1
|
Liu X, Moamer A, Gomes da Silva R, Shoham-Amizlev A, Hamam D, Shams A, Lebrun JJ, Ali S. A novel clinically relevant antagonistic interplay between prolactin and oncogenic YAP-CCN2 pathways as a differentiation therapeutic target in breast cancer. Cell Death Dis 2025; 16:221. [PMID: 40157909 PMCID: PMC11954952 DOI: 10.1038/s41419-025-07547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Cellular differentiation limits cellular plasticity allowing cells to attain their specialized functional characteristics and phenotypes, whereas loss of differentiation is a hallmark of cancer. Thus, characterizing mechanisms underlying differentiation is key to discover new cancer therapeutics. We report a novel functional antagonistic relationship between the prolactin (PRL)/prolactin receptor (PRLR) differentiation pathway and YAP-CCN2 oncogenic pathway in normal mammary epithelial cells and breast cancer cells that is essential for establishing/maintaining acinar morphogenesis, cell-cell junctions and the intracellular localization of apical-basal polarity protein complexes (Par, Crumb and Scrib). Importantly, using CRISPR knockout of the PRLR in MCF7, HR+ breast cancer cells, further revealed that the negative relationship between PRL/PRLR pathway and YAP-CCN2 pathway is critical in suppressing luminal-to-basal stem-like lineage plasticity. Furthermore, the clinical relevance of this interplay was evaluated using bioinformatics approaches on several human datasets, including samples from normal breast epithelium, breast cancer, and 33 other cancer types. This analysis revealed a positive correlation between PRLR and the YAP suppressor Hippo pathway and a co-expression gene network driving favourable patients' survival outcomes in breast cancer. The therapeutic potential of this interplay was also evaluated in vitro using MDA-MB-231 cells, a preclinical model of human triple-negative breast cancer, where treatment with PRL and Verteporfin, an FDA-approved pharmacological YAP-inhibitor, alone or their combination suppressed the expression of the mesenchymal marker vimentin and the stem cell marker CD44 as well as reduced their Ki67 proliferative marker expression. Collectively, our results emphasize the pro-differentiation role of PRL/PRLR pathway in mammary and breast cancer cells and highlight that promoting PRL/PRLR signaling while inhibiting the YAP-CCN2 oncogenic pathway can be exploited as a differentiation-based combination therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Alaa Moamer
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Roger Gomes da Silva
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Aidan Shoham-Amizlev
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Dana Hamam
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Anwar Shams
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Pharmacology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Pleșea RM, Riza AL, Ahmet AM, Gavrilă I, Mituț A, Camen GC, Lungulescu CV, Dorobanțu Ș, Barbu A, Grigorescu A, Mirea CS, Schenker M, Burada F, Streață I. Clinically Significant BRCA1 and BRCA2 Germline Variants in Breast Cancer-A Single-Center Experience. Cancers (Basel) 2024; 17:39. [PMID: 39796670 PMCID: PMC11718772 DOI: 10.3390/cancers17010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Conditions associated with BRCA1/2 pathogenic (PVs) or likely pathogenic variants (LPVs) are often severe. The early detection of carrier status is ideal, as it provides options for effective case management. MATERIALS AND METHODS The study involved 58 patients with a personal and familial history of breast cancer (BC) who underwent genetic testing at the Regional Centre for Medical Genetics Dolj over a three-year period. An immunohistochemical panel (HER2, ER, PR, and Ki-67) was used to define the molecular subtypes of breast tumors. The AmpliSeq for Illumina BRCA Panel was used to evaluate germline variants in the BRCA1 and BRCA2 genes in patients with BC. The χ2 test and Fisher's exact test were used to compare the different parameters studied. RESULTS Our findings revealed that 15.5% of the patients carried either BRCA1 or BRCA2 PVs or LPVs. BRCA1 carriers had aggressive tumors whereas BRCA2 carriers had rather low-grade tumors. CONCLUSIONS The study revealed that PVs in both BRCA genes have a significant frequency among BC patients in our region, and BRCA1 carriers tend to develop more aggressive tumors than carriers of BRCA2 PVs and patients with no germline PVs in either of the two genes. These observations could provide new epidemiologic data for this disease in our region and contribute further to the development of national screening strategies.
Collapse
Affiliation(s)
- Răzvan Mihail Pleșea
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Ana Maria Ahmet
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ionuț Gavrilă
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Andreea Mituț
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
| | - Georgiana-Cristiana Camen
- Department of Radiology and Medical Imaging, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Cristian Virgil Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefania Dorobanțu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Adina Barbu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Andra Grigorescu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Cecil Sorin Mirea
- Department of Surgical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Michael Schenker
- Department of Medical Oncology, Sfantul Nectarie Oncology Center, 200801 Dolj, Romania;
| | - Florin Burada
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Ioana Streață
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| |
Collapse
|
3
|
Corbin J, Yu X, Jin J, Cai L, Wang GG. EZH2 PROTACs target EZH2- and FOXM1-associated oncogenic nodes, suppressing breast cancer cell growth. Oncogene 2024; 43:2722-2736. [PMID: 39112519 DOI: 10.1038/s41388-024-03119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Breast cancer (BC) remains the second leading cause of cancer-related mortalities in women. Resistance to hormone therapies such as tamoxifen, an estrogen receptor (ER) inhibitor, is a major hurdle in the treatment of BC. Enhancer of zeste homolog 2 (EZH2), the methyltransferase component of the Polycomb repressive complex 2 (PRC2), has been implicated in tamoxifen resistance. Evidence suggests that EZH2 often functions noncanonically, in a methyltransferase-independent manner, as a transcription coactivator through interacting with oncogenic transcription factors. Unlike methyltransferase inhibitors, proteolysis targeting chimeras (PROTAC) can suppress both activating and repressive functions of EZH2. Here, we find that EZH2 PROTACs, MS177 and MS8815, effectively inhibited the growth of BC cells, including those with acquired tamoxifen resistance, to a much greater degree when compared to methyltransferase inhibitors. Mechanistically, EZH2 associates with forkhead box M1 (FOXM1) and binds to the promoters of FOXM1 target genes. EZH2 PROTACs induce degradation of both EZH2 and FOXM1, leading to reduced expression of target genes involved in cell cycle progression and tamoxifen resistance. Together, this study supports that EZH2-targeted PROTACs represent a promising avenue of research for the future treatment of BC, including in the setting of tamoxifen resistance.
Collapse
Affiliation(s)
- Joshua Corbin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xufen Yu
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Cassoli JPB, Fernandes Í, Carvalho L, Fernandes M, Centrone AF, Taniwaki L, Lima RDC, Junior UDR, Dias IWR, Taranto P, Beal J, de Lima FT, Moura F, Cendoroglo M, Araújo SEA, Uson Junior PLS. Frequency of Deleterious Germline Variants in HER2-Low Breast Cancer Patients Using a Hereditary Multipanel Gene Testing. Curr Issues Mol Biol 2024; 46:7976-7985. [PMID: 39194688 DOI: 10.3390/cimb46080471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
HER2-Low is defined as low levels of HER2 expression, based on a score of 1+ on immunohistochemical (IHC) assay or as an IHC score of 2+ and negative results on in situ hybridization (ISH or FISH). They are a heterogeneous population of breast cancers that vary in prognosis and sensitivity to systemic treatments. The frequency and clinical characteristics of pathogenic germline variants (PGVs) in HER2-Low breast cancer (BC) patients is not defined. We analyzed results from patients with BC who underwent multi-gene panel testing (MGPT) (maximum 145 genes) between 2018-2019. We reclassified HER-2 status accordingly. Relationships between the variables of interest were assessed by adopting the proportional regression Cox models. Of a total of 167 BC patients who underwent MGPT, half were hormone-receptor-positive. The median age was 45 years. About two thirds of the patients were in the earlier stage of BC. A total of 57% of the cases were reclassified as HER-2-negative or -Low. PGVs were found in 19% of the patients overall, as follows: seven BRCA1, four BRCA2, two ATM, one ATR, two CFTR, three CHEK2, one FANCA, one MERTK, one MLH1, three MUTYH, one RAD50, three RAD51C, one RECQL4, and two TP53 mutations. In HER2-Low, 26.5% of the patients had PGVs, and in the overall cohort, this was 19.8%. In conclusion, differences in the prevalence of deleterious germline mutations in HER2-Low BC patients compared to non-HER2-Low BC patients were identified. Similar alterations in BRCA were observed in this group of patients compared to the overall cohort. Germline genetic tests should be evaluated in larger cohorts of patients with HER2-Low status to better address the findings.
Collapse
Affiliation(s)
- Janaina Pontes Batista Cassoli
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Ítalo Fernandes
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Leonardo Carvalho
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Milena Fernandes
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Ana Fernanda Centrone
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Letícia Taniwaki
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Rita de Cássia Lima
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | | | - Igor Wanderley Reis Dias
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Patrícia Taranto
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Juliana Beal
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Fernanda Teresa de Lima
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Fernando Moura
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Miguel Cendoroglo
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Sergio Eduardo Alonso Araújo
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| | - Pedro Luiz Serrano Uson Junior
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
- Department of Hematology and Oncology, Hospital Israelita Albert Einstein, São Paulo 05652000, Brazil
| |
Collapse
|
5
|
Chaubal R, Gardi N, Joshi S, Pantvaidya G, Kadam R, Vanmali V, Hawaldar R, Talker E, Chitra J, Gera P, Bhatia D, Kalkar P, Gurav M, Shetty O, Desai S, Krishnan NM, Nair N, Parmar V, Dutt A, Panda B, Gupta S, Badwe R. Surgical Tumor Resection Deregulates Hallmarks of Cancer in Resected Tissue and the Surrounding Microenvironment. Mol Cancer Res 2024; 22:572-584. [PMID: 38394149 PMCID: PMC11148542 DOI: 10.1158/1541-7786.mcr-23-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
UNLABELLED Surgery exposes tumor tissue to severe hypoxia and mechanical stress leading to rapid gene expression changes in the tumor and its microenvironment, which remain poorly characterized. We biopsied tumor and adjacent normal tissues from patients with breast (n = 81) and head/neck squamous cancers (HNSC; n = 10) at the beginning (A), during (B), and end of surgery (C). Tumor/normal RNA from 46/81 patients with breast cancer was subjected to mRNA-Seq using Illumina short-read technology, and from nine patients with HNSC to whole-transcriptome microarray with Illumina BeadArray. Pathways and genes involved in 7 of 10 known cancer hallmarks, namely, tumor-promoting inflammation (TNF-A, NFK-B, IL18 pathways), activation of invasion and migration (various extracellular matrix-related pathways, cell migration), sustained proliferative signaling (K-Ras Signaling), evasion of growth suppressors (P53 signaling, regulation of cell death), deregulating cellular energetics (response to lipid, secreted factors, and adipogenesis), inducing angiogenesis (hypoxia signaling, myogenesis), and avoiding immune destruction (CTLA4 and PDL1) were significantly deregulated during surgical resection (time points A vs. B vs. C). These findings were validated using NanoString assays in independent pre/intra/post-operative breast cancer samples from 48 patients. In a comparison of gene expression data from biopsy (analogous to time point A) with surgical resection samples (analogous to time point C) from The Cancer Genome Atlas study, the top deregulated genes were the same as identified in our analysis, in five of the seven studied cancer types. This study suggests that surgical extirpation deregulates the hallmarks of cancer in primary tumors and adjacent normal tissue across different cancers. IMPLICATIONS Surgery deregulates hallmarks of cancer in human tissue.
