1
|
Kang B, Lee SJ, Seol KH, Jeong YY, Choi JH, Choi BH, Ryu JM, Choi YS. Trabectedin Induces Synthetic Lethality via the p53-Dependent Apoptotic Pathway in Ovarian Cancer Cells Without BRCA Mutations When Used in Combination with Niraparib. Int J Mol Sci 2025; 26:2921. [PMID: 40243501 PMCID: PMC11989182 DOI: 10.3390/ijms26072921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated whether combining niraparib and trabectedin in BRCA-proficient epithelial ovarian cancer induces deficiencies in ssDNA break repair and dsDNA homologous recombination, leading to synthetic lethality. A2780 and SKOV3 ovarian cancer cell lines were treated with niraparib and trabectedin. Cell viability was assessed using CCK-8 assays, while RT-qPCR and Western blot analyzed the expression of DNA repair and apoptosis-related genes. Apoptosis was evaluated via Annexin V/PI assays. The combination therapy exhibited a synergistic effect on A2780 cells but not on SKOV3 cells. Treatment reduced BRCA1, BRCA2, RAD51, PARP1, and PARP2 expression, indicating impaired DNA repair. γ-H2AX levels increased, suggesting DNA damage. The therapy also upregulated p53, PUMA, NOXA, BAX, BAK, and p21, promoting p53-mediated apoptosis and cell cycle arrest. Apoptosis induction was confirmed via Annexin V/PI assays. Silencing p53 with siRNA abolished all synergistic effects in A2780 cells. Niraparib and trabectedin combination therapy impairs DNA repair in BRCA-proficient ovarian cancer, leading to synthetic lethality through p53-dependent apoptosis.
Collapse
Affiliation(s)
- Bongkyun Kang
- Department of Chemistry, College of Natural Science, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Sun-Jae Lee
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Ki Ho Seol
- Department of Radiation Oncology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Yoon Young Jeong
- Department of Obstetrics and Gynecology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jung Min Ryu
- Department of Obstetrics and Gynecology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Youn Seok Choi
- Department of Obstetrics and Gynecology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
2
|
Sabe H, Takenaka S, Kakunaga S, Tamiya H, Wakamatsu T, Nakai S, Takami H, Yamada Y, Okada S. Prognostic nutrition index as a predictive factor for overall survival in trabectedin-treated advanced soft tissue sarcoma. J Orthop Sci 2025; 30:171-179. [PMID: 38467532 DOI: 10.1016/j.jos.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Trabectedin binds covalently to the DNA minor groove and causes DNA to bend toward the main groove, then trabectedin regulates the transcription of the involved genes in cell proliferation or acts on the mononuclear phagocyte system in tumors, which contributes to its antitumor effects. Several clinical trials confirmed the efficacy of trabectedin for patients with advanced soft tissue sarcoma (STS) although clinically useful biomarkers remained unidentified. This study aimed to identify prognostic factors of trabectedin treatment, especially focusing on the systemic inflammatory, immune response, and nutritional status. METHODS This study included 44 patients with advanced STS treated with trabectedin from January 2018 to August 2022. We evaluated the associations of clinical factors that influence the efficacy of trabectedin treatment with progression-free survival (PFS) and overall survival (OS), focusing on systemic inflammatory, immune response, and nutritional status represented by the absolute lymphocyte count (ALC), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic inflammation response index (SIRI), prognostic nutrition index (PNI), and C-reactive protein (CRP) using the Kaplan-Meier method and the log-rank test. RESULTS ALC, LMR, PNI, NLR, PLR, and SIRI demonstrated no association with PFS. Patients with CRP of ≥0.3 had a significantly shorter PFS than those with CRP of <0.3 (median PFS: 863 vs. 105 days, P = 0.045). PNI of ≥44 (median: 757 days vs. 232 days, P = 0.021) and CRP of <0.3 (median: 877 days vs. 297 days, P = 0.043) were significantly good prognostic factors in terms of OS. CONCLUSIONS The study results indicate pretreatment PNI and CRP levels as prognostic factors for trabectedin treatment in advanced STS.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan.
