1
|
Khathayer F, Mikael M. Mocetinostat as a novel selective histone deacetylase (HDAC) inhibitor in the promotion of apoptosis in glioblastoma cell line C6 and T98G. RESEARCH SQUARE 2024:rs.3.rs-4170668. [PMID: 38645087 PMCID: PMC11030514 DOI: 10.21203/rs.3.rs-4170668/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Histon deacetylase (HDAC) enzyme is one of the enzymes involved in regulating gene expression and epigenetic alternation of cells by removing acetyl groups from lysine residue on a histone, allowing the histones to wrap the DNA more tightly and suppressing a tumor-suppressing gene. HDAC inhibitors play an important role in inhibiting the proliferation of tumor cells by restricting the mechanism of action of HDAC enzyme, leading to the addition of acetyl groups to lysine. Mocetinostat, also known by its chemical name (MGCD0103), is a novel isotype selective HDAC enzyme that explicitly targets HDAC isoforms inhibiting Class1(HDAC 1,2,3,8) and Class IV (HDAC11) enzymes. It was approved for treating the phase II trial of Hodgkin's lymphoma in 2010. Our study revealed that different doses of Mocetinostat inhibit the growth of glioblastoma cells, metastasis, and angiogenesis and induce the apoptosis and differentiation of glioblastoma cells C6 and T98G. Western blot has shown that MGCD0103 has many biological activities to control glioblastoma cancer cells. MGCD0103 can modulate the molecular mechanism for several pathways in cells, such as inhibition of the PI3K/AKT pathway and suppression of HDAC1 enzyme activity in charge of many biological processes in the initiation and progression of cancer. The high doses of Mocetinostat drug significantly induce apoptosis and suppress cancer cell proliferation through increased pro-apoptotic proteins (BAX) and a down level of anti-apoptotic proteins(Bid, Bcl2). Also, the mocetinostat upregulated the expression of the tumor suppressor gene and downregulated the gene expression of the E2f1 transcription factor. Additionally, MGCDO103-induced differentiation was facilitated by activating the differentiation marker GFAP and preventing the undifferentiation marker from expression (Id2, N-Myc). The MGCD0103 is a potent anticancer drug crucial in treating glioblastoma cells.
Collapse
|
2
|
Basu R, Ganesan S, Winkler CW, Anzick SL, Martens C, Peterson KE, Fraser IDC. Identification of age-specific gene regulators of La Crosse virus neuroinvasion and pathogenesis. Nat Commun 2023; 14:2836. [PMID: 37202395 DOI: 10.1038/s41467-023-37833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/03/2023] [Indexed: 05/20/2023] Open
Abstract
One of the key events in viral encephalitis is the ability of virus to enter the central nervous system (CNS). Several encephalitic viruses, including La Crosse Virus (LACV), primarily induce encephalitis in children, but not adults. This phenomenon is also observed in LACV mouse models, where the virus gains access to the CNS of weanling animals through vascular leakage of brain microvessels, likely through brain capillary endothelial cells (BCECs). To examine age and region-specific regulatory factors of vascular leakage, we used genome-wide transcriptomics and targeted siRNA screening to identify genes whose suppression affected viral pathogenesis in BCECs. Further analysis of two of these gene products, Connexin43 (Cx43/Gja1) and EphrinA2 (Efna2), showed a substantial effect on LACV pathogenesis. Induction of Cx43 by 4-phenylbutyric acid (4-PBA) inhibited neurological disease in weanling mice, while Efna2 deficiency increased disease in adult mice. Thus, we show that Efna2 and Cx43 expressed by BCECs are key mediators of LACV-induced neuroinvasion and neurological disease.
Collapse
Affiliation(s)
- Rahul Basu
- Neuroimmunology Section, Laboratory of Persistent Viral Disease, Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th Street, MT, 59840, Hamilton, USA
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Drive, Bethesda, MD, 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Drive, Bethesda, MD, 20892, USA
| | - Clayton W Winkler
- Neuroimmunology Section, Laboratory of Persistent Viral Disease, Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th Street, MT, 59840, Hamilton, USA
| | - Sarah L Anzick
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, MT 59840, Hamilton, MT, USA
| | - Craig Martens
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, MT 59840, Hamilton, MT, USA
| | - Karin E Peterson
- Neuroimmunology Section, Laboratory of Persistent Viral Disease, Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th Street, MT, 59840, Hamilton, USA.
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Bose A, Kasle G, Jana R, Maulik M, Thomas D, Mulchandani V, Mukherjee P, Koval M, Das Sarma J. Regulatory role of endoplasmic reticulum resident chaperone protein ERp29 in anti-murine β-coronavirus host cell response. J Biol Chem 2023; 299:102836. [PMID: 36572185 PMCID: PMC9788854 DOI: 10.1016/j.jbc.2022.102836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/25/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine β-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where β-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.
Collapse
Affiliation(s)
- Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Grishma Kasle
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Rishika Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Deepthi Thomas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Priyanka Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Michael Koval
- Departments of Medicine and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
4
|
Everix L, Seane EN, Ebenhan T, Goethals I, Bolcaen J. Introducing HDAC-Targeting Radiopharmaceuticals for Glioblastoma Imaging and Therapy. Pharmaceuticals (Basel) 2023; 16:227. [PMID: 37259375 PMCID: PMC9967489 DOI: 10.3390/ph16020227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 09/29/2023] Open
Abstract
Despite recent advances in multimodality therapy for glioblastoma (GB) incorporating surgery, radiotherapy, chemotherapy and targeted therapy, the overall prognosis remains poor. One of the interesting targets for GB therapy is the histone deacetylase family (HDAC). Due to their pleiotropic effects on, e.g., DNA repair, cell proliferation, differentiation, apoptosis and cell cycle, HDAC inhibitors have gained a lot of attention in the last decade as anti-cancer agents. Despite their known underlying mechanism, their therapeutic activity is not well-defined. In this review, an extensive overview is given of the current status of HDAC inhibitors for GB therapy, followed by an overview of current HDAC-targeting radiopharmaceuticals. Imaging HDAC expression or activity could provide key insights regarding the role of HDAC enzymes in gliomagenesis, thus identifying patients likely to benefit from HDACi-targeted therapy.
Collapse
Affiliation(s)
- Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, 2610 Antwerpen, Belgium
| | - Elsie Neo Seane
- Department of Medical Imaging and Therapeutic Sciences, Cape Peninsula University of Technology, Cape Town 7530, South Africa
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility (PCIF), (NuMeRI) NPC, Pretoria 0001, South Africa
- Department of Science and Technology/Preclinical Drug Development Platform (PCDDP), North West University, Potchefstroom 2520, South Africa
- Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Julie Bolcaen
- Radiation Biophysics Division, SSC laboratory, iThemba LABS, Cape Town 7131, South Africa
| |
Collapse
|
5
|
Warawdekar UM, Jain V, Patel H, Nanda A, Kamble V. Modifying gap junction communication in cancer therapy. Curr Res Transl Med 2020; 69:103268. [PMID: 33069641 DOI: 10.1016/j.retram.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
AIM Drug delivery is crucial for therapeutic efficacy and gap junction communication channels (GJIC) facilitate movement within the tumour. Pro-drug activation, a modality of cancer therapy leads to Ganciclovir triphosphate (GCV-TP) incorporation into newly synthesized DNA resulting in cell death. The objective was to enhance, with Histone deacetylase inhibitors (HDACi) and All Trans Retinoic Acid (ATRA), GJIC, crucial for drug delivery, and with combination, abrogate the observed detrimental effect of Dexamethasone (DXM). METHODS Cell lines (NT8E, and HeLa) were pre-treated with Valproic Acid (VPA) (1 mM), 4 Phenyl Butyrate (4PB) (2 mM), ATRA (10 μM) and Dexamethasone (1 μM). Protein quantitated with the Bicinchoninic (BCA) assay for cell lysates, membrane and soluble fractions was assessed with Western blotting for Connexins (43, 26 and 32) and E-Cadherin. A qRT-PCR was done for CX 43-GJA1, CX 26-GJB2, CX 32-GJB1 and E-Cadherin, and normalized with Glyceraldehyde Phosphate dehydrogenase (GAPDH). Further, localization of Connexins (CX) and E-Cadherin, GJIC competence, pre-clinical in-vitro studies and the mechanism of cell death were evaluated. RESULTS There was no toxicity or change in growth patterns observed with the drugs. In both the cell lines CX 43 localized to the membrane whereas CX 32 and CX 26 were present but not membrane bound. E-Cadherin was present on the membrane in NT8E and completely absent in HeLa cells. Effects of HDACi, DXM and ATRA were seen on the expression of Connexins and E-Cadherin in both the cell lines. NT8E and HeLa cell lines showed enhanced GJIC with 4PB [30 %], VPA [36 %] and ATRA [54 %] with a 60 % increase in cytotoxicity and an abrogation of Dexamethasone inhibition on combination with VPA or ATRA. CONCLUSION An enhancement of GJIC function by HDACi and ATRA increased cytotoxicity and could be effective in the presence of Dexamethasone, when combined with ATRA or VPA.