Collapse
Affiliation(s)
- Rohan Chaubal
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Nilesh Gardi
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Shalaka Joshi
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Gouri Pantvaidya
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Rasika Kadam
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vaibhav Vanmali
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Clinical Research Secretariat, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rohini Hawaldar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Clinical Research Secretariat, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Elizabeth Talker
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Jaya Chitra
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Poonam Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Dimple Bhatia
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Prajakta Kalkar
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Mamta Gurav
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Omshree Shetty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Sangeeta Desai
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | | | - Nita Nair
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Vani Parmar
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- 3D Printing Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Amit Dutt
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Binay Panda
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sudeep Gupta
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rajendra Badwe
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Kazemzadeh F, Snoek JAA, Voorham QJ, van Oijen MGH, Hugen N, Nagtegaal ID. Association of metastatic pattern in breast cancer with tumor and patient-specific factors: a nationwide autopsy study using artificial intelligence. Breast Cancer 2024; 31:263-271. [PMID: 38133738 DOI: 10.1007/s12282-023-01534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Metastatic spread is characterized by considerable heterogeneity in most cancers. With increasing treatment options for patients with metastatic disease, there is a need for insight into metastatic patterns of spread in breast cancer patients using large-scale studies. METHODS Records of 2622 metastatic breast cancer patients who underwent autopsy (1974-2010) were retrieved from the nationwide Dutch pathology databank (PALGA). Natural language processing (NLP) and manual information extraction (IE) were applied to identify the tumors, patient characteristics, and locations of metastases. RESULTS The accuracy (0.90) and recall (0.94) of the NLP model outperformed manual IE (on 132 randomly selected patients). Adenocarcinoma no special type more frequently metastasizes to the lung (55.7%) and liver (51.8%), whereas, invasive lobular carcinoma mostly spread to the bone (54.4%) and liver (43.8%), respectively. Patients with tumor grade III had a higher chance of developing bone metastases (61.6%). In a subgroup of patients, we found that ER+/HER2+ patients were more likely to metastasize to the liver and bone, compared to ER-/HER2+ patients. CONCLUSION This is the first large-scale study that demonstrates that artificial intelligence methods are efficient for IE from Dutch databanks. Different histological subtypes show different frequencies and combinations of metastatic sites which may reflect the underlying biology of metastatic breast cancer.
Collapse
Affiliation(s)
- Fatemeh Kazemzadeh
- Department of Pathology 824, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Therapy Program, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - J A A Snoek
- Department of Pathology 824, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Pathology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | | | - Martijn G H van Oijen
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Therapy Program, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Niek Hugen
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Surgery, Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology 824, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
- PALGA Foundation, Houten, The Netherlands.
| |
Collapse
|
7
|
Yang Q, Deng S, Preibsch H, Schade T, Koch A, Berezhnoy G, Zizmare L, Fischer A, Gückel B, Staebler A, Hartkopf AD, Pichler BJ, la Fougère C, Hahn M, Bonzheim I, Nikolaou K, Trautwein C. Image-guided metabolomics and transcriptomics reveal tumour heterogeneity in luminal A and B human breast cancer beyond glucose tracer uptake. Clin Transl Med 2024; 14:e1550. [PMID: 38332687 PMCID: PMC10853679 DOI: 10.1002/ctm2.1550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Breast cancer is a metabolically heterogeneous disease, and although the concept of heterogeneous cancer metabolism is known, its precise role in human breast cancer is yet to be fully elucidated. METHODS We investigated in an explorative approach a cohort of 42 primary mamma carcinoma patients with positron emission tomography/magnetic resonance imaging (PET/MR) prior to surgery, followed by histopathology and molecular diagnosis. From a subset of patients, which showed high metabolic heterogeneity based on tracer uptake and pathology classification, tumour centre and periphery specimen tissue samples were further investigated by a targeted breast cancer gene expression panel and quantitative metabolomics by nuclear magnetic resonance (NMR) spectroscopy. All data were analysed in a combinatory approach. RESULTS [18 F]FDG (2-deoxy-2-[fluorine-18]fluoro-d-glucose) tracer uptake confirmed dominance of glucose metabolism in the breast tumour centre, with lower levels in the periphery. Additionally, we observed differences in lipid and proliferation related genes between luminal A and B subtypes in the centre and periphery. Tumour periphery showed elevated acetate levels and enrichment in lipid metabolic pathways genes especially in luminal B. Furthermore, serine was increased in the periphery and higher expression of thymidylate synthase (TYMS) indicated one-carbon metabolism increased in tumour periphery. The overall metabolic activity based on [18 F]FDG uptake of luminal B subtype was higher than that of luminal A and the difference between the periphery and centre increased with tumour grade. CONCLUSION Our analysis indicates variations in metabolism among different breast cancer subtypes and sampling locations which details the heterogeneity of the breast tumours. Correlation analysis of [18 F]FDG tracer uptake, transcriptome and tumour metabolites like acetate and serine facilitate the search for new candidates for metabolic tracers and permit distinguishing luminal A and B. This knowledge may help to differentiate subtypes preclinically or to provide patients guide for neoadjuvant therapy and optimised surgical protocols based on individual tumour metabolism.
Collapse
Affiliation(s)
- Qianlu Yang
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Sisi Deng
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Heike Preibsch
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Tim‐Colin Schade
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - André Koch
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Georgy Berezhnoy
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Anna Fischer
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Brigitte Gückel
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Annette Staebler
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | | | - Bernd J. Pichler
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christian la Fougère
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTuebingenGermany
| | - Markus Hahn
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Irina Bonzheim
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Konstantin Nikolaou
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christoph Trautwein
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| |
Collapse
|
8
|
Batra H, Mouabbi JA, Ding Q, Sahin AA, Raso MG. Lobular Carcinoma of the Breast: A Comprehensive Review with Translational Insights. Cancers (Basel) 2023; 15:5491. [PMID: 38001750 PMCID: PMC10670219 DOI: 10.3390/cancers15225491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The second most common breast carcinoma, invasive lobular carcinoma, accounts for approximately 15% of tumors of breast origin. Its incidence has increased in recent times due in part to hormone replacement therapy and improvement in diagnostic modalities. Although believed to arise from the same cell type as their ductal counterpart, invasive lobular carcinomas (ILCs) are a distinct entity with different regulating genetic pathways, characteristic histologies, and different biology. The features most unique to lobular carcinomas include loss of E-Cadherin leading to discohesion and formation of a characteristic single file pattern on histology. Because most of these tumors exhibit estrogen receptor positivity and Her2 neu negativity, endocrine therapy has predominated to treat these tumors. However novel treatments like CDK4/6 inhibitors have shown importance and antibody drug conjugates may be instrumental considering newer categories of Her 2 Low breast tumors. In this narrative review, we explore multiple pathological aspects and translational features of this unique entity. In addition, due to advancement in technologies like spatial transcriptomics and other hi-plex technologies, we have tried to enlist upon the characteristics of the tumor microenvironment and the latest associated findings to better understand the new prospective therapeutic options in the current era of personalized treatment.
Collapse
Affiliation(s)
- Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jason Aboudi Mouabbi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.D.); (A.A.S.)
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.D.); (A.A.S.)
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
9
|
Sankofi BM, Valencia-Rincón E, Sekhri M, Ponton-Almodovar AL, Bernard JJ, Wellberg EA. The impact of poor metabolic health on aggressive breast cancer: adipose tissue and tumor metabolism. Front Endocrinol (Lausanne) 2023; 14:1217875. [PMID: 37800138 PMCID: PMC10548218 DOI: 10.3389/fendo.2023.1217875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to hundreds of millions of adults, especially in developed countries. Each condition is associated with an elevated risk of breast cancer and with a poor prognosis after treatment. The mechanisms connecting poor metabolic health to breast cancer are numerous and include hyperinsulinemia, inflammation, excess nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose tissue, highlighting important roles for both adipocytes and fibroblasts in breast cancer progression. One potentially important mediator of adipose tissue effects on breast cancer is the fibroblast growth factor receptor (FGFR) signaling network. Among the many roles of FGFR signaling, we postulate that key mechanisms driving aggressive breast cancer include epithelial-to-mesenchymal transition and cellular metabolic reprogramming. We also pose existing questions that may help better understand breast cancer biology in people with obesity, type 2 diabetes, and poor metabolic health.
Collapse
Affiliation(s)
- Barbara Mensah Sankofi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Estefania Valencia-Rincón
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Malika Sekhri
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adriana L. Ponton-Almodovar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
10
|
Castro-Guijarro AC, Sanchez AM, Flamini MI. Potential Biomarkers Associated with Prognosis and Trastuzumab Response in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:4374. [PMID: 37686651 PMCID: PMC10486824 DOI: 10.3390/cancers15174374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Around 15-25% of BC overexpress the human epidermal growth factor receptor 2 (HER2), which is associated with a worse prognosis and shortened disease-free survival. Therefore, anti-HER2 therapies have been developed, such as monoclonal antibodies (trastuzumab, Tz), antibody-drug conjugates (ado-trastuzumab emtansine, T-DM1), and pharmacological inhibitors of tyrosine kinase activity (lapatinib, Lp). Although Tz, the standard treatment, has significantly improved the prognosis of patients, resistance still affects a significant population of women and is currently a major challenge in clinical oncology. Therefore, this study aims to identify potential biomarkers to predict disease progression (prognostic markers) and the efficacy of Tz treatment (predictive markers) in patients with HER2+ BC. We hypothesize that proteins involved in cell motility are implicated in Tz-resistance. We aim to identify alterations in Tz-resistant cells to guide more efficient oncologic decisions. By bioinformatics, we selected candidate proteins and determined how their expression, localization, and the process they modulate were affected by anti-HER2 treatments. Next, using HER2+ BC patients' data, we assessed these proteins as prognostic and predictive biomarkers. Finally, using Tz-resistant cells, we evaluated their roles in Tz response. We identified deregulated genes associated with cell motility in Tz/T-DM1-resistant vs. -sensitive cells. We showed that Tz, T-DM1, and Lp decrease cell viability, and their effect is enhanced in combinations. We determined synergism between Tz/T-DM1 and Lp, making possible a dose reduction of each drug to achieve the same therapeutic effect. We found that combinations (Tz/T-DM1 + Lp) efficiently inhibit cell adhesion and migration. Furthermore, we demonstrated the induction of FAK nuclear and cortactin peri-nuclear localization after T-DM1, Lp, and Tz/T-DM1 + Lp treatments. In parallel, we observed that combined treatments downregulate proteins essential for metastatic dissemination, such as SRC, FAK, and paxillin. We found that low vinculin (VCL) and cortactin (CTTN) mRNA expression predicts favorable survival rates and has diagnostic value to discriminate between Tz-sensible and Tz-resistant HER2+ BC patients. Finally, we confirmed that vinculin and cortactin are overexpressed in Tz-resistance cells, SKBR3-RTz. Moreover, we found that Tz plus FAK/paxillin/cortactin-silencing reduced cell adhesion/migration capacity in Tz-sensitive and -resistant cells. In conclusion, we demonstrate that combined therapies are encouraging since low doses of Tz/T-DM1 + Lp inhibit metastatic processes by downregulating critical protein expression and affecting its subcellular localization. We propose that vinculin and cortactin might contribute to Tz-sensibility/resistance in BC cells. Finally, we identify potential prognostic and predictive biomarkers that are promising for personalized BC management that would allow efficient patient selection in order to mitigate resistance and maximize the safety and efficacy of anti-HER2 therapies.
Collapse
Affiliation(s)
- Ana Carla Castro-Guijarro
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| |
Collapse
|
11
|
Bai S, Song D, Chen M, Lai X, Xu J, Dong F. The association between mammographic density and breast cancer molecular subtypes: a systematic review and meta-analysis. Clin Radiol 2023; 78:622-632. [PMID: 37230842 DOI: 10.1016/j.crad.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
AIM To conduct a systematic review and meta-analysis to evaluate the whether high mammographic density (MD) is differentially associated with all subtypes of breast cancer. MATERIALS AND METHODS The PubMed, Cochrane Library, and Embase databases were searched systematically in October 2022 to include all studies that investigated the association between MD and breast cancer subtype. Aggregate data of 17,193 breast cancer cases from 23 studies were selected, including five cohort/case-control and 18 case-only studies. The relative risk (RR) of MD were combined using random/fixed effects models for case-control studies, and for case-only studies, relative risk ratios (RRRs) were a combination of luminal A, luminal B, and HER2-positive versus triple-negative tumours. RESULTS Women in the highest density category in case-control/cohort studies had a 2.24-fold (95% confidence interval [CI] 1.53, 3.28), 1.81-fold (95% CI 1.15, 2.85), 1.44-fold (95% CI 1.14, 1.81), and 1.59-fold (95% CI 0.89, 2.85) higher risk of triple-negative, HER-2 (human epidermal growth factor receptor 2) positive, luminal A, and luminal B breast cancer compared to women in the lowest density category. RRRs for breast tumours being luminal A, luminal B, and HER-2 positive versus triple-negative in case-only studies were 1.62 (95% CI 1.14, 2.31), 1.81 (95% CI 1.22, 2.71) and 2.58 (95% CI 1.63, 4.08), respectively, for BIRADS 4 versus BIRADS 1. CONCLUSION The evidence indicates MD is a potent risk factor for the majority of breast cancer subtypes to different degrees. Increased MD is more strongly linked to HER-2-positive cancers compared to other breast cancer subtypes. The application of MD as a subtype-specific risk marker may facilitate the creation of personalised risk prediction models and screening procedures.