| | - Shigeki Kakunaga
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hironari Tamiya
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Toru Wakamatsu
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Sho Nakai
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruna Takami
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Yamada
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
3
|
Occhipinti M, Brambilla M, Di Liello R, Ambrosini P, Lobianco L, Leporati R, Salvarezza M, Vitiello F, Marchesi S, Manglaviti S, Beninato T, Mazzeo L, Proto C, Prelaj A, Ferrara R, Della Corte CM, Lo Russo G, de Braud F, Ganzinelli M, Viscardi G. Unleashing precision: A review of targeted approaches in pleural mesothelioma. Crit Rev Oncol Hematol 2024; 203:104481. [PMID: 39159705 DOI: 10.1016/j.critrevonc.2024.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
This review delves into the intricate landscape of pleural mesothelioma (PM), emphasizing the need for nuanced therapeutic strategies. While platinum-based chemotherapy remains a cornerstone, the advent of immune checkpoint inhibitors (ICIs), notably through the Checkmate 743 trial, has reshaped treatment paradigms. Challenges persist due to patient heterogeneity and a lack of specific biomarkers. Targeting genotypic and phenotypic alterations emerges as a promising avenue, demanding precision oncology in this rare disease. CDKN2A loss, prevalent in PM, may respond to CDK4/6 inhibitors. Defects in MMR and HR suggest tailored approaches with ICI or PARP inhibitors, respectively. Ongoing trials explore novel inhibitors and promising targets like mesothelin. Implementing these strategies requires overcoming challenges in patient selection, combination therapies, biomarker identification, and cost considerations. Collaboration is crucial for transforming these insights into impactful clinical interventions, heralding the era of personalized and precision medicine for PM.
Collapse
Affiliation(s)
- Mario Occhipinti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Brambilla
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | | | - Paolo Ambrosini
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Lorenzo Lobianco
- Medical Oncology, Precision Medicine Department, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rita Leporati
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Maria Salvarezza
- Medical Oncology, Precision Medicine Department, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabiana Vitiello
- Medical Oncology Unit, Ospedale Monaldi, AORN Ospedali dei Colli, Naples, Italy
| | - Silvia Marchesi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sara Manglaviti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Teresa Beninato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Laura Mazzeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudia Proto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Arsela Prelaj
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, Italy
| | - Roberto Ferrara
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Giuseppe Lo Russo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Monica Ganzinelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giuseppe Viscardi
- Medical Oncology Unit, Ospedale Monaldi, AORN Ospedali dei Colli, Naples, Italy
| |
Collapse
|
4
|
Lorusso D, Raspagliesi F, Ronzulli D, Valabrega G, Colombo N, Pisano C, Cassani C, Tognon G, Tamberi S, Mangili G, Mammoliti S, De Giorgi U, Greco F, Mosconi AM, Breda E, Artioli G, Andreetta C, Casanova C, Ceccherini R, Frassoldati A, Salutari V, Giolitto S, Scambia G. Single-Agent Trabectedin Versus Physician's Choice Chemotherapy in Patients With Recurrent Ovarian Cancer With BRCA-Mutated and/or BRCAness Phenotype: A Randomized Phase III Trial. J Clin Oncol 2024; 42:1488-1498. [PMID: 38315944 DOI: 10.1200/jco.23.01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/29/2023] [Accepted: 11/03/2023] [Indexed: 02/07/2024] Open
Abstract