Collapse
Affiliation(s)
- Ujjwala M Warawdekar
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| | - Vaishali Jain
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Himani Patel
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Adyasha Nanda
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vishal Kamble
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
6
|
Brecker M, Khakhina S, Schubert TJ, Thompson Z, Rubenstein RC. The Probable, Possible, and Novel Functions of ERp29. Front Physiol 2020; 11:574339. [PMID: 33013490 PMCID: PMC7506106 DOI: 10.3389/fphys.2020.574339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
The luminal endoplasmic reticulum (ER) protein of 29 kDa (ERp29) is a ubiquitously expressed cellular agent with multiple critical roles. ERp29 regulates the biosynthesis and trafficking of several transmembrane and secretory proteins, including the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial sodium channel (ENaC), thyroglobulin, connexin 43 hemichannels, and proinsulin. ERp29 is hypothesized to promote ER to cis-Golgi cargo protein transport via COP II machinery through its interactions with the KDEL receptor; this interaction may facilitate the loading of ERp29 clients into COP II vesicles. ERp29 also plays a role in ER stress (ERS) and the unfolded protein response (UPR) and is implicated in oncogenesis. Here, we review the vast array of ERp29’s clients, its role as an ER to Golgi escort protein, and further suggest ERp29 as a potential target for therapies related to diseases of protein misfolding and mistrafficking.
Collapse
Affiliation(s)
- Margaret Brecker
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Svetlana Khakhina
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tyler J. Schubert
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zachary Thompson
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ronald C. Rubenstein
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- *Correspondence: Ronald C. Rubenstein, ;
| |
Collapse
|
7
|
Schultz F, Swiatlowska P, Alvarez-Laviada A, Sanchez-Alonso JL, Song Q, de Vries AAF, Pijnappels DA, Ongstad E, Braga VMM, Entcheva E, Gourdie RG, Miragoli M, Gorelik J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43. FASEB J 2019; 33:10453-10468. [PMID: 31253057 PMCID: PMC6704460 DOI: 10.1096/fj.201802740rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Healthy cardiomyocytes are electrically coupled at the intercalated discs by gap junctions. In infarcted hearts, adverse gap-junctional remodeling occurs in the border zone, where cardiomyocytes are chemically and electrically influenced by myofibroblasts. The physical movement of these contacts remains unquantified. Using scanning ion conductance microscopy, we show that intercellular contacts between cardiomyocytes and myofibroblasts are highly dynamic, mainly owing to the edge dynamics (lamellipodia) of the myofibroblasts. Decreasing the amount of functional connexin-43 (Cx43) at the membrane through Cx43 silencing, suppression of Cx43 trafficking, or hypoxia-induced Cx43 internalization attenuates heterocellular contact dynamism. However, we found decreased dynamism and stabilized membrane contacts when cellular coupling was strengthened using 4-phenylbutyrate (4PB). Fluorescent-dye transfer between cells showed that the extent of functional coupling between the 2 cell types correlated with contact dynamism. Intercellular calcein transfer from myofibroblasts to cardiomyocytes is reduced after myofibroblast-specific Cx43 down-regulation. Conversely, 4PB-treated myofibroblasts increased their functional coupling to cardiomyocytes. Consistent with lamellipodia-mediated contacts, latrunculin-B decreases dynamism, lowers physical communication between heterocellular pairs, and reduces Cx43 intensity in contact regions. Our data show that heterocellular cardiomyocyte-myofibroblast contacts exhibit high dynamism. Therefore, Cx43 is a potential target for prevention of aberrant cardiomyocyte coupling and myofibroblast proliferation in the infarct border zone.-Schultz, F., Swiatlowska, P., Alvarez-Laviada, A., Sanchez-Alonso, J. L., Song, Q., de Vries, A. A. F., Pijnappels, D. A., Ongstad, E., Braga, V. M. M., Entcheva, E., Gourdie, R. G., Miragoli, M., Gorelik, J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43.
Collapse
Affiliation(s)
- Francisca Schultz
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | - Qianqian Song
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Daniël A. Pijnappels
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emily Ongstad
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Vania M. M. Braga
- Department of Respiratory Sciences, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Robert G. Gourdie
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Michele Miragoli
- Humanitas Clinical and Research Center, Milan, Italy;,Department of Medicine and Surgery, University of Parma, Parma, Italy,Correspondence: Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43124 Parma, Italy. E-mail:
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom;,Correspondence: National Heart and Lung Institute, 4th Floor, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Rd., London W12 0NN, United Kingdom. E-mail:
| |
Collapse
|
8
|
Yelton CJ, Ray SK. Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. ACTA ACUST UNITED AC 2018; 5. [PMID: 30701185 PMCID: PMC6348296 DOI: 10.20517/2347-8659.2018.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM), which is the most common primary central nervous system malignancy in adults, has long presented a formidable challenge to researchers and clinicians alike. Dismal 5-year survival rates of the patients with these tumors and the ability of the recurrent tumors to evade primary treatment strategies have prompted a need for alternative therapies in the treatment of GBM. Histone deacetylase (HDAC) inhibitors are currently a potential epigenetic therapy modality under investigation for use in GBM with mixed results. While these agents show promise through a variety of proposed mechanisms in the pre-clinical realm, only several of these agents have shown this same promise when translated into the clinical arena, either as monotherapy or for use in combination regimens. This review will examine the current state of use of HDAC inhibitors in GBM, the mechanistic rationale for use of HDAC inhibitors in GBM, and then examine an exciting new mechanistic revelation of certain HDAC inhibitors that promote antitumor immunity in GBM. The details of this antitumor immunity will be discussed with an emphasis on application of this antitumor immunity towards developing alternative therapies for treatment of GBM. The final section of this article will provide an overview of the current state of immunotherapy targeted specifically to GBM.
Collapse
Affiliation(s)
- Caleb J Yelton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
9
|
Differences in Functional Expression of Connexin43 and Na V1.5 by Pan- and Class-Selective Histone Deacetylase Inhibition in Heart. Int J Mol Sci 2018; 19:ijms19082288. [PMID: 30081552 PMCID: PMC6121244 DOI: 10.3390/ijms19082288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Class-selective histone deacetylase (HDAC) inhibitors were designed to improve safety profiles and therapeutic effectiveness in the treatment of multiple cancers relative to pan-HDAC inhibitors. However, the underlying mechanisms for their therapeutic and cardiotoxic potentials remain poorly understood. Cardiac sodium currents (INa) and gap junction conductance (gj) were measured by whole cell patch clamp techniques on primary cultures of neonatal cardiomyocytes. Cardiac NaV1.5 sodium channel and connexin43 (Cx43) gap junction protein levels were assessed by Western blot analyses. Panobinostat produced concentration-dependent reductions in ventricular gj, peak INa density, and NaV1.5 protein expression levels. Membrane voltage (Vm)-dependent activation of INa was shifted by +3 to 6 mV with no effect on inactivation. Entinostat (1 μM) did not affect ventricular gj, peak INa density, or INa activation. However, the INa half-inactivation voltage (V½) was shifted by −3.5 mV. Ricolinostat had only minor effects on ventricular gj and INa properties, though INa activation was shifted by −4 mV. Cx43 and NaV1.5 protein expression levels were not altered by class-selective HDAC inhibitors. The lack of effects of class-selective HDAC inhibitors on ventricular gj and INa may help explain the improved cardiac safety profile of entinostat and ricolinostat.
