q and susceptibility to PI3K and cell cycle agents in neuroblastoma. Integration of genomic profiling and drug screening of patient-derived models of neuroblastoma can quantitatively define copy number-dependent sensitivities to targeted inhibitors, which can guide personalized therapy for such mutationally quiet cancers.
Collapse
Affiliation(s)
| | - Megan R E Wong
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Seyed Ehsan Saffari
- Centre for Quantitative Medicine, Duke NUS Medical School, Singapore, Singapore
| | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Khurshid Merchant
- Duke NUS Medical School, Singapore, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kenneth T E Chang
- Duke NUS Medical School, Singapore, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Matan Thangavelu
- Centre for High Throughput Phenomics (CHiP-GIS), Genome Institute of Singapore, Singapore, Singapore
| | - Giridharan Periyasamy
- Centre for High Throughput Phenomics (CHiP-GIS), Genome Institute of Singapore, Singapore, Singapore
| | - Zhi Xiong Chen
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Prasad Iyer
- Duke NUS Medical School, Singapore, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Enrica E K Tan
- Duke NUS Medical School, Singapore, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Duke NUS Medical School, Singapore, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - N Gopalakrishna Iyer
- Duke NUS Medical School, Singapore, Singapore.,Division of Medical Sciences, National Cancer Centre, Singapore, Singapore
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke NUS Medical School, Singapore, Singapore
| | - Amos H P Loh
- Duke NUS Medical School, Singapore, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
33
|
Tang S, Yang X, Zhou C, Mei Y, Ye J, Zhang X, Feng G, Zhang W, Zhang X, Fan W. Sodium Pump Na + /K + ATPase Subunit α1-Targeted Positron Emission Tomography Imaging of Hepatocellular Carcinoma in Mouse Models. Mol Imaging Biol 2021; 24:384-393. [PMID: 34622423 DOI: 10.1007/s11307-021-01659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Positron emission tomography (PET) imaging was not efficiently used in the early diagnosis of hepatocellular carcinoma (HCC) due to the lack of appropriate tracers. Sodium pump Na + /K + ATPase subunit α1 (NKAα1) emerges to be a potential diagnostic biomarker of HCC. Here, we investigated the feasibility of 18F-ALF-NOTA-S3, a PET tracer based on an NKAα1 peptide, to detect small HCC. PROCEDURES GEPIA database was searched to obtain the expression characteristics of NKAα1 in HCC and its relationship with the prognosis. PET/CT was performed in orthotopic, diethylnitrosamine (DEN)-induced and genetically engineered HCC mouse models to evaluate the use of 18F-ALF-NOTA-S3 to detect HCC lesions. RESULTS NKAα1 is overexpressed in early HCC with a high positive rate and may correlate with poor survival. In orthotopic, DEN-induced and genetically engineered HCC mouse models, PET/CT imaging showed a high accumulation of 18F-ALF-NOTA-S3 in the tumor. The tumor-to-liver ratios are 2.56 ± 1.02, 4.41 ± 1.09, and 4.59 ± 0.65, respectively. Upregulated NKAα1 expression in tumors were verified by immunohistochemistry. Furthermore, 18F-ALF-NOTA-S3 has the ability to detect small HCC lesions with diameters of 2-5 mm. CONCLUSIONS NKAα1 may serve as a suitable diagnostic biomarker for HCC. 18F-ALF-NOTA-S3 shows great potential for PET imaging of HCC.
