1
|
Chang Q, Mao H, Feng J, Rao L, Tang W, Zhang Z, Hu Z. Sodium butyrate increases USP5-mediated ubiquitination degradation of GPX4 and enhances anti-cancer efficacy of anti-PD-1 antibody. Biochem Pharmacol 2025; 237:116927. [PMID: 40216263 DOI: 10.1016/j.bcp.2025.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC), a prevalent malignancy associated with a dismal prognosis, necessitates the urgent exploration of novel therapeutic avenues. Ferroptosis, an iron-mediated, lipid peroxidation-induced form of regulated cell death (RCD), has emerged as a promising target for cancer therapy. Sodium butyrate (NaBu), a short-chain fatty acid sodium salt, has demonstrated antitumor efficacy against diverse cancers, yet its specific role and mechanisms in HCC treatment remain elusive. Our findings reveal that NaBu not only impedes HCC cell growth and epithelial-mesenchymal transition (EMT) but also triggers ferroptosis by enhancing Fe2+ accumulation, reactive oxygen species (ROS) generation, and malondialdehyde (MDA) production. Notably, these effects are effectively mitigated by Ferrostatin-1 (Fer-1), underscoring the ferroptosis-inducing capacity of NaBu. Mechanistically, NaBu exerts its action by diminishing the level of ubiquitin-specific protease 5 (USP5), which subsequently leads to the ubiquitination and destabilization of glutathione peroxidase 4 (GPX4), a crucial suppressor in ferroptosis. In a preclinical setting, NaBu significantly inhibits tumor xenograft growth in nude mice, highlighting its in vivo efficacy. When paired with an anti-programmed death 1 (PD-1) antibody, NaBu exhibits a potent synergistic antitumor effect, suggesting a potential role in enhancing immunotherapy response. Collectively, our results underscore the potential of NaBu as a novel therapeutic agent for HCC, through its ability to inhibit USP5 and indirectly downregulate GPX4, thereby stimulating ferroptosis.
Collapse
Affiliation(s)
- Qimeng Chang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Huarong Mao
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jinfeng Feng
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Longhua Rao
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Weiguo Tang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Ziping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zhiqiu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
2
|
Xu Y, Le J, Qin J, Zhang Y, Yang J, Chen Z, Li C, Qian X, Zhang A. Decoding the microbiota metabolome in hepatobiliary and pancreatic cancers: Pathways to precision diagnostics and targeted therapeutics. Pharmacol Res 2024; 208:107364. [PMID: 39181345 DOI: 10.1016/j.phrs.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
We delve into the critical role of the gut microbiota and its metabolites in the pathogenesis and progression of hepatobiliary and pancreatic (HBP) cancers, illuminating an urgent need for breakthroughs in diagnostic and therapeutic strategies. Given the high mortality rates associated with HBP cancers, which are attributed to aggressive recurrence, metastasis, and poor responses to chemotherapy, exploring microbiome research presents a promising frontier. This research highlights how microbial metabolites, including secondary bile acids, short-chain fatty acids, and lipopolysaccharides, crucially influence cancer cell behaviors such as proliferation, apoptosis, and immune evasion, significantly contributing to the oncogenesis and progression of HBP cancers. By integrating the latest findings, we discuss the association of microbial alterations with HBP cancers, key metabolites, and their implications, and how metabolomics and microbiomics can enhance diagnostic precision. Furthermore, the paper explores strategies for targeted therapies through microbiome metabolomics, including the direct therapeutic effects of microbiome metabolites and potential synergistic effects on conventional therapies. We also recognize that the field of microbial metabolites for the diagnosis and treatment of tumors still has a lot of problems to be solved. The aim of this study is to pioneer microbial metabolite research and provide a reference for HBP cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yuemiao Xu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiahan Le
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaying Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhuo Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Changyu Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Qian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| | - Aiqin Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| |
Collapse
|
3
|
Pant K, Venugopal SK, Lorenzo Pisarello MJ, Gradilone SA. The Role of Gut Microbiome-Derived Short-Chain Fatty Acid Butyrate in Hepatobiliary Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1455-1467. [PMID: 37422149 PMCID: PMC10548274 DOI: 10.1016/j.ajpath.2023.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
The short-chain fatty acid butyrate, produced from fermentable carbohydrates by gut microbiota in the colon, has multiple beneficial effects on human health. At the intestinal level, butyrate regulates metabolism, helps in the transepithelial transport of fluids, inhibits inflammation, and induces the epithelial defense barrier. The liver receives a large amount of short-chain fatty acids via the blood flowing from the gut via the portal vein. Butyrate helps prevent nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, inflammation, cancer, and liver injuries. It ameliorates metabolic diseases, including insulin resistance and obesity, and plays a direct role in preventing fatty liver diseases. Butyrate has different mechanisms of action, including strong regulatory effects on the expression of many genes by inhibiting the histone deacetylases and modulating cellular metabolism. The present review highlights the wide range of beneficial therapeutic and unfavorable adverse effects of butyrate, with a high potential for clinically important uses in several liver diseases.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Senthil K Venugopal
- Laboratory of Molecular Medicine and Hepatology, Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Maria J Lorenzo Pisarello
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA), National Council of Scientific and Technological Research, San Miguel de Tucuman, Argentina; Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
4
|
Che Y, Chen G, Guo Q, Duan Y, Feng H, Xia Q. Gut microbial metabolite butyrate improves anticancer therapy by regulating intracellular calcium homeostasis. Hepatology 2023; 78:88-102. [PMID: 36947402 DOI: 10.1097/hep.0000000000000047] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND AIMS Gut microbiota are recognized to be important for anticancer therapy, yet the underlying mechanism is not clear. Here, through the analysis of clinical samples, we identify the mechanism by which the gut microbial metabolite butyrate inhibits HCC and then explore new strategies for HCC treatment. APPROACH AND RESULTS In our study, we demonstrate that gut microbial metabolite butyrate improves anticancer therapy efficacy by regulating intracellular calcium homeostasis. Using liquid chromatography-mass spectrometry analysis, we found that butyrate metabolism is activated in HCC patients compared with healthy individuals. Butyrate levels are lower in the plasma of HCC patients by gas chromatography-mass spectrometry (GC-MS) analysis. Butyrate supplementation or depletion of short-chain Acyl-CoA dehydrogenase (SCAD) gene (ACADS), encoding a key enzyme for butyrate metabolism, significantly inhibits HCC proliferation and metastasis. The profiling analysis of genes upregulated by butyrate supplementation or ACADS knockdown reveals that calcium signaling pathway is activated, leading to dysregulation of intracellular calcium homeostasis and production of reactive oxygen species. Butyrate supplementation improves the therapy efficacy of a tyrosine kinase inhibitor sorafenib. On the basis of these findings, we developed butyrate and sorafenib coencapsulated mPEG-PLGA-PLL nanoparticles coated with anti-GPC3 antibody (BS@PEAL-GPC3) to prolong the retention time of drugs and enhance drug targeting, leading to high anticancer efficacy. BS@PEAL-GPC3 nanoparticles significantly reduce HCC progression. In addition, BS@PEAL-GPC3 nanoparticles display excellent HCC targeting with excellent safety. CONCLUSIONS In conclusion, our findings provide new insight into the mechanism by which the gut microbial metabolites inhibit HCC progression, suggesting a translatable therapeutics approach to enhance the clinical targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Yibin Che
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Guoyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Cancer Institute, Shanghai, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai, China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Cancer Institute, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
5
|
Ye C, Chen P, Xu B, Jin Y, Pan Y, Wu T, Du Y, Mao J, Wu R. Abnormal expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium. Eur J Med Res 2023; 28:209. [PMID: 37393390 DOI: 10.1186/s40001-023-01180-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria play a pivotal role in physiological and metabolic function of the cell. Mitochondrial dynamics orchestrate mitochondrial function and morphology, involving fission and fusion as well as ultrastructural remodeling. Mounting evidence unravels the close link between mitochondria and endometriosis. However, how mitochondrial architecture changes through fission and fusion in eutopic and ectopic tissues of women with ovarian endometriosis remains unknown. We detected the expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium in ovarian endometriosis. The results showed that the expression of DRP1 and LCLAT1 was upregulated in eutopic endometrial stromal cells (ESCs), and the expression of DRP1, OPA1, MFN1, MFN2, and LCLAT1 was significantly downregulated in ectopic ESCs, and reduced number of mitochondria, wider cristae width and narrower cristae junction width was observed, but there was no difference in cell survival rate. The altered mitochondrial dynamics and morphology might, respectively, provide an advantage for migration and adhesion in eutopic ESCs and be the adaptive response in ectopic endometrial cells to survive under hypoxic and oxidative stress environment.