PURPOSE Literature evidence suggests that trabectedin monotherapy is effective in patients with recurrent ovarian cancer (OC) presenting BRCA mutation and/or BRCAness phenotype. METHODS A prospective, open-label, randomized phase III MITO-23 trial evaluated the activity and safety of trabectedin 1.3 mg/m2 given once every 3 weeks (arm A) in BRCA 1/2 mutation carriers or patients with BRCAness phenotype (ie, patients who responded to ≥two previous platinum-based treatments) with recurrent OC, primary peritoneal carcinoma, or fallopian tube cancer in comparison with physician's choice chemotherapy in the control arm (arm B; pegylated liposomal doxorubicin, topotecan, gemcitabine, once-weekly paclitaxel, or carboplatin). The primary end point was overall survival (OS) evaluated in the intention-to-treat population. RESULTS Overall, 244 patients from 21 MITO centers were randomly assigned (arm A = 122/arm B = 122). More than 70% of patients received ≥three previous chemotherapy lines and 35.7% had received a poly (ADP-ribose) polymerase inhibitor (PARPi) before enrollment. Median OS was not significantly different between the arms: arm A: 15.8 versus arm B: 17.9 months (P = .304). Median progression-free survival was 4.9 months in arm A versus 4.4 months in arm B (P = .897). Among 208 patients evaluable for efficacy, the objective response rate was 17.1% in arm A and 21.4% in arm B, with comparable median duration of response (5.62 v 5.66 months, respectively). No superior effect was observed for trabectedin in the prespecified subgroup analyses according to BRCA mutational status, chemotherapy type, and pretreatment with a PARPi and/or platinum-free interval. Trabectedin showed a higher frequency of grade ≥3 adverse events (AEs), serious AEs, and serious adverse drug reactions compared with control chemotherapy. CONCLUSION Trabectedin did not improve median OS and showed a worse safety profile in comparison with physician's choice control chemotherapy.
Collapse
Affiliation(s)
- Domenica Lorusso
- Fondazione Policlinico Universitario A. Gemelli IRCCS and Catholic University of Sacred Heart, Rome, Italy
| | | | | | - Giorgio Valabrega
- Department of Oncology, Oncology Unit, University of Turin, Ordine Mauriziano Hospital, Turin, Italy
| | - Nicoletta Colombo
- European Institute of Oncology IRCCS and Università degli Studi di Milano Bicocca, Milan, Italy
| | - Carmela Pisano
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Naples, Italy
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Unit of Obstetrics and Gynecology, University of Pavia, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Germana Tognon
- ASST Spedali Civili di Brescia, Università di Brescia, Brescia, Italy
| | | | | | | | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Filippo Greco
- Oncology Unit, Mater Salutis Hospital, Ulss 9 Veneto Region, Legnago, Italy
| | | | | | | | - Claudia Andreetta
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Claudia Casanova
- Department of Oncology, Ospedale Civile Santa Maria delle Croci, Ravenna, Italy
| | - Rita Ceccherini
- Department of Oncology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | | | - Vanda Salutari
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Serena Giolitto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS and Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
5
|
Chiappa M, Guffanti F, Grasselli C, Panini N, Corbelli A, Fiordaliso F, Damia G. Different Patterns of Platinum Resistance in Ovarian Cancer Cells with Homologous Recombination Proficient and Deficient Background. Int J Mol Sci 2024; 25:3049. [PMID: 38474294 DOI: 10.3390/ijms25053049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Platinum compounds are very active in first-line treatments of ovarian carcinoma. In fact, high rates of complete remission are achieved, but most patients eventually relapse with resistant disease. Many mechanisms underlying the platinum-resistant phenotype have been reported. However, there are no data in the same isogenic cell system proficient and deficient in homologous recombination (HR) on platinum-acquired resistance that might unequivocally clarify the most important mechanism associated with resistance. We generated and characterized cisplatin (DDP)-resistant murine ovarian ID8 cell lines in a HR-deficient and -proficient background. Specific upregulation of the NER pathway in the HR-proficient and -resistant cells and partial restoration of HR in Brca1-/--resistant cells were found. Combinations of different inhibitors of the DNA damage response pathways with cisplatin were strongly active in both resistant and parental cells. The data from the ID8 isogenic system are in line with current experimental and clinical evidence and strongly suggest that platinum resistance develops in different ways depending on the cell DNA repair status (i.e., HR-proficient or HR-deficient), and the upregulation and/or restoration of repair pathways are major determinants of DDP resistance.
