1
|
A N, Lyu P, Yu Y, Liu M, Cheng S, Chen M, Liu Y, Cao X. PICALM as a Novel Prognostic Biomarker and Its Correlation with Immune Infiltration in Breast Cancer. Appl Biochem Biotechnol 2024; 196:6011-6027. [PMID: 38175412 DOI: 10.1007/s12010-023-04840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
PICALM (phosphatidylinositol-binding clathrin assembly protein) mutations have been linked to a number of human disorders, including leukemia, Alzheimer's disease, and Parkinson's disease. Nevertheless, the effect of PICALM on cancer, particularly on prognosis and immune infiltration in individuals with BRCA, is unknown. We obtained the data of breast cancer patients from The Cancer Genome Atlas (TCGA) database, and analyzed the expression of PICALM in breast cancer, its impact on survival' and its role in tumor immune invasion. Finally, in vitro cellular experiments were performed to validate the results. Research has found that PICALM expression was shown to be downregulated in BRCA and to be substantially linked with clinical stage, histological type, PAM50, and age. PICALM downregulation was linked to a lower overall survival (OS) and disease-specific survival (DSS) in BRCA patients. A multivariate Cox analysis revealed that PICALM is an independent predictor of OS. The enriched pathways revealed by functional enrichment analysis included oxidative phosphorylation, angiogenesis, the TGF signaling pathway, and the IL-6/JAK/STAT3 signaling system. Furthermore, the amount of immune cell infiltration by B cells, eosinophils, mast cells, neutrophils, and T cells was positively linked with PICALM expression. Finally, we experimentally verified that low expression of PICALM can reduce proliferation, migration, and invasion in tumor cells. This evidence shows that PICALM expression impacts prognosis, immune infiltration, and pathway expression in breast cancer patients, and it might be a potential predictive biomarker for the disease.
Collapse
Affiliation(s)
- Naer A
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Pengfei Lyu
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Meiling Liu
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Shaohua Cheng
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Meiyan Chen
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Yunhong Liu
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Xuchen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
2
|
Seifi Z, Khazaei M, Cheraghali D, Rezakhani L. Decellularized tissues as platforms for digestive system cancer models. Heliyon 2024; 10:e31589. [PMID: 38845895 PMCID: PMC11153114 DOI: 10.1016/j.heliyon.2024.e31589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
The extracellular matrix (ECM) is a multifunctional network of macromolecules that regulate various cellular functions and physically support the tissues. Besides physiological conditions, the ECM also changes during pathological conditions such as cancer. As tumor cells proliferate, notable changes occur in the quantity and makeup of the surrounding ECM. Therefore, the role of this noncellular component of tissues in studies of tumor microenvironments should be considered. So far, many attempts have been made to create 2-dimensional (2D) or 3-dimensional (3D) models that can replicate the intricate connections within the tumor microenvironment. Decellularized tissues are proper scaffolds that imitate the complex nature of native ECM. This review aims to summarize 3D models of digestive system cancers based on decellularized ECMs. These ECM-based scaffolds will enable us to study the interactive communication between cells and their surrounding environment which brings new potential for a better understanding of the pathophysiology of cancer.
Collapse
Affiliation(s)
- Zahra Seifi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Danial Cheraghali
- Department of Mechanical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Synthesis and Anti-Angiogenic Activity of Novel c(RGDyK) Peptide-Based JH-VII-139-1 Conjugates. Pharmaceutics 2023; 15:pharmaceutics15020381. [PMID: 36839704 PMCID: PMC9962512 DOI: 10.3390/pharmaceutics15020381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Peptide-drug conjugates are delivery systems for selective delivery of cytotoxic agents to target cancer cells. In this work, the optimized synthesis of JH-VII-139-1 and its c(RGDyK) peptide conjugates is presented. The low nanomolar SRPK1 inhibitor, JH-VII-139-1, which is an analogue of Alectinib, was linked to the ανβ3 targeting oligopeptide c(RGDyK) through amide, carbamate and urea linkers. The chemostability, cytotoxic and antiangiogenic properties of the synthesized hybrids were thoroughly studied. All conjugates retained mid nanomolar-level inhibitory activity against SRPK1 kinase and two out of four conjugates, geo75 and geo77 exhibited antiproliferative effects with low micromolar IC50 values against HeLa, K562, MDA-MB231 and MCF7 cancer cells. The activities were strongly related to the stability of the linkers and the release of JH-VII-139-1. In vivo zebrafish screening assays demonstrated the ability of the synthesized conjugates to inhibit the length or width of intersegmental vessels (ISVs). Flow cytometry experiments were used to test the cellular uptake of a fluorescein tagged hybrid in MCF7 and MDA-MB231 cells that revealed a receptor-mediated endocytosis process. In conclusion, most conjugates retained the inhibitory potency against SRPK1 as JH-VII-139-1 and demonstrated antiproliferative and antiangiogenic activities. Further animal model experiments are needed to uncover the full potential of such peptide conjugates in cancer therapy and angiogenesis-related diseases.