Collapse
Affiliation(s)
- Chaoshuang Ye
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Pei Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Bingning Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yang Jin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yongchao Pan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Tianyu Wu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yongjiang Du
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Jingxia Mao
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Ruijin Wu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Wu MY, Wang CC, Chang YC, Yu CY, Sung WW, Chen CJ, Tsai MC. The Therapeutic Role of PNU-74654 in Hepatocellular Carcinoma May Involve Suppression of NF-κB Signaling. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:798. [PMID: 35744061 PMCID: PMC9228701 DOI: 10.3390/medicina58060798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022]
Abstract
Background and Objectives: PNU-74654, a Wnt/β-catenin inhibitor, has reported antitumor activities; however, the therapeutic potential of PNU-74654 in hepatocellular carcinoma (HCC) has not been investigated in detail. The aim of this study was to clarify the cytotoxic effects of PNU-74654 against HCC and to uncover its molecular mechanism. Materials and Methods: HepG2 and Huh7 liver cancer cell lines were selected to determine the antitumor properties of PNU-74654. Survival of the liver cancer cells in response to PNU-74654 was assessed by cell viability assays, and the apoptosis effect of PNU-74654 was analyzed by flow cytometry and visualized by Hoechst staining. An oncology array was used to explore the underlying molecular routes of PNU-74654 action in the cells. The migration properties were examined with a wound healing assay, and western blotting was conducted to evaluate protein expression. Results: Treatment with PNU-74654 decreased cell viability and inhibited cell migration. The cell cycle analysis and Hoechst staining revealed an increase in the population of cells at the sub-G1 stage and apoptotic morphological changes in the nucleus. The oncology array identified 84 oncology-related proteins and a suppressed expression of Bcl-xL and survivin. Western blotting showed that PNU-74654 could interfere with cell cycle-related proteins through the NF-κB pathway. Conclusions: PNU-74654 shows antiproliferative and antimigration effects against HepG2 and Huh7 cells, and its antitumor activity may be attributable to its interference in cell cycle regulation and the NF-κB pathway.
Collapse
Affiliation(s)
- Min-You Wu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (M.-Y.W.); (C.-C.W.); (Y.-C.C.); (C.-Y.Y.); (W.-W.S.)
| | - Chi-Chih Wang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (M.-Y.W.); (C.-C.W.); (Y.-C.C.); (C.-Y.Y.); (W.-W.S.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (M.-Y.W.); (C.-C.W.); (Y.-C.C.); (C.-Y.Y.); (W.-W.S.)
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (M.-Y.W.); (C.-C.W.); (Y.-C.C.); (C.-Y.Y.); (W.-W.S.)
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (M.-Y.W.); (C.-C.W.); (Y.-C.C.); (C.-Y.Y.); (W.-W.S.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chih-Jung Chen
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (M.-Y.W.); (C.-C.W.); (Y.-C.C.); (C.-Y.Y.); (W.-W.S.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Ming-Chang Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (M.-Y.W.); (C.-C.W.); (Y.-C.C.); (C.-Y.Y.); (W.-W.S.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
7
|
Yu Q, Dai W, Ji J, Wu L, Feng J, Li J, Zheng Y, Li Y, Cheng Z, Zhang J, Wu J, Xu X, Guo C. Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c-myc/hexokinase 2 pathway. J Cell Mol Med 2022; 26:3031-3045. [PMID: 35429101 PMCID: PMC9097842 DOI: 10.1111/jcmm.17322] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis is a well-known hallmark of hepatocellular carcinoma (HCC). Hence, targeting the key enzymes of this pathway is considered a novel approach to HCC treatment. The effects of sodium butyrate (NaBu), a sodium salt of the short-chain fatty acid butyrate, on aerobic glycolysis in HCC cells and the underlying mechanism are unknown. In the present study, data obtained from cell lines with mouse xenograft model revealed that NaBu inhibited aerobic glycolysis in the HCC cells in vivo and in vitro. NaBu induced apoptosis while inhibiting the proliferation of the HCC cells in vivo and in vitro. Furthermore, the compound inhibited the release of lactate and glucose consumption in the HCC cells in vitro and inhibited the production of lactate in vivo. The modulatory effects of NaBu on glycolysis, proliferation and apoptosis were related to its modulation of hexokinase 2 (HK2). NaBu downregulated HK2 expression via c-myc signalling. The upregulation of glycolysis in the HCC cells induced by sorafenib was impeded by NaBu, thereby enhancing the anti-HCC effect of sorafenib in vitro and in vivo. Thus, NaBu inhibits the expression of HK2 to downregulate aerobic glycolysis and the proliferation of HCC cells and induces their apoptosis via the c-myc pathway.
Collapse
Affiliation(s)
- Qiang Yu
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Weiqi Dai
- Department of GastroenterologyShidong Hospital, Yangpu DistrictShidong Hospital Affiliated to University of Shanghai for Science and Technology200433ShanghaiP.R.China
| | - Jie Ji
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Liwei Wu
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Jiao Feng
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Jingjing Li
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
- Department of GastroenterologyPutuo People's HospitalTongji University200060ShanghaiChina
| | - Yuanyuan Zheng
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Yan Li
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Ziqi Cheng
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Jie Zhang
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Jianye Wu
- Department of GastroenterologyPutuo People's HospitalTongji University200060ShanghaiChina
| | - Xuanfu Xu
- Department of GastroenterologyShidong Hospital, Yangpu DistrictShidong Hospital Affiliated to University of Shanghai for Science and Technology200433ShanghaiP.R.China
| | - Chuanyong Guo
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| |
Collapse
|
8
|
Wang W, Yamaguchi S, Koyama M, Tian S, Ino A, Miyatake K, Nakamura K. LC-MS/MS Analysis of Choline Compounds in Japanese-Cultivated Vegetables and Fruits. Foods 2020; 9:foods9081029. [PMID: 32752118 PMCID: PMC7466321 DOI: 10.3390/foods9081029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Choline is an essential nutrient and choline esters are potential functional food ingredients. We aimed to analyze the choline compound content in 19 cultivated fruits and vegetables and identify those with high acetylcholine content. We utilized liquid chromatography with tandem mass spectrometry to quantify choline compounds according to the standard addition method. Choline compounds were extracted from lyophilized fruit/vegetable powders and passed through a weakly acidic cation exchange column, resulting in a concentrated solution of choline compounds. The compounds were separated on a pentafluorophenyl column and then analyzed using positive mode electrospray ionization. Results showed that acetylcholine and choline were the primary choline compounds in all agricultural products; propionylcholine and butyrylcholine were minor compounds in 17 and 12 agricultural products, respectively. The acetylcholine concentration was 2900-fold higher in eggplants (6.12 mg/100 g fresh weight [FW]) than in other agricultural products (average: 2.11 × 10−3 mg/100 g FW). The concentration of acetylcholine differed only 2-fold between eggplant cultivars with the highest (′Higomurasaki′: 5.53 mg/100 g FW) and lowest (′Onaga nasu′: 2.79 mg/100 g FW) concentrations. The half-life of acetylcholine in eggplants was approximately 16 days, which is longer the shelf life of eggplants. Thus, eggplants can be a good source of acetylcholine.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan; (W.W.); (S.Y.)
| | - Shohei Yamaguchi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan; (W.W.); (S.Y.)
| | - Masahiro Koyama
- Wellnas Co., Ltd., Toranomon Masters Building 6F, 1-12-14, Toranomon, Minato-ku, Tokyo 105-0001, Japan;
| | - Su Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China;
| | - Aya Ino
- Kochi Agricultural Research Center, 1100 Hataeda, Nankoku, Kochi 783-0023, Japan;
| | - Koji Miyatake
- Institute of Vegetable and Floriculture Science, NARO, 360 Kusawa, Ano-cho, Tsu, Mie 514-2392, Japan;
| | - Kozo Nakamura
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan; (W.W.); (S.Y.)