Collapse
Affiliation(s)
- Si Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - XiaoChun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - JiaCong Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - XiaoFei Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - GuoKai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - WeiGuang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
34
|
Cai Y, Chen T, Liu J, Peng S, Liu H, Lv M, Ding Z, Zhou Z, Li L, Zeng S, Xiao E. Orthotopic Versus Allotopic Implantation: Comparison of Radiological and Pathological Characteristics. J Magn Reson Imaging 2021; 55:1133-1140. [PMID: 34611963 PMCID: PMC9291575 DOI: 10.1002/jmri.27940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022] Open
Abstract
Background In experimental animal models, implantation location might influence the heterogeneity and overall development of the tumor, leading to an interpretation bias. Purpose To investigate the effects of implantation location in experimental tumor model using magnetic resonance imaging (MRI) and pathological findings. Study Type Prospective. Subjects Forty‐five breast cancer‐bearing mice underwent orthotopic (N = 15) and heterotopic (intrahepatic [N = 15] and subcutaneous [N = 15]) implantation. Field Strength/Sequence Sequences including: T1‐weighted turbo spin echo sequence, T2‐weighted blade sequence, diffusion‐weighted imaging, pre‐ and post‐contrast T1 mapping, multi‐echo T2 mapping at 3.0 T. Assessment MRI was performed at 7, 14, and 21 days after implantation. Native T1, post‐contrast T1, T2, and apparent diffusion coefficient (ADC) of tumors, the tumor volume and necrosis volume within tumor were obtained. Lymphocyte cells from H&E staining, Ki67‐positive, and CD31‐positive cells from immunohistochemistry were determined. Statistical Tests One‐way analysis of variance and Spearman's rank correlation were performed. P value <0.05 was considered statistically significant. Results The tumor volume (intrahepatic vs. orthotopic vs. subcutaneous: 587.50 ± 77.62 mm3 vs. 814.00 ± 43.85 mm3 vs. 956.13 ± 119.22 mm3), necrosis volume within tumor (89.10 ± 26.60 mm3 vs. 292.41 ± 57.92 mm3 vs. 179.91 ± 31.73 mm3, respectively), ADC at day 21 (543.41 ± 42.28 vs. 542.92 ± 99.67 vs. 369.83 ± 42.90, respectively), and post‐contrast T1 at all timepoints (day 7: 442.00 ± 11.52 vs. 435.00 ± 22.90 vs. 394.33 ± 29.95; day 14: 459.00 ± 26.11 vs. 436.83 ± 26.01 vs. 377.00 ± 27.83; day 21: 463.50 ± 23.49 vs. 458.00 ± 34.28 vs. 375.00 ± 30.55) were significantly different between three groups. Necrosis volumes of subcutaneous and intrahepatic tumors were significantly lower than those of orthotopic tumors. The CD31‐positive rate in the intrahepatic implantation was significantly higher than in orthotopic and subcutaneous groups. Necrosis volume (r = −0.71), ADC (r = −0.85), and post‐contrast T1 (r = −0.75) were strongly correlated with vascular invasion index. Data Conclusion Orthotopic and heterotopic tumors have their unique growth kinetics, necrosis volume, and vascular invasion. Non‐invasive MR quantitative parameters, including ADC and post‐contrast T1, may reflect vascular invasion in mice. Level of Evidence 1 Technical Efficacy Stage 3
Collapse
Affiliation(s)
- YeYu Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - TaiLi Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - JiaYi Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - ShuHui Peng
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Lv
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - ZhuYuan Ding
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - ZiYi Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - EnHua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| |
Collapse
|
35
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
36
|
Abstract
INTRODUCTION Chemokines and their cognate receptors play a major role in modulating inflammatory responses. Depending on their ligand binding, chemokine receptors can stimulate both immune activating and inhibitory signaling pathways. The CC chemokine receptor 5 (CCR5) promotes immune responses by recruiting immune cells to the sites of inflammation/tumor, and is involved in stimulating tumor cell proliferation, invasion and migration through various mechanisms. Moreover, CCR5 also contributes to an immune-suppressive tumor microenvironment by recruiting regulatory T cells and myeloid-derived suppressor cells facilitating tumor development and progression. In summary, cells expressing CCR5 modulate immune response and tumor progression. Expression of CCR5 is increased in various malignancies and associated with poor outcome. Experimental data show promising efficacy signals with CCR5 antagonists in preclinical tumor models. Therefore, CCR5 has been recognized as a potential therapeutic target for cancer. AREAS COVERED In this review, we focus on the role of CCR5 in cancer progression and discuss its impact and potential as a therapeutic target for cancer. EXPERT OPINION Beyond immune-checkpoint inhibitors, potentially synergistic immune-modulatory drugs such as CCR5 antagonists are a promising approach to enlarge our treatment armamentarium against cancer.