Collapse
Affiliation(s)
- S Bai
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - D Song
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - M Chen
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - X Lai
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - J Xu
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - F Dong
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
12
|
Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol 2023; 25:1869-1892. [PMID: 37067729 PMCID: PMC10250522 DOI: 10.1007/s12094-023-03189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/02/2022] [Indexed: 04/18/2023]
Abstract
Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective management of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future.
Collapse
Affiliation(s)
- Yujuan Kang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
13
|
Miri A, Gharechahi J, Samiei Mosleh I, Sharifi K, Jajarmi V. Identification of co-regulated genes associated with doxorubicin resistance in the MCF-7/ADR cancer cell line. Front Oncol 2023; 13:1135836. [PMID: 37397367 PMCID: PMC10311417 DOI: 10.3389/fonc.2023.1135836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The molecular mechanism of chemotherapy resistance in breast cancer is not well understood. The identification of genes associated with chemoresistance is critical for a better understanding of the molecular processes driving resistance. Methods This study used a co-expression network analysis of Adriamycin (or doxorubicin)-resistant MCF-7 (MCF-7/ADR) and its parent MCF-7 cell lines to explore the mechanisms of drug resistance in breast cancer. Genes associated with doxorubicin resistance were extracted from two microarray datasets (GSE24460 and GSE76540) obtained from the Gene Expression Omnibus (GEO) database using the GEO2R web tool. The candidate differentially expressed genes (DEGs) with the highest degree and/or betweenness in the co-expression network were selected for further analysis. The expression of major DEGs was validated experimentally using qRT-PCR. Results We identified twelve DEGs in MCF-7/ADR compared with its parent MCF-7 cell line, including 10 upregulated and 2 downregulated DEGs. Functional enrichment suggests a key role for RNA binding by IGF2BPs and epithelial-to-mesenchymal transition pathways in drug resistance in breast cancer. Discussion Our findings suggested that MMP1, VIM, CNN3, LDHB, NEFH, PLS3, AKAP12, TCEAL2, and ABCB1 genes play an important role in doxorubicin resistance and could be targeted for developing novel therapies by chemical synthesis approaches.
Collapse
Affiliation(s)
- Ali Miri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Iman Samiei Mosleh
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zahari S, Syafruddin SE, Mohtar MA. Impact of the Cancer Cell Secretome in Driving Breast Cancer Progression. Cancers (Basel) 2023; 15:2653. [PMID: 37174117 PMCID: PMC10177134 DOI: 10.3390/cancers15092653] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a complex and heterogeneous disease resulting from the accumulation of genetic and epigenetic alterations in breast epithelial cells. Despite remarkable progress in diagnosis and treatment, breast cancer continues to be the most prevalent cancer affecting women worldwide. Recent research has uncovered a compelling link between breast cancer onset and the extracellular environment enveloping tumor cells. The complex network of proteins secreted by cancer cells and other cellular components within the tumor microenvironment has emerged as a critical player in driving the disease's metastatic properties. Specifically, the proteins released by the tumor cells termed the secretome, can significantly influence the progression and metastasis of breast cancer. The breast cancer cell secretome promotes tumorigenesis through its ability to modulate growth-associated signaling pathways, reshaping the tumor microenvironment, supporting pre-metastatic niche formation, and facilitating immunosurveillance evasion. Additionally, the secretome has been shown to play a crucial role in drug resistance development, making it an attractive target for cancer therapy. Understanding the intricate role of the cancer cell secretome in breast cancer progression will provide new insights into the underlying mechanisms of this disease and aid in the development of more innovative therapeutic interventions. Hence, this review provides a nuanced analysis of the impact of the cancer cell secretome on breast cancer progression, elucidates the complex reciprocal interaction with the components of the tumor microenvironment and highlights emerging therapeutic opportunities for targeting the constituents of the secretome.
Collapse
Affiliation(s)
| | | | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.Z.); (S.E.S.)
| |
Collapse
|
15
|
Pereira IC, Mascarenhas IF, Capetini VC, Ferreira PMP, Rogero MM, Torres-Leal FL. Cellular reprogramming, chemoresistance, and dietary interventions in breast cancer. Crit Rev Oncol Hematol 2022; 179:103796. [PMID: 36049616 DOI: 10.1016/j.critrevonc.2022.103796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/16/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022] Open
Abstract
Breast cancer (BC) diagnosis has been associated with significant risk factors, including family history, late menopause, obesity, poor eating habits, and alcoholism. Despite the advances in the last decades regarding cancer treatment, some obstacles still hinder the effectiveness of therapy. For example, chemotherapy resistance is common in locally advanced or metastatic cancer, reducing treatment options and contributing to mortality. In this review, we provide an overview of BC metabolic changes, including the impact of restrictive diets associated with chemoresistance, the therapeutic potential of the diet on tumor progression, pathways related to metabolic health in oncology, and perspectives on the future in the area of oncological nutrition.
Collapse
Affiliation(s)
- Irislene Costa Pereira
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil; Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Isabele Frazão Mascarenhas
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, Sao Paulo, Brazil
| | - Francisco Leonardo Torres-Leal
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil; Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
16
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
17
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
18
|
Davey MG, Jalali A, Ryan ÉJ, McLaughlin RP, Sweeney KJ, Barry MK, Malone CM, Keane MM, Lowery AJ, Miller N, Kerin MJ. A Novel Surrogate Nomogram Capable of Predicting OncotypeDX Recurrence Score©. J Pers Med 2022; 12:1117. [PMID: 35887614 PMCID: PMC9318604 DOI: 10.3390/jpm12071117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: OncotypeDX Recurrence Score© (RS) is a commercially available 21-gene expression assay which estimates prognosis and guides chemoendocrine prescription in early-stage estrogen-receptor positive, human epidermal growth factor receptor-2-negative (ER+/HER2−) breast cancer. Limitations of RS testing include the cost and turnaround time of several weeks. Aim: Our aim is to develop a user-friendly surrogate nomogram capable of predicting RS. Methods: Multivariable linear regression analyses were performed to determine predictors of RS and RS > 25. Receiver operating characteristic analysis produced an area under the curve (AUC) for each model, with training and test sets were composed of 70.3% (n = 315) and 29.7% (n = 133). A dynamic, user-friendly nomogram was built to predict RS using R (version 4.0.3). Results: 448 consecutive patients who underwent RS testing were included (median age: 58 years). Using multivariable regression analyses, postmenopausal status (β-Coefficient: 0.25, 95% confidence intervals (CIs): 0.03−0.48, p = 0.028), grade 3 disease (β-Coefficient: 0.28, 95% CIs: 0.03−0.52, p = 0.026), and estrogen receptor (ER) score (β-Coefficient: −0.14, 95% CIs: −0.22−−0.06, p = 0.001) all independently predicted RS, with AUC of 0.719. Using multivariable regression analyses, grade 3 disease (odds ratio (OR): 5.67, 95% CIs: 1.32−40.00, p = 0.037), decreased ER score (OR: 1.33, 95% CIs: 1.02−1.66, p = 0.050) and decreased progesterone receptor score (OR: 1.16, 95% CIs: 1.06−1.25, p = 0.002) all independently predicted RS > 25, with AUC of 0.740 for the static and dynamic online nomogram model. Conclusions: This study designed and validated an online user-friendly nomogram from routinely available clinicopathological parameters capable of predicting outcomes of the 21-gene RS expression assay.
Collapse
Affiliation(s)
- Matthew G. Davey
- The Lambe Institute for Translational Research, National University of Ireland, H91 TK33 Galway, Ireland; (A.J.L.); (N.M.); (M.J.K.)
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland; (É.J.R.); (R.P.M.); (K.J.S.); (M.K.B.); (C.M.M.)
| | - Amirhossein Jalali
- Department of Mathematics and Statistics, University of Limerick, V94 T9PX Limerick, Ireland;
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Éanna J. Ryan
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland; (É.J.R.); (R.P.M.); (K.J.S.); (M.K.B.); (C.M.M.)
| | - Ray P. McLaughlin
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland; (É.J.R.); (R.P.M.); (K.J.S.); (M.K.B.); (C.M.M.)
| | - Karl J. Sweeney
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland; (É.J.R.); (R.P.M.); (K.J.S.); (M.K.B.); (C.M.M.)
| | - Michael K. Barry
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland; (É.J.R.); (R.P.M.); (K.J.S.); (M.K.B.); (C.M.M.)
| | - Carmel M. Malone
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland; (É.J.R.); (R.P.M.); (K.J.S.); (M.K.B.); (C.M.M.)
| | - Maccon M. Keane
- Department of Medical Oncology, Galway University Hospitals, H91 YR71 Galway, Ireland;
| | - Aoife J. Lowery
- The Lambe Institute for Translational Research, National University of Ireland, H91 TK33 Galway, Ireland; (A.J.L.); (N.M.); (M.J.K.)
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland; (É.J.R.); (R.P.M.); (K.J.S.); (M.K.B.); (C.M.M.)
| | - Nicola Miller
- The Lambe Institute for Translational Research, National University of Ireland, H91 TK33 Galway, Ireland; (A.J.L.); (N.M.); (M.J.K.)
| | - Michael J. Kerin
- The Lambe Institute for Translational Research, National University of Ireland, H91 TK33 Galway, Ireland; (A.J.L.); (N.M.); (M.J.K.)
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland; (É.J.R.); (R.P.M.); (K.J.S.); (M.K.B.); (C.M.M.)
| |
Collapse
|
19
|
Kemmer S, Berdiel-Acer M, Reinz E, Sonntag J, Tarade N, Bernhardt S, Fehling-Kaschek M, Hasmann M, Korf U, Wiemann S, Timmer J. Disentangling ERBB Signaling in Breast Cancer Subtypes-A Model-Based Analysis. Cancers (Basel) 2022; 14:2379. [PMID: 35625984 PMCID: PMC9139462 DOI: 10.3390/cancers14102379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Targeted therapies have shown striking success in the treatment of cancer over the last years. However, their specific effects on an individual tumor appear to be varying and difficult to predict. Using an integrative modeling approach that combines mechanistic and regression modeling, we gained insights into the response mechanisms of breast cancer cells due to different ligand-drug combinations. The multi-pathway model, capturing ERBB receptor signaling as well as downstream MAPK and PI3K pathways was calibrated on time-resolved data of the luminal breast cancer cell lines MCF7 and T47D across an array of four ligands and five drugs. The same model was then successfully applied to triple negative and HER2-positive breast cancer cell lines, requiring adjustments mostly for the respective receptor compositions within these cell lines. The additional relevance of cell-line-specific mutations in the MAPK and PI3K pathway components was identified via L1 regularization, where the impact of these mutations on pathway activation was uncovered. Finally, we predicted and experimentally validated the proliferation response of cells to drug co-treatments. We developed a unified mathematical model that can describe the ERBB receptor and downstream signaling in response to therapeutic drugs targeting this clinically relevant signaling network in cell line that represent three major subtypes of breast cancer. Our data and model suggest that alterations in this network could render anti-HER therapies relevant beyond the HER2-positive subtype.
Collapse
Affiliation(s)
- Svenja Kemmer
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.F.-K.)
- FDM—Freiburg Center for Data Analysis and Modeling, University of Freiburg, 79104 Freiburg, Germany
| | - Mireia Berdiel-Acer
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Eileen Reinz
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Johanna Sonntag
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Nooraldeen Tarade
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
- Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Stephan Bernhardt
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Mirjam Fehling-Kaschek
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.F.-K.)