Collapse
|
10
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Target Gene Discovery for Novel Therapeutic Agents in Cancer Treatment. Methods Mol Biol 2015. [PMID: 26667461 DOI: 10.1007/978-1-4939-3204-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Target identification of novel therapeutic drugs is pivotal for the establishment of (1) new anticancer regiments, (2) to control side effects of the drugs, and (3) to identify appropriate combinations with established drugs. Here, we describe several in vitro assays applicable to characterize different characteristics of tumor cells. Furthermore, we present a protocol for establishing a reporter gene system for in vivo imaging, allowing for the study of drug effects in small animal models.
Collapse
|
12
|
Vinken M. Regulation of connexin signaling by the epigenetic machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:262-8. [PMID: 26566120 DOI: 10.1016/j.bbagrm.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression.
Collapse
Affiliation(s)
- Mathieu Vinken
- Vrije Universiteit Brussel, Department of In Vitro Toxicology and Dermato-Cosmetology, Building G, Room G226, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
13
|
Wang HZ, Rosati B, Gordon C, Valiunas V, McKinnon D, Cohen IS, Brink PR. Inhibition of histone deacetylase (HDAC) by 4-phenylbutyrate results in increased junctional conductance between rat corpora smooth muscle cells. Front Pharmacol 2015; 6:9. [PMID: 25691868 PMCID: PMC4315027 DOI: 10.3389/fphar.2015.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 01/11/2015] [Indexed: 01/02/2023] Open
Abstract
4-phenylbutyrate (4-PB) has been shown to increase the protein content in a number of cells types. One such protein is Connexin43 (Cx43). We show here that 4-phenylbutyrate exposure results in significantly elevated cell to cell coupling, as determined by dual whole cell patch clamp. Incubation with 5 mM 4PB for 24 h or more nearly doubles junctional conductance. Interestingly, mRNA levels for Cx43 declined with exposure to 4-PB while western blot analysis revealed not significant change in protein levels. These data are most consistent with stabilization of the existing Cx43 pool or alterations in the number of functional channels within an existing pool of active and silent channels. These data represent a baseline for testing the efficacy of increased connexin mediated coupling in a variety of multicellular functions including erectile function.
Collapse
Affiliation(s)
- Hong Zhan Wang
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA
| | - Barbara Rosati
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - Chris Gordon
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA
| | - Virginijus Valiunas
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - David McKinnon
- Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA ; Department of Neurobiology and Behavior, Stony Brook University Stony Brook, NY, USA
| | - Ira S Cohen
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
14
|
Kelly JJ, Simek J, Laird DW. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res 2014; 360:701-21. [DOI: 10.1007/s00441-014-2024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|
15
|
Bezecny P. Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol 2014; 31:985. [PMID: 24838514 DOI: 10.1007/s12032-014-0985-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/26/2014] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms are increasingly recognized as a major factor contributing to pathogenesis of cancer including glioblastoma, the most common and most malignant primary brain tumour in adults. Enzymatic modifications of histone proteins regulating gene expression are being exploited for therapeutic drug targeting. Over the last decade, numerous studies have shown promising results with histone deacetylase (HDAC) inhibitors in various malignancies. This article provides a brief overview of mechanism of anti-cancer effect and pharmacology of HDAC inhibitors and summarizes results from pre-clinical and clinical studies in glioblastoma. It analyses experience with HDAC inhibitors as single agents as well as in combination with targeted agents, cytotoxic chemotherapy and radiotherapy. Hallmark features of glioblastoma, such as uncontrolled cellular proliferation, invasion, angiogenesis and resistance to apoptosis, have been shown to be targeted by HDAC inhibitors in experiments with glioblastoma cell lines. Vorinostat is the most advanced HDAC inhibitor that entered clinical trials in glioblastoma, showing activity in recurrent disease. Multiple phase II trials with vorinostat in combination with targeted agents, temozolomide and radiotherapy are currently recruiting. While the results from pre-clinical studies are encouraging, early clinical trials showed only modest benefit and the value of HDAC inhibitors for clinical practice will need to be confirmed in larger prospective trials. Further research in epigenetic mechanisms driving glioblastoma pathogenesis and identification of molecular subtypes of glioblastoma is needed. This will hopefully lead to better selection of patients who will benefit from treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Pavel Bezecny
- Rosemere Cancer Centre, Lancashire Teaching Hospitals NHS Foundation Trust, Sharoe Green Lane, Preston, PR2 9HT, UK,
| |
Collapse
|
16
|
Moinfar Z, Dambach H, Faustmann PM. Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro. Front Physiol 2014; 5:186. [PMID: 24904426 PMCID: PMC4032976 DOI: 10.3389/fphys.2014.00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/25/2014] [Indexed: 12/17/2022] Open
Abstract
Gap junctions (GJs) are hemichannels on cell membrane. Once they are intercellulary connected to the neighboring cells, they build a functional syncytium which allows rapid transfer of ions and molecules between cells. This characteristic makes GJs a potential modulator in proliferation, migration, and development of the cells. So far, several types of GJs are recognized on different brain cells as well as in glioma. Astrocytes, as one of the major cells that maintain neuronal homeostasis, express different types of GJs that let them communicate with neurons, oligodendrocytes, and endothelial cells of the blood brain barrier; however, the main GJ in astrocytes is connexin 43. There are different cerebral diseases in which astrocyte GJs might play a role. Several drugs have been reported to modulate gap junctional communication in the brain which can consequently have beneficial or detrimental effects on the course of treatment in certain diseases. However, the exact cellular mechanism behind those pharmaceutical efficacies on GJs is not well-understood. Accordingly, how specific drugs would affect GJs and what some consequent specific brain diseases would be are the interests of the authors of this chapter. We would focus on pharmaceutical effects on GJs on astrocytes in specific diseases where GJs could possibly play a role including: (1) migraine and a novel therapy for migraine with aura, (2) neuroautoimmune diseases and immunomodulatory drugs in the treatment of demyelinating diseases of the central nervous system such as multiple sclerosis, (3) glioma and antineoplastic and anti-inflammatory agents that are used in treating brain tumors, and (4) epilepsy and anticonvulsants that are widely used for seizures therapy. All of the above-mentioned therapeutic categories can possibly affect GJs expression of astrocytes and the role is discussed in the upcoming chapter.
Collapse
Affiliation(s)
- Zahra Moinfar
- International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum Bochum, Germany
| | - Hannes Dambach
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum Bochum, Germany
| | - Pedro M Faustmann
- International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
17
|
Abstract
Spinal cord injury results from an insult inflicted on the spinal cord that usually encompasses its 4 major functions (motor, sensory, autonomic, and reflex). The type of deficits resulting from spinal cord injury arise from primary insult, but their long-term severity is due to a multitude of pathophysiological processes during the secondary phase of injury. The failure of the mammalian spinal cord to regenerate and repair is often attributed to the very feature that makes the central nervous system special-it becomes so highly specialized to perform higher functions that it cannot effectively reactivate developmental programs to re-build novel circuitry to restore function after injury. Added to this is an extensive gliotic and immune response that is essential for clearance of cellular debris, but also lays down many obstacles that are detrimental to regeneration. Here, we discuss how the mature chromatin state of different central nervous system cells (neural, glial, and immune) may contribute to secondary pathophysiology, and how restoring silenced developmental gene expression by altering histone acetylation could stall secondary damage and contribute to novel approaches to stimulate endogenous repair.