- Institute of Agriculture, Academic Assembly, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan
- Correspondence: ; Tel./Fax: +81-265-77-1638
| |
Collapse
|
9
|
Marx N, Grünwald-Gruber C, Bydlinski N, Dhiman H, Ngoc Nguyen L, Klanert G, Borth N. CRISPR-Based Targeted Epigenetic Editing Enables Gene Expression Modulation of the Silenced Beta-Galactoside Alpha-2,6-Sialyltransferase 1 in CHO Cells. Biotechnol J 2018; 13:e1700217. [DOI: 10.1002/biot.201700217] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Marx
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| | - Clemens Grünwald-Gruber
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
| | - Nina Bydlinski
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
| | - Heena Dhiman
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| | - Ly Ngoc Nguyen
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| | - Gerald Klanert
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| | - Nicole Borth
- Department of Biotechnology; BOKU University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology GmbH; Graz Austria
| |
Collapse
|
10
|
Adamska A, Rasińska E, Rutkowska J, Antoniewska A. Fatty acid profile of commercial Camembert- and Brie-type cheeses available on the Polish market. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1331266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Agata Adamska
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Ewa Rasińska
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Jarosława Rutkowska
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Agata Antoniewska
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
11
|
Ortega JF, de Conti A, Tryndyak V, Furtado KS, Heidor R, Horst MA, Fernandes LHG, Tavares PELM, Pogribna M, Shpyleva S, Beland FA, Pogribny IP, Moreno FS. Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein. Oncotarget 2016; 7:24339-47. [PMID: 27013579 PMCID: PMC5029705 DOI: 10.18632/oncotarget.8248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/28/2016] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC), an aggressive and the fastest growing life-threatening cancer worldwide, is often diagnosed at intermediate or advanced stages of the disease, which substantially limits therapeutic approaches for its successful treatment. This indicates that the prevention of hepatocarcinogenesis is probably the most promising approach to reduce both the HCC incidence and cancer-related mortality. In previous studies, we demonstrated a potent chemopreventive effect of tributyrin, a butyric acid prodrug, on experimental hepatocarcinogenesis. The cancer-inhibitory effect of tributyrin was linked to the suppression of sustained cell proliferation and induction of apoptotic cell death driven by an activation of the p53 apoptotic signaling pathway. The goal of the present study was to investigate the underlying molecular mechanisms linked to tributyrin-mediated p53 activation. Using in vivo and in vitro models of liver cancer, we demonstrate that an increase in the level of p53 protein in nuclei, a decrease in the level of cytoplasmic p53, and, consequently, an increase in the ratio of nuclear/cytoplasmic p53 in rat preneoplastic livers and in rat and human HCC cell lines caused by tributyrin or sodium butyrate treatments was associated with a marked increase in the level of nuclear chromosome region maintenance 1 (CRM1) protein. Mechanistically, the increase in the level of nuclear p53 protein was associated with a substantially reduced binding interaction between CRM1 and p53. The results demonstrate that the cancer-inhibitory activity of sodium butyrate and its derivatives on liver carcinogenesis may be attributed to retention of p53 and CRM1 proteins in the nucleus, an event that may trigger activation of p53-mediated apoptotic cell death in neoplastic cells.
Collapse
Affiliation(s)
- Juliana F. Ortega
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, USA
| | - Kelly S. Furtado
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Aderuza Horst
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laura Helena Gasparini Fernandes
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo Eduardo Latorre Martins Tavares
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marta Pogribna
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, USA
| | - Svitlana Shpyleva
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, USA
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, USA
| | - Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, USA
| | - Fernando Salvador Moreno
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Mitochondrial inhibitor sensitizes non-small-cell lung carcinoma cells to TRAIL-induced apoptosis by reactive oxygen species and Bcl-X(L)/p53-mediated amplification mechanisms. Cell Death Dis 2014; 5:e1579. [PMID: 25522273 PMCID: PMC4649849 DOI: 10.1038/cddis.2014.547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy; however, non-small-cell lung carcinoma (NSCLC) cells are relatively TRAIL resistant. Identification of small molecules that can restore NSCLC susceptibility to TRAIL-induced apoptosis is meaningful. We found here that rotenone, as a mitochondrial respiration inhibitor, preferentially increased NSCLC cells sensitivity to TRAIL-mediated apoptosis at subtoxic concentrations, the mechanisms by which were accounted by the upregulation of death receptors and the downregulation of c-FLIP (cellular FLICE-like inhibitory protein). Further analysis revealed that death receptors expression by rotenone was regulated by p53, whereas c-FLIP downregulation was blocked by Bcl-XL overexpression. Rotenone triggered the mitochondria-derived reactive oxygen species (ROS) generation, which subsequently led to Bcl-XL downregulation and PUMA upregulation. As PUMA expression was regulated by p53, the PUMA, Bcl-XL and p53 in rotenone-treated cells form a positive feedback amplification loop to increase the apoptosis sensitivity. Mitochondria-derived ROS, however, promote the formation of this amplification loop. Collectively, we concluded that ROS generation, Bcl-XL and p53-mediated amplification mechanisms had an important role in the sensitization of NSCLC cells to TRAIL-mediated apoptosis by rotenone. The combined TRAIL and rotenone treatment may be appreciated as a useful approach for the therapy of NSCLC that warrants further investigation.
Collapse
|
13
|
Serini S, Fasano E, Celleno L, Cittadini A, Calviello G. Potential of long-chain n-3 polyunsaturated fatty acids in melanoma prevention. Nutr Rev 2014; 72:255-66. [PMID: 24665956 DOI: 10.1111/nure.12093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The possible antineoplastic activity of dietary long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) has been supported by ample preclinical studies that have identified a number of molecular factors and pathways affected by these fatty acids and involved in cell growth, apoptosis, invasion, and angiogenesis. The aim of this critical review is to assess the current state of knowledge on the potential anticancer effects of LC n-3 PUFAs against malignant melanoma, one of the most common cancers among Western populations. The results of preclinical as well as human observational and interventional studies investigating the effects of LC n-3 PUFAs in melanoma were examined. Overall, the analysis of the literature reveals that, even though a large body of information is available, further effort is needed to identify the main molecular targets of LC n-3 PUFAs in melanoma. Moreover, additional well-designed human observational studies are essential to shed further light on the issue. The results of these studies could provide support and specific information for the development of clinical studies, especially those performed in combination with conventional or innovative antineoplastic therapies.
Collapse
Affiliation(s)
- Simona Serini
- Institute of General Pathology, Catholic University, Rome, Italy
| | | | | | | | | |
Collapse
|
14
|
Lee MS, Kim JI, Utsuki T, Park NG, Kim HR. Cytoprotective effects of phlorofucofuroeckol A isolated from Ecklonia stolonifera against tacrine-treated HepG2 cells. Fitoterapia 2012; 83:1060-7. [PMID: 22613808 DOI: 10.1016/j.fitote.2012.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 02/02/2023]
Abstract
We have recently reported that phlorofucofuroeckol A isolated from Ecklonia stolonifera showed potential antioxidative and anti-inflammatory properties in LPS-stimulated macrophages. This study aims to investigate the cytoprotective effect of phlorofucofuroeckol A and to characterize its molecular mechanisms using tacrine-treated HepG2 cells. Phlorofucofuroeckol A showed a cytoprotective effect against tacrine-treated HepG2 cells in a dose-dependent manner (EC(50): 5.7±0.5 μM). Increased intracellular reactive oxygen species (ROS) by tacrine were decreased by phlorofucofuroeckol A. The cytotoxicity of tacrine to HepG2 cells was associated with upregulations of Fas and JNK phosphorylation resulted in the caspase activations and apoptosis. Phlorofucofuroeckol A inhibited the phosphorylation of JNK and the expression of Fas-mediated apoptotic proteins including Fas ligand, cleaved caspase-8, cleaved caspase-3, and poly (ADP-ribose) polymerase. In addition, treatment of phlorofucofuroeckol A regulated the release of cytochrome c from mitochondria to cytosol in a dose-dependent manner in tacrine-treated HepG2 cells. Furthermore, pretreatment of an inhibitor of JNK, SP600125, downregulated Fas and cleaved caspase-3 without change of ROS productions in tacrine-treated HepG2 cells. In conclusion, our study demonstrated that phlorofucofuroeckol A regulates Fas-mediated apoptosis via inhibition of ROS productions and inhibition of JNK phosphorylation in tacrine-treated HepG2 cells.
Collapse
Affiliation(s)
- Min-Sup Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, South Korea
| | | | | | | | | |
Collapse
|
15
|
Xie C, Liu G, Liu J, Huang Z, Wang F, Lei X, Wu X, Huang S, Zhong D, Xu X. Anti-proliferative effects of anandamide in human hepatocellular carcinoma cells. Oncol Lett 2012; 4:403-407. [PMID: 22970038 DOI: 10.3892/ol.2012.751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/29/2012] [Indexed: 12/23/2022] Open
Abstract
In our previous study, we reported that the cannabinoid receptors CB1 and CB2 are overexpressed in human hepatocellular carcinoma (HCC) tissues. Recently, the antitumor potential of the endogenous cannabinoid anandamide (AEA) has also been addressed. The present study was conducted to investigate the anti-proliferative effects of AEA in HCC cells. The human HCC cell line Huh7 was used. Cell proliferation was measured by MTT assay and flow cytometry. Apoptotic analysis was investigated by TUNEL assay. Real-time PCR and western blot analysis were used to analyze the expression of relevant molecules. The results of this study demonstrated that AEA inhibited the proliferation of Huh7 cells, resulted in G1 cell cycle arrest and induced apoptosis. Furthermore, downregulation of CDK4 and upregulation of p21 and Bak by AEA were observed. This study defines the anti-proliferative effects of anandamide in HCC cells and suggests that AEA has therapeutic potential in the management of HCC patients.