- FDM—Freiburg Center for Data Analysis and Modeling, University of Freiburg, 79104 Freiburg, Germany
| | | | - Ulrike Korf
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Jens Timmer
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.F.-K.)
- FDM—Freiburg Center for Data Analysis and Modeling, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
20
|
lncRNA GHET1 Promotes the Progression of Triple-Negative Breast Cancer via Regulation of miR-377-3p/GRSF1 Signaling Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8366569. [PMID: 35509860 PMCID: PMC9060992 DOI: 10.1155/2022/8366569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
Objective This study is aimed at investigating the role of lncRNA GHET1 in the progression of triple-negative breast cancer (TNBC). Methods Tumor tissues and paracancerous tissues (normal) of TNBC patients were collected. Human normal breast cells (MCF10A) and TNBC cells (MDA-MB-468 and HCC1937) were employed for in vitro analysis. The expression of lncRNA GHET1, miR-377-3p, and GRSF1 was detected by qRT-PCR. The lncRNA GHET1 and miR-377-3p were overexpressed or knocked down in the TNBC cells, respectively. To determine the specific biological activities of the TNBC cells, MTT, flow cytometry, and wound healing assay were adopted to evaluate the cellular proliferation, apoptosis, and migration abilities, respectively. MMP-9 and MMP-2 protein expression levels were detected as well by Western blot in the cells. The relationship between miR-377-3p and lncRNA GHET1, miR-377-3p, and GRSF1 was validated using dual-luciferase reporter assay. Results lncRNA GHET1 was significantly upregulated in the TNBC patients' tissues and the TNBC cell lines. Overexpression of lncRNA GHET1 significantly increased the proliferation and migration ability, but decreased apoptosis in the TNBC cells. Additionally, overexpression of lncRNA GHET1 upregulated both MMP-9 and MMP-2 protein expression levels. Correlation analysis found that miR-377-3p had a positive relationship with GRSF1, but had a negative relationship with lncRNA GHET1. miR-377-3p mimic attenuated the effects of lncRNA GHET1 on cellular proliferation, apoptosis, and migration of the TNBC cells. Conclusion lncRNA GHET1 promotes TNBC progression through the miR-377-3p/GRSF1 signaling axis.
Collapse
|
21
|
The Expression of Signaling Genes in Breast Cancer Cells. BIOLOGY 2022; 11:biology11040555. [PMID: 35453754 PMCID: PMC9025738 DOI: 10.3390/biology11040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The aim of the study was to investigate the effect of a drug for cancer—paclitaxel—on the expression of genes encoding the signaling factors in breast cancer cells outside organisms. The tested cells were harvested from the mammary glands of 36 women with breast cancer. The microarray technology —the carrier with applied DNA samples—was employed for the identification of gene expression. A significant effect of paclitaxel on the genome of breast cancer cells was confirmed. Paclitaxel changed the functions of cancer cell by increasing the expression of the genes encoding signaling proteins. This is the molecule of intercellular communication. The analysis of the results suggests that this cytostatic agent produces a beneficial therapeutic effect at a lower dose (60 ng/mL). In contrast, a high dose of paclitaxel (300 ng/mL) was associated with higher cytotoxicity and this had a negative effect on the tested tumor cells. Abstract The aim of the study was to investigate the effect of paclitaxel on the expression of genes encoding signaling factors in breast cancer cells in in vitro conditions after incubation with the said chemotherapeutic. The tested cells were harvested from the mammary glands of 36 patients with early breast cancer. The microarray technology was employed for the identification of gene expression. For this purpose, mRNA isolated from tumor cells was used. A significant effect of paclitaxel on the genome of breast cancer cells was confirmed. Paclitaxel changed the functions of cancer cells by increasing the expression of most genes encoding signaling proteins and receptors. The analysis of the results suggested that this cytostatic agent produces a beneficial therapeutic effect at a lower dose (60 ng/mL). In contrast, a high dose of paclitaxel (300 ng/mL) was associated with a high cytotoxicity.
Collapse
|
22
|
Mavaddat N, Dorling L, Carvalho S, Allen J, González-Neira A, Keeman R, Bolla MK, Dennis J, Wang Q, Ahearn TU, Andrulis IL, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Briceno I, Brüning T, Camp NJ, Campbell A, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Christiansen H, Czene K, Dörk T, Eriksson M, Evans DG, Fasching PA, Figueroa JD, Flyger H, Gabrielson M, Gago-Dominguez M, Geisler J, Giles GG, Guénel P, Hadjisavvas A, Hahnen E, Hall P, Hamann U, Hartikainen JM, Hartman M, Hoppe R, Howell A, Jakubowska A, Jung A, Khusnutdinova EK, Kristensen VN, Li J, Lim SH, Lindblom A, Loizidou MA, Lophatananon A, Lubinski J, Madsen MJ, Mannermaa A, Manoochehri M, Margolin S, Mavroudis D, Milne RL, Mohd Taib NA, Morra A, Muir K, Obi N, Osorio A, Park-Simon TW, Peterlongo P, Radice P, Saloustros E, Sawyer EJ, Schmutzler RK, Shah M, Sim X, Southey MC, Thorne H, Tomlinson I, Torres D, Truong T, Yip CH, Spurdle AB, Vreeswijk MPG, Dunning AM, García-Closas M, Pharoah PDP, Kvist A, Muranen TA, Nevanlinna H, Teo SH, Devilee P, Schmidt MK, Easton DF. Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncol 2022; 8:e216744. [PMID: 35084436 PMCID: PMC8796069 DOI: 10.1001/jamaoncol.2021.6744] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Rare germline genetic variants in several genes are associated with increased breast cancer (BC) risk, but their precise contributions to different disease subtypes are unclear. This information is relevant to guidelines for gene panel testing and risk prediction. OBJECTIVE To characterize tumors associated with BC susceptibility genes in large-scale population- or hospital-based studies. DESIGN, SETTING, AND PARTICIPANTS The multicenter, international case-control analysis of the BRIDGES study included 42 680 patients and 46 387 control participants, comprising women aged 18 to 79 years who were sampled independently of family history from 38 studies. Studies were conducted between 1991 and 2016. Sequencing and analysis took place between 2016 and 2021. EXPOSURES Protein-truncating variants and likely pathogenic missense variants in ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53. MAIN OUTCOMES AND MEASURES The intrinsic-like BC subtypes as defined by estrogen receptor, progesterone receptor, and ERBB2 (formerly known as HER2) status, and tumor grade; morphology; size; stage; lymph node involvement; subtype-specific odds ratios (ORs) for carrying protein-truncating variants and pathogenic missense variants in the 9 BC susceptibility genes. RESULTS The mean (SD) ages at interview (control participants) and diagnosis (cases) were 55.1 (11.9) and 55.8 (10.6) years, respectively; all participants were of European or East Asian ethnicity. There was substantial heterogeneity in the distribution of intrinsic subtypes by gene. RAD51C, RAD51D, and BARD1 variants were associated mainly with triple-negative disease (OR, 6.19 [95% CI, 3.17-12.12]; OR, 6.19 [95% CI, 2.99-12.79]; and OR, 10.05 [95% CI, 5.27-19.19], respectively). CHEK2 variants were associated with all subtypes (with ORs ranging from 2.21-3.17) except for triple-negative disease. For ATM variants, the association was strongest for the hormone receptor (HR)+ERBB2- high-grade subtype (OR, 4.99; 95% CI, 3.68-6.76). BRCA1 was associated with increased risk of all subtypes, but the ORs varied widely, being highest for triple-negative disease (OR, 55.32; 95% CI, 40.51-75.55). BRCA2 and PALB2 variants were also associated with triple-negative disease. TP53 variants were most strongly associated with HR+ERBB2+ and HR-ERBB2+ subtypes. Tumors occurring in pathogenic variant carriers were of higher grade. For most genes and subtypes, a decline in ORs was observed with increasing age. Together, the 9 genes were associated with 27.3% of all triple-negative tumors in women 40 years or younger. CONCLUSIONS AND RELEVANCE The results of this case-control study suggest that variants in the 9 BC risk genes differ substantially in their associated pathology but are generally associated with triple-negative and/or high-grade disease. Knowing the age and tumor subtype distributions associated with individual BC genes can potentially aid guidelines for gene panel testing, risk prediction, and variant classification and guide targeted screening strategies.
Collapse
Affiliation(s)
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Renske Keeman
- Division of Molecular Pathology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain.,Biomedical Network on Rare Diseases, Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany.,Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.,N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, Scotland.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.,Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hans Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, England.,North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, England
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles
| | - Jonine D Figueroa
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland.,Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, Scotland
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain.,Moores Cancer Center, University of California San Diego, La Jolla
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus at Akershus University Hospital, Norway
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Villejuif, France
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Integrated Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Jaana M Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.,Department of Surgery, National University Health System, Singapore, Singapore
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, England
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia.,Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jingmei Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.,Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - Swee Ho Lim
- Breast Department, KK Women's and Children's Hospital, Singapore, Singapore.,SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria A Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, England
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Michael J Madsen
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.,Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden.,Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine University of Malaya, UM Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Anna Morra
- Division of Molecular Pathology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, England
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ana Osorio
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain.,Centro de Investigación en Red de Enfermedades Raras, Madrid, Spain
| | | | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, England
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Integrated Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, England
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Thorne
- Research Department, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England.,Wellcome Trust Centre for Human Genetics and Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, England
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany.,Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Villejuif, France
| | - Cheng Har Yip
- Department of Surgery, Faculty of Medicine University of Malaya, UM Cancer Research Institute, Kuala Lumpur, Malaysia.,Subang Jaya Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, England
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England.,Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, England
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Soo Hwang Teo
- Department of Surgery, Faculty of Medicine University of Malaya, UM Cancer Research Institute, Kuala Lumpur, Malaysia.,Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England.,Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, England
| |
Collapse
|
23
|
Liman AA, Kabir B, Abubakar M, Abdullahi S, Ahmed SA, Shehu SM. Triple-negative Breast Cancer (TNBC) and Its Luminal Androgen Receptor (LAR) Subtype: A Clinicopathologic Review of Cases in a University Hospital in Northwestern Nigeria. Niger J Clin Pract 2022; 25:97-104. [PMID: 35046202 DOI: 10.4103/njcp.njcp_437_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Breast cancer (BC) is a common malignancy; the most frequent in Nigeria. BC characteristically exhibits great biologic diversity. Amongst its variants, the triple-negative subtype is also characterized by heterogeneity (thus making it a study in diversity within diversity) and also by some unique clinicopathologic features including clinical aggressiveness, lack of response to current targeted therapies, and tendency to cluster amongst young premenopausal women especially in populations of women of African ancestry. Aims The objective of this study was to conduct a retrospective clinicopathologic survey of all breast carcinomas to profile the triple-negative breast cancers (TNBCs) amongst them and illustrate their immunohistochemical pattern of luminal androgen receptors (LARs) expression. Patients and Methods All the cases entered into the departmental records as breast carcinomas over the study period were extracted including patients' request cards, hematoxylin and eosin-stained slides, and paraffin-embedded tissue blocks of those diagnosed as triple-negative cancers. These were immunohistochemically stained using a monoclonal antibody for androgen receptor (AR). The whole data were analyzed and presented in tabular formats. Results A total of 660 breast carcinomas of which 89 (13.48%) cases were identified as TNBCs with a mean age of occurrence of 42.89 ± 11.88 years. Most TNBCs (95.5%) were carcinoma no special type and 61.8% had low or intermediate histologic grading. LAR expression was noted in 11.24% of the TNBCs. Conclusion Triple-negative cancer in this study shares some of the known characteristics but also portrays some divergence from the commonly described features.