Collapse
|
4
|
Liang M, Ma X, Wang L, Li D, Wang S, Zhang H, Zhao X. Whole-liver enhanced CT radiomics analysis to predict metachronous liver metastases after rectal cancer surgery. Cancer Imaging 2022; 22:50. [PMID: 36089623 PMCID: PMC9465956 DOI: 10.1186/s40644-022-00485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background To develop a radiomics model based on pretreatment whole-liver portal venous phase (PVP) contrast-enhanced CT (CE-CT) images for predicting metachronous liver metastases (MLM) within 24 months after rectal cancer (RC) surgery. Methods This study retrospectively analyzed 112 RC patients without preoperative liver metastases who underwent rectal surgery between January 2015 and December 2017 at our institution. Volume of interest (VOI) segmentation of the whole-liver was performed on the PVP CE-CT images. All 1316 radiomics features were extracted automatically. The maximum-relevance and minimum-redundancy and least absolute shrinkage and selection operator methods were used for features selection and radiomics signature constructing. Three models based on radiomics features (radiomics model), clinical features (clinical model), and radiomics combined with clinical features (combined model) were built by multivariable logistic regression analysis. Receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of models, and calibration curve and the decision curve analysis were performed to evaluate the clinical application value. Results In total, 52 patients in the MLM group and 60 patients in the non-MLM group were enrolled in this study. The radscore was built using 16 selected features and the corresponding coefficients. Both the radiomics model and the combined model showed higher diagnostic performance than clinical model (AUCs of training set: radiomics model 0.84 (95% CI, 0.76–0.93), clinical model 0.65 (95% CI, 0.55–0.75), combined model 0.85 (95% CI, 0.77–0.94); AUCs of validation set: radiomics model 0.84 (95% CI, 0.70–0.98), clinical model 0.58 (95% CI, 0.40–0.76), combined model 0.85 (95% CI, 0.71–0.99)). The calibration curves showed great consistency between the predicted value and actual event probability. The DCA showed that both the radiomics and combined models could add a net benefit on a large scale. Conclusions The radiomics model based on preoperative whole-liver PVP CE-CT could predict MLM within 24 months after RC surgery. Clinical features could not significantly improve the prediction efficiency of the radiomics model. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-022-00485-z.
Collapse
|
5
|
The role of tumour microenvironment in gastric cancer angiogenesis. GASTROENTEROLOGY REVIEW 2014; 9:325-8. [PMID: 25653726 PMCID: PMC4300347 DOI: 10.5114/pg.2014.47894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/26/2012] [Accepted: 10/16/2012] [Indexed: 01/21/2023]
Abstract
Gastric cancer is one of the most common cancers in the world. More than 95% of gastric cancers are adenocarcinomas originating from the glandular epithelium of the stomach lining. Unfortunately, a large number of patients are diagnosed when the tumour is at unresectable stage. Therefore, it is very important to understand the mechanisms involved in gastric cancer pathogenesis. One of them is angiogenesis, which means the formation of new blood vessels from pre-existing vasculature. This process is dependent on interactions between the tumour and surrounding stromal cells which create the tumour microenvironment. Moreover, both tumour and stromal cells release a wide array of angiogenic factors that have an influence on endothelial cell recruitment and thus affect the process of angiogenesis. In this paper we discuss the role of tumour microenvironment in gastric cancer angiogenesis.