Collapse
Affiliation(s)
- Chengzhi Xie
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee MS, Shin T, Utsuki T, Choi JS, Byun DS, Kim HR. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and hepatoprotective properties in tacrine-treated HepG2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5340-9. [PMID: 22587607 DOI: 10.1021/jf300157w] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Four kinds of phlorotannins having antioxidant activity were isolated from the ethyl acetate fraction of Ecklonia stolonifera ethanolic extract. The structures of the phlorotannins were determined on the basis of spectroscopic evidence, including 1D and 2D nuclear magnetic resonance. The isolated phlorotannins showed potential radical-scavenging activities against 2,2-diphenyl-1-picrylhydrazyl and suppressed the intracellular reactive oxygen species in tacrine-treated HepG2 cells. Among them, eckol and 2-phloroeckol showed hepatoprotective activity in tacrine-treated HepG2 cells; however, phlorofucofuroeckol B and 6,6'-bieckol did not show the activity, even though having high antioxidant activity. Both eckol and 2-phloroeckol inhibited the expression of Fas-mediated cell-death proteins, including tBid, caspase-3, and poly(ADP-ribose) polymerase, and suppressed the release of cytochrome c from mitochondria to cytosol in a dose-dependent manner in tacrine-treated HepG2 cells. These results suggest that eckol and 2-phloroeckol are the principal hepatoprotective constituents of the ethyl acetate fraction of E. stolonifera ethanolic extract.
Collapse
Affiliation(s)
- Min-Sup Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Kim YM, Kim IH, Nam TJ. Induction of apoptosis signaling by glycoprotein of Capsosiphon fulvescens in human gastric cancer (AGS) cells. Nutr Cancer 2012; 64:761-9. [PMID: 22591240 DOI: 10.1080/01635581.2012.683228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Capsosiphon fulvescens is a well-known green sea algae that has been touted in recent years as a potential anticancer drug. In this study, C. fulvescens glycoprotein (Cf-GP) showed proapoptotic signaling in AGS cells. An MTS assay indicated that Cf-GP inhibited the proliferation of AGS cell lines in a dose-dependent manner. Cells were treated with Cf-GP and the expression of proteins associated with apoptosis was examined by Western blotting. Based on the Western blot, expression of Cf-GP-activated caspase-cascade and PARP, which is a substrate of caspase-3 and -8, and proteins of the Bcl-2 family was observed. Cf-GP treatment stimulated the release of cytochrome C and apoptotic protease activating factor-1 from mitochondria to the cytosol. Cf-GP inhibited the growth of AGS cells through induction of sub-G1 phase arrest. We confirmed that sub-G1-phase arrest was associated with a decrease in the expression of cyclin D, cyclin E, Cdk2, Cdk4, and Cdk6, and an increase in the protein levels of p21 and p27. As a result, the increased sub-G1 ratio appears to be inhibited by cell proliferation. Therefore, we can confirm apoptosis in the AGS cells. Our results suggest that Cf-GP could be a potential source of biofunctional material that shows anticancer effects in human gastrointestinal cancer.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
18
|
Jiang W, Guo Q, Wu J, Guo B, Wang Y, Zhao S, Lou H, Yu X, Mei X, Wu C, Qiao S, Wu Y. Dual effects of sodium butyrate on hepatocellular carcinoma cells. Mol Biol Rep 2012; 39:6235-42. [PMID: 22228088 DOI: 10.1007/s11033-011-1443-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/27/2011] [Indexed: 01/09/2023]
Abstract
Sodium butyrate (NaBu), a histone deacetylase inhibitor, has been shown to inhibit cell growth, induce cell differentiation and apoptosis in multiple cell lines. In present study, we revealed the dual effects of NaBu in regulating hepatocellular carcinoma (HCC) cells. In two different HCC cell lines, SK-Hep1 and SMMC-7721, low concentrations of NaBu induced a significant increase in cell growth ratio and S-phase cell percentage, accompanied by a reduced p21 Cip1 expression at both mRNA and protein levels, while dissimilarly, high concentrations of NaBu inhibited cell growth and induced G1 arrest through up-regulation of p21 Cip1 and p27 Kip1 protein expression. The reduction of p45 Skp2 expression further indicated that the ubiquitin-mediated protein degradation might play a role in NaBu-induced up-regulation of p21 Cip1 and p27 Kip1. Moreover, the high concentration of NaBu was also able to trigger HCC cell apoptosis. Taken together, these results demonstrate the distinct effects of NaBu at different dosages. This finding may contribute to develop more effective tumor therapeutic protocols of NaBu in HCC.
Collapse
Affiliation(s)
- Wenjun Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fragkos M, Beard P. Mitotic catastrophe occurs in the absence of apoptosis in p53-null cells with a defective G1 checkpoint. PLoS One 2011; 6:e22946. [PMID: 21853057 PMCID: PMC3154265 DOI: 10.1371/journal.pone.0022946] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/01/2011] [Indexed: 01/07/2023] Open
Abstract
Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV) that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD) that are deficient in p53 and lack the G1 cell cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was independent of caspases, apoptosis-inducing factor (AIF), autophagy and necroptosis. These findings were confirmed by time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint, mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by centrosome overduplication, and not as a consequence of a suicide signal.
Collapse
Affiliation(s)
- Michalis Fragkos
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Peter Beard
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
20
|
ER stress response plays an important role in aggregation of α-synuclein. Mol Neurodegener 2010; 5:56. [PMID: 21144044 PMCID: PMC3016345 DOI: 10.1186/1750-1326-5-56] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/13/2010] [Indexed: 01/04/2023] Open
Abstract
Background Accumulation of filamentous α-synuclein as Lewy bodies is a hallmark of Parkinson's disease. To identify the mechanisms involved in α-synuclein assembly and determine whether the assemblies are cytotoxic, we developed a cell model (3D5) that inducibly expresses wild-type human α-synuclein and forms inclusions that reproduce many morphological and biochemical characteristics of Lewy bodies. In the present study, we evaluated the effects of several histone deacetylase inhibitors on α-synuclein aggregation in 3D5 cells and primary neuronal cultures. These drugs have been demonstrated to protect cells transiently overexpressing α-synuclein from its toxicity. Results Contrary to transient transfectants, the drug treatment did not benefit 3D5 cells and primary cultures. The treated were less viable and contained more α-synuclein oligomers, active caspases 3 and 9, as well as ER stress markers than non-treated counterparts. The drug-treated, induced-3D5 cells, or primary cultures from transgenic mice overexpressing (<2 fold) α-synuclein, displayed more α-synuclein oligomers and ER stress markers than non-induced or non-transgenic counterparts. Similar effects were demonstrated in cultures treated with tunicamycin, an ER stressor. These effects were blocked by co-treatment with salubrinal, an ER stress inhibitor. In comparison, co-treatment with a pan caspase inhibitor protected cells from demise but did not reduce α-synuclein oligomer accumulation. Conclusions Our results indicate that an increase of wild-type α-synuclein can elicit ER stress response and sensitize cells to further insults. Most importantly, an increase of ER stress response can promote the aggregation of wild type α-synuclein.