Collapse
Affiliation(s)
- A A Liman
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - B Kabir
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - M Abubakar
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - S Abdullahi
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - S A Ahmed
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - S M Shehu
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| |
Collapse
|
24
|
Joe NS, Godet I, Milki N, Ain NUI, Oza HH, Riggins GJ, Gilkes DM. Mebendazole prevents distant organ metastases in part by decreasing ITGβ4 expression and cancer stemness. Breast Cancer Res 2022; 24:98. [PMID: 36578038 PMCID: PMC9798635 DOI: 10.1186/s13058-022-01591-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most diagnosed cancer among women. Approximately 15-20% of all breast cancers are highly invasive triple-negative breast cancer (TNBC) and lack estrogen, progesterone, and ERBB2 receptors. TNBC is challenging to treat due to its aggressive nature with far fewer targeted therapies than other breast cancer subtypes. Current treatments for patients with TNBC consist of cytotoxic chemotherapies, surgery, radiation, and in some instances PARP inhibitors and immunotherapy. To advance current therapeutics, we repurposed mebendazole (MBZ), an orally available FDA-approved anthelmintic that has shown preclinical efficacy for cancers. MBZ has low toxicity in humans and efficacy in multiple cancer models including breast cancer, glioblastoma multiforme, medulloblastoma, colon cancer, pancreatic and thyroid cancer. MBZ was well-tolerated in a phase I clinical trial of adults recently diagnosed with glioma. We determined that the half-maximal inhibitory concentration (IC50) of MBZ in four breast cancer cell lines is well within the range reported for other types of cancer. MBZ reduced TNBC cell proliferation, induced apoptosis, and caused G2/M cell cycle arrest. MBZ reduced the size of primary tumors and prevented lung and liver metastases. In addition, we uncovered a novel mechanism of action for MBZ. We found that MBZ reduces integrin β4 (ITGβ4) expression and cancer stem cell properties. ITGβ4 has previously been implicated in promoting "cancer stemness," which may contribute to the efficacy of MBZ. Collectively, our results contribute to a growing body of evidence suggesting that MBZ should be considered as a therapeutic to slow tumor progression and prevent metastasis.
Collapse
Affiliation(s)
- Natalie S. Joe
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Inês Godet
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218 USA
| | - Nubaira Milki
- grid.21107.350000 0001 2171 9311Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
| | - Noor U. I. Ain
- grid.21107.350000 0001 2171 9311NIH NIDDK Short-Term Research Experience Program to Unlock Potential (STEP-UP), The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Harsh H. Oza
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Gregory J. Riggins
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Daniele M. Gilkes
- grid.21107.350000 0001 2171 9311Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA ,grid.21107.350000 0001 2171 9311Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
25
|
Garberis I, Andre F, Lacroix-Triki M. L’intelligence artificielle pourrait-elle intervenir dans l’aide au diagnostic des cancers du sein ? – L’exemple de HER2. Bull Cancer 2022; 108:11S35-11S45. [PMID: 34969514 DOI: 10.1016/s0007-4551(21)00635-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
HER2 is an important prognostic and predictive biomarker in breast cancer. Its detection makes it possible to define which patients will benefit from a targeted treatment. While assessment of HER2 status by immunohistochemistry in positive vs negative categories is well implemented and reproducible, the introduction of a new "HER2-low" category could raise some concerns about its scoring and reproducibility. We herein described the current HER2 testing methods and the application of innovative machine learning techniques to improve these determinations, as well as the main challenges and opportunities related to the implementation of digital pathology in the up-and-coming AI era.
Collapse
Affiliation(s)
- Ingrid Garberis
- Inserm UMR 981, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| | - Fabrice Andre
- Inserm UMR 981, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; Département d'oncologie médicale, Gustave-Roussy, Villejuif, France
| | - Magali Lacroix-Triki
- Inserm UMR 981, Gustave Roussy Cancer Campus, Villejuif, France; Département d'anatomie et cytologie pathologiques, Gustave-Roussy, Villejuif, France
| |
Collapse
|
26
|
Xiao Y, Li J, Wu Z, Zhang X, Ming J. Influence of progesterone receptor on metastasis and prognosis in breast cancer patients with negative HER-2. Gland Surg 2022; 11:77-90. [PMID: 35242671 PMCID: PMC8825510 DOI: 10.21037/gs-21-677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2024]
Abstract
BACKGROUND In de novo metastatic breast cancer patients, the site of metastasis and prognosis are related to the molecular subtype of breast cancer. There are few relevant reports to explore the clinicopathological and prognostic characteristics of different single positive hormone receptor subtypes [estrogen receptor (ER)+/progesterone receptor (PR)- and ER-/PR+] of metastatic breast cancer. METHODS Using the Surveillance, Epidemiology and End Results (SEER) database between 2010 and 2015.We analyzed the metastatic patterns and prognosis of human epidermal growth factor receptor 2 (HER-2)-negative breast cancer patients. Cox analysis was used to analyze the influence of ER+/PR- and ER-/PR+ on the prognosis of patients in different subgroups and the risk factors affecting the prognosis of patients with single hormone receptor positivity. RESULTS We included 206,187 breast cancer patients, including 7,726 stage IV patients. The loss of ER was a protective factor against bone metastasis (P<0.001) and a risk factor for visceral metastasis (P<0.001). The ER-/PR+ subtype had a similar proportion of de novo metastatic breast cancer, and similar clinicopathological characteristics, prognosis with triple negative breast cancer (TNBC). Single PR positivity was an independent risk factor for cancer specific survival (CSS) in multi-visceral metastasis subgroup comparing to TNBC. Meanwhile, no significant difference in overall survival (OS) or breast cancer specific survival (BCSS) between ER-/PR+ and ER-/PR- patients in all breast cancer patients or in stage IV breast cancer patients. Age [hazard ratio (HR) =2.16], grade (HR =2.36), T stage (T4: HR =3.24), lymph node metastasis (>10: HR =4.33), distant metastasis (HR =4.99), and no chemotherapy or an unknown (HR =1.65) were high-risk factors but surgery (HR <0.5) were protective factors for CSS in ER-/PR+ patients. CONCLUSIONS ER-/PR+ subtype had a high proportion of stage IV patients. Meanwhile, such subtype breast cancer had similar clinicopathological characteristics, metastatic models (prefers to visceral metastasis), similar even worse prognosis compared with TNBC.
Collapse
Affiliation(s)
| | | | - Zhenghao Wu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
27
|
Lingjærde C, Lien TG, Borgan Ø, Bergholtz H, Glad IK. Tailored graphical lasso for data integration in gene network reconstruction. BMC Bioinformatics 2021; 22:498. [PMID: 34654363 PMCID: PMC8518261 DOI: 10.1186/s12859-021-04413-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Identifying gene interactions is a topic of great importance in genomics, and approaches based on network models provide a powerful tool for studying these. Assuming a Gaussian graphical model, a gene association network may be estimated from multiomic data based on the non-zero entries of the inverse covariance matrix. Inferring such biological networks is challenging because of the high dimensionality of the problem, making traditional estimators unsuitable. The graphical lasso is constructed for the estimation of sparse inverse covariance matrices in such situations, using [Formula: see text]-penalization on the matrix entries. The weighted graphical lasso is an extension in which prior biological information from other sources is integrated into the model. There are however issues with this approach, as it naïvely forces the prior information into the network estimation, even if it is misleading or does not agree with the data at hand. Further, if an associated network based on other data is used as the prior, the method often fails to utilize the information effectively. RESULTS We propose a novel graphical lasso approach, the tailored graphical lasso, that aims to handle prior information of unknown accuracy more effectively. We provide an R package implementing the method, tailoredGlasso. Applying the method to both simulated and real multiomic data sets, we find that it outperforms the unweighted and weighted graphical lasso in terms of all performance measures we consider. In fact, the graphical lasso and weighted graphical lasso can be considered special cases of the tailored graphical lasso, and a parameter determined by the data measures the usefulness of the prior information. We also find that among a larger set of methods, the tailored graphical is the most suitable for network inference from high-dimensional data with prior information of unknown accuracy. With our method, mRNA data are demonstrated to provide highly useful prior information for protein-protein interaction networks. CONCLUSIONS The method we introduce utilizes useful prior information more effectively without involving any risk of loss of accuracy should the prior information be misleading.
Collapse
Affiliation(s)
- Camilla Lingjærde
- MRC Biostatistics Unit, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK.
| | - Tonje G Lien
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Ullernchausseen 70, 0310, Oslo, Norway
| | - Ørnulf Borgan
- Department of Mathematics, University of Oslo, PO Box 1053 Blindern, 0316, Oslo, Norway
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Ullernchausseen 70, 0310, Oslo, Norway
| | - Ingrid K Glad
- Department of Mathematics, University of Oslo, PO Box 1053 Blindern, 0316, Oslo, Norway
| |
Collapse
|
28
|
Bile-Acid-Appended Triazolyl Aryl Ketones: Design, Synthesis, In Vitro Anticancer Activity and Pharmacokinetics in Rats. Molecules 2021; 26:molecules26195741. [PMID: 34641285 PMCID: PMC8510344 DOI: 10.3390/molecules26195741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/27/2022] Open
Abstract
A library of bile-acid-appended triazolyl aryl ketones was synthesized and characterized by detailed spectroscopic techniques such as 1H and 13C NMR, HRMS and HPLC. All the synthesized conjugates were evaluated for their cytotoxicity at 10 µM against MCF-7 (human breast adenocarcinoma) and 4T1 (mouse mammary carcinoma) cells. In vitro cytotoxicity studies on the synthesized conjugates against MCF-7 and 4T1 cells indicated one of the conjugate 6cf to be most active against both cancer cell lines, with IC50 values of 5.71 µM and 8.71 µM, respectively, as compared to the reference drug docetaxel, possessing IC50 values of 9.46 µM and 13.85 µM, respectively. Interestingly, another compound 6af (IC50 = 2.61 µM) was found to possess pronounced anticancer activity as compared to the reference drug docetaxel (IC50 = 9.46 µM) against MCF-7. In addition, the potent compounds (6cf and 6af) were found to be non-toxic to normal human embryonic kidney cell line (HEK 293), as evident from their cell viability of greater than 86%. Compound 6cf induces higher apoptosis in comparison to 6af (46.09% vs. 33.89%) in MCF-7 cells, while similar apoptotic potential was observed for 6cf and 6af in 4T1 cells. The pharmacokinetics of 6cf in Wistar rats showed an MRT of 8.47 h with a half-life of 5.63 h. Clearly, these results suggest 6cf to be a potential candidate for the development of anticancer agents.
Collapse
|
29
|
Joe NS, Hodgdon C, Kraemer L, Redmond KJ, Stearns V, Gilkes DM. A common goal to CARE: Cancer Advocates, Researchers, and Clinicians Explore current treatments and clinical trials for breast cancer brain metastases. NPJ Breast Cancer 2021; 7:121. [PMID: 34521857 PMCID: PMC8440644 DOI: 10.1038/s41523-021-00326-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. Approximately one-tenth of all patients with advanced breast cancer develop brain metastases resulting in an overall survival rate of fewer than 2 years. The challenges lie in developing new approaches to treat, monitor, and prevent breast cancer brain metastasis (BCBM). This review will provide an overview of BCBM from the integrated perspective of clinicians, researchers, and patient advocates. We will summarize the current management of BCBM, including diagnosis, treatment, and monitoring. We will highlight ongoing translational research for BCBM, including clinical trials and improved detection methods that can become the mainstay for BCBM treatment if they demonstrate efficacy. We will discuss preclinical BCBM research that focuses on the intrinsic properties of breast cancer cells and the influence of the brain microenvironment. Finally, we will spotlight emerging studies and future research needs to improve survival outcomes and preserve the quality of life for patients with BCBM.