Collapse
|
6
|
STAT5b as molecular target in pancreatic cancer--inhibition of tumor growth, angiogenesis, and metastases. Neoplasia 2013; 14:915-25. [PMID: 23097626 DOI: 10.1593/neo.12878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 12/30/2022] Open
Abstract
The prognosis of patients suffering from pancreatic cancer is still poor and novel therapeutic options are urgently needed. Recently, the transcription factor signal transducer and activator of transcription 5b (STAT5b) was associated with tumor progression in human solid cancer. Hence, we assessed whether STAT5b might serve as an anticancer target in ductal pancreatic adenocarcinoma (DPAC). We found that nuclear expression of STAT5b can be detected in approximately 50% of DPAC. Blockade of STAT5b by stable shRNA-mediated knockdown showed no effects on tumor cell growth in vitro. However, inhibition of tumor cell motility was found even in response to stimulation with epidermal growth factor or interleukin-6. These findings were paralleled by a reduction of prometastatic and proangiogenic factors in vitro. Subsequent in vivo experiments revealed a strong growth inhibition on STAT5b blockade in subcutaneous and orthotopic models. These findings were paralleled by impaired tumor angiogenesis in vivo. In contrast to the subcutaneous model, the orthotopic model revealed a strong reduction of tumor cell proliferation that emphasizes the meaning of assessing targets in an appropriate microenvironment. Taken together, our results suggest that STAT5b might be a potential novel target for human DPAC.
Collapse
|
7
|
Evaluation of poly-mechanistic antiangiogenic combinations to enhance cytotoxic therapy response in pancreatic cancer. PLoS One 2012; 7:e38477. [PMID: 22723862 PMCID: PMC3377661 DOI: 10.1371/journal.pone.0038477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/09/2012] [Indexed: 12/17/2022] Open
Abstract
Gemcitabine (Gem) has limited clinical benefits in pancreatic ductal adenocarcinoma (PDAC). The present study investigated combinations of gemcitabine with antiangiogenic agents of various mechanisms for PDAC, including bevacizumab (Bev), sunitinib (Su) and EMAP II. Cell proliferation and protein expression were analyzed by WST-1 assay and Western blotting. In vivo experiments were performed via murine xenografts. Inhibition of in vitro proliferation of AsPC-1 PDAC cells by gemcitabine (10 µM), bevacizumab (1 mg/ml), sunitinib (10 µM) and EMAP (10 µM) was 35, 22, 81 and 6 percent; combination of gemcitabine with bevacizumab, sunitinib or EMAP had no additive effects. In endothelial HUVECs, gemcitabine, bevacizumab, sunitinib and EMAP caused 70, 41, 86 and 67 percent inhibition, while combination of gemcitabine with bevacizumab, sunitinib or EMAP had additive effects. In WI-38 fibroblasts, gemcitabine, bevacizumab, sunitinib and EMAP caused 79, 58, 80 and 29 percent inhibition, with additive effects in combination as well. Net in vivo tumor growth inhibition in gemcitabine, bevacizumab, sunitinib and EMAP monotherapy was 43, 38, 94 and 46 percent; dual combinations of Gem+Bev, Gem+Su and Gem+EMAP led to 69, 99 and 64 percent inhibition. Combinations of more than one antiangiogenic agent with gemcitabine were generally more effective but not superior to Gem+Su. Intratumoral proliferation, apoptosis and microvessel density findings correlated with tumor growth inhibition data. Median animal survival was increased by gemcitabine (26 days) but not by bevacizumab, sunitinib or EMAP monotherapy compared to controls (19 days). Gemcitabine combinations with bevacizumab, sunitinib or EMAP improved survival to similar extent (36 or 37 days). Combinations of gemcitabine with Bev+EMAP (43 days) or with Bev+Su+EMAP (46 days) led to the maximum survival benefit observed. Combination of antiangiogenic agents improves gemcitabine response, with sunitinib inducing the strongest effect. These findings demonstrate advantages of combining multi-targeting agents with standard gemcitabine therapy for PDAC.
Collapse
|
8
|
Tonra JR, Hicklin DJ. Targeting the Vascular Endothelial Growth Factor Pathway in the Treatment of Human Malignancy. Immunol Invest 2009; 36:3-23. [PMID: 17190647 DOI: 10.1080/08820130600991794] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over 30 years ago, it was proposed that blocking new blood vessel formation would significantly inhibit solid tumor growth and hence, limit cancer progression. Efforts guided by this philosophy have resulted in a better understanding of the molecular basis of tumor angiogenesis. The first successful therapeutic to emerge from this work, an antibody (bevacizumab) targeting the vascular endothelial growth factor (VEGF), was recently approved for the treatment of colorectal cancer. Additional positive clinical data with bevacizumab in the treatment of breast and lung carcinoma have also been reported. These clinical achievements have validated the approach of anti-angiogenesis therapy for cancer and provided further confirmation for antibodies as a therapeutic class in this disease. Nevertheless, important unanswered questions with regard to preclinical and clinical results of VEGF pathway inhibitors remain. For example, preclinical models with a number of VEGF pathway inhibitors suggest that these agents would have significant clinical activity on their own; yet, clinical activity in patients with bevacizumab or other VEGF pathway inhibitors as monotherapy have been disappointing. Moreover, while bevacizumab is approved for the treatment of colorectal cancer in combination with cytotoxics, the mechanism for the benefits of this combination are still poorly understood, with a number of viable mechanisms under active experimental evaluation. The 3-8-month survival benefit in colorectal cancer patients treated with bevacizumab is a positive step forward. However, improving our understanding of the mechanism for these effects, as well as the mechanism underlying the inability as yet to achieve greater effects, is needed in order to follow up on the positive clinical results with improved strategies. This review discusses the experimental results surrounding the current status of our understanding of the mechanism of action of VEGF signaling inhibitors, and the potential for utilizing these agents in the future so that clinical benefits will be measured in years rather than months.