Collapse
|
21
|
Zhang W, Yan S, Liu M, Zhang G, Yang S, He S, Bai J, Quan L, Zhu H, Dong Y, Xu N. beta-Catenin/TCF pathway plays a vital role in selenium induced-growth inhibition and apoptosis in esophageal squamous cell carcinoma (ESCC) cells. Cancer Lett 2010; 296:113-122. [PMID: 20457486 DOI: 10.1016/j.canlet.2010.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022]
Abstract
Epidemiological and experimental studies have indicated selenium could reduce the risk of some cancers. In our present study, growth inhibition and apoptosis were detected upon methylseleninic acid (MSA) treatment in human esophageal squamous cell carcinoma cell lines EC9706 and KYSE150. MSA reduced beta-catenin protein levels, while there was no significant change observed on transcriptional levels. Moreover, we found MSA accelerated the degradation of beta-catenin and activated glycogen synthase kinase 3beta (GSK-3beta). Some targets of beta-catenin/TCF pathway and apoptosis-related genes altered after MSA treatment. Notably, utilizing the inducible 293-TR/beta-catenin cell line, we found the apoptotic phenotypes induced by MSA were partially reversed by the overexpression of beta-catenin. Overall, our data indicate the effects induced by MSA in ESCC cells may act on the inhibition of beta-catenin/TCF pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jia X, Wang Q, Meng H, Sun H, Zhan D. Effects of Different Dental Alloys on Cytotoxic and Apoptosis Related Genes Expression in L929 Cells. J HARD TISSUE BIOL 2010. [DOI: 10.2485/jhtb.19.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Tripathi M, Singh BK, Mishra C, Raisuddin S, Kakkar P. Involvement of mitochondria mediated pathways in hepatoprotection conferred by Fumaria parviflora Lam. extract against nimesulide induced apoptosis in vitro. Toxicol In Vitro 2009; 24:495-508. [PMID: 19772912 DOI: 10.1016/j.tiv.2009.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/19/2009] [Accepted: 09/17/2009] [Indexed: 01/23/2023]
Abstract
Nimesulide, a popular nonsteroidal anti-inflammatory drug, has been associated with serious hepatotoxicity. Reactive oxygen species (ROS) and mitochondrial perturbations have been implicated in drug induced hepatotoxicity, although their role in the pathway needs exploration. Study was undertaken to elucidate the effect of Fumaria parviflora Lam. (Fp) on nimesulide induced cell death in primary rat hepatocyte cultures. Fp extract treated cells showed increased viability as compared to nimesulide stressed cells as assessed by MTT assay. LDH leakage increased significantly at 500microM nimesulide, and the data suggested that apoptosis was the predominant mechanism responsible for cell death. Nimesulide induced apoptosis was further confirmed by DNA fragmentation and chromatin condensation. Nimesulide exposure increased intracellular ROS, translocation of Bax and Bcl2 followed by mitochondrial depolarization and cytochrome c (Cyt c) release along with caspase-9/-3 activity confirming involvement of mitochondria in nimesulide induced apoptosis. Events like membrane depolarization of mitochondria, expression of Bax, Bcl2, externalization of phosphatidyl serine are substantially reversed by the pre-treatment of Fp extract. Thus, the study indicates that Fp extract modulates critical events regulating pro and anti-apoptotic proteins in mitochondria dependent apoptosis induced by nimesulide.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Herbal Research Section, Indian Institute of Toxicology Research (CSIR), P.O. Box-80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
24
|
Carlisi D, Lauricella M, D'Anneo A, Emanuele S, Angileri L, Di Fazio P, Santulli A, Vento R, Tesoriere G. The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC activation. Eur J Cancer 2009; 45:2425-2438. [PMID: 19643600 DOI: 10.1016/j.ejca.2009.06.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 02/07/2023]
Abstract
This paper shows that the histone deacetylase inhibitor SAHA sensitised at sub-toxic doses human hepatocellular carcinoma cells (HepG2, Hep3B and SK-Hep1) to TRAIL-induced apoptosis, while it was ineffective in primary human hepatocytes (PHHs). In particular in HCC cells SAHA increased the expression of death receptor 5 (DR5) and caused a decrement of c-Flip. These two modifications provoked in the presence of TRAIL the rapid production of TRAIL-DISC and the activation of caspase-8. Consequently SAHA/TRAIL combination induced many apoptotic events, such as a cleavage of Bid into tBid, dissipation of mitochondrial membrane potential, activation of caspase-3 with the consequent cleavage of both NF-kB and Akt. The decrease in NF-kB level seemed to be responsible for the reduction in the content of IAP family antiapoptotic proteins while the decrease in Akt level caused a reduction in phospho-Bad. These events led to the activation of caspase-9, which contributed to the strong apoptotic activity of TRAIL. Sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by SAHA may suggest new strategies for the treatment of liver tumours.
Collapse
Affiliation(s)
- Daniela Carlisi
- Dipartimento di Scienze Biochimiche, Università di Palermo, Policlinico, Palermo 90127, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zubaidah RM, Tan GS, Tan SBE, Lim SG, Lin Q, Chung MCM. 2-D DIGE profiling of hepatocellular carcinoma tissues identified isoforms of far upstream binding protein (FUBP) as novel candidates in liver carcinogenesis. Proteomics 2008; 8:5086-96. [PMID: 19003864 DOI: 10.1002/pmic.200800322] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Barbone D, Yang TM, Morgan JR, Gaudino G, Broaddus VC. Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids. J Biol Chem 2008; 283:13021-30. [PMID: 18339627 DOI: 10.1074/jbc.m709698200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
When grown as three-dimensional structures, tumor cells can acquire an additional multicellular resistance to apoptosis that may mimic the chemoresistance found in solid tumors. We developed a multicellular spheroid model of malignant mesothelioma to investigate molecular mechanisms of acquired apoptotic resistance. We found that mesothelioma cell lines, when grown as multicellular spheroids, acquired resistance to a variety of apoptotic stimuli, including combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), ribotoxic stressors, histone deacetylase, and proteasome inhibitors, that were highly effective against mesothelioma cells when grown as monolayers. Inhibitors of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, particularly rapamycin, blocked much of the acquired resistance of the spheroids, suggesting a key role for mTOR. Knockdown by small interference RNA of S6K, a major downstream target of mTOR, reproduced the effect of rapamycin, thereby confirming the role of mTOR and of S6K in the acquired resistance of three dimensional spheroids. Rapamycin or S6K knockdown increased TRAIL-induced caspase-8 cleavage in spheroids, suggesting initially that mTOR inhibited apoptosis by actions at the death receptor pathway; however, isolation of the apoptotic pathways by means of Bid knockdown ablated this effect showing that mTOR actually controls a step distal to Bid, probably at the level of the mitochondria. In sum, mTOR and S6K contribute to the apoptotic resistance of mesothelioma cells in three-dimensional, not in two-dimensional, cultures. The three-dimensional model may reflect a more clinically relevant in vitro setting in which mTOR exhibits anti-apoptotic properties.
Collapse
Affiliation(s)
- Dario Barbone
- Lung Biology Center, San Francisco General Hospital, University of California, San Francisco, California 94110, USA
| | | | | | | | | |
Collapse
|
27
|
Beta-catenin triggers nuclear factor kappaB-dependent up-regulation of hepatocyte inducible nitric oxide synthase. Int J Biochem Cell Biol 2008; 40:1861-71. [PMID: 18343708 DOI: 10.1016/j.biocel.2008.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 01/10/2023]
Abstract
Disruption of cell-to-cell contacts, as observed in many pathophysiological conditions, prime hepatocytes for compensatory hyperplastic response that involves induction of several genes, including proto-oncogenes and other gene targets of beta-catenin signaling pathway. By using cultured hepatocytes and experimental models of adherens junction disruption we have investigated changes in beta-catenin subcellular localization and their relationships with inducible nitric oxide synthase (iNOS) expression. Two experimental models were employed: (a) rat hepatocytes obtained by collagenase liver perfusion within the first 48 h of culture; (b) 48-h old cultured hepatocytes, transiently transfected or not with a plasmid encoding for dominant/negative inhibitory kappa B-alpha, exposed to ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid/LiCl treatment. beta-Catenin signaling and cellular localization, iNOS expression and nuclear factor kappaB involvement, were investigated using morphological, cell and molecular biology techniques. E-cadherin-mediated disruption of cell-to-cell contacts induces early beta-catenin translocation from membrane to cytoplasm and nuclear compartments, events that are followed by up-regulation of c-myc, cyclin D1 and beta-transducin repeat-containing protein expression. This, in turn, resulted eventually in iNOS induction that was mechanistically related to nuclear factor kappaB activation, as unequivocally shown in cells expressing dominant negative inhibitory kappa B-alpha. Our data indicate that E-cadherin disassembly and concomitant inactivation of glycogen synthase kinase-3beta result in nuclear factor kappaB-dependent induction of iNOS in hepatocytes.