Collapse
Affiliation(s)
- Natalie S Joe
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine Hodgdon
- INSPIRE (Influencing Science through Patient-Informed Research & Education) Advocacy Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vered Stearns
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- INSPIRE (Influencing Science through Patient-Informed Research & Education) Advocacy Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- INSPIRE (Influencing Science through Patient-Informed Research & Education) Advocacy Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
30
|
Davey MG, Davey MS, Ryan ÉJ, Boland MR, McAnena PF, Lowery AJ, Kerin MJ. Is radiomic MRI a feasible alternative to OncotypeDX® recurrence score testing? A systematic review and meta-analysis. BJS Open 2021; 5:6388195. [PMID: 34633438 PMCID: PMC8504445 DOI: 10.1093/bjsopen/zrab081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND OncotypeDX® recurrence score (RS) aids therapeutic decision-making in oestrogen-receptor-positive (ER+) breast cancer. Radiomics is an evolving field that aims to examine the relationship between radiological features and the underlying genomic landscape of disease processes. The aim of this study was to perform a systematic review of current evidence evaluating the comparability of radiomics and RS. METHODS A systematic review was performed as per PRISMA guidelines. Studies comparing radiomic MRI tumour analyses and RS were identified. Sensitivity, specificity and area under curve (AUC) delineating low risk (RS less than 18) versus intermediate-high risk (equal to or greater than 18) and low-intermediate risk (RS less than 30) and high risk (RS greater than 30) were recorded. Log rate ratios (lnRR) and standard error were determined from AUC and 95 per cent confidence intervals. RESULTS Nine studies including 1216 patients met inclusion criteria; the mean age at diagnosis was 52.9 years. Mean RS was 16 (range 0-75); 401 patients with RS less than 18, 287 patients with RS 18-30 and 100 patients with RS greater than 30. Radiomic analysis and RS were comparable for differentiating RS less than 18 versus RS 18 or greater (RR 0.93 (95 per cent c.i. 0.85 to 1.01); P = 0.010, heterogeneity (I2)=0%) as well as RS less than 30 versus RS 30 or greater (RR 0.76 (95 per cent c.i. 0.70 to 0.83); P < 0.001, I2=0%). MRI sensitivity and specificity for RS less than 18 versus 18 or greater was 0.89 (95 per cent c.i. 0.85 to 0.93) and 0.72 (95 per cent c.i. 0.66 to 0.78) respectively, and 0.79 (95 per cent c.i. 0.72 to 0.86) and 0.74 (95 per cent c.i. 0.68 to 0.80) for RS less than 30 versus 30 or greater. CONCLUSION Radiomic tumour analysis is comparable to RS in differentiating patients into clinically relevant subgroups. For patients requiring MRI, radiomics may complement and enhance RS for prognostication and therapeutic decision making in ER+ breast cancer.
Collapse
Affiliation(s)
- M G Davey
- Department of Surgery, The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M S Davey
- Department of Surgery, The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - É J Ryan
- Department of Surgery, The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M R Boland
- Department of Surgery, The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - P F McAnena
- Department of Surgery, The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - A J Lowery
- Department of Surgery, The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M J Kerin
- Department of Surgery, The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| |
Collapse
|
31
|
Xu J, Wu KJ, Jia QJ, Ding XF. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ Sci B 2021; 21:673-689. [PMID: 32893525 PMCID: PMC7519626 DOI: 10.1631/jzus.b1900709] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies, which makes its pathogenesis an important target for research. A growing number of studies have shown that non-coding RNA (ncRNA), including microRNA (miRNA) and long non-coding RNA (lncRNA), plays a significant role in tumorigenesis. This review summarizes the roles of miRNA and lncRNA in the progression, diagnosis, and neoadjuvant chemotherapy of TNBC. Aberrantly expressed miRNA and lncRNA are listed according to their roles. Further, it describes the multiple mechanisms that lncRNA shows for regulating gene expression in the nucleus and cytoplasm, and more importantly, describes lncRNA-regulated TNBC progression through complete combining with miRNA at the post-transcriptional level. Focusing on miRNA and lncRNA associated with TNBC can provide new insights for early diagnosis and treatment-they can be targeted in the future as a novel anticancer target of TNBC.
Collapse
|
32
|
Multiparametric Integrated 18F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding. Cancers (Basel) 2021; 13:cancers13122928. [PMID: 34208197 PMCID: PMC8230865 DOI: 10.3390/cancers13122928] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Breast cancer is considered the leading cancer type and main cause of cancer death in women. In this study, we assess simultaneous 18F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype. The radiomics-based analysis comprised prediction of molecular subtype, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Our results demonstrated high accuracy for multiparametric MRI alone as well as 18F-FDG PET/MRI as an imaging platform for high-quality non-invasive tissue characterization. Abstract Background: This study investigated the performance of simultaneous 18F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype analysis, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Methods: One hundred and twenty-four patients underwent simultaneous 18F-FDG PET/MRI. Breast tumors were segmented and radiomic features were extracted utilizing CERR software following the IBSI guidelines. LASSO regression was employed to select the most important radiomics features prior to model development. Five-fold cross validation was then utilized alongside support vector machines, resulting in predictive models for various combinations of imaging data series. Results: The highest AUC and accuracy for differentiation between luminal A and B was achieved by all MR sequences (AUC 0.98; accuracy 97.3). The best results in AUC for prediction of hormone receptor status and proliferation rate were found based on all MR and PET data (ER AUC 0.87, PR AUC 0.88, Ki-67 AUC 0.997). PET provided the best determination of grading (AUC 0.71), while all MR and PET analyses yielded the best results for lymphonodular and distant metastatic spread (0.81 and 0.99, respectively). Conclusion: 18F-FDG PET/MRI enables comprehensive high-quality radiomics analysis for breast cancer phenotyping and tumor decoding, utilizing the perks of simultaneously acquired morphologic, functional and metabolic data.
Collapse
|
33
|
Dieleman S, Aarnoutse R, Ziemons J, Kooreman L, Boleij A, Smidt M. Exploring the Potential of Breast Microbiota as Biomarker for Breast Cancer and Therapeutic Response. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:968-982. [PMID: 33713687 DOI: 10.1016/j.ajpath.2021.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer tissue contains its own unique microbiota. Emerging preclinical data indicates that breast microbiota dysbiosis contributes to breast cancer initiation and progression. Furthermore, the breast microbiota may be a promising biomarker for treatment selection and prognosis. Differences in breast microbiota composition have been found between breast cancer subtypes and disease severities that may contribute to immunosuppression, enabling tumor cells to evade immune destruction. Interactions between breast microbiota, gut microbiota, and immune system are proposed, all forming potential targets to increase therapeutic efficacy. In addition, because the gut microbiota affects the host immune system and systemic availability of estrogen and bile acids known to influence tumor biology, gut microbiota modulation could be used to manipulate breast microbiota composition. Identifying breast and gut microbial compositions that respond positively to certain anticancer therapeutics could significantly reduce cancer burden. Additional research is needed to unravel the complexity of breast microbiota functioning and its interactions with the gut and the immune system. In this review, developments in the understanding of breast microbiota and its interaction with the immune system and the gut microbiota are discussed. Furthermore, the biomarker potential of breast microbiota is evaluated in conjunction with possible strategies to target microbiota in order to improve breast cancer treatment.
Collapse
Affiliation(s)
- Sabine Dieleman
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Romy Aarnoutse
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Janine Ziemons
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Loes Kooreman
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Marjolein Smidt
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
34
|
Johnson KS, Conant EF, Soo MS. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. JOURNAL OF BREAST IMAGING 2021; 3:12-24. [PMID: 38424845 DOI: 10.1093/jbi/wbaa110] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 03/02/2024]
Abstract
Gene expression profiling has reshaped our understanding of breast cancer by identifying four molecular subtypes: (1) luminal A, (2) luminal B, (3) human epidermal growth factor receptor 2 (HER2)-enriched, and (4) basal-like, which have critical differences in incidence, response to treatment, disease progression, survival, and imaging features. Luminal tumors are most common (60%-70%), characterized by estrogen receptor (ER) expression. Luminal A tumors have the best prognosis of all subtypes, whereas patients with luminal B tumors have significantly shorter overall and disease-free survival. Distinguishing between these tumors is important because luminal B tumors require more aggressive treatment. Both commonly present as irregular masses without associated calcifications at mammography; however, luminal B tumors more commonly demonstrate axillary involvement at diagnosis. HER2-enriched tumors are characterized by overexpression of the HER2 oncogene and low-to-absent ER expression. HER2+ disease carries a poor prognosis, but the development of anti-HER2 therapies has greatly improved outcomes for women with HER2+ breast cancer. HER2+ tumors most commonly present as spiculated masses with pleomorphic calcifications or as calcifications alone. Basal-like cancers (15% of all invasive breast cancers) predominate among "triple negative" cancers, which lack ER, progesterone receptor (PR), and HER2 expression. Basal-like cancers are frequently high-grade, large at diagnosis, with high rates of recurrence. Although imaging commonly reveals irregular masses with ill-defined or spiculated margins, some circumscribed basal-like tumors can be mistaken for benign lesions. Incorporating biomarker data (histologic grade, ER/PR/HER2 status, and multigene assays) into classic anatomic tumor, node, metastasis (TNM) staging can better inform clinical management of this heterogeneous disease.
Collapse
Affiliation(s)
- Karen S Johnson
- Duke University Hospital, Department of Diagnostic Radiology, Durham, NC
| | - Emily F Conant
- Perelman School of Medicine, Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA
| | - Mary Scott Soo
- Duke University Hospital, Department of Diagnostic Radiology, Durham, NC
| |
Collapse
|
35
|
Berdiel-Acer M, Maia A, Hristova Z, Borgoni S, Vetter M, Burmester S, Becki C, Michels B, Abnaof K, Binenbaum I, Bethmann D, Chatziioannou A, Hasmann M, Thomssen C, Espinet E, Wiemann S. Stromal NRG1 in luminal breast cancer defines pro-fibrotic and migratory cancer-associated fibroblasts. Oncogene 2021; 40:2651-2666. [PMID: 33692466 PMCID: PMC8049869 DOI: 10.1038/s41388-021-01719-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
HER3 is highly expressed in luminal breast cancer subtypes. Its activation by NRG1 promotes activation of AKT and ERK1/2, contributing to tumour progression and therapy resistance. HER3-targeting agents that block this activation, are currently under phase 1/2 clinical studies, and although they have shown favorable tolerability, their activity as a single agent has proven to be limited. Here we show that phosphorylation and activation of HER3 in luminal breast cancer cells occurs in a paracrine manner and is mediated by NRG1 expressed by cancer-associated fibroblasts (CAFs). Moreover, we uncover a HER3-independent NRG1 signaling in CAFs that results in the induction of a strong migratory and pro-fibrotic phenotype, describing a subtype of CAFs with elevated expression of NRG1 and an associated transcriptomic profile that determines their functional properties. Finally, we identified Hyaluronan Synthase 2 (HAS2), a targetable molecule strongly correlated with NRG1, as an attractive player supporting NRG1 signaling in CAFs.
Collapse
Affiliation(s)
- Mireia Berdiel-Acer
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Maia
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhivka Hristova
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Simone Borgoni
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Martina Vetter
- grid.9018.00000 0001 0679 2801Department of Gynecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Burmester
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinna Becki
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Birgitta Michels
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalid Abnaof
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Binenbaum
- grid.7497.d0000 0004 0492 0584Division of Medical Informatics for Translational Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.11047.330000 0004 0576 5395Department of Biology, University of Patras, Patras, Greece ,grid.22459.380000 0001 2232 6894Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Daniel Bethmann
- grid.9018.00000 0001 0679 2801Institute of Pathology Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Aristotelis Chatziioannou
- grid.22459.380000 0001 2232 6894Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece ,e-NIOS PC, Kallithea-Athens, Greece
| | - Max Hasmann
- grid.424277.0Roche Diagnostics, Penzberg, Germany
| | - Christoph Thomssen
- grid.9018.00000 0001 0679 2801Department of Gynecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Elisa Espinet
- grid.7497.d0000 0004 0492 0584Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.482664.aHeidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Stefan Wiemann
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Macrophage migration inhibitory factor inhibition as a novel therapeutic approach against triple-negative breast cancer. Cell Death Dis 2020; 11:774. [PMID: 32943608 PMCID: PMC7498597 DOI: 10.1038/s41419-020-02992-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC), defined as loss of estrogen, progesterone, and Her2 receptors, is a subtype of highly aggressive breast cancer with worse prognosis and poor survival rate. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine aberrantly expressed in many solid tumors and known to promote tumor progression and metastasis. However, its role in TNBC progression and metastasis is unexplored. Here we have shown that in TNBC patients, MIF expression was significantly enriched in the tumor compared to adjacent normal tissue. Using publically available patient datasets, we showed that MIF overexpression correlates with worse survival in TNBC compared to other hormonal status. Orthotopic implantation of TNBC cells into MIF knockout mice showed reduced tumor growth compared to wild-type mice. In addition, we have shown that MIF downregulation inhibits TNBC growth and progression in a syngeneic mouse model. We further showed that CPSI-1306, a small-molecule MIF inhibitor, inhibits the growth of TNBC cells in vitro. Mechanistic studies revealed that CPSI-1306 induces intrinsic apoptosis by alteration in mitochondrial membrane potential, cytochrome c (Cyt c) release, and activation of different caspases. In addition, CPSI-1306 inhibits the activation of cell survival and proliferation-related molecules. CPSI-1306 treatment also reduced the tumor growth and metastasis in orthotopic mouse models of mammary carcinoma. CPSI-1306 treatment of tumor-bearing mice significantly inhibited TNBC growth and pulmonary metastasis in a dose-dependent manner. Histological analysis of xenograft tumors revealed a higher number of apoptotic cells in CPSI-1306-treated tumors compared to vehicle controls. Our studies, for the first time, show that MIF overexpression in TNBC enhances growth and metastasis. Taken together, our results indicate that using small molecular weight MIF inhibitors could be a promising strategy to inhibit TNBC progression and metastasis.