Collapse
Affiliation(s)
- James R Tonra
- ImClone Systems Incorporated, New York, New York, USA.
| | | |
Collapse
|
9
|
Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer 2009; 45:2077-86. [PMID: 19493674 DOI: 10.1016/j.ejca.2009.04.026] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/10/2009] [Accepted: 04/24/2009] [Indexed: 12/12/2022]
Abstract
Omega-3 fatty acid (omega-3 FA) consumption has long been associated with a lower incidence of colon, breast and prostate cancers in many human populations. Human trials have demonstrated omega-3 FA to have profound anti-inflammatory effects in those with cancer. In vitro and small animal studies have yielded a strong body of evidence establishing omega-3 FA as having anti-inflammatory, anti-apoptotic, anti-proliferative and anti-angiogenic effects. This review explores the evidence and the mechanisms by which omega-3 FA may act as angiogenesis inhibitors and identifies opportunities for original research trialling omega-3 FAs as anti-cancer agents in humans. The conclusions drawn from this review suggest that omega-3 FAs in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found principally in oily fish have potent anti-angiogenic effects inhibiting production of many important angiogenic mediators namely; Vascular Endothelial Growth Factor (VEGF), Platelet-Derived Growth Factor (PDGF), Platelet-Derived Endothelial Cell Growth Factor (PDECGF), cyclo-oxygenase 2 (COX-2), prostaglandin-E2 (PGE2), nitric oxide, Nuclear Factor Kappa Beta (NFKB), matrix metalloproteinases and beta-catenin.
Collapse
Affiliation(s)
- Laura Spencer
- Department of HPB and Pancreatic Surgery, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Whipple C, Korc M. Targeting angiogenesis in pancreatic cancer: rationale and pitfalls. Langenbecks Arch Surg 2008; 393:901-10. [PMID: 18210149 DOI: 10.1007/s00423-008-0280-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 12/21/2007] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer responsible for over 20% of deaths due to gastrointestinal malignancies. PDAC is usually diagnosed at an advanced stage which, in part, helps to explain its high resistance to chemotherapy and radiotherapy. In addition, the cancer cells in PDAC have a high propensity to metastasize and to aberrantly express several key regulators of angiogenesis and invasion. Chemotherapy has only provided a modest impact on mean survival and often induces side effects. Targeting angiogenesis alone or in combination with other modalities should be investigated to determine if it may provide for increased survival. MATERIALS AND METHODS This review summarizes the alterations in PDAC that play a critical role in angiogenesis and provides an overview of current and therapeutic strategies that may be useful for targeting angiogenesis in this malignancy.
Collapse
Affiliation(s)
- Chery Whipple
- Department of Medicine, Dartmouth Hitchcock Medical Center and Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
11
|
Tang H, Wang J, Bai F, Hong L, Liang J, Gao J, Zhai H, Lan M, Zhang F, Wu K, Fan D. Inhibition of osteopontin would suppress angiogenesis in gastric cancer. Biochem Cell Biol 2007; 85:103-10. [PMID: 17464350 DOI: 10.1139/o06-208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN) plays an important role in tumorigenesis, tumor invasion, and metastasis in many types of cancers, including gastric cancer. Recently, much interest has been focused on the role of OPN in tumor angiogenesis. Our previous studies have shown that OPN is overexpressed, and associated with mean microvessel density in, the tissue samples of patients with gastric cancer. In the present study, we aimed to further determine and provide evidence for the role of OPN in gastric-cancer-associated angiogenesis by diminishing OPN expression in gastric cancer cells using the small interference RNA method, and then evaluate the effects of OPN on gastric cancer-associated angiogenesis by in vivo and in vitro assays. Our results revealed that reduced OPN production by gastric cancer cells would reduce the proliferation, migration, and tube formation of human umbilical vein endothelial cells, and lead to a lower microvessel density, i.e., angiogenesis, in transplanted tumors of mice. These data confirm the positive role of OPN in gastric-cancer-associated angiogenesis.