Collapse
Affiliation(s)
- Hossein Hemmatazad
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin D Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Kalra J, Baker J, Song J, Kyle A, Minchinton A, Bally M. Inter-Metastatic Heterogeneity of Tumor Marker Expression and Microenvironment Architecture in a Preclinical Cancer Model. Int J Mol Sci 2021; 22:6336. [PMID: 34199298 PMCID: PMC8231937 DOI: 10.3390/ijms22126336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Preclinical drug development studies rarely consider the impact of a candidate drug on established metastatic disease. This may explain why agents that are successful in subcutaneous and even orthotopic preclinical models often fail to demonstrate efficacy in clinical trials. It is reasonable to anticipate that sites of metastasis will be phenotypically unique, as each tumor will have evolved heterogeneously with respect to gene expression as well as the associated phenotypic outcome of that expression. The objective for the studies described here was to gain an understanding of the tumor heterogeneity that exists in established metastatic disease and use this information to define a preclinical model that is more predictive of treatment outcome when testing novel drug candidates clinically. METHODS Female NCr nude mice were inoculated with fluorescent (mKate), Her2/neu-positive human breast cancer cells (JIMT-mKate), either in the mammary fat pad (orthotopic; OT) to replicate a primary tumor, or directly into the left ventricle (intracardiac; IC), where cells eventually localize in multiple sites to create a model of established metastasis. Tumor development was monitored by in vivo fluorescence imaging (IVFI). Subsequently, animals were sacrificed, and tumor tissues were isolated and imaged ex vivo. Tumors within organ tissues were further analyzed via multiplex immunohistochemistry (mIHC) for Her2/neu expression, blood vessels (CD31), as well as a nuclear marker (Hoechst) and fluorescence (mKate) expressed by the tumor cells. RESULTS Following IC injection, JIMT-1mKate cells consistently formed tumors in the lung, liver, brain, kidney, ovaries, and adrenal glands. Disseminated tumors were highly variable when assessing vessel density (CD31) and tumor marker expression (mkate, Her2/neu). Interestingly, tumors which developed within an organ did not adopt a vessel microarchitecture that mimicked the organ where growth occurred, nor did the vessel microarchitecture appear comparable to the primary tumor. Rather, metastatic lesions showed considerable variability, suggesting that each secondary tumor is a distinct disease entity from a microenvironmental perspective. CONCLUSIONS The data indicate that more phenotypic heterogeneity in the tumor microenvironment exists in models of metastatic disease than has been previously appreciated, and this heterogeneity may better reflect the metastatic cancer in patients typically enrolled in early-stage Phase I/II clinical trials. Similar to the suggestion of others in the past, the use of models of established metastasis preclinically should be required as part of the anticancer drug candidate development process, and this may be particularly important for targeted therapeutics and/or nanotherapeutics.
Collapse
Affiliation(s)
- Jessica Kalra
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada;
- Applied Research Centre, Langara, Vancouver, BC V5Y 2Z6, Canada
- Department Anesthesia Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Jennifer Baker
- Integrative Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; (J.B.); (A.K.)
| | - Justin Song
- Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, TN 37235, USA;
| | - Alastair Kyle
- Integrative Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; (J.B.); (A.K.)
| | - Andrew Minchinton
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Integrative Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; (J.B.); (A.K.)
| | - Marcel Bally
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada;
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Nanomedicine Innovation Network, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
Kettler B, Trauzold A, Röder C, Egberts JH, Kalthoff H. Topology impacts TRAIL therapy: Differences in primary cancer growth and liver metastasis between orthotopic and subcutaneous xenotransplants of pancreatic ductal adenocarcinoma cells. Hepatobiliary Pancreat Dis Int 2021; 20:279-284. [PMID: 33947634 DOI: 10.1016/j.hbpd.2021.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/13/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To study novel treatment modalities for pancreatic ductal adenocarcinoma (PDAC), we need to transfer the knowledge from in vitro to in vivo. It is important to mirror the clinical characteristics of the typically local invasive growth of pancreatic cancer and the distant spread resulting in liver metastasis. Notably, for xenotransplant studies using human specimen, two models, i.e. subcutaneous (s.c.) and orthotopic (o.t.) transplantation are widely used. METHODS The subcutaneously and orthotopically inoculated Colo357 Bcl-xL cell-derived tumors were directly compared with and without TNF-related apoptosis inducing ligand (TRAIL) treatment. The size of primary tumors, number of liver metastasis and the histologic markers Ki67, M30, TNF-α and CD31 were assessed. RESULTS Upon TRAIL treatment, the primary tumors did not change their size, neither in the s.c. nor in the o.t. approaches. But when s.c. was compared to o.t., the size of the s.c. tumors was more than two-fold bigger than that of the o.t. tumors (P < 0.01). However, mice with orthotopically inoculated PDAC cells developed liver metastasis upon TRAIL treatment much more frequently (n = 13/17) than mice with subcutaneously inoculated PDAC cells (n = 1/11) (P < 0.01). As a likely driving force for this increased metastasis, a higher TNF-α staining intensity in the o.t. tumors was observed by immunohistochemistry. CONCLUSIONS These data from a direct side-by-side comparison underline the importance of the proper inoculation site of the PDAC cells. Local invasion and liver metastases are a hallmark of PDAC in the clinic; the o.t. model is clearly superior in reflecting this setting. Moreover, a serious side-effect of a possible new therapeutic compound became obvious only in the o.t. MODEL