Collapse
Affiliation(s)
- Elisa M. York
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| | - Audrey Petit
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| | - A. Jane Roskams
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| |
Collapse
|
18
|
Kaufman J, Gordon C, Bergamaschi R, Wang HZ, Cohen IS, Valiunas V, Brink PR. The effects of the histone deacetylase inhibitor 4-phenylbutyrate on gap junction conductance and permeability. Front Pharmacol 2013; 4:111. [PMID: 24027526 PMCID: PMC3759747 DOI: 10.3389/fphar.2013.00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/14/2013] [Indexed: 11/20/2022] Open
Abstract
Longitudinal resistance is a key factor in determining cardiac action potential propagation. Action potential conduction velocity has been shown to be proportional to the square root of longitudinal resistance. A major determinant of longitudinal resistance in myocardium is the gap junction channel, comprised connexin proteins. Within the ventricular myocardium connexin43 (Cx43) is the dominantly expressed connexin. Reduced numbers of gap junction channels will result in an increase in longitudinal resistance creating the possibility of slowed conduction velocity while increased numbers of channels would potentially result in an increase in conduction velocity. We sought to determine if inhibition of histone deacetylase (HDAC) by 4-phenylbutyrate (4-PB), a known inhibitor of HDAC resulted in an increase in junctional conductance and permeability, which is not the result of changes in single channel unitary conductance. These experiments were performed using HEK-293 cells and HeLa cells stably transfected with Cx43. Following treatment with increasing concentrations of 4-PB up-regulation of Cx43 was observed via Western blot analysis. Junctional (gj) conductance and unitary single channel conductance were measured via whole-cell patch clamp. In addition intercellular transfer of lucifer yellow (LY) was determined by fluorescence microscopy. The data in this study indicate that 4-PB is able to enhance functional Cx43 gap junction coupling as indicated by LY dye transfer and multichannel and single channel data along with Western blot analysis. As a corollary, pharmacological agents such as 4-PB have the potential, by increasing intercellular coupling, to reduce the effect of ischemia. It remains to be seen whether drugs like 4-PB will be effective in preventing cardiac maladies.
Collapse
Affiliation(s)
- Joshua Kaufman
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ryu CH, Park KY, Kim SM, Jeong CH, Woo JS, Hou Y, Jeun SS. Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem Biophys Res Commun 2012; 421:585-90. [PMID: 22525671 DOI: 10.1016/j.bbrc.2012.04.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/10/2012] [Indexed: 11/15/2022]
Abstract
Suicide gene therapy of glioma based on herpes simplex virus type I thymidine kinase (HSV-TK) and prodrug ganciclovir (GCV) suffers from the lack of efficacy in clinical trials, which is mostly due to low transduction efficacy and absence of bystander effect in tumor cells. Recently, stem cells as cellular delivery vehicles of prodrug converting gene has emerged as a new treatment strategy for malignant glioma. In this study, we evaluated the anti-glioma effect of suicide gene therapy using human bone marrow mesenchymal stem cells expressing HSV-TK (MSCs-TK) combined with valproic acid (VPA), which can upregulate the gap junction proteins and may enhance the bystander effect of suicide gene therapy. Expression of HSV-TK in MSCs was confirmed by RT-PCR analysis and the sensitivity of MSCs-TK to GCV was assessed. A bystander effect was observed in co-cultures of MSCs-TK and U87 glioma cells by GCV in a dose-dependent manner. VPA induced the expression of the gap junction proteins connexin (Cx) 43 and 26 in glioma cell and thereby enhanced the bystander effect in co-culture experiment. The enhanced bystander effect was inhibited by the gap junction inhibitor 18-β-glycyrrhetinic acid (18-GA). Moreover, the combined treatment with VPA and MSCs-TK synergistically enhanced apoptosis in glioma cells by caspase activation. In vivo efficacy experiments showed that combination treatment of MSCs-TK and VPA significantly inhibited tumor growth and prolonged the survival of glioma-bearing mice compared with single-treatment groups. In addition, TUNEL staining also demonstrated a significant increase in the number of apoptotic cells in the combination treated group compared with single-treatment groups. Taken together, these results provide the rational for designing novel experimental protocols to increase bystander killing effect against intracranial gliomas using MSCs-TK and VPA.
Collapse
Affiliation(s)
- Chung Heon Ryu
- Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Cardiac cellular coupling and the spread of early instabilities in intracellular Ca2+. Biophys J 2012; 102:1294-302. [PMID: 22455912 DOI: 10.1016/j.bpj.2012.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 02/09/2012] [Accepted: 02/17/2012] [Indexed: 11/23/2022] Open
Abstract
Recent experimental and modeling studies demonstrate the fine spatial scale, complex nature, and independent contribution of Ca(2+) dynamics as a proarrhythmic factor in the heart. The mechanism of progression of cell-level Ca(2+) instabilities, known as alternans, to tissue-level arrhythmias is not well understood. Because gap junction coupling dictates cardiac syncytial properties, we set out to elucidate its role in the spatiotemporal evolution of Ca(2+) instabilities. We experimentally perturbed cellular coupling in cardiac syncytium in vitro. Coupling was quantified by fluorescence recovery after photobleaching, and related to function, including subtle fine-scale Ca(2+) alternans, captured by optical mapping. Conduction velocity and threshold for alternans monotonically increased with coupling. Lower coupling enhanced Ca(2+) alternans amplitude, but the spatial spread of early (<2 Hz) alternation was the greatest under intermediate (not low) coupling. This nonmonotonic relationship was closely matched by the percent of samples exhibiting large-scale alternans at higher pacing rates. Computer modeling corroborated these experimental findings for strong but not weak electromechanical (voltage-Ca(2+)) coupling, and offered mechanistic insight. In conclusion, using experimental and modeling approaches, we reveal a general mechanism for the spatial spread of subtle cellular Ca(2+) alternans that relies on a combination of gap-junctional and voltage-Ca(2+) coupling.
Collapse
|
21
|
Cottin S, Ghani K, de Campos-Lima PO, Caruso M. Gemcitabine intercellular diffusion mediated by gap junctions: new implications for cancer therapy. Mol Cancer 2010; 9:141. [PMID: 20537146 PMCID: PMC2898703 DOI: 10.1186/1476-4598-9-141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 06/10/2010] [Indexed: 02/06/2023] Open
Abstract
Background Solid tumors are often poorly vascularized, with cells that can be 100 μm away from blood vessels. These distant cells get less oxygen and nutrients and are exposed to lower doses of chemotherapeutic agents. As gap junctions allow the passage of small molecules between cells, we tested the possibility that the chemotherapeutic agent gemcitabine can diffuse through gap junctions in solid tumors. Results We first showed with a dye transfer assay that the glioblastoma and the osteosarcoma cells used in this study have functional gap junctions. These cells were genetically engineered to express the herpes simplex virus thymidine kinase (TK), and induced a "bystander effect" as demonstrated by the killing of TK-negative cells in presence of the nucleoside analogue ganciclovir (GCV). The ability of gemcitabine to induce a similar bystander effect was then tested by mixing cells treated with 3 μM gemcitabine for 24 hours with untreated cells at different ratios. In all cell lines tested, bystander cells were killed with ratios containing as low as 5% treated cells, and this toxic effect was reduced in presence of α-glycyrrhetinic acid (AGA), a specific gap junction inhibitor. We also showed that a 2- or a 24-hour gemcitabine treatment was more efficient to inhibit the growth of spheroids with functional gap junctions as compared to the same treatment made in presence of AGA. Finally, after a 24-hour gemcitabine treatment, the cell viability in spheroids was reduced by 92% as opposed to 51% in presence of AGA. Conclusion These results indicate that gemcitabine-mediated toxicity can diffuse through gap junctions, and they suggest that gemcitabine treatment could be more efficient for treating solid tumors that display gap junctions. The presence of these cellular channels could be used to predict the responsiveness to this nucleoside analogue therapy.