Collapse
Affiliation(s)
- Hongwei Tang
- State Key Laboratory of Cancer Biology and Institute of Digestive Disease, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shannxi Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kiessling F, Jugold M, Woenne EC, Brix G. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 2007; 17:2136-48. [PMID: 17308924 DOI: 10.1007/s00330-006-0566-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/13/2006] [Accepted: 12/19/2006] [Indexed: 02/07/2023]
Abstract
The switch to an angiogenic phenotype is an important precondition for tumor growth, invasion and spread. Since newly formed vessels are characterized by structural, functional and molecular abnormalities, they offer promising targets for tumor diagnosis and therapy. Previous studies indicate that MRI is valuable to assess vessel morphology and function. It can be used to distinguish between benign and malignant lesions and to improve delineation of proliferating areas within heterogeneous tumors. In addition, tracer kinetic analysis of contrast-enhanced image series allows the estimation of well-defined physiological parameters such as blood volume, blood flow and vessel permeability. Frequently, changes of these parameters during cytostatic, anti-angiogenic and radiation therapy precede tumor volume reduction. Moreover, target-specific MRI techniques can be used to elucidate the expression of angiogenic markers at the molecular level. This review summarizes strategies for non-invasive characterization of tumor vascularization by functional and molecular MRI, hereby introducing representative preclinical and clinical applications.
Collapse
Affiliation(s)
- Fabian Kiessling
- Junior Group Molecular Imaging, German Cancer Research Center, INF 280, 96121,Heidelberg, Germany.
| | | | | | | |
Collapse
|
13
|
Gao W, Wu Y, Si YL. Expression and significances of interleukin-8 and interleukin-15 in colonic mucosa of colon cancer patients. Shijie Huaren Xiaohua Zazhi 2006; 14:2806-2809. [DOI: 10.11569/wcjd.v14.i28.2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of interleukin-8 (IL-8) and IL-15 in colonic mucosa from colon cancer patients and study their relationships with colon cancer.
METHODS: Immunohistochemical technique was used to detect the expression of IL-8 and IL-15 in 66 patients with colon cancer.
RESULTS: The positive rates of IL-8 and IL-15 were 66.7% (44/66) and 60.6% (40/66), respectively. Significant correlations existed between expression of IL-8, IL-15 and the following factors: clinical stages (IL-8: r = 0.437, P = 0.006; IL-15: r = 0.317, P = 0.014), invasive depth (IL-8: r = 0.332, P = 0.003; IL-15: r = 0.312, P = 0.015), regional lymph node metastasis (IL-8: r = 0.316, P = 0.042; IL-15: r = 0.236, P = 0.017), histologic grades (IL-8: r = 0.826, P = 0.0001; IL-15: r = 0.368, P = 0.001).
CONCLUSION: Detection of IL-8 and IL-15 expression is helpful in assessing the malignant degrees of colon cancer.
Collapse
|
14
|
Des Guetz G, Uzzan B, Nicolas P, Cucherat M, Morere JF, Benamouzig R, Breau JL, Perret GY. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 2006; 94:1823-32. [PMID: 16773076 PMCID: PMC2361355 DOI: 10.1038/sj.bjc.6603176] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We performed a meta-analysis of all published studies relating intratumoural microvessel density (MVD) (45 studies) or vascular endothelial growth factor (VEGF) expression (27 studies), both reflecting angiogenesis, to relapse free (RFS) and overall survival (OS) in colorectal cancer (CRC). For each study, MVD impact was measured by risk ratio between the two survival distributions with median MVD as cutoff. Eleven studies did not mention survival data or fit inclusion criteria, six were multiple publications of same series, leaving 32 independent studies for MVD (3496 patients) and 18 for VEGF (2050 patients). Microvessel density was assessed by immunohistochemistry, using antibodies against factor VIII (16 studies), CD31 (10 studies) or CD34 (seven studies). Vascular endothelial growth factor expression was mostly assessed by immunohistochemistry. Statistics were performed for MVD in 22 studies (the others lacking survival statistics) including nine studies (n = 957) for RFS and 18 for OS (n = 2383) and for VEGF in 17 studies, including nine studies for RFS (n = 1064) and 10 for OS (n = 1301). High MVD significantly predicted poor RFS (RR = 2.32 95% CI: 1.39-3.90; P < 0.001) and OS (RR = 1.44; 95% CI: 1.08-1.92; P = 0.01). Using CD31 or CD34, MVD was inversely related to survival, whereas it was not using factor VIII. Vascular endothelial growth factor expression significantly predicted poor RFS (RR = 2.84; 95% CI: 1.95-4.16) and OS (RR=1.65; 95% CI: 1.27-2.14). To strengthen our findings, future prospective studies should explore the relation between MVD or VEGF expression and survival or response to therapy (e.g. antiangiogenic therapy). Assessment of these angiogenic markers should be better standardised in future studies.