Collapse
|
28
|
Levovich I, Nudelman A, Berkovitch G, Swift LP, Cutts SM, Phillips DR, Rephaeli A. Formaldehyde-releasing prodrugs specifically affect cancer cells by depletion of intracellular glutathione and augmentation of reactive oxygen species. Cancer Chemother Pharmacol 2007; 62:471-82. [DOI: 10.1007/s00280-007-0627-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Accepted: 10/09/2007] [Indexed: 01/31/2023]
|
29
|
Rada-Iglesias A, Enroth S, Ameur A, Koch CM, Clelland GK, Respuela-Alonso P, Wilcox S, Dovey OM, Ellis PD, Langford CF, Dunham I, Komorowski J, Wadelius C. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res 2007; 17:708-19. [PMID: 17567991 PMCID: PMC1891332 DOI: 10.1101/gr.5540007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Butyrate is a histone deacetylase inhibitor (HDACi) with anti-neoplastic properties, which theoretically reactivates epigenetically silenced genes by increasing global histone acetylation. However, recent studies indicate that a similar number or even more genes are down-regulated than up-regulated by this drug. We treated hepatocarcinoma HepG2 cells with butyrate and characterized the levels of acetylation at DNA-bound histones H3 and H4 by ChIP-chip along the ENCODE regions. In contrast to the global increases of histone acetylation, many genomic regions close to transcription start sites were deacetylated after butyrate exposure. In order to validate these findings, we found that both butyrate and trichostatin A treatment resulted in histone deacetylation at selected regions, while nucleosome loss or changes in histone H3 lysine 4 trimethylation (H3K4me3) did not occur in such locations. Furthermore, similar histone deacetylation events were observed when colon adenocarcinoma HT-29 cells were treated with butyrate. In addition, genes with deacetylated promoters were down-regulated by butyrate, and this was mediated at the transcriptional level by affecting RNA polymerase II (POLR2A) initiation/elongation. Finally, the global increase in acetylated histones was preferentially localized to the nuclear periphery, indicating that it might not be associated to euchromatin. Our results are significant for the evaluation of HDACi as anti-tumourogenic drugs, suggesting that previous models of action might need to be revised, and provides an explanation for the frequently observed repression of many genes during HDACi treatment.
Collapse
Affiliation(s)
- Alvaro Rada-Iglesias
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
- Corresponding authors.E-mail ; fax 46-18-471-4808
| | - Stefan Enroth
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Adam Ameur
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | | | | | - Patricia Respuela-Alonso
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Sarah Wilcox
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Peter D. Ellis
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Ian Dunham
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Claes Wadelius
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
- Corresponding authors.E-mail ; fax 46-18-471-4808
| |
Collapse
|
30
|
Emanuele S, Lauricella M, Carlisi D, Vassallo B, D'Anneo A, Di Fazio P, Vento R, Tesoriere G. SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 2007; 12:1327-1338. [PMID: 17351739 DOI: 10.1007/s10495-007-0063-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histone deacetylase (HDAC) inhibitors represent a promising group of anticancer agents. This paper shows that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) stimulated at 5-10 microM apoptosis in human hepatoma HepG2 and Huh6 cells, but was ineffective in primary human hepatocytes (PHH). In HepG2 cells SAHA induced the extrinsic apoptotic pathway, increasing the expression of both FasL and FasL receptor and causing the activation of caspase-8. Moreover, SAHA enhanced the level of Bim proteins, stimulated alternative splicing of the Bcl-X transcript with the expression of the proapoptotic Bcl-Xs isoform, induced degradation of Bid into the apoptotic factor t-Bid and dephosphorylation and inactivation of the anti-apoptotic factor Akt. Consequently, SAHA caused loss of mitochondrial transmembrane potential, release of cytochrome c from mitochondria, activation of caspase-3 and degradation of PARP. Interestingly, a combination of suboptimal doses of SAHA (1 microM) and bortezomib (5-10 nM), a potent inhibitor of 26S proteasome, synergistically induced apoptosis in both HepG2 and Huh6 cells, but was ineffective in PHH. Combined treatment increased with synergistic effects the expression levels of c-Jun, phospho-c-Jun and FasL and the production of Bcl-Xs. These effects were accompanied by activation of Bid, caspase-8 and 3. In conclusion, SAHA stimulated apoptosis in hepatoma cells and exerted a synergistic apoptotic effect when combined with bortezomib. In contrast, these treatments were quite ineffective in inducing apoptosis in PHH. Thus, our results suggest the potential application of the SAHA/bortezomib combination in clinical trials for liver cancer.
Collapse
Affiliation(s)
- S Emanuele
- Dipartimento di Scienze Biochimiche, Università di Palermo, Policlinico, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Apoptosis of keratinocytes is a key mechanism required for epidermal homeostasis and the renewal of damaged cells. Its dysregulation has been implicated in many skin diseases including cancer and hyperproliferative disorders. In the present study, the effect of sodium butyrate, a histone deacetylase inhibitor, on keratinocyte apoptosis was investigated using the HaCaT human keratinocyte cell line. Sodium butyrate induced morphological changes associated with apoptosis and nuclear fragmentation of HaCaTs. Annexin V staining demonstrated that sodium butyrate induced apoptosis in a dose and time-dependent manner with 50% of HaCaTs apoptotic after exposure to 0.8 mg/ml sodium butyrate for 24 h. Apoptosis was associated with upregulation of cell surface expression of the death receptor Fas and activation of the extrinsic caspase pathway, with induction of caspase 8 activity peaking after 8 h. Caspase 3 activity peaked after 24 h and was associated with cleavage of the caspase 3 substrate, poly (ADP-ribose) polymerase (PARP). The intrinsic caspase pathway was not activated as caspase 9 activity was not detected, and there was no change in the expression of terminal differentiation markers keratin 10 and involucrin following sodium butyrate treatment. Together these results indicate that sodium butyrate is a potent inducer of Fas associated apoptosis via caspase activation in HaCaT keratinocytes, an effect that is independent of the induction of terminal differentiation.
Collapse
Affiliation(s)
- Ilse S Daehn
- Child Health Research Institute, Women's and Children's Hospital, North Adelaide, SA, Australia
| | | | | |
Collapse
|
32
|
Schwab M, Reynders V, Ulrich S, Zahn N, Stein J, Schröder O. PPARgamma is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis 2006; 11:1801-1811. [PMID: 16927016 DOI: 10.1007/s10495-006-9788-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Butyrate, a potent histone deacetylase inhibitor, belongs to a promising new class of antineoplastic agents with the capacity to induce apoptosis of cancer cells. However, the underlying mechanisms of action have yet not been elucidated. AIM To further investigate the molecular events involved in butyrate-induced caspase-3 activation in Caco-2 wild-type, empty-vector and dominant-negative PPARgamma mutant cells along the signalling pathway. In this context, the involvement and up-regulation of PPARgamma was examined. RESULTS Stimulation of cells with butyrate resulted in increased expression of PPARgamma mRNA, protein, and activity as well as phospho-p38 MAPK protein expression and caspase-3 activity. Arsenite, a direct stimulator of p38 MAPK, also led to an increased PPARgamma expression, thereby mimicking the effects of butyrate. In contrast, butyrate-mediated up-regulation of PPARgamma was counteracted by co-incubation with the p38 MAPK inhibitor SB203580. Treatment of cells with butyrate resulted in both increased caspase-8 and -9 activity and reduced expression of XIAP and survivin. However, butyrate-mediated effects on these apoptosis-regulatory proteins leading to caspase-3 activation were almost completely abolished in Caco-2 dominant-negative PPARgamma mutant cells. CONCLUSIONS Our data clearly unveil PPARgamma as a key target in the butyrate-induced signalling cascade leading to apoptosis via caspase-3 in Caco-2 cells.
Collapse
Affiliation(s)
- Markus Schwab
- First Department of Medicine-ZAFES, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Howe ML, Mehmud ZF, Saha S, Buratovich M, Stutius EA, Schmidt HD, Lenon AL, Reddicks C, Ivanov GS, Przyborski SA, Ozer JS. Transcription Factor IIA tau is associated with undifferentiated cells and its gene expression is repressed in primary neurons at the chromatin level in vivo. Stem Cells Dev 2006; 15:175-90. [PMID: 16646664 DOI: 10.1089/scd.2006.15.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The levels of General Transcription Factor (TF) IIA were examined during mammalian brain development and in rat embryo fibroblasts and transformed cell lines. The large TFIIA subunit paralogues alphabeta and tau are largely produced in unsynchronized cell lines, yet only TFIIA alphabeta is observed in a number of differentiated tissue extracts. Steady-state protein levels of the TFIIA tau, alphabeta, and gamma subunits were significantly reduced when human embryonal (ec) and hepatic carcinoma cell lines were stimulated to differentiate with either all-trans-retinoic acid (ATRA) or sodium butyrate. ATRA-treated NT2-ec cells required replating to induce a neuronal phenotype and loss of detectable TFIIA tau and gamma proteins. High levels of TFIIA tau, alphabeta, and gamma and Sp factors were identified in extracts from human fetal and rat embryonic day-18 brains, but not in human and rat adult brain extracts. A high histone H3 Lys9/Lys4 methylation ratio was observed in the TFIIA tau promoter of primary hippocampal neurons from day-18 rat embryos, suggesting that repressive epigenetic marks of chromatin prevent TFIIA tau from being transcribed in neurons. We conclude that TFIIA tau is associated with undifferentiated cells during development, yet is down-regulated at the chromatin level upon cellular differentiation.