Collapse
Affiliation(s)
- Sylvine Cottin
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Qc G1R 2J6, Canada
| | | | | | | |
Collapse
|
22
|
Kothari V, Joshi G, Nama S, Somasundaram K, Mulherkar R. HDAC inhibitor valproic acid enhances tumor cell kill in adenovirus-HSVtk mediated suicide gene therapy in HNSCC xenograft mouse model. Int J Cancer 2010; 126:733-42. [PMID: 19569045 DOI: 10.1002/ijc.24700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model.
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Genetic Engineering Unit, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | | | | | | | | |
Collapse
|
23
|
Ammerpohl O, Tiwari S, Kalthoff H. Target gene discovery for novel therapeutic agents in cancer treatment. Methods Mol Biol 2010; 576:427-445. [PMID: 19882275 DOI: 10.1007/978-1-59745-545-9_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Target identification of novel therapeutic drugs is pivotal for the establishment of (1) new anticancer regimens, (2) to control side effects of the drugs, and (3) to identify appropriate combinations with established drugs. Here, we describe several in vitro assays applicable to characterize different characteristics of tumor cells. Furthermore, we present a protocol for establishing a reporter gene system for in vivo imaging, allowing for the study of drug effects in small animal models.
Collapse
Affiliation(s)
- Ole Ammerpohl
- Clinic for General Surgery and Thoracic Surgery, Division Molecular Oncology, University Hospital of Schleswig, Kiel, Germany
| | | | | |
Collapse
|
24
|
Copray S, Huynh JL, Sher F, Casaccia-Bonnefil P, Boddeke E. Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia 2009; 57:1579-87. [PMID: 19373939 PMCID: PMC2760733 DOI: 10.1002/glia.20881] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The process of oligodendrocyte differentiation is regulated by a dynamic interaction between a genetic and an epigenetic program. Recent studies, addressing nucleosomal histone modifications have considerably increased our knowledge regarding epigenetic regulation of gene expression during oligodendrocyte development and aging. These results have generated new hypotheses regarding the mechanisms underlying the decreased efficiency of endogenous remyelination in response to demyelinating injuries with increasing age. In this review, we present an overview of the epigenetic mechanisms regulating gene expression at specific stages of oligodendrocyte differentiation and maturation as well as the changes that occur with aging.
Collapse
Affiliation(s)
- Sjef Copray
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| | - Jimmy Long Huynh
- Department of Neuroscience, and Genetics and Genomics Mount Sinai School of Medicine, New York, NY 10029
| | - Falak Sher
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| | - Patrizia Casaccia-Bonnefil
- Department of Neuroscience, and Genetics and Genomics Mount Sinai School of Medicine, New York, NY 10029
| | - Erik Boddeke
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| |
Collapse
|
25
|
Potential adenovirus-mediated gene therapy of glioma cancer. Biotechnol Lett 2009; 32:11-8. [PMID: 19784809 DOI: 10.1007/s10529-009-0132-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/21/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Malignant gliomas are typically characterized by rapid cell proliferation and a marked propensity to invade and damage surrounding tissues. They are the main brain tumors notoriously resistant to currently available therapies, since they fail to undergo apoptosis upon anticancer treatments. With recent advances in neuroscience and improved understanding of the molecular mechanisms of invasive migration, gene therapy provides a new strategy for treating glioma cancer. Brain tumor gene therapy using viral vectors and stem cells has shown promise in animal model and human patient studies. Here, we review recent studies on engineering adenoviral vectors that can be used as therapy for brain tumors. The new findings presented in this study are essential for the further exploration of this cancer and they represent an approach for developing a newer and more effective therapeutic approach in the clinical treatment of human glioma cancer.
Collapse
|
26
|
Snykers S, Henkens T, De Rop E, Vinken M, Fraczek J, De Kock J, De Prins E, Geerts A, Rogiers V, Vanhaecke T. Role of epigenetics in liver-specific gene transcription, hepatocyte differentiation and stem cell reprogrammation. J Hepatol 2009; 51:187-211. [PMID: 19457566 DOI: 10.1016/j.jhep.2009.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlling both growth and differentiation of stem cells and their differentiated somatic progeny is a challenge in numerous fields, from preclinical drug development to clinical therapy. Recently, new insights into the underlying molecular mechanisms have unveiled key regulatory roles of epigenetic marks driving cellular pluripotency, differentiation and self-renewal/proliferation. Indeed, the transcription of genes, governing cell-fate decisions during development and maintenance of a cell's differentiated status in adult life, critically depends on the chromatin accessibility of transcription factors to genomic regulatory and coding regions. In this review, we discuss the epigenetic control of (liver-specific) gene-transcription and the intricate interplay between chromatin modulation, including histone (de)acetylation and DNA (de)methylation, and liver-enriched transcription factors. Special attention is paid to their role in directing hepatic differentiation of primary hepatocytes and stem cells in vitro.
Collapse
Affiliation(s)
- Sarah Snykers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Das S, Smith TD, Sarma JD, Ritzenthaler JD, Maza J, Kaplan BE, Cunningham LA, Suaud L, Hubbard MJ, Rubenstein RC, Koval M. ERp29 restricts Connexin43 oligomerization in the endoplasmic reticulum. Mol Biol Cell 2009; 20:2593-604. [PMID: 19321666 PMCID: PMC2682600 DOI: 10.1091/mbc.e08-07-0790] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 02/04/2023] Open
Abstract
Connexin43 (Cx43) is a gap junction protein that forms multimeric channels that enable intercellular communication through the direct transfer of signals and metabolites. Although most multimeric protein complexes form in the endoplasmic reticulum (ER), Cx43 seems to exit from the ER as monomers and subsequently oligomerizes in the Golgi complex. This suggests that one or more protein chaperones inhibit premature Cx43 oligomerization in the ER. Here, we provide evidence that an ER-localized, 29-kDa thioredoxin-family protein (ERp29) regulates Cx43 trafficking and function. Interfering with ERp29 function destabilized monomeric Cx43 oligomerization in the ER, caused increased Cx43 accumulation in the Golgi apparatus, reduced transport of Cx43 to the plasma membrane, and inhibited gap junctional communication. ERp29 also formed a specific complex with monomeric Cx43. Together, this supports a new role for ERp29 as a chaperone that helps stabilize monomeric Cx43 to enable oligomerization to occur in the Golgi apparatus.
Collapse
Affiliation(s)
- Shamie Das
- *Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Tekla D. Smith
- *Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Jayasri Das Sarma
- Neuroscience Group, Indian Institute of Science Education and Research, Kolkata, India 700106
| | | | - Jose Maza
- *Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Benjamin E. Kaplan
- *Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Leslie A. Cunningham
- *Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Laurence Suaud
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Michael J. Hubbard
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Ronald C. Rubenstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Michael Koval
- *Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
| |
Collapse
|
28
|
Vinken M, De Rop E, Decrock E, De Vuyst E, Leybaert L, Vanhaecke T, Rogiers V. Epigenetic regulation of gap junctional intercellular communication: More than a way to keep cells quiet? Biochim Biophys Acta Rev Cancer 2009; 1795:53-61. [DOI: 10.1016/j.bbcan.2008.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 02/07/2023]
|
29
|
Shen S, Casaccia-Bonnefil P. Post-translational modifications of nucleosomal histones in oligodendrocyte lineage cells in development and disease. J Mol Neurosci 2008; 35:13-22. [PMID: 17999198 PMCID: PMC2323904 DOI: 10.1007/s12031-007-9014-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed.