Collapse
Affiliation(s)
- G Des Guetz
- APHP. Department of Oncology, Hôpital Avicenne, Bobigny, France.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Strategies for the treatment of metastatic colorectal cancer must take into account the contribution of monoclonal antibodies. A group of new efficient tools in oncology, these drugs target tumor antigens. Bevacizumab recognizes VEGF. Vascular endothelial growth factor (VEGF) is a key mediator in angiogenesis. This antibody combined with chemotherapy increases the survival of patients treated for metastatic colorectal cancer. Median survival of patients treated with antibodies and chemotherapy is 20 months, compared with only 15 months for patients treated with chemotherapy alone. Cetuximab is a monoclonal antibody that binds competitively and with high affinity to the EGF receptor. Cetuximab is currently approved for use in patients with pretreated colorectal cancer. EGF is a major cell growth factor. The side effects of these new biotherapies are different from chemotherapy: bevacizumab affects vascular elements and the most common side effect of anti-EGFR treatment is acneiform skin rash.
Collapse
Affiliation(s)
- G Des Guetz
- Service d'Oncologie Médicale, Hôpital Avicenne - Bobigny.
| |
Collapse
|
16
|
Hayashi M, Fearns C, Eliceiri B, Yang Y, Lee JD. Big mitogen-activated protein kinase 1/extracellular signal-regulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis. Cancer Res 2005; 65:7699-706. [PMID: 16140937 DOI: 10.1158/0008-5472.can-04-4540] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although big mitogen-activated protein kinase 1 (BMK1) has been shown to be critical for embryonic angiogenesis, the role of BMK1 in tumor-associated neovascularization is poorly understood. Exogenous tumors were established in BMK1+/+, BMK1flox/+, or BMK1flox/flox mice carrying the Mx1-Cre transgene. Induced deletion of host BMK1 gene significantly reduced the volumes of B16F10 and LL/2 tumor xenografts in BMK1flox/flox mice by 63% and 72%, respectively. Examining the tumors in these induced BMK1-knockout animals showed a significant decrease in vascular density. Localized reexpression of BMK1 in BMK1-knockout mice by administration of adenovirus encoding BMK1 restored tumor growth and angiogenesis to the levels observed in wild-type mice. These observations were further supported by in vivo Matrigel plug assays in which vascular endothelial growth factor- and basic fibroblast growth factor-induced neovacularization was impaired by removing BMK1. Through screening with the Pepchip microarray, we discovered that in BMK1-knockout endothelial cells, phosphorylation of ribosomal protein S6 (rpS6) at Ser235/236 was mostly abrogated, and this BMK1-dependent phosphorylation required the activity of p90 ribosomal S6 kinase (RSK). Immunofluorescent analysis of tumor vasculature from BMK1-knockout and control animals revealed a strong correlation between the presence of BMK1 and the phosphorylation of rpS6 in tumor-associated endothelial cells of blood vessels. As both RSK and rpS6 are known to be important for cell proliferation and survival, which are critical endothelial cell functions during neovascularization, these findings suggest that the BMK1 pathway is crucial for tumor-associated angiogenesis through its role in the regulation of the RSK-rpS6 signaling module.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/enzymology
- Carcinoma, Lewis Lung/pathology
- Cell Movement/drug effects
- Endothelial Cells/cytology
- Endothelial Cells/enzymology
- Endothelial Cells/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Humans
- MAP Kinase Signaling System/physiology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/pathology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 7/deficiency
- Mitogen-Activated Protein Kinase 7/metabolism
- Molecular Sequence Data
- Neovascularization, Pathologic/enzymology
- Phosphorylation
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Ribosomal Proteins/metabolism
- Transplantation, Heterologous
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
Affiliation(s)
- Masaaki Hayashi
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|