Collapse
Affiliation(s)
- Bastian Kettler
- Clinic for General-, Abdominal- and Transplant-Surgery, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel and University Clinic of Schleswig-Holstein, Campus Kiel, Hs. U30, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Christian Röder
- Institute for Experimental Cancer Research, University of Kiel and University Clinic of Schleswig-Holstein, Campus Kiel, Hs. U30, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Jan-Hendrik Egberts
- Clinic for General, Visceral, Thoracic, Transplantation- and Pediatric Surgery, University Clinic of Schleswig-Holstein, Campus Kiel, Hs. C, Arnold-Heller-Str.3, 24105 Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, University of Kiel and University Clinic of Schleswig-Holstein, Campus Kiel, Hs. U30, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| |
Collapse
|
39
|
Segatto NV, Bender CB, Seixas FK, Schachtschneider K, Schook L, Robertson N, Qazi A, Carlino M, Jordan L, Bolt C, Collares T. Perspective: Humanized Pig Models of Bladder Cancer. Front Mol Biosci 2021; 8:681044. [PMID: 34079821 PMCID: PMC8165235 DOI: 10.3389/fmolb.2021.681044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/09/2022] Open
Abstract
Bladder cancer (BC) is the 10th most common neoplasia worldwide and holds expensive treatment costs due to its high recurrence rates, resistance to therapy and the need for lifelong surveillance. Thus, it is necessary to improve the current therapy options and identify more effective treatments for BC. Biological models capable of recapitulating the characteristics of human BC pathology are essential in evaluating the effectiveness of new therapies. Currently, the most commonly used BC models are experimentally induced murine models and spontaneous canine models, which are either insufficient due to their small size and inability to translate results to clinical basis (murine models) or rarely spontaneously observed BC (canine models). Pigs represent a potentially useful animal for the development of personalized tumors due to their size, anatomy, physiology, metabolism, immunity, and genetics similar to humans and the ability to experimentally induce tumors. Pigs have emerged as suitable biomedical models for several human diseases. In this sense, the present perspective focuses on the genetic basis for BC; presents current BC animal models available along with their limitations; and proposes the pig as an adequate animal to develop humanized large animal models of BC. Genetic alterations commonly found in human BC can be explored to create genetically defined porcine models, including the BC driver mutations observed in the FGFR3, PIK3CA, PTEN, RB1, HRAS, and TP53 genes. The development of such robust models for BC has great value in the study of pathology and the screening of new therapeutic and diagnostic approaches to the disease.
Collapse
Affiliation(s)
- Natália Vieira Segatto
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Camila Bonemann Bender
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kommling Seixas
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Kyle Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Lawrence Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Aisha Qazi
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Maximillian Carlino
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Luke Jordan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Courtni Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tiago Collares
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
40
|
Pfohl U, Pflaume A, Regenbrecht M, Finkler S, Graf Adelmann Q, Reinhard C, Regenbrecht CRA, Wedeken L. Precision Oncology Beyond Genomics: The Future Is Here-It Is Just Not Evenly Distributed. Cells 2021; 10:928. [PMID: 33920536 PMCID: PMC8072767 DOI: 10.3390/cells10040928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a multifactorial disease with increasing incidence. There are more than 100 different cancer types, defined by location, cell of origin, and genomic alterations that influence oncogenesis and therapeutic response. This heterogeneity between tumors of different patients and also the heterogeneity within the same patient's tumor pose an enormous challenge to cancer treatment. In this review, we explore tumor heterogeneity on the longitudinal and the latitudinal axis, reviewing current and future approaches to study this heterogeneity and their potential to support oncologists in tailoring a patient's treatment regimen. We highlight how the ideal of precision oncology is reaching far beyond the knowledge of genetic variants to inform clinical practice and discuss the technologies and strategies already available to improve our understanding and management of heterogeneity in cancer treatment. We will focus on integrating multi-omics technologies with suitable in vitro models and their proficiency in mimicking endogenous tumor heterogeneity.
Collapse
Affiliation(s)
- Ulrike Pfohl
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (U.P.); (A.P.); (C.R.); (Q.G.A.); (C.R.A.R.)
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;
- Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt am Main, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Germany
| | - Alina Pflaume
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (U.P.); (A.P.); (C.R.); (Q.G.A.); (C.R.A.R.)