Collapse
Affiliation(s)
- Siming Shen
- Department Neuroscience and Cell Biology, Robert Wood Johnson Medical School, R-304 Research Tower 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
30
|
Das Sarma J, Kaplan BE, Willemsen D, Koval M. Identification of rab20 as a potential regulator of connexin 43 trafficking. CELL COMMUNICATION & ADHESION 2008; 15:65-74. [PMID: 18649179 DOI: 10.1080/15419060802014305] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Connexin oligomerization and trafficking are regulated processes. To identify proteins that control connexin 43 (Cx43), a screen was designed using HeLa cells expressing a Cx43 construct with di-lysine endoplasmic reticulum (ER)-retention/retrieval motif, Cx43-HKKSL. At moderate levels of expression, Cx43-HKKSL is retained in the ER as monomers; however, Cx43-HKKSL stably overexpressed by HeLa cells localizes to the perinuclear region and oligomerizes. HeLa/Cx43-HKKSL overexpressors were transiently transfected with pooled clones from a human kidney cDNA library and used immunofluorescence microscopy to identify cDNAs that enabled overexpressed Cx43-HKKSL to convert from a perinuclear to ER localization pattern. Using this approach, a small molecular weight GTPase, rab20, was identified as a candidate protein with the ability to regulate Cx43 trafficking. Enhanced green fluorescent protein (EGFP)-tagged rab20 showed a predominantly perinuclear and ER localization pattern and caused wild-type Cx43 to be retained inside the cell. By contrast, mutant EGFP-rab20T19N, which lacks the ability to bind GTP, had no effect on Cx43. These results suggest Cx43 is transported through an intracellular compartment regulated by rab20 along the secretory pathway.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Neurology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
31
|
Chen W, Yan C, Hou J, Pu J, Ouyang J, Wen D. ATRA enhances bystander effect of suicide gene therapy in the treatment of prostate cancer. Urol Oncol 2008; 26:397-405. [PMID: 18367126 DOI: 10.1016/j.urolonc.2007.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 08/11/2007] [Accepted: 08/13/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVES All-trans retinoic acid (ATRA) has been shown to inhibit the growth of many malignancies by altering gap junctional intercellular communication (GJIC) and the expression of connexin (Cx) 43. Here, we report that the alteration of GJIC by ATRA may directly enhance the bystander effect (BE) of suicide gene therapy against prostate cancer in vitro and in vivo. METHODS PC-3 cells were exposed to different concentrations of ATRA for varying lengths of time in culture. Flow cytometry was performed to measure Cx43-positive cells and the GJIC function of the cells was examined with the scrape-loading dye transfer assay. Cells were treated with ATRA in combination with an adenovirus/ganciclovir (Ad-TK/GCV) system encoding herpes simplex virus-thymidine kinase, and the BE was assessed in the treatment of androgen-independent prostate cancer both in vitro and in vivo. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry were performed to assess the expression of Cx43 mRNA and protein in tumor tissues. RESULTS ATRA significantly increased the amount of Cx43-positive cells in a time- and dose-dependent manner (P < 0.05). GJIC functions were enhanced 3- to 5-fold in the presence of ATRA, although ATRA did not augment GCV toxicity of PC-3 cells. In the mixing assay, ATRA significantly increased cell killing when the ratio of TK-positive cells in the coculture ranged from 30% to 60% compared with ATRA-untreated cell (P < 0.05), and attained 50% cell killing cells when the ratio of TK-positive cell was 30%, but the same result did not appear until the ratio of TK-positive cell was up to 60% in the ATRA-untreated cell. Mice treated with a combination of ATRA and GCV had significantly smaller Ad-TK infected tumors than those treated with GCV or ATRA alone after 3-weeks of therapy (P < 0.05). However, from the fourth-week of therapy, there was no difference in tumor growth inhibition between GCV treatment and GCV + ATRA treatment (P > 0.05), as two tumors in the latter group started to grow more quickly than tumors in the control group. This phenomenon was not found in other groups. CONCLUSIONS ATRA could enhance the efficiency of cell killing in suicide gene therapy against prostate cancer by strengthening the BE in vitro and in vivo. Induction of Cxs and GJIC by ATRA might provide an element of selectivity to suicide gene therapy. Future studies should focus on safety and tailoring this cooperative therapy to the patient.
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Urology, The First Affiliated Hospital of Suzhou University, Jiangsu, China.
| | | | | | | | | | | |
Collapse
|
32
|
Gagliano N, Moscheni C, Torri C, Donetti E, Magnani I, Costa F, Nowicky W, Gioia M. Ukrain modulates glial fibrillary acidic protein, but not connexin 43 expression, and induces apoptosis in human cultured glioblastoma cells. Anticancer Drugs 2007; 18:669-76. [PMID: 17762395 DOI: 10.1097/cad.0b013e32808bf9ec] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glioblastoma is a highly malignant tumor, characterized by an unfavorable prognosis even in response to multidisciplinary treatment strategies, owing to its high-invasive phenotype. Ukrain, a semisynthetic thiophosphoric acid derivative of the purified alkaloid chelidonine, has been used in the therapy of several solid tumors, but little is known about its effect on glioblastoma and, in general, about the molecular mechanisms responsible for its effects. In particular, we previously demonstrated that Ukrain modulates the expression of genes and proteins involved in tumor invasion, and here we investigate some unreported effects of Ukrain on human cultured glioblastoma cells. We used morphological and molecular biology methods to analyze the expression and the intracellular distribution pattern of glial fibrillary acidic protein, the expression of the gap junction protein connexin 43 and the apoptotic effect in human glioblastoma cells treated with 0.1, 1 and 10 micromol/l Ukrain for 72 h. After treatment with 10 micromol/l Ukrain, glial fibrillary acidic protein fluorescence increased and a higher number of cells displayed glial fibrillary acidic protein organized into a filamentous state. Western blot analysis of glial fibrillary acidic protein confirmed that Ukrain tended to upregulate the protein. Connexin 43 was not modulated by Ukrain both at the mRNA and at the protein level. Ukrain-induced apoptotic rate was 4.63, 10.9 and 28.9% after 0.1, 1 and 10 micromol/l Ukrain, respectively, likely mediated by cytochrome c release in the cytoplasm. Considered as a whole, these findings provide new information to complete the understanding of the mechanisms of Ukrain antitumor and chemopreventive effect, and support the possible potential of Ukrain for the therapy of brain tumors.
Collapse
Affiliation(s)
- Nicoletta Gagliano
- Department of Human Morphology, San Paolo School of Medicine, University of Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Vinken M, Henkens T, Snykers S, Lukaszuk A, Tourwé D, Rogiers V, Vanhaecke T. The novel histone deacetylase inhibitor 4-Me2N-BAVAH differentially affects cell junctions between primary hepatocytes. Toxicology 2007; 236:92-102. [PMID: 17482745 DOI: 10.1016/j.tox.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 03/29/2007] [Accepted: 04/03/2007] [Indexed: 12/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors show great pharmaceutical potential, particularly in relation to cancer. However, very little is known about their biological outcome on hepatocytes, the major executors of xenobiotic biotransformation in the organism. The current study was set up to investigate the effects of the newly synthesized HDAC inhibitor 5-(4-dimethylaminobenzoyl)-aminovaleric acid hydroxamate (4-Me(2)N-BAVAH) on hepatocyte gap junctions and adherens junctions, being main guardians of liver homeostasis. For that purpose, freshly isolated rat hepatocytes were cultivated for 7 days either in the absence or presence of 50 microM 4-Me(2)N-BAVAH. Gap junction activity became promoted upon exposure to 4-Me(2)N-BAVAH, which was associated with elevated Cx32 protein levels. By contrast, both Cx26 and Cx43 protein levels were negatively affected. The modifications in connexin protein content were not reflected at the transcriptional level. Finally, neither the expressions nor the cellular localizations of the adherens junction building stones E-cadherin, beta-catenin and gamma-catenin were altered by 4-Me(2)N-BAVAH, a finding that is in contrast to what is commonly observed in tumor cells following exposure to HDAC inhibitors.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
34
|
Das CM, Aguilera D, Vasquez H, Prasad P, Zhang M, Wolff JE, Gopalakrishnan V. Valproic acid induces p21 and topoisomerase-II (α/β) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J Neurooncol 2007; 85:159-70. [PMID: 17534580 DOI: 10.1007/s11060-007-9402-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
OBJECT Etoposide, a topoisomerase-II inhibitor promotes DNA damage and apoptosis of cancer cells. In this study, we have examined the ability of the histone deacetylase inhibitor, valproic acid (VPA) to modulate gene expression and sensitize glioblastoma cell lines to the cytotoxic effects of etoposide in vitro. METHODS The effect of VPA and etoposide alone or a combination of the two drugs on the growth of three different glioblastoma cell lines (U87, LN18, and U251) were measured by MTT assays. Drug treated cells were analyzed for their cell cycle profile, gene expression, differentiation status, and induction of apoptosis by flow-cytometry, western blotting, immunofluorescence assays, and caspase activity measurements. RESULTS We observed that while VPA and etoposide independently inhibited the growth of U87, U251, and LN18 cells, exposure of tumor cells to both drugs significantly enhanced the cytotoxicity of etoposide in all cell lines. VPA promoted a G(1) accumulation of U87, while an increase in the G(2)/M population of U251 and LN18 cells was observed upon exposure to the drug. Treatment with etoposide resulted in a G(2)/M arrest of U87, U251, and LN18 cells, whereas, exposure to both drugs increased the fraction of cells with a G2/M and sub-G1 DNA content. Further, VPA and not etoposide, promoted acetylation of histone H4 and induced the expression of the cyclin-dependent kinase inhibitor (CDKI), p21/WAF1. VPA also up-regulated the expression of the alpha and beta isoforms of topoisomerase-II, as well as the glial differentiation marker, glial fibrillary acidic protein. Finally, a significant increase in caspase-3 activity and apoptosis was observed in the presence of both VPA and etoposide compared to either agent alone. CONCLUSION Our study demonstrates that VPA sensitizes U87, U251, and LN18 cells to the cytotoxic effects of etoposide in vitro by inducing differentiation and up-regulating the expression of p21/WAF1 and both isoforms of topoisomerase-II.