Collapse
Affiliation(s)
- Michela Chiappa
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Federica Guffanti
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Chiara Grasselli
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Nicolò Panini
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Alessandro Corbelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Giovanna Damia
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| |
Collapse
|
6
|
Lin C, Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Therapeutic targeting of DNA damage repair pathways guided by homologous recombination deficiency scoring in ovarian cancers. Fundam Clin Pharmacol 2023; 37:194-214. [PMID: 36130021 DOI: 10.1111/fcp.12834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
The susceptibility of cells to DNA damage and their DNA repair ability are crucial for cancer therapy. Homologous recombination is one of the major repairing mechanisms for DNA double-strand breaks. Approximately half of ovarian cancer (OvCa) cells harbor homologous recombination deficiency (HRD). Considering that HRD is a major hallmark of OvCas, scholars proposed HRD scoring to evaluate the HRD degree and guide the choice of therapeutic strategies for OvCas. In the last decade, synthetic lethal strategy by targeting poly (ADP-ribose) polymerase (PARP) in HR-deficient OvCas has attracted considerable attention in view of its favorable clinical effort. We therefore suggested that the uses of other DNA damage/repair-targeted drugs in HR-deficient OvCas might also offer better clinical outcome. Here, we reviewed the current small molecule compounds that targeted DNA damage/repair pathways and discussed the HRD scoring system to guide their clinical uses.
Collapse
Affiliation(s)
- Chunxiu Lin
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Loi M, Salvatore G, Aquilano M, Greto D, Talamonti C, Salvestrini V, Melica ME, Valzano M, Francolini G, Sottili M, Santini C, Becherini C, Campanacci DA, Mangoni M, Livi L. Radiosensitizing Effect of Trabectedin on Human Soft Tissue Sarcoma Cells. Int J Mol Sci 2022; 23:ijms232214305. [PMID: 36430780 PMCID: PMC9698158 DOI: 10.3390/ijms232214305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Trabectedin is used for the treatment of advanced soft tissue sarcomas (STSs). In this study, we evaluated if trabectedin could enhance the efficacy of irradiation (IR) by increasing the intrinsic cell radiosensitivity and modulating tumor micro-environment in fibrosarcoma (HS 93.T), leiomyosarcoma (HS5.T), liposarcoma (SW872), and rhabdomyosarcoma (RD) cell lines. A significant reduction in cell surviving fraction (SF) following trabectedin + IR compared to IR alone was observed in liposarcoma and leiomyosarcoma (enhancement ratio at 50%, ER50: 1.45 and 2.35, respectively), whereas an additive effect was shown in rhabdomyosarcoma and fibrosarcoma. Invasive cells' fraction significantly decreased following trabectedin ± IR compared to IR alone. Differences in cell cycle distribution were observed in leiomyosarcoma and rhabdomyosarcoma treated with trabectedin + IR. In all STS lines, trabectedin + IR resulted in a significantly higher number of γ-H2AX (histone H2AX) foci 30 min compared to the control, trabectedin, or IR alone. Expression of ATM, RAD50, Ang-2, VEGF, and PD-L1 was not significantly altered following trabectedin + IR. In conclusion, trabectedin radiosensitizes STS cells by affecting SF (particularly in leiomyosarcoma and liposarcoma), invasiveness, cell cycle distribution, and γ-H2AX foci formation. Conversely, no synergistic effect was observed on DNA damage repair, neoangiogenesis, and immune system.