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;
| | - Manuela Regenbrecht
- Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany;
| | - Sabine Finkler
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;
| | - Quirin Graf Adelmann
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (U.P.); (A.P.); (C.R.); (Q.G.A.); (C.R.A.R.)
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;
| | - Christoph Reinhard
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (U.P.); (A.P.); (C.R.); (Q.G.A.); (C.R.A.R.)
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (U.P.); (A.P.); (C.R.); (Q.G.A.); (C.R.A.R.)
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;
- Institut für Pathologie, Universitätsklinikum Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Lena Wedeken
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (U.P.); (A.P.); (C.R.); (Q.G.A.); (C.R.A.R.)
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;
| |
Collapse
|
41
|
Tissues and Tumor Microenvironment (TME) in 3D: Models to Shed Light on Immunosuppression in Cancer. Cells 2021; 10:cells10040831. [PMID: 33917037 PMCID: PMC8067689 DOI: 10.3390/cells10040831] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022] Open
Abstract
Immunosuppression in cancer has emerged as a major hurdle to immunotherapy efforts. Immunosuppression can arise from oncogene-induced signaling within the tumor as well as from tumor-associated immune cells. Understanding various mechanisms by which the tumor can undermine and evade therapy is critical in improving current cancer immunotherapies. While mouse models have allowed for the characterization of key immune cell types and their role in tumor development, extrapolating these mechanisms to patients has been challenging. There is need for better models to unravel the effects of genetic alterations inherent in tumor cells and immune cells isolated from tumors on tumor growth and to investigate the feasibility of immunotherapy. Three-dimensional (3D) organoid model systems have developed rapidly over the past few years and allow for incorporation of components of the tumor microenvironment such as immune cells and the stroma. This bears great promise for derivation of patient-specific models in a dish for understanding and determining the impact on personalized immunotherapy. In this review, we will highlight the significance of current experimental models employed in the study of tumor immunosuppression and evaluate current tumor organoid-immune cell co-culture systems and their potential impact in shedding light on cancer immunosuppression.
Collapse
|
42
|
Golan T, Atias D, Stossel C, Raitses-Gurevich M. Patient-derived xenograft models of BRCA-associated pancreatic cancers. Adv Drug Deliv Rev 2021; 171:257-265. [PMID: 33617901 DOI: 10.1016/j.addr.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease. The majority of patients diagnosed at an advanced, metastatic stage, and poor overall survival rates. The most clinically meaningful subtype obtained from PDAC genomic classification is represented by unstable genomes, and co-segregated with inactivation of DNA damage repair genes, e.g., Breast cancer 1/2 (BRCA1/2). The FDA and EMA has recently approved olaparib, a Poly (ADP-ribose) polymerase (PARP) inhibitor, as a maintenance strategy for platinum-sensitive advanced PDAC patients with BRCA mutations. However, susceptibility to treatment varies, and resistance may develop. Resistance can be defined as innate or acquired resistance to platinum/PARP-inhibition. Patient-derived xenograft (PDX) models have been utilized in cancer research for many years. We generated a unique PDX model, obtained from BRCA-associated PDAC patients at distinct time points of the disease recapitulating the different clinical scenario. In this review we discuss the relevant PDX-derived models for investigating BRCA-associated PDAC and drug development.
Collapse
Affiliation(s)
- Talia Golan
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Dikla Atias
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Chani Stossel
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
43
|
Valdivia L, García-Hevia L, Bañobre-López M, Gallo J, Valiente R, López Fanarraga M. Solid Lipid Particles for Lung Metastasis Treatment. Pharmaceutics 2021; 13:93. [PMID: 33451053 PMCID: PMC7828486 DOI: 10.3390/pharmaceutics13010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
Solid lipid particles (SLPs) can sustainably encapsulate and release therapeutic agents over long periods, modifying their biodistribution, toxicity, and side effects. To date, no studies have been reported using SLPs loaded with doxorubicin chemotherapy for the treatment of metastatic cancer. This study characterizes the effect of doxorubicin-loaded carnauba wax particles in the treatment of lung metastatic malignant melanoma in vivo. Compared with the free drug, intravenously administrated doxorubicin-loaded SLPs significantly reduce the number of pulmonary metastatic foci in mice. In vitro kinetic studies show two distinctive drug release profiles. A first chemotherapy burst-release wave occurs during the first 5 h, which accounts for approximately 30% of the entrapped drug rapidly providing therapeutic concentrations. The second wave occurs after the arrival of the particles to the final destination in the lung. This release is sustained for long periods (>40 days), providing constant levels of chemotherapy in situ that trigger the inhibition of metastatic growth. Our findings suggest that the use of chemotherapy with loaded SLPs could substantially improve the effectiveness of the drug locally, reducing side effects while improving overall survival.