Collapse
Affiliation(s)
- Mariko L Howe
- Department of Pharmacology and Experimental Therpeutics, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lauricella M, Emanuele S, D'Anneo A, Calvaruso G, Vassallo B, Carlisi D, Portanova P, Vento R, Tesoriere G. JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways. Apoptosis 2006; 11:607-25. [PMID: 16528474 DOI: 10.1007/s10495-006-4689-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The proteasome inhibitor bortezomib is an efficacious apoptotic agent in many tumor cells. This paper shows that bortezomib induced apoptosis in human hepatoma HepG2 cells associated with many modifications in the expression of survival or death factors. Although bortezomib increased the level of the protective factors HSP70 and HSP27, the effects of the drug that favour cell death were predominant. These events include accumulation of c-Jun, phospho-c-Jun and p53; increase in FasL level with activation of caspase-8; changes related to members of Bcl-2 family with increase in the level of pro-apoptotic members and decrease in that of anti-apoptotic ones; dissipation of mitochondrial potential with cytochrome c release and activation of caspase-3. In contrast, Chang liver cells exhibited a very low susceptibility to bortezomib-induced apoptosis, which was accompanied by modest modifications in the expression of apoptotic factors. In HepG2 cells bortezomib markedly increased AP-1 activity and the expression of its transcriptional targets such as c-Jun, FasL, BimEL, which are involved in apoptosis. Moreover, AP-1 induced its own production by increasing c-Jun content in the composition of the same AP-1 complex. In addition, bortezomib caused activation of JNK1, which in turn increased the level of phospho-c-Jun as well as stimulated the activation of caspase-3 and t-Bid, two fundamental apoptotic factors. Interestingly, siRNA silencing of c-Jun or JNK1 reduced HepG2 cell susceptibility to apoptosis and prevented the increase in AP-1 activity. Both JNK-1 and AP-1 thus exerted a crucial role in bortezomib-induced apoptosis. Differently, in Chang liver cells the different composition of AP-1 complex as well as the failure of JNK activation seemed to be responsible for the low susceptibility to apoptosis. Given the high susceptibility of hepatoma cells to bortezomib, our results suggest the potential application of this compound in clinical trials for liver cancers.
Collapse
Affiliation(s)
- M Lauricella
- Dipartimento di Scienze Biochimiche, Università di Palermo, Policlinico, Palermo, 90127, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xi L, Chen G, Zhou J, Xu G, Wang S, Wu P, Zhu T, Zhang A, Yang W, Xu Q, Lu Y, Ma D. Inhibition of telomerase enhances apoptosis induced by sodium butyrate via mitochondrial pathway. Apoptosis 2006; 11:789-98. [PMID: 16554963 DOI: 10.1007/s10495-006-5701-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomerase activation represents an early step in carcinogenesis. Increased telomerase activity in cervical cancer suggests a potential target for the development of novel therapeutic drugs. The aim of this study is to investigate the impact of telomerase activity on the biological features of HeLa cells and the possible mechanisms of enhanced apoptosis rate induced by sodium butyrate after telomerase inhibition. We introduced vectors encoding dominate negative (DN)-hTERT, wild-type (WT)-hTERT, or a control vector expressing only a drug-resistance marker into HeLa cells. Thus we assessed the biological effects of telomerase activity on telomere length, cell proliferation, chemosensitivity and radiosensitivity. In order to understand the mechanisms in which DN-hTERT enhances the apoptosis induced by sodium butyrate, we detected the release status of cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Ectopic expression of DN-hTERT resulted in inhibition of telomerase activity, reduction of telomere length, decreased colony formation ability, and loss of tumorigenicity in nude mice. Moreover, DN-hTERT transfected HeLa cells with shortened telomeres were more susceptible to multiple chemotherapeutic agents and radiation. WT-hTERT transfected HeLa cells with longer telomeres exhibited resistance to radiation and chemotherapeutic agents. Our data demonstrate that elevated release level of cytochrome c and AIF from mitochondria might contribute to the enhanced apoptosis in DN-hTERT transfected HeLa cells after treatment with sodium butyrate. Inhibition of telomerase might serve as a promising adjunctive therapy combined with conventional therapy in cervical cancer.
Collapse
Affiliation(s)
- L Xi
- Cancer Biology Research Center, TongJi Hospital, TongJi Medical School, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Licciardi M, Campisi M, Cavallaro G, Cervello M, Azzolina A, Giammona G. Synthesis and characterization of polyaminoacidic polycations for gene delivery. Biomaterials 2006; 27:2066-75. [PMID: 16233912 DOI: 10.1016/j.biomaterials.2005.09.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 09/26/2005] [Indexed: 12/20/2022]
Abstract
The properties as non viral gene vector of a protein-like polymer, the alpha,beta-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) were exploited after its derivatization with 3-(carboxypropyl)trimethyl-ammonium chloride (CPTA) as molecule bearing a cationic group, in order to obtain stable polycations able to condense DNA. PHEA was firstly functionalized with aminic pendant groups by reaction with ethylenediamine (EDA) obtaining the alpha,beta-poly(N-2-hydroxyethyl)(2-aminoethylcarbamate)-d,l-aspartamide (PHEA-EDA) copolymer. We demonstrated that polymer functionalization degree is easily modulable by varying reaction conditions, so allowing to produce two PHEA-EDA derivatives at different molar percentage of amine groups. Subsequently, the condensation reaction of PHEA-EDA copolymers with CPTA yielded alpha,beta-poly(N-2-hydroxyethyl)(2-[3-(trimethylammonium chloride)propylamide]-amidoethylcarbamate)-d,l-aspartamide (PHEA-EDA-CPTA) polycation derivatives. In vitro studies were carried out to evaluate polycations ability to complex DNA and to protect it from nuclease degradation. Obtained results demonstrated the good ability of our new PHEA polycationic derivatives, PHEA-EDA-CPTA, to complex and condense genomic material, neutralizing its anionic charge even at very low polycation/DNA weight ratio. Finally, PHEA-EDA-CPTA polycations were characterized by in vitro cytotoxicity studies to evaluate their effects on the viability of HuH-6 human hepatocellular carcinoma cells by MTS assay. No cytotoxicity was evidenced by both polycationic derivatives after 48h of incubation at all tested concentrations.
Collapse
Affiliation(s)
- Mariano Licciardi
- Dipartimento di Chimica e Tecnologie Farmaceutiche, via Archirafi 32, 90123, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Cho SD, Ahn NS, Jung JW, Yang SR, Park JS, Lee YS, Jo EH, Hwang JW, Lii J, Kang KS. Critical role of the c-JunNH2-terminal kinase and p38 mitogen-activated protein kinase pathways on sodium butyrate-induced apoptosis in DU145 human prostate cancer cells. Eur J Cancer Prev 2006; 15:57-63. [PMID: 16374231 DOI: 10.1097/01.cej.0000195704.05246.fc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sodium butyrate (NaBu) is known to exhibit anti-cancer effects via the differentiation and apoptosis of various carcinoma cells. However, the mechanism by which NaBu induces apoptosis and the involvement of protein kinases during apoptosis is not completely understood. To investigate the underlying pathways, we performed cell culture experiments in androgen-independent human prostate cancer (DU145 cells) focusing on various protein kinases. NaBu causes concentration-dependent cell detachment and growth inhibition. Exposure of DU145 cells to NaBu for 24 h caused a strong apoptotic effect with 26% nuclear fragmentation and condensation. In addition, NaBu induced caspase-3 and poly-ADP ribose polymerase cleavage and up-regulation of bax, suggesting that mitochondrial damage is involved in NaBu-induced caspase-dependent apoptosis. Interestingly, NaBu stimulated p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) activation, but not extracellular signal-regulated kinase 1/2 activation during apoptosis. Furthermore, NaBu up-regulated total protein levels and phospho forms of MAPK kinase 3 (MKK3) and MAPK kinase 4 (MKK4) as the upstream kinases of p38 MAPK and JNK independently of oxidative stress. Taken together, it is suggested that NaBu can be a promising chemopreventive agent for prostate cancer and the p38 MAPK and JNK pathways have critical roles in NaBu-induced apoptosis in DU145 cells.