Collapse
|
37
|
Gooding AJ, Schiemann WP. Epithelial-Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Mol Cancer Res 2020; 18:1257-1270. [PMID: 32503922 DOI: 10.1158/1541-7786.mcr-20-0067] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs play essential functions in normal morphogenesis and organogenesis, including that occurring during mammary gland development and glandular regeneration. Historically, EMT programs were believed to reflect a loss of epithelial gene expression signatures and morphologies that give way to those associated with mesenchymal cells and their enhanced migratory and invasive behaviors. However, accumulating evidence now paints EMT programs as representing a spectrum of phenotypic behaviors that also serve to enhance cell survival, immune tolerance, and perhaps even metastatic dormancy. Equally important, the activation of EMT programs in transformed mammary epithelial cells not only enhances their acquisition of invasive and metastatic behaviors, but also expands their generation of chemoresistant breast cancer stem cells (BCSC). Importantly, the net effect of these events results in the appearance of recurrent metastatic lesions that remain refractory to the armamentarium of chemotherapies and targeted therapeutic agents deployed against advanced stage breast cancers. Here we review the molecular and cellular mechanisms that contribute to the pathophysiology of EMT programs in human breast cancers and how these events impact their "stemness" and acquisition of chemoresistant phenotypes.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
38
|
Zhang Y, Wang M, Liu W, Peng X. Optical Imaging of Triple-Negative Breast Cancer Cells in Xenograft Athymic Mice Using an ICAM-1-Targeting Small-Molecule Probe. Mol Imaging Biol 2020; 21:835-841. [PMID: 30623283 DOI: 10.1007/s11307-018-01312-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The development of early, accurate diagnostic strategies for triple-negative breast cancer (TNBC) remains a significant challenge. Intercellular adhesion molecule-1 (ICAM-1) overexpressed in human TNBC cells is a potential molecular target and biomarker for diagnosis. In this study, small-molecule probe (denoted as γ3-Cy5.5) constructed with a short 17-mer linear peptide (γ3) and near-infrared fluorescence (NIRF) dye cyanine 5.5 (Cy5.5) was used to detect the expression of ICAM-1 in vitro and in vivo, and to diagnose TNBC via NIRF imaging. PROCEDURES Western blotting and flow cytometric analysis were used for the detection of ICAM-1 expression in MDA-MB-231 and MCF-7 cells. The cytotoxicity of the small-molecule probe γ3-Cy5.5 was detected using the CCK8 assay. The in vitro targeting of the small-molecule probe γ3-Cy5.5 was verified via flow cytometry and a laser scanning confocal microscope. Finally, the targeting of small-molecule probe in vivo and ex vivo was observed by NIRF imaging. RESULTS Western blotting and flow cytometry demonstrate that ICAM-1 was highly expressed in the MDA-MB-231 TNBC cell line. Laser confocal microscopy and flow cytometry results show that TNBC cells have an increased cellular uptake of γ3-Cy5.5 compared to the control probe γ3S-Cy5.5. With in vivo NIRF, a significantly higher Cy5.5 signal appeared in the tumors of mice administered γ3-Cy5.5 than those treated with γ3S-Cy5.5. The target-to-background ratio observed on the NIRF images was significantly higher in the γ3-Cy5.5 group (10.2, 13.6) compared with the γ3S-Cy5.5 group (4.4, 4.0) at 1 and 2 h, respectively. CONCLUSIONS This is the first report of the use of ICAM-1-specific small-molecule probe for in vivo NIRF optical imaging of TNBC. This method provides a noninvasive and specific strategy for the early diagnosis of TNBC.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.,Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Mengru Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Wanhua Liu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Xin Peng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| |
Collapse
|
39
|
Cantile M, Di Bonito M, Cerrone M, Collina F, De Laurentiis M, Botti G. Long Non-Coding RNA HOTAIR in Breast Cancer Therapy. Cancers (Basel) 2020; 12:cancers12051197. [PMID: 32397382 PMCID: PMC7281113 DOI: 10.3390/cancers12051197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type among women, and morbidity and mortality rates are still very high. Despite new innovative therapeutic approaches for all BC molecular subtypes, the discovery of new molecular biomarkers involved in tumor progression has been fundamental for the implementation of personalized treatment strategies and improvement of patient management. Many experimental studies indicate that long non-coding RNAs (lncRNAs) are strongly involved in BC initiation, metastatic progression, and drug resistance. In particular, aberrant expression of HOX transcript antisense intergenic RNA (HOTAIR) lncRNA plays an important role in BC contributing to its progression and represents a predictor of BC metastasis. For its proven prognostic value, HOTAIR could represent a potential therapeutic target in BC. In the present review, we summarize the role of HOTAIR in cancer progression and drug resistance, in particular in BC, and we illustrate the main approaches for silencing it.
Collapse
Affiliation(s)
- Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy; (M.D.B.); (M.C.); (F.C.)
- Correspondence: ; Tel.: +39-0815903471; Fax: +39-0815903718
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy; (M.D.B.); (M.C.); (F.C.)
| | - Margherita Cerrone
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy; (M.D.B.); (M.C.); (F.C.)
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy; (M.D.B.); (M.C.); (F.C.)
| | | | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy;
| |
Collapse
|
40
|
Weihua Z, Guorong Z, Xiaolong C, Weizhan L. MiR-33a functions as a tumor suppressor in triple-negative breast cancer by targeting EZH2. Cancer Cell Int 2020; 20:85. [PMID: 32206036 PMCID: PMC7079399 DOI: 10.1186/s12935-020-1160-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background Increasing reports have confirmed that microRNAs play an important role in breast cancer progression, particularly in triple-negative breast cancer (TNBC). The aim of our study was to investigate the role of miR-33a in TNBC progression. Methods PCR assays were performed to detect miR-33a and EZH2 expression in TNBC tissues, adjacent nontumor tissues and cell lines. Western blot, CCK8, Transwell, cell colony formation and EdU cell proliferation, cell cycle analysis and luciferase reporter assays were used to determine the regulation of miR-33a/EZH2 in TNBC progression. Results MiR-33a was significantly downregulated in TNBC tissues and cell lines. MiR-33a overexpression in TNBC cells significantly inhibited cell growth and mobility and induced G1 cell cycle arrest. The luciferase reporter assay revealed that EZH2 is a direct target of miR-33a and that it was upregulated in TNBC tissues and cell lines. There was a negative correlation between miR-33a and EZH2 expression in TNBC tissues. EZH2 knockdown exerted similar inhibitory effects, while ectopic expression of EZH2 showed suppressive effects on malignant behaviors induced by miR-33a overexpression in TNBC cells. Conclusions These findings revealed that miR-33a is a tumor-suppressive miRNA in TNBC and can inhibit proliferation and mobility and induce G1 cell cycle arrest by directly targeting EZH2.
Collapse
Affiliation(s)
- Zeng Weihua
- Department of Oncology, Panyu District Cancer Institute, Guangzhou Panyu Central Hospital, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511486 People's Republic of China
| | - Zou Guorong
- Department of Oncology, Panyu District Cancer Institute, Guangzhou Panyu Central Hospital, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511486 People's Republic of China
| | - Cao Xiaolong
- Department of Oncology, Panyu District Cancer Institute, Guangzhou Panyu Central Hospital, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511486 People's Republic of China
| | - Li Weizhan
- Department of Oncology, Panyu District Cancer Institute, Guangzhou Panyu Central Hospital, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511486 People's Republic of China
| |
Collapse
|
41
|
Turner TH, Alzubi MA, Harrell JC. Identification of synergistic drug combinations using breast cancer patient-derived xenografts. Sci Rep 2020; 10:1493. [PMID: 32001757 PMCID: PMC6992640 DOI: 10.1038/s41598-020-58438-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Compared with other breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with relatively poor outcomes due to its metastatic propensity, frequent failure to respond to chemotherapy, and lack of alternative, targeted treatment options, despite decades of major research efforts. Our studies sought to identify promising targeted therapeutic candidates for TNBC through in vitro screening of 1,363 drugs in patient-derived xenograft (PDX) models. Using this approach, we generated a dataset that can be used to assess and compare responses of various breast cancer PDXs to many different drugs. Through a series of further drug screening assays and two-drug combination testing, we identified that the combination of afatinib (epidermal growth factor receptor (EGFR) inhibitor) and YM155 (inhibitor of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5; survivin) expression) is synergistically cytotoxic across multiple models of basal-like TNBC and reduces PDX mammary tumor growth in vivo. We found that YM155 reduces EGFR expression in TNBC cells, shedding light on its potential mechanism of synergism with afatinib. Both EGFR and BIRC5 are highly expressed in basal-like PDXs, cell lines, and patients, and high expression of both genes reduces metastasis-free survival, suggesting that co-targeting of these proteins holds promise for potential clinical success in TNBC.
Collapse
Affiliation(s)
- Tia H Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA. .,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA. .,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
42
|
Bosma SC, Hoogstraat M, van der Leij F, de Maaker M, Wesseling J, Lips E, Loo CE, Rutgers EJ, Elkhuizen PH, Bartelink H, van de Vijver MJ. Response to Preoperative Radiation Therapy in Relation to Gene Expression Patterns in Breast Cancer Patients. Int J Radiat Oncol Biol Phys 2020; 106:174-181. [DOI: 10.1016/j.ijrobp.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 02/03/2023]
|
43
|
Yang Q, Zhao J, Zhang W, Chen D, Wang Y. Aberrant alternative splicing in breast cancer. J Mol Cell Biol 2019; 11:920-929. [PMID: 31065692 PMCID: PMC6884705 DOI: 10.1093/jmcb/mjz033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing is critical for human gene expression regulation, which plays a determined role in expanding the diversity of functional proteins. Importantly, alternative splicing is a hallmark of cancer and a potential target for cancer therapeutics. Based on the statistical data, breast cancer is one of the top leading causes of cancer-related deaths in women worldwide. Strikingly, alternative splicing is closely associated with breast cancer development. Here, we seek to provide a general review of the relationship between alternative splicing and breast cancer. We introduce the process of alternative splicing and its regulatory role in cancers. In addition, we highlight the functions of aberrant alternative splicing and mutations of splicing factors in breast cancer progression. Moreover, we discuss the role of alternative splicing in cancer drug resistance and the potential of being targets for cancer therapeutics.