Collapse
Affiliation(s)
- Mauro Loi
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Giulia Salvatore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Michele Aquilano
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Daniela Greto
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Cinzia Talamonti
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Viola Salvestrini
- CyberKnife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), 50139 Florence, Italy
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Marianna Valzano
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Giulio Francolini
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Mariangela Sottili
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Costanza Santini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Carlotta Becherini
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | | | - Monica Mangoni
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
- Correspondence: ; Tel.: +39-055-2751830
| | - Lorenzo Livi
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| |
Collapse
|
8
|
De Sanctis R, Jacobs F, Benvenuti C, Gaudio M, Franceschini R, Tancredi R, Pedrazzoli P, Santoro A, Zambelli A. From seaside to bedside: Current evidence and future perspectives in the treatment of breast cancer using marine compounds. Front Pharmacol 2022; 13:909566. [PMID: 36160422 PMCID: PMC9495264 DOI: 10.3389/fphar.2022.909566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
To date, only few marine natural compounds have been proved to be active in breast cancer (BC). The main marine-derived drugs that have been studied for the treatment of BC are tubulin-binding agents (eribulin and plocabulin), DNA-targeting agents (cytarabine and minor groove binders—trabectedin and lurbinectedin) and Antibody-Drug Conjugates (ADCs). Notably, eribulin is the only approved cytotoxic drug for the treatment of advanced BC (ABC), while cytarabine has a limited indication in case of leptomeningeal diffusion of the disease. Also plocabulin showed limited activity in ABC but further research is needed to define its ultimate potential role. The available clinical data for both trabectedin and lurbinectedin are of particular interest in the treatment of BRCA-mutated tumours and HR deficient disease, probably due to a possible immune-mediated mechanism of action. One of the most innovative therapeutic options for the treatment of BC, particularly in TNBC and HER2-positive BC, are ADCs. Some of the ADCs were developed using a specific marine-derived cytotoxic molecule as payload called auristatin. Among these, clinical data are available on ladiratuzumab vedotin and glembatumumab vedotin in TNBC, and on disitamab vedotin and ALT-P7 in HER2-positive patients. A deeper knowledge of the mechanism of action and of the potential predictive factors for response to marine-derived drugs is important for their rational and effective use, alone or in combination. In this narrative review, we discuss the role of marine-derived drugs for the treatment of BC, although most of them are not approved, and the opportunities that could arise from the potential treasure trove of the sea for novel BC therapeutics.
Collapse
Affiliation(s)
- Rita De Sanctis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Flavia Jacobs
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Chiara Benvenuti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mariangela Gaudio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raul Franceschini
- Department of Chemistry, Università degli studi di Milano Statale, Milan, Italy
| | - Richard Tancredi
- Medical Oncology Unit, ASST Melegnano Martesana, Ospedale A. Uboldo, Milan, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- *Correspondence: Alberto Zambelli,
| |
Collapse
|
9
|
Merlini A, Centomo ML, Ferrero G, Chiabotto G, Miglio U, Berrino E, Giordano G, Brusco S, Pisacane A, Maldi E, Sarotto I, Capozzi F, Lano C, Isella C, Crisafulli G, Aglietta M, Dei Tos AP, Sbaraglia M, Sangiolo D, D’Ambrosio L, Bardelli A, Pignochino Y, Grignani G. DNA damage response and repair genes in advanced bone and soft tissue sarcomas: An 8-gene signature as a candidate predictive biomarker of response to trabectedin and olaparib combination. Front Oncol 2022; 12:844250. [PMID: 36110934 PMCID: PMC9469659 DOI: 10.3389/fonc.2022.844250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Advanced and unresectable bone and soft tissue sarcomas (BSTS) still represent an unmet medical need. We demonstrated that the alkylating agent trabectedin and the PARP1-inhibitor olaparib display antitumor activity in BSTS preclinical models. Moreover, in a phase Ib clinical trial (NCT02398058), feasibility, tolerability and encouraging results have been observed and the treatment combination is currently under study in a phase II trial (NCT03838744). Methods Differential expression