Collapse
Affiliation(s)
- Lourdes Valdivia
- Nanomedicine Group, University of Cantabria—IDIVAL, Herrera Oria s/n, 39011 Santander, Spain; (L.V.); (L.G.-H.); (R.V.)
| | - Lorena García-Hevia
- Nanomedicine Group, University of Cantabria—IDIVAL, Herrera Oria s/n, 39011 Santander, Spain; (L.V.); (L.G.-H.); (R.V.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Laboratory, Nanomedicine Unit, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.B.-L.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Laboratory, Nanomedicine Unit, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.B.-L.); (J.G.)
| | - Rafael Valiente
- Nanomedicine Group, University of Cantabria—IDIVAL, Herrera Oria s/n, 39011 Santander, Spain; (L.V.); (L.G.-H.); (R.V.)
- Applied Physics Dept, Faculty of Sciences, Avda. de Los Castros 48, 39005 Santander, Spain
| | - Mónica López Fanarraga
- Nanomedicine Group, University of Cantabria—IDIVAL, Herrera Oria s/n, 39011 Santander, Spain; (L.V.); (L.G.-H.); (R.V.)
| |
Collapse
|
44
|
Ding DC, Chang YH, Wu KC, Harnod T. The organoid: A research model for ovarian cancer. Tzu Chi Med J 2021; 34:255-260. [PMID: 35912056 PMCID: PMC9333109 DOI: 10.4103/tcmj.tcmj_63_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease with a variety of distinct clinical and molecular characteristics. The currently available and common research models for EOC include tumor cell lines and patient-derived xenografts. However, these models have certain shortcomings: establishing a cell line is time-consuming, loss of genetic traits after long-term culture is a possibility, and investment is required in terms of animal care facilities. Therefore, better research models are required. Organoid technology was originally developed from colorectal cancer. Tumor organoid is a three-dimensional culture system and can help accurately recapture the tumor phenotype from the original tumor. Tumor organoid systems can overcome the above-mentioned shortcomings of the currently available research models. The organoid model can be used for culturing ovarian cancer subtypes, screening drugs, assessing genomes, and establishing biobanks. However, the currently available organoid models can only culture one type of cells, epithelial cells. Therefore, an organoid-on-a-chip device can be developed in the future to provide a microenvironment for cell–cell, cell–matrix, and cell–media interactions. Thus, organoid models can be used in ovarian cancer research and can generate a simulated in vivo system, enabling studies on the heterogeneity of ovarian cancer.
Collapse
|
45
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
46
|
Hee E, Wong MK, Tan SH, Choo Z, Kuick CH, Ling S, Yong MH, Jain S, Lian DWQ, Ng EHQ, Yong YFL, Ren MH, Syed Sulaiman N, Low SYY, Chua YW, Syed MF, Lim TKH, Soh SY, Iyer P, Seng MSF, Lam JCM, Tan EEK, Chan MY, Tan AM, Chen Y, Chen Z, Chang KTE, Loh AHP. Neuroblastoma patient-derived cultures are enriched for a mesenchymal gene signature and reflect individual drug response. Cancer Sci 2020; 111:3780-3792. [PMID: 32777141 PMCID: PMC7540996 DOI: 10.1111/cas.14610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Ex vivo evaluation of personalized models can facilitate individualized treatment selection for patients, and advance the discovery of novel therapeutic options. However, for embryonal malignancies, representative primary cultures have been difficult to establish. We developed patient‐derived cell cultures (PDCs) from chemo‐naïve and post–treatment neuroblastoma tumors in a consistent and efficient manner, and characterized their in vitro growth dynamics, histomorphology, gene expression, and functional chemo‐response. From 34 neuroblastoma tumors, 22 engrafted in vitro to generate 31 individual PDC lines, with higher engraftment seen with metastatic tumors. PDCs displayed characteristic immunohistochemical staining patterns of PHOX2B, TH, and GD2 synthase. Concordance of MYCN amplification, 1p and 11q deletion between PDCs and patient tumors was 83.3%, 72.7%, and 80.0% respectively. PDCs displayed a predominantly mesenchymal‐type gene expression signature and showed upregulation of pro‐angiogenic factors that were similarly enriched in culture medium and paired patient serum samples. When tested with standard‐of‐care cytotoxics at human Cmax‐equivalent concentrations, MYCN‐amplified and non‐MYCN‐amplified PDCs showed a differential response to cyclophosphamide and topotecan, which mirrored the corresponding patients’ responses, and correlated with gene signatures of chemosensitivity. In this translational proof‐of‐concept study, early‐phase neuroblastoma PDCs enriched for the mesenchymal cell subpopulation recapitulated the individual molecular and phenotypic profile of patient tumors, and highlighted their potential as a platform for individualized ex vivo drug‐response testing.