Collapse
Affiliation(s)
- Quan Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
44
|
Gong C, Zou J, Zhang M, Zhang J, Xu S, Zhu S, Yang M, Li D, Wang Y, Shi J, Li Y. Upregulation of MGP by HOXC8 promotes the proliferation, migration, and EMT processes of triple-negative breast cancer. Mol Carcinog 2019; 58:1863-1875. [PMID: 31264274 DOI: 10.1002/mc.23079] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype which accounts for 15%-20% of all breast cancer cases. The management of TNBC has remained a challenge due to its lack of targeted therapy. Previously, we reported that homeobox C8 (HOXC8) was involved in metastasis and migration of breast cancer cells. By chromatin immunoprecipitation and luciferase assays, we found that HOXC8 functioned as a transcription factor to activate the transcription of matrix Gla protein (MGP) gene, leading to an increase in the proliferation, anchorage-independent growth, and migration of TNBC cells. We further demonstrated that MGP expression promoted the epithelial-mesenchymal transition (EMT) process of TNBC cells, but not the other subtypes of breast cancer, suggesting that MGP induced EMT to promote proliferation and migration of TNBC cells. Moreover, we found that MGP was upregulated in clinical breast specimens compared to normal breast tissues and high MGP expression was statistically associated with poor, relapse-free survival for TNBC patients, indicating that MGP is probably a novel biomarker or therapeutic target for TNBC patients. Together, our results showed that the HOXC8-MGP axis played an important role in the tumorigenesis of TNBC and might be a promising therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Chen Gong
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Jin Zou
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Mingsheng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Shanshan Xu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Siqi Zhu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Mengqi Yang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Dongjia Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Yun Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Jialu Shi
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| | - Yong Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui
| |
Collapse
|
45
|
Amorim M, Lobo J, Fontes-Sousa M, Estevão-Pereira H, Salta S, Lopes P, Coimbra N, Antunes L, Palma de Sousa S, Henrique R, Jerónimo C. Predictive and Prognostic Value of Selected MicroRNAs in Luminal Breast Cancer. Front Genet 2019; 10:815. [PMID: 31572437 PMCID: PMC6749838 DOI: 10.3389/fgene.2019.00815] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BrC) is the most frequent malignancy and the leading cause of cancer death among women worldwide. Approximately 70% of BrC are classified as luminal-like subtype, expressing the estrogen receptor. One of the most common and effective adjuvant therapies for this BrC subtype is endocrine therapy. However, its effectiveness is limited, with relapse occurring in up to 40% of patients. Because microRNAs have been associated with several mechanisms underlying endocrine resistance and sensitivity, they may serve as predictive and/or prognostic biomarkers in this setting. Hence, the main goal of this study was to investigate whether miRNAs deregulated in endocrine-resistant BrC may be clinically relevant as prognostic and predictive biomarkers in patients treated with adjuvant endocrine therapy. A global expression assay allowed for the identification of microRNAs differentially expressed between luminal BrC patients with or without recurrence after endocrine adjuvant therapy. Then, six microRNAs were chosen for validation using quantitative reverse transcription polymerase chain reaction in a larger set of tissue samples. Thus, miR-30c-5p, miR-30b-5p, miR-182-5p, and miR-200b-3p were found to be independent predictors of clinical benefit from endocrine therapy. Moreover, miR-182-5p and miR-200b-3p displayed independent prognostic value for disease recurrence in luminal BrC patients after endocrine therapy. Our results indicate that selected miRNAs’ panels may constitute clinically useful ancillary tools for management of luminal BrC patients. Nevertheless, additional validation, ideally in a multicentric setting, is required to confirm our findings.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Mário Fontes-Sousa
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Medical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Helena Estevão-Pereira
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Paula Lopes
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Nuno Coimbra
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Susana Palma de Sousa
- Department of Medical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
46
|
Sarmiento-Salinas FL, Delgado-Magallón A, Montes-Alvarado JB, Ramírez-Ramírez D, Flores-Alonso JC, Cortés-Hernández P, Reyes-Leyva J, Herrera-Camacho I, Anaya-Ruiz M, Pelayo R, Millán-Pérez-Peña L, Maycotte P. Breast Cancer Subtypes Present a Differential Production of Reactive Oxygen Species (ROS) and Susceptibility to Antioxidant Treatment. Front Oncol 2019; 9:480. [PMID: 31231612 PMCID: PMC6568240 DOI: 10.3389/fonc.2019.00480] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Due to their crucial role in cell metabolism and homeostasis, alterations in mitochondrial biology and function have been related to the progression of diverse diseases including cancer. One of the consequences associated to mitochondrial dysfunction is the production of reactive oxygen species (ROS). ROS are known to have a controversial role during cancer initiation and progression and although several studies have tried to manipulate intracellular ROS levels using antioxidants or pro-oxidation conditions, it is not yet clear how to target oxidation for cancer therapy. In this study, we found differences in mitochondrial morphology in breast cancer cells when compared to a non-tumorigenic cell line and differences in mitochondrial function among breast cancer subtypes when exploring gene-expression data from the TCGA tumor dataset. Interestingly, we found increased ROS levels in triple negative breast cancer (TNBC) cell lines and a dependency on ROS for survival since antioxidant treatment induced cell death in TNBC cells but not in an estrogen receptor positive (ER+) cell line. Moreover, we identified the mitochondria as the main source of ROS in TNBC cell lines. Our results indicate a potential use for ROS as a target for therapy in the TNBC subtype which currently has the worst prognosis among all breast cancers and remains as the only breast cancer subtype which lacks a targeted therapy.
Collapse
Affiliation(s)
- Fabiola Lilí Sarmiento-Salinas
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico.,Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alam Delgado-Magallón
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico.,Departamento de Bioquímica, Instituto Tecnológico de Acapulco, Acapulco de Juárez, Mexico
| | | | - Dalia Ramírez-Ramírez
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | | | - Paulina Cortés-Hernández
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Maricruz Anaya-Ruiz
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | | | - Paola Maycotte
- CONACYT-Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
47
|
Gao YC, Zhou XH, Zhang W. An Ensemble Strategy to Predict Prognosis in Ovarian Cancer Based on Gene Modules. Front Genet 2019; 10:366. [PMID: 31068972 PMCID: PMC6491874 DOI: 10.3389/fgene.2019.00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Due to the high heterogeneity and complexity of cancer, it is still a challenge to predict the prognosis of cancer patients. In this work, we used a clustering algorithm to divide patients into different subtypes in order to reduce the heterogeneity of the cancer patients in each subtype. Based on the hypothesis that the gene co-expression network may reveal relationships among genes, some communities in the network could influence the prognosis of cancer patients and all the prognosis-related communities could fully reveal the prognosis of cancer patients. To predict the prognosis for cancer patients in each subtype, we adopted an ensemble classifier based on the gene co-expression network of the corresponding subtype. Using the gene expression data of ovarian cancer patients in TCGA (The Cancer Genome Atlas), three subtypes were identified. Survival analysis showed that patients in different subtypes had different survival risks. Three ensemble classifiers were constructed for each subtype. Leave-one-out and independent validation showed that our method outperformed control and literature methods. Furthermore, the function annotation of the communities in each subtype showed that some communities were cancer-related. Finally, we found that the current drug targets can partially support our method.
Collapse
Affiliation(s)
| | - Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Wen Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Kala C, Athar M, Kala S, Khan L, Jauhari RK, Satsangi A. Clinical and Cyto-Morphological Characterization of Triple Negative Breast Cancer. J Cytol 2019; 36:84-88. [PMID: 30992642 PMCID: PMC6425775 DOI: 10.4103/joc.joc_47_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: Triple negative breast cancer (TNBC), despite being the uncommon subtype, contributes a major portion to mortality and associated with poor prognosis. The purpose of this study was to evaluate the cytological criteria for the diagnosis of TNBC through fine-needle aspiration cytology (FNAC). Material and Method: Clinical, cytological, histological, and immunohistochemical (IHC) data of 256 patients were evaluated, and patient were classified as TNBC and non-TNBC phenotype by IHC. All cytological specimens were reviewed for 12 criteria: cellularity, tubule/gland formation, syncytial clusters, large bare nuclei, nuclear atypia, chromatin pattern, cell borders, nucleolus, cytoplasm, lymphocytic infiltrate, calcification, and necrosis. The Fischer's exact test was used to show test association. Result: Out of 256 patients, 82 patients were TNBC, and 174 patients were non-TNBC. TNBC phenotype showed statistically significant association to cellularity, tubule/gland formation, syncytial cluster formation, bare nuclei, nuclear atypia, cell borders, lymphocyte infiltration, and necrosis. Conclusion: FNAC can be helpful in making diagnosis of TNBC and along with ER, PR, HER2 characterization, helpful in planning treatment strategy, saving time, manpower, and resources in the patient management.
Collapse
Affiliation(s)
- Chayanika Kala
- Department of Pathology, LPS Institute of Cardiology, Kanpur, Uttar Pradesh, India
| | - Mohd Athar
- Department of Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Sanjay Kala
- Department of Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Lubna Khan
- Department of Pathology, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Ramendra K Jauhari
- Department of Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Amitabh Satsangi
- Department of Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| |
Collapse
|
49
|
Association between mammographic density and tumor marker-defined breast cancer subtypes: a case-control study. Eur J Cancer Prev 2019; 27:239-247. [PMID: 28957821 DOI: 10.1097/cej.0000000000000353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High mammographic density (MD) is the most important risk factor for breast cancer. This study aimed to clarify the relationship between MD and breast cancer subtypes defined by tumor markers. We enrolled 642 women with breast cancer (69% premenopausal) and 1241 controls matched for age and menopausal status. Absolute mammographic dense area (ADA), percent mammographic dense area (PDA), and nondense area were assessed using a computer-assisted thresholding technique. We classified breast cancer cases into four subtypes using information on tumor marker expression such as estrogen receptor (ER), progesterone receptor (PR), and Cerb2 receptor (HER2); luminal A (ER+ and/or PR+, HER2-), luminal B (ER+ and/or PR+, HER2+), HER2-overexpressing (ER-, PR-, and HER2+), and triple-negative (ER-, PR-, and HER2-). Analysis was carried out using a conditional logistic regression model with adjustment for covariates. ADA and PDA were associated positively with the risk of breast cancer overall. Both ADA and PDA tended to have a positive association with breast cancer with any ER, any PR, or HER2-, but not for HER2+. The risk of luminal A breast cancer increased significantly 1.11 times (95% confidence interval: 1.01-1.23) for ADA and 1.12 times (95% confidence interval: 1.01-1.24) for PDA, estimated per 1 SD of the age and BMI-adjusted MD. However, the risk of breast cancer with luminal B, HER2-overexpressing, and triple-negative subtypes did not differ (P>0.10). Differential associations between MD measures and breast cancer by tumor marker status or tumor marker-defined subtypes were not detected. These findings suggested that the association between MD and breast cancer subtype may be because of other causal pathways.
Collapse
|
50
|
ER +/HER2 + Breast Cancer Has Different Metastatic Patterns and Better Survival Than ER -/HER2 + Breast Cancer. Clin Breast Cancer 2019; 19:236-245. [PMID: 30846407 DOI: 10.1016/j.clbc.2019.02.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is generally treated with HER2-targeted therapy combined with chemotherapy. Patients with HER2+ and estrogen receptor-positive (ER+) cancer are additionally treated with long-term hormone therapy. This study examined the metastatic pattern and prognosis of both ER+/HER2+ and ER-/HER2+ breast cancer. PATIENTS AND METHODS A total of 54,147 patients with HER2+ breast cancer from the National Cancer Data Base (NCDB, 2010-2013) and 31,946 patients with HER2+ breast cancer from the Surveillance, Epidemiology, and End Results Program (SEER, 2010-2014) were examined. Sites of metastasis and overall survival (OS) were examined in the NCDB, while OS and breast cancer-specific survival were examined in the SEER database. RESULTS Compared to ER-/HER2+ breast cancer, ER+/HER2+ breast cancer was more likely to metastasize to bone but less likely to brain, liver, and lung and less likely to result in multiple metastases. In univariate analysis based on the NCDB, patients with ER-/HER2+ breast cancer had worse OS in all metastasis subsets, including patients who received HER2-targeted therapy. This poor survival for ER-/HER2+ persisted in patients with metastasis to bone and lung, and multiple metastases. In multivariate analysis adjusting for age, tumor grade, surgery, chemotherapy, HER2-targeted therapy, and hormone therapy, ER-/HER2+ patients with bone metastasis still had worse OS. In the SEER, ER-/HER2+ patients had both worse OS and breast cancer-specific survival in univariate analysis. CONCLUSION This large study showed patients with ER+/HER2+ and ER-/HER2+ breast cancers had different metastatic patterns. Patients with ER-/HER2+ breast cancer may require more aggressive treatment.
Collapse
|