of genes involved in DNA Damage Response and Repair was evaluated by Nanostring® technology, extracting RNA from pre-treatment tumor samples of 16 responder (≥6-month progression free survival) and 16 non-responder patients. Data validation was performed by quantitative real-time PCR, RNA in situ hybridization, and immunohistochemistry. The correlation between the identified candidate genes and both progression-free survival and overall survival was investigated in the publicly available dataset “Sarcoma (TCGA, The Cancer Genome Atlas)”. Results Differential RNA expression analysis revealed an 8-gene signature (CDKN2A, PIK3R1, SLFN11, ATM, APEX2, BLM, XRCC2, MAD2L2) defining patients with better outcome upon trabectedin+olaparib treatment. In responder vs. non-responder patients, a significant differential expression of these genes was further confirmed by RNA in situ hybridization and by qRT-PCR and immunohistochemistry in selected experiments. Correlation between survival outcomes and genetic alterations in the identified genes was shown in the TCGA sarcoma dataset. Conclusions This work identified an 8-gene expression signature to improve prediction of response to trabectedin+olaparib combination in BSTS. The predictive role of these potential biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- Department of Computer Science, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | | | | | - Cristina Lano
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Claudio Isella
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
- Department of Medicine (DIMED), University of Padua School of Medicine, Padua, Italy
| | - Marta Sbaraglia
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, AOU San Luigi Gonzaga, Orbassano (TO), Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Ymera Pignochino
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- *Correspondence: Ymera Pignochino, ; Giovanni Grignani,
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- *Correspondence: Ymera Pignochino, ; Giovanni Grignani,
| |
Collapse
|
10
|
Subtil FSB, Gröbner C, Recknagel N, Parplys AC, Kohl S, Arenz A, Eberle F, Dikomey E, Engenhart-Cabillic R, Schötz U. Dual PI3K/mTOR Inhibitor NVP-BEZ235 Leads to a Synergistic Enhancement of Cisplatin and Radiation in Both HPV-Negative and -Positive HNSCC Cell Lines. Cancers (Basel) 2022; 14:cancers14133160. [PMID: 35804930 PMCID: PMC9265133 DOI: 10.3390/cancers14133160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Head and neck cancers (HNSCCs), especially in the advanced stages, are predominantly treated by radiochemotherapy, including cisplatin. The cure rates are clearly higher for HPV-positive HNSCCs when compared to HPV-negative HNSCCs. For both entities, this treatment is accompanied by serious adverse reactions, mainly due to cisplatin administration. We reported earlier that for both HPV-positive and negative HNSCC cells, the effect of radiotherapy was strongly enhanced when pretreated using the dual PI3K/mTOR inhibitor NVP-BEZ235 (BEZ235). The current study shows that for HPV-positive cells, BEZ235 will strongly enhance the effect of cisplatin alone. More important, preincubation with BEZ235 was found to alter the purely additive effect normally seen when cisplatin is combined with radiation into a strong synergistic enhancement. This tri-modal combination might allow for the enhancement of the effect of radiochemotherapy, even with reduced cisplatin. Abstract The standard of care for advanced head and neck cancers (HNSCCs) is radiochemotherapy, including cisplatin. This treatment results in a cure rate of approximately 85% for oropharyngeal HPV-positive HNSCCs, in contrast to only 50% for HPV-negative HNSCCs, and is accompanied by severe side effects for both entities. Therefore, innovative treatment modalities are required, resulting in a better outcome for HPV-negative HNSCCs, and lowering the adverse effects for both entities. The effect of the dual PI3K/mTOR inhibitor NVP-BEZ235 on a combined treatment with cisplatin and radiation was studied in six HPV-negative and six HPV-positive HNSCC cell lines. Cisplatin alone was slightly more effective in HPV-positive cells. This could be attributed to a defect in homologous recombination, as demonstrated by depleting RAD51. Solely for HPV-positive cells, pretreatment with BEZ235 resulted in enhanced cisplatin sensitivity. For the combination of cisplatin and radiation, additive effects were observed. However, when pretreated with BEZ235, this combination changed into a synergistic interaction, with a slightly stronger enhancement for HPV-positive cells. This increase could be attributed to a diminished degree of DSB repair in G1, as visualized via the detection of γH2AX/53BP1 foci. BEZ235 can be used to enhance the effect of combined treatment with cisplatin and radiation in both HPV-negative and -positive HNSCCs.