Collapse
Affiliation(s)
- Chandra M Das
- Department of Pediatrics, Unit 853, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Khan Z, Akhtar M, Asklund T, Juliusson B, Almqvist PM, Ekström TJ. HDAC inhibition amplifies gap junction communication in neural progenitors: potential for cell-mediated enzyme prodrug therapy. Exp Cell Res 2007; 313:2958-67. [PMID: 17555745 DOI: 10.1016/j.yexcr.2007.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/03/2007] [Accepted: 05/02/2007] [Indexed: 01/18/2023]
Abstract
Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (Cx43) was analyzed by western blot and immunocytochemistry. While Cx43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased Cx43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of Cx43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer.
Collapse
Affiliation(s)
- Zahidul Khan
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Ammerpohl O, Trauzold A, Schniewind B, Griep U, Pilarsky C, Grutzmann R, Saeger HD, Janssen O, Sipos B, Kloppel G, Kalthoff H. Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells. Br J Cancer 2006; 96:73-81. [PMID: 17164759 PMCID: PMC2360208 DOI: 10.1038/sj.bjc.6603511] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease and one of the cancer entities with the lowest life expectancy. Beside surgical therapy, no effective therapeutic options are available yet. Here, we show that 4-phenylbutyrate (4-PB), a known and well-tolerable inhibitor of histone deacetylases (HDAC), induces up to 70% apoptosis in all cell lines tested (Panc 1, T4M-4, COLO 357, BxPc3). In contrast, it leads to cell cycle arrest in only half of the cell lines tested. This drug increases gap junction communication between adjacent T3M-4 cells in a concentration-dependent manner and efficiently inhibits cellular export mechanisms in Panc 1, T4M-4, COLO 357 and BxPc3 cells. Consequently, in combination with gemcitabine 4-PB shows an overadditive effect on induction of apoptosis in BxPc3 and T3M-4 cells (up to 4.5-fold compared to single drug treatment) with accompanied activation of Caspase 8, BH3 interacting domain death agonist (Bid) and poly (ADP-ribose) polymerase family, member 1 (PARP) cleavage. Although the inhibition of the mitogen-activated protein kinase-pathway has no influence on fulminant induction of apoptosis, the inhibition of the JNK-pathway by SP600125 completely abolishes the overadditive effect induced by the combined application of both drugs, firstly reported by this study.
Collapse
Affiliation(s)
- O Ammerpohl
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
| | - A Trauzold
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
| | - B Schniewind
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
| | - U Griep
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
| | - C Pilarsky
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden 01307, Germany
| | - R Grutzmann
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden 01307, Germany
| | - H-D Saeger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden 01307, Germany
| | - O Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - B Sipos
- Institute of Pathology, University Hospital Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - G Kloppel
- Institute of Pathology, University Hospital Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - H Kalthoff
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
- E-mail:
| |
Collapse
|
37
|
Jung JW, Cho SD, Ahn NS, Yang SR, Park JS, Jo EH, Hwang JW, Aruoma OI, Lee YS, Kang KS. Effects of the histone deacetylases inhibitors sodium butyrate and trichostatin A on the inhibition of gap junctional intercellular communication by H2O2- and 12-O-tetradecanoylphorbol-13-acetate in rat liver epithelial cells. Cancer Lett 2006; 241:301-8. [PMID: 16337085 DOI: 10.1016/j.canlet.2005.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 01/11/2023]
Abstract
The histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and sodium butyrate (NaBu) are considered as potent therapeutic agents for cancer treatment presenting therapeutic benefits with less risk of side effects. The microbial metabolite, TSA is a potent reversible and highly specific inhibitor of mammalian histone deacetylases. NaBu causes hyperacetylation of core histones with effects similar to TSA but it is not a specific inhibitor of HDACs. The gap junction is a channel in the plasma membrane of most cell types which allows direct communication (gap junctional intercellular communication; GJIC) of small molecules and ions. Modulation of GJIC is a known cellular event associated with tumor promotion. The effects of NaBu and TSA on the H(2)O(2)- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced GJIC inhibition of WB cells and the mechanisms involved in the process were assessed. TSA and NaBu exerted differential preventive effects on the H(2)O(2) and TPA-induced inhibition of GJIC as well as hyperphosphorylation of connexin43 (Cx43) in WB-F344 rat liver epithelial cells (WB cells). NaBu prevented the TPA-induced GJIC inhibition via ERK1/2 inactivation whilst TSA restored the H(2)O(2)-induced GJIC inhibition and Cx43 hyperphosphorylation by preventing p38 MAP kinase. The inhibition of tyrosine phosphorylation and down-regulation of src protein observed may also contribute to Connexin 43 dephosphorylation and GJIC restoration by TSA and NaBu partly through depletion of src protein pool. Thus, TSA and NaBu exert differential effects on chemically induced GJIC inhibition via modulation of MAP kinases and partly, tyrosine kinases.
Collapse
Affiliation(s)
- Ji-Won Jung
- Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, San 56-1, Sillim-dong, Gwanakgu, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hernandez M, Shao Q, Yang XJ, Luh SP, Kandouz M, Batist G, Laird DW, Alaoui-Jamali MA. A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene cx43 in prostate cancer cells. Prostate 2006; 66:1151-61. [PMID: 16652385 DOI: 10.1002/pros.20451] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The connexin 43 gene (cx43, GJA1) mediates gap junctional intercellular communication (GJIC), which regulates tissue homeostasis. cx43 is frequently downregulated in prostate cancer. We investigated the role of a histone deacetylase (HDAC)-dependent mechanism in the transcriptional repression of cx43 in a panel of prostate cancer cells. METHODS The impact of Trichostatin A (TSA), an inhibitor of HDAC, on exogenous and endogenous cx43 gene transcription was examined by the luciferase assay, Northern blot, nuclear run-on, Western blot, and chromatin immunoprecipitation assays. RESULTS Trichostatin A induces transcription of cx43 gene and GJIC. The co-activator p300/CBP synergizes with TSA for cx43 promoter activation. We identified a promoter region where cooperation between Ap1 and Sp1 elements was essential for TSA-induced cx43 transcription. TSA increased the level of hyperacetylated histones bound to cx43 promoter. CONCLUSION Our results highlight the potential utility of inhibitors of HDAC to restore cx43 gene expression in prostate cancer.