Collapse
Affiliation(s)
- Esther Hee
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhang'E Choo
- Neurodevelopment and Cancer Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sharon Ling
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Min Hwee Yong
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yvonne F L Yong
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mee Hiong Ren
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nurfarhanah Syed Sulaiman
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Sharon Y Y Low
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Yong Wei Chua
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Muhammad Fahmy Syed
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony K H Lim
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Prasad Iyer
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Michaela S F Seng
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joyce C M Lam
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Enrica E K Tan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mei Yoke Chan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ah Moy Tan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yong Chen
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhixiong Chen
- Neurodevelopment and Cancer Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
47
|
Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer 2020; 123:339-348. [PMID: 32581341 PMCID: PMC7403362 DOI: 10.1038/s41416-020-0942-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is a pivotal component in the curative treatment of patients with localised cancer and isolated metastasis, as well as being used as a palliative strategy for patients with disseminated disease. The clinical efficacy of radiotherapy has traditionally been attributed to the local effects of ionising radiation, which induces cell death by directly and indirectly inducing DNA damage, but substantial work has uncovered an unexpected and dual relationship between tumour irradiation and the host immune system. In clinical practice, it is, therefore, tempting to tailor immunotherapies with radiotherapy in order to synergise innate and adaptive immunity against cancer cells, as well as to bypass immune tolerance and exhaustion, with the aim of facilitating tumour regression. However, our understanding of how radiation impacts on immune system activation is still in its early stages, and concerns and challenges regarding therapeutic applications still need to be overcome. With the increasing use of immunotherapy and its common combination with ionising radiation, this review briefly delineates current knowledge about the non-targeted effects of radiotherapy, and aims to provide insights, at the preclinical level, into the mechanisms that are involved with the potential to yield clinically relevant combinatorial approaches of radiotherapy and immunotherapy.
Collapse
|
48
|
Tran Chau V, Liu W, Gerbé de Thoré M, Meziani L, Mondini M, O'Connor MJ, Deutsch E, Clémenson C. Differential therapeutic effects of PARP and ATR inhibition combined with radiotherapy in the treatment of subcutaneous versus orthotopic lung tumour models. Br J Cancer 2020; 123:762-771. [PMID: 32546832 PMCID: PMC7463250 DOI: 10.1038/s41416-020-0931-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 11/09/2022] Open
Abstract
Background Subcutaneous mouse tumour models are widely used for the screening of novel antitumour treatments, although these models are poor surrogate models of human cancers. Methods We compared the antitumour efficacy of the combination of ionising radiation (IR) with two DNA damage response inhibitors, the PARP inhibitor olaparib and the ATR inhibitor AZD6738 (ceralasertib), in subcutaneous versus orthotopic cancer models. Results Olaparib delayed the growth of irradiated Lewis lung carcinoma (LL2) subcutaneous tumours, in agreement with previous reports in human cell lines. However, the olaparib plus IR combination showed a very narrow therapeutic window against LL2 lung orthotopic tumours, with nearly no additional antitumour effect compared with that of IR alone, and tolerability issues emerged at high doses. The addition of AZD6738 greatly enhanced the efficacy of the olaparib plus IR combination treatment against subcutaneous but not orthotopic LL2 tumours. Moreover, olaparib plus AZD6738 administration concomitant with IR even worsened the response to radiation of head and neck orthotopic tumours and induced mucositis. Conclusions These major differences in the responses to treatments between subcutaneous and orthotopic models highlight the importance of using more pathologically relevant models, such as syngeneic orthotopic models, to determine the most appropriate therapeutic approaches for translation to the clinic.