Collapse
Affiliation(s)
- Florentine S. B. Subtil
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Carolin Gröbner
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Niklas Recknagel
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ann Christin Parplys
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Sibylla Kohl
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Andrea Arenz
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ulrike Schötz
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
- Correspondence: ; Tel.: +49-6421-28-21978
| |
Collapse
|
11
|
Wang J, Wang P, Zeng Z, Lin C, Lin Y, Cao D, Ma W, Xu W, Xiang Q, Luo L, Wang W, Shi Y, Gao Z, Zhao Y, Liu H, Liu SL. Trabectedin in Cancers: Mechanisms and Clinical Applications. Curr Pharm Des 2022; 28:1949-1965. [PMID: 35619256 DOI: 10.2174/1381612828666220526125806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 12/09/2022]
Abstract
Trabectedin, a tetrahydroisoquinoline alkaloid, is the first marine antineoplastic agent approved with special anticancer mechanisms involving DNA binding, DNA repair pathways, transcription regulation and regulation of the tumor microenvironment. It has favorable clinical applications, especially for the treatment of patients with advanced soft tissue sarcoma, who failed in anthracyclines and ifosfamide therapy or could not receive these agents. Currently, trabectedin monotherapy regimen and regimens of combined therapy with other agents are both widely used for the treatment of malignancies, including soft tissue sarcomas, ovarian cancer, breast cancer, and non-small-cell lung cancer. In this review, we summarized the basic information and some updated knowledge on trabectedin, including its molecular structure, metabolism in various cancers, pharmaceutical mechanisms, clinical applications, drug combination, and adverse reactions, along with prospections on its possibly more optimal use in cancer treatment.
Collapse
Affiliation(s)
- Jiali Wang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Pengfei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Yiru Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Danli Cao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Lingjie Luo
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenxue Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Yongwei Shi
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zixiang Gao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Yufan Zhao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
12
|
Malakoti F, Targhazeh N, Abadifard E, Zarezadeh R, Samemaleki S, Asemi Z, Younesi S, Mohammadnejad R, Hadi Hossini S, Karimian A, Alemi F, Yousefi B. DNA repair and damage pathways in mesothelioma development and therapy. Cancer Cell Int 2022; 22:176. [PMID: 35501851 PMCID: PMC9063177 DOI: 10.1186/s12935-022-02597-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Malignant mesothelioma (MMe) is an aggressive neoplasm that occurs through the transformation of mesothelial cells. Asbestos exposure is the main risk factor for MMe carcinogenesis. Other important etiologies for MMe development include DNA damage, over-activation of survival signaling pathways, and failure of DNA damage response (DDR). In this review article, first, we will describe the most important signaling pathways that contribute to MMe development and their interaction with DDR. Then, the contribution of DDR failure in MMe progression will be discussed. Finally, we will review the latest MMe therapeutic strategies that target the DDR pathway.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Abadifard
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Samemaleki
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melbourne, Vic, Australia
| | - Reza Mohammadnejad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hadi Hossini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Combinations of ATR, Chk1 and Wee1 Inhibitors with Olaparib Are Active in Olaparib Resistant Brca1 Proficient and Deficient Murine Ovarian Cells. Cancers (Basel) 2022; 14:cancers14071807. [PMID: 35406579 PMCID: PMC8997432 DOI: 10.3390/cancers14071807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerases inhibitors (PARPis), including olaparib, have been recently approved for ovarian carcinoma treatment and PARPi resistance has already been observed in the clinics. With the aim of dissecting the molecular mechanisms of PARPi resistance, we generated olaparib resistant cells lines, both in a homologous recombination (HR)-deficient and -proficient background by continuous in vitro drug treatment. In the HR proficient background, olaparib resistance was caused by overexpression of multidrug resistance 1 gene (MDR1), while multiple heterogeneous co-existing mechanisms were found in olaparib resistant HR-deficient cells, including overexpression of MDR1, a decrease in PARP1 protein level and partial reactivation of HR repair. We found that combinations of ATR, Chk1 and Wee1 inhibitors with olaparib were synergistic in sensitive and resistant sublines, regardless of the HR status. These new olaparib resistant models will be instrumental to screen new therapeutic options for PARPi-resistant ovarian tumors. Abstract Background. Poly(ADP-ribose) polymerases inhibitor (PARPi) have shown clinical efficacy in ovarian carcinoma, especially in those harboring defects in homologous recombination (HR) repair, including BRCA1 and BRCA2 mutated tumors. There is increasing evidence however that PARPi resistance is common and develops through multiple mechanisms. Methods. ID8 F3 (HR proficient) and ID8 Brca1-/- (HR deficient) murine ovarian cells resistant to olaparib, a PARPi, were generated through stepwise drug concentrations in vitro. Both sensitive and resistant cells lines were pharmacologically characterized and the molecular mechanisms underlying olaparib resistance. Results. In ID8, cells with a HR proficient background, olaparib resistance was mainly caused by overexpression of multidrug resistance 1 gene (MDR1), while multiple heterogeneous co-existing mechanisms were found in ID8 Brca1-/- HR-deficient cells resistant to olaparib, including overexpression of MDR1, a decrease in PARP1 protein level and partial reactivation of HR repair. Importantly, combinations of ATR, Chk1 and Wee1 inhibitors with olaparib were synergistic in sensitive and resistant sublines, regardless of the HR cell status. Conclusion. Olaparib-resistant cell lines were generated and displayed multiple mechanisms of resistance, which will be instrumental in selecting new possible therapeutic options for PARPi-resistant ovarian tumors.