Collapse
Affiliation(s)
- Sung-Dae Cho
- Department of Veterinary Public Health, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang H, MacNaughton WK. Overexpressed beta-catenin blocks nitric oxide-induced apoptosis in colonic cancer cells. Cancer Res 2005; 65:8604-7. [PMID: 16204024 DOI: 10.1158/0008-5472.can-05-1169] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beta-catenin plays an important role in colonic tumorigenesis whereas inducible nitric oxide synthase and nitric oxide are elevated in colonic inflammation. Resistance of colonic epithelial cells to the induction of apoptosis may contribute to tumor development. Nitric oxide can stimulate apoptosis and, paradoxically, is implicated in the development of colon cancer. Our hypothesis was that beta-catenin could increase the resistance of colonic cancer cells to nitric oxide-induced apoptotic cell death. Here we show, using a beta-catenin overexpression system, that increased cytosolic beta-catenin renders colonic epithelial cells more resistant to nitric oxide-induced apoptotic cell death, independently of nitric oxide-induced accumulation of p53. Furthermore, we show that this occurs through inhibition of nitric oxide-induced release of cytochrome c from mitochondria and by blocking both the nitric oxide-induced suppression of the antiapoptotic protein, Bcl-xL, and the phosphorylation of Akt. We contend that increased nitric oxide production, such as that which occurs in chronic colonic inflammation, may select the cells with oncogenic mutant beta-catenin regulatory genes and contribute to human colonic carcinogenesis and tumor progression.
Collapse
Affiliation(s)
- Hongying Wang
- Mucosal Inflammation Research Group, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
39
|
Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 2005; 11:4912-22. [PMID: 16000590 DOI: 10.1158/1078-0432.ccr-04-2088] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Histone deacetylase (HDAC) inhibitors have emerged recently as promising anticancer agents. They arrest cells in the cell cycle and induce differentiation and cell death. The antitumor activity of HDAC inhibitors has been linked to their ability to induce gene expression through acetylation of histone and nonhistone proteins. However, it has recently been suggested that HDAC inhibitors may also enhance the activity of other cancer therapeutics, including radiotherapy. The purpose of this study was to evaluate the ability of HDAC inhibitors to radiosensitize human melanoma cells in vitro. EXPERIMENTAL DESIGN A panel of HDAC inhibitors that included sodium butyrate (NaB), phenylbutyrate, tributyrin, and trichostatin A were tested for their ability to radiosensitize two human melanoma cell lines (A375 and MeWo) using clonogenic cell survival assays. Apoptosis and DNA repair were measured by standard assays. RESULTS NaB induced hyperacetylation of histone H4 in the two melanoma cell lines and the normal human fibroblasts. NaB radiosensitized both the A375 and MeWo melanoma cell lines, substantially reducing the surviving fraction at 2 Gy (SF2), whereas it had no effect on the normal human fibroblasts. The other HDAC inhibitors, phenylbutyrate, tributyrin, and trichostatin A had significant radiosensitizing effects on both melanoma cell lines tested. NaB modestly enhanced radiation-induced apoptosis that did not correlate with survival but did correlate with functional impairment of DNA repair as determined based on the host cell reactivation assay. Moreover, NaB significantly reduced the expression of the repair-related genes Ku70 and Ku86 and DNA-dependent protein kinase catalytic subunit in melanoma cells at the protein and mRNA levels. Normal human fibroblasts showed no change in DNA repair capacity or levels of DNA repair proteins following NaB treatment. We also examined gamma-H2AX phosphorylation as a marker of radiation response to NaB and observed that compared with controls, gamma-H2AX foci persisted long after ionizing exposure in the NaB-treated cells. CONCLUSIONS HDAC inhibitors radiosensitize human tumor cells by affecting their ability to repair the DNA damage induced by ionizing radiation and that gamma-H2AX phosphorylation can be used as a predictive marker of radioresponse.
Collapse
Affiliation(s)
- Anupama Munshi
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Belkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai W. Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res 2005; 65:6583-92. [PMID: 16061638 DOI: 10.1158/0008-5472.can-05-1433] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We show the molecular mechanisms involved in Darpp-32 overexpression and its biological role in upper gastrointestinal adenocarcinomas (UGC). A tumor tissue array of 377 samples was developed and used to detect DARPP-32 DNA amplification and protein overexpression, which occurred in 32% and 60% of UGCs, respectively. Concomitant overexpression of mRNA for Darpp-32 and its truncated isoform t-Darpp was observed in 68% of tumors (P < 0.001). When Darpp-32 and t-Darpp were overexpressed in AGS and RKO gastrointestinal cells, up to a 4-fold reduction in the apoptosis rate was observed (terminal deoxynucleotidyl transferase-mediated nick-end labeling and Annexin V assays) in response to camptothecin, sodium butyrate, and ceramide. However, the introduction of mutations in phosphorylation sites abrogated this effect. Expression of Darpp-32 and t-Darpp preserved the mitochondrial transmembrane potential and was associated with increased levels of Bcl2 protein. A reversal of Bcl2 protein level was obtained using small interfering RNAs for Darpp-32 and t-Darpp. Luciferase assays using the p53 and p21 reporter plasmids and probing of immunoblots with antibodies specific for p53 transcriptional targets, such as Hdm2 and p21, indicated that neither Darpp-32 nor t-Darpp interfere with p53 function. Altogether, we show more frequent mRNA and protein overexpression of Darpp-32 than DNA amplification, suggesting that, in addition to amplification, transcriptional or posttranscriptional mechanisms may play an important role. The expression of Darpp-32 and t-Darpp is associated with a potent antiapoptotic advantage for cancer cells through a p53-independent mechanism that involves preservation of mitochondrial potential and increased Bcl2 levels.
Collapse
Affiliation(s)
- Abbes Belkhiri
- Digestive Health Center of Excellence and Department of Pathology, University of Virginia Health System, Charlottesville, Virginia 22908-0708, USA
| | | | | | | | | | | |
Collapse
|
41
|
Guo WX, Pye QN, Williamson KS, Stewart CA, Hensley KL, Kotake Y, Floyd RA, Broyles RH. Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes. Free Radic Biol Med 2005; 39:641-50. [PMID: 16085182 DOI: 10.1016/j.freeradbiomed.2005.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 04/04/2005] [Accepted: 04/19/2005] [Indexed: 11/17/2022]
Abstract
Our recent studies have demonstrated that generation of ROS is associated with choline deficiency (CD)-induced apoptosis in CWSV-1 cells, an immortalized rat hepatocyte that becomes tumorigenic by stepwise culturing in decreasing levels of choline. In the present study, we investigated the effect of CD on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by FASCAN assay. Our data demonstrate that MMP in CD-cultured cells was decreased in a time- and dose-dependent manner and that significant disruption occurred at 24 h, relative to high choline (HC, 70 microM) cultured cells. In order to investigate further the relationship among the CD-induced ROS, MMP collapse, and apoptosis, we examined the effects of different inhibitors on ROS production, MMP disruption, and apoptosis in CD or HC-cultured CWSV-1 cells. These data indicate that the disruption of MMP is an upstream event in CD-induced apoptosis, and mitochondrial dysfunction plays a key role in mediating CD-induced apoptosis in CWSV-1 cells.
Collapse
Affiliation(s)
- Wei-Xing Guo
- Free Radical Biology & Aging Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, MB21, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu J, Cheng Y, Jönsson BAG, Nilsson A, Duan RD. Acid sphingomyelinase is induced by butyrate but does not initiate the anticancer effect of butyrate in HT29 and HepG2 cells. J Lipid Res 2005; 46:1944-52. [PMID: 15961787 DOI: 10.1194/jlr.m500118-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Butyric acid and sphingomyelin (SM) affect colonic tumorigenesis. We examined the potential link between butyrate stimulation and SM metabolism in colonic and hepatic cancer cell lines. After incubating HT29 and HepG2 cells with butyrate and other short-chain fatty acids, we found that butyrate increased acid but not neutral or alkaline sphingomyelinase (SMase) activity by 10- to 20-fold. The effects occurred after 16 h of incubation and were associated with reduced SM and phosphatidylcholine contents and increased ceramide levels. Northern blotting showed increased acid SMase mRNA levels in these cells after butyrate stimulation. Propionate was less potent, and acetate had no effect. No similar changes of acid phosphatase could be identified. At concentrations that increased acid SMase expression, butyrate inhibited cell proliferation, activated caspase 3, and induced apoptosis. However, the antiproliferative and apoptotic effects of butyrate preceded the changes of acid SMase and were not affected by knocking down acid SMase expression by small, interfering RNA. In addition, butyrate-induced acid SMase expression was not affected by blocking the caspase pathway. In conclusion, butyrate regulates SM metabolism by stimulating acid SMase expression in colon and liver cancer cells, but the increased acid SMase is not a critical mechanism for initiating the anticancer effects of butyrate.
Collapse
Affiliation(s)
- Jun Wu
- Gastroenterology Laboratory, Biomedical Center B11, Lund University, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|