Collapse
Affiliation(s)
- Vanessa Tran Chau
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Labex LERMIT, DHU TORINO, SIRIC SOCRATE, Villejuif, France
| | - Winchygn Liu
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Labex LERMIT, DHU TORINO, SIRIC SOCRATE, Villejuif, France
| | - Marine Gerbé de Thoré
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Labex LERMIT, DHU TORINO, SIRIC SOCRATE, Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Labex LERMIT, DHU TORINO, SIRIC SOCRATE, Villejuif, France
| | - Michele Mondini
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Labex LERMIT, DHU TORINO, SIRIC SOCRATE, Villejuif, France
| | - Mark J O'Connor
- Oncology Innovative Medicines and Early Clinical Development, AstraZeneca, Cambridge, UK
| | - Eric Deutsch
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France. .,Labex LERMIT, DHU TORINO, SIRIC SOCRATE, Villejuif, France. .,Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Céline Clémenson
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France. .,Labex LERMIT, DHU TORINO, SIRIC SOCRATE, Villejuif, France.
| |
Collapse
|
49
|
Chen KH, Miao YB, Shang CY, Huang TY, Yu YT, Yeh CN, Song HL, Chen CT, Mi FL, Lin KJ, Sung HW. A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats. Biomaterials 2020; 255:120157. [PMID: 32535305 DOI: 10.1016/j.biomaterials.2020.120157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
The therapeutic outcome of pancreatic cancer remains unsatisfactory, despite many attempts to improve it. To address this challenge, an oral drug delivery system that spontaneously initiates an effervescent reaction to form gas-bubble carriers is proposed. These carriers concurrently deliver lipophilic paclitaxel (PTX) and hydrophilic gemcitabine (GEM) in the small intestine. The bursting of the bubbles promotes the intestinal absorption of the drugs. The antitumor efficacy of this proposed oral drug delivery system is evaluated in rats with experimentally created orthotopic pancreatic tumors. The combined administration of equivalent amounts of PTX and GEM via the intravenous (i.v.) route, which is clinically used for treating pancreatic cancer, serves as a control. Following oral administration, the lipophilic PTX is initially absorbed through the intestinal lymphatic system and then enters systemic circulation, whereas the hydrophilic GEM is directly taken up into the blood circulation, ultimately accumulating in the tumorous pancreatic tissues. A pharmacokinetic study reveals that the orally delivered formulation has none of the toxic side-effects that are associated with the i.v. injected formulation; changes the pharmacokinetic profiles of the drugs; and increases the bioavailability of PTX. The oral formulation has a greater impact than the i.v. formulation on tumor-specific stromal depletion, resulting in greater inhibition of tumor growth with no evidence of metastatic spread. As well as enhancing the therapeutic efficacy, this unique approach of oral chemotherapy has potential for use on outpatients, greatly improving their quality of life.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Chemical Engineering/Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Yang-Bao Miao
- Department of Chemical Engineering/Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Yu Shang
- Department of Chemical Engineering/Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Tring-Yo Huang
- Department of Chemical Engineering/Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Tzu Yu
- Department of Chemical Engineering/Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Nan Yeh
- Department of General Surgery, Liver Research Center, Linkou Chang Gung Memorial Hospital, And Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Lin Song
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institute, Zhunan, Miaoli, Taiwan
| | - Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, And Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.
| | - Hsing-Wen Sung
- Department of Chemical Engineering/Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
50
|
Tumor shedding and metastatic progression after tumor excision in patient-derived orthotopic xenograft models of triple-negative breast cancer. Clin Exp Metastasis 2020; 37:413-424. [PMID: 32335861 DOI: 10.1007/s10585-020-10033-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Patient-derived orthotopic xenograft (PDOX) models have been verified as a useful method for studying human cancers in mice. Previous studies on the extent of metastases in these models have been limited by the necessity of welfare euthanasia (primary tumors reaching threshold size), at which point metastases may only be micrometers in diameter, few in number, and solely identified by step-sectioning of formalin-fixed paraffin-embedded tissue. These small micro-metastases are less suitable for many downstream molecular analyses than macro-metastases. Resection of the primary tumor by survival surgery has been proven to allow further time for metastases to grow. Although PDOX models of triple-negative breast cancer (TNBC) shed circulating tumor cells (CTCs) into the bloodstream and metastasize, similar to human TNBC, little data has been collected in these TNBC PDOX models regarding the association between CTC characteristics and distant metastasis following excision of the primary tumor xenograft. This study assembles a timeline of PDOX tumor shedding and metastatic tumor progression before and after tumor excision surgery. We report the ability to use tumorectomies to increase the lifespan of TNBC PDOX models with the potential to obtain larger metastases. CTC clusters and CTCs expressing a mesenchymal marker (vimentin) were associated with metastatic burden in lung and liver. The data collected through these experiments will guide the further use of PDOX models in studying metastatic TNBC.
Collapse
|