Collapse
Affiliation(s)
- Maite Hernandez
- Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, 3755 Chemin de la Cote Ste-Catherine, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vinken M, Henkens T, Vanhaecke T, Papeleu P, Geerts A, Van Rossen E, Chipman JK, Meda P, Rogiers V. Trichostatin a enhances gap junctional intercellular communication in primary cultures of adult rat hepatocytes. Toxicol Sci 2006; 91:484-92. [PMID: 16531468 DOI: 10.1093/toxsci/kfj152] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The effects of histone deacetylase inhibitor Trichostatin A (TSA) on connexin (Cx) expression and gap junctional intercellular communication (GJIC) were investigated in primary cultures of adult rat hepatocytes. GJIC was monitored by using the scrape-loading/dye transfer method. Immunoblotting and immunocytochemistry were used to investigate Cx protein levels and localization. Cx gene expression was studied by means of quantitative reverse transcriptase-polymerase chain reaction. TSA increased Cx32 protein levels and affected negatively the Cx26 protein levels. The latter was preferentially located in the cytosol of cultured cells. TSA also promoted the appearance of Cx43 in the nuclear compartment of primary cultured hepatocytes. Overall, this resulted in enhanced GJIC activity. It is important to note that the time of onset of TSA treatment was crucial for the extent of its outcome and that the effects of TSA on Cx protein levels occurred independently of transcriptional changes. TSA differentially affects Cx proteins in primary rat hepatocyte cultures, suggesting distinct regulation and/or distinct roles of the different Cx species in the control of hepatic homeostasis. TSA enhances GJIC between primary cultured rat hepatocytes, an interesting finding supporting its use to further optimize liver-based in vitro models for pharmacotoxicological purposes.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ogawa T, Hayashi T, Tokunou M, Nakachi K, Trosko JE, Chang CC, Yorioka N. Suberoylanilide hydroxamic acid enhances gap junctional intercellular communication via acetylation of histone containing connexin 43 gene locus. Cancer Res 2005; 65:9771-9778. [PMID: 16266998 DOI: 10.1158/0008-5472.can-05-0227] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), induces apoptosis in neoplastic cells, but its effect on gap junctional intercellular communication in relation to apoptosis was unclear. Therefore, we carried out a comparative study of the effects of two HDAC inhibitors, SAHA and trichostatin-A, on gap junctional intercellular communication in nonmalignant human peritoneal mesothelial cells (HPMC) and tumorigenic ras oncogene-transformed rat liver epithelial cells (WB-ras) that showed a significantly lower level of gap junctional intercellular communication than did HPMC. Gap junctional intercellular communication was assessed by recovery rate of fluorescence recovery after photobleaching. Treatment of HPMC with SAHA at nanomolar concentrations caused a dose-dependent increase of recovery rate without inducing apoptosis. This effect was accompanied by enhanced connexin 43 (Cx43) mRNA and protein expression and increased presence of Cx43 protein on cell membrane. Trichostatin-A induced apoptosis in HPMC but was less potent than SAHA in enhancing the recovery rate. In contrast, treatment of WB-ras cells with SAHA or trichostatin-A induced apoptosis at low concentrations, in spite of smaller increases in recovery rate, Cx43 mRNA, and protein than in HPMC. Chromatin immunoprecipitation analysis revealed that SAHA enhanced acetylated histones H3 and H4 in the chromatin fragments associated with Cx43 gene in HPMC. These results indicate that SAHA at low concentrations selectively up-regulates Cx43 expression in normal human cells without induction of apoptosis, as a result of histone acetylation in selective chromatin fragments, in contrast to the apoptotic effect observed in tumorigenic WB-ras cells. These results support a cancer therapeutic and preventive role for specific HDAC inhibitors.
Collapse
Affiliation(s)
- Takahiko Ogawa
- Department of Radiobiology and Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
King TJ, Bertram JS. Connexins as targets for cancer chemoprevention and chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:146-60. [PMID: 16263076 DOI: 10.1016/j.bbamem.2005.08.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/25/2005] [Accepted: 08/31/2005] [Indexed: 02/02/2023]
Abstract
Cells within a tissue continuously interact to coordinate normal tissue functions and maintain homeostasis. Gap junctional communication (GJC), mediated by the connexin protein family, allows this type of intercellular crosstalk resulting in synchronized and cooperative tissue behavior such as cardiac contraction. In cancer, loss of these types of cell:cell interactions has been shown to facilitate tumorigenesis and enable the autonomous cell behavior associated with transformed cells. Indeed, many human tumor lines demonstrate deficient or aberrant GJC and/or loss of connexin expression. Restoration of exogenous connexin expression/GJC function is correlated with increased cell growth control both in vitro and in vivo. In support of this growth regulatory hypothesis, decreased connexin expression has been observed in situ in early human neoplasia of various organs. Additionally, genetically engineered mice lacking particular connexins (Connexins 32 or 43) exhibit increased susceptibility to radiation and chemically-induced liver and/or lung tumorigenesis. These studies strongly suggest that connexins and GJC serve a tumor suppressor role. Consistent with this proposed role, in a model cell culture system, retinoids and carotenoids up-regulate Connexin43 (Cx43) expression in direct proportion to their ability to suppress carcinogen-induced neoplastic transformation. Here, we discuss the important role of connexins and GJC in tumorigenesis and suggest the possibility of connexins as potential anti-oncogenic targets for chemoprevention and/or chemotherapy.
Collapse
|
42
|
Graner MW, Bigner DD. Chaperone proteins and brain tumors: potential targets and possible therapeutics. Neuro Oncol 2005; 7:260-78. [PMID: 16053701 PMCID: PMC1871914 DOI: 10.1215/s1152851704001188] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chaperone proteins are most notable for the proteo- and cyotoprotective capacities they afford during cellular stress. Under conditions of cellular normalcy, chaperones still play integral roles in the folding of nascent polypeptides into functional entities, in assisting in intracellular/intraorganellar transport, in assembly and maintenance of multi-subunit protein complexes, and in aiding and abetting the degradation of senescent proteins. Tumors frequently have relatively enhanced needs for chaperone number and activity because of the stresses of rapid proliferation, increased metabolism, and overall genetic instability. Thus, it may be possible to take advantage of this reliance that tumor cells have on chaperones by pharmacologic and biologic means. Certain chaperones are abundant in the brain, which implies important roles for them. While it is presumed that the requirements of brain tumors for chaperone proteins are similar to those of any other cell type, tumor or otherwise, very little inquiry has been directed at the possibility of using chaperone proteins as therapeutic targets or even as therapeutic agents against central nervous system malignancies. This review highlights some of the research on the functions of chaperone proteins, on what can be done to modify those functions, and on the physiological responses that tumors and organisms can have to chaperone-targeted or chaperone-based therapies. In particular, this review will also underscore areas of research where brain tumors have been part of the field, although in general those instances are few and far between. This relative dearth of research devoted to chaperone protein targets and therapeutics in brain tumors reveals much untrodden turf to explore for potential treatments of these dreadfully refractive diseases.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
43
|
Ammerpohl O, Thormeyer D, Khan Z, Appelskog IB, Gojkovic Z, Almqvist PM, Ekström TJ. HDACi phenylbutyrate increases bystander killing of HSV-tk transfected glioma cells. Biochem Biophys Res Commun 2004; 324:8-14. [PMID: 15464975 DOI: 10.1016/j.bbrc.2004.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Malignant glioma patients have a dismal prognosis with an urgent need of new treatment modalities. Previously developed gene therapies for brain tumors showed promising results in experimental animal models, but failed in clinical trials due to low transfection rates and insufficient expression of the transgene in tumor cells, as well as low bystander killing effects. We have previously shown that the histone deacetylase inhibitor 4-phenylbutyrate (4-PB) enhances gap junction communication between glioma cells in culture. In this study, we demonstrate an activation of recombinant HSV-tk gene expression, and a dramatic enhancement of gap junction-mediated bystander killing effect by administration of the HSV-tk prodrug ganciclovir together with 4-PB. These findings that 4-PB potentiates "suicide gene" expression as well as enhances gap junctional communication and bystander killing of tumor cells justify further testing of this paradigm as an adjunct to suicide gene therapy of malignant gliomas.
Collapse
Affiliation(s)
- Ole Ammerpohl
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|