Collapse
|
14
|
Allavena P, Belgiovine C, Digifico E, Frapolli R, D'Incalci M. Effects of the Anti-Tumor Agents Trabectedin and Lurbinectedin on Immune Cells of the Tumor Microenvironment. Front Oncol 2022; 12:851790. [PMID: 35299737 PMCID: PMC8921639 DOI: 10.3389/fonc.2022.851790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immune cells in the tumor micro-environment (TME) establish a complex relationship with cancer cells and may strongly influence disease progression and response to therapy. It is well established that myeloid cells infiltrating tumor tissues favor cancer progression. Tumor-Associated Macrophages (TAMs) are abundantly present at the TME and actively promote cancer cell proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Active research of the last decade has provided novel therapeutic approaches aimed at depleting TAMs and/or at reprogramming their functional activities. We reported some years ago that the registered anti-tumor agent trabectedin and its analogue lurbinectedin have numerous mechanisms of action that also involve direct effects on immune cells, opening up new interesting points of view. Trabectedin and lurbinectedin share the unique feature of being able to simultaneously kill cancer cells and to affect several features of the TME, most notably by inducing the rapid and selective apoptosis of monocytes and macrophages, and by inhibiting the transcription of several inflammatory mediators. Furthermore, depletion of TAMs alleviates the immunosuppressive milieu and rescues T cell functional activities, thus enhancing the anti-tumor response to immunotherapy with checkpoint inhibitors. In view of the growing interest in tumor-infiltrating immune cells, the availability of antineoplastic compounds showing immunomodulatory effects on innate and adaptive immunity deserves particular attention in the oncology field.
Collapse
Affiliation(s)
- Paola Allavena
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Cristina Belgiovine
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Elisabeth Digifico
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
15
|
Toulmonde M, Brahmi M, Giraud A, Chakiba C, Bessede A, Kind M, Toulza E, Pulido M, Albert S, Guégan JP, Cousin S, Mathoulin-Pélissier S, Perret R, Croce S, Blay JY, Ray-Coquard I, Floquet A, Italiano A. Trabectedin plus durvalumab in patients with advanced pretreated soft tissue sarcoma and ovarian carcinoma (TRAMUNE): an open-label, multicenter phase Ib study. Clin Cancer Res 2021; 28:1765-1772. [PMID: 34965951 DOI: 10.1158/1078-0432.ccr-21-2258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/12/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Trabectedin has shown pre-clinical synergy with immune-checkpoint inhibitors in pre-clinical models. EXPERIMENTAL DESIGN TRAMUNE is a phase Ib study investigating trabectedin combined with durvalumab trough a dose-escalation phase and two expansion cohorts (soft tissue sarcoma and ovarian carcinoma). Trabectedin was given at three dose levels (1 mg/m2, 1.2 mg/m2 and 1.5 mg/m2) on day 1, in combination with durvalumab, 1120 mg on day 2, every 3 weeks. The primary endpoints were the recommended phase II dose (RP2D) of trabectedin combined with durvalumab and the objective response rate (ORR) as per RECIST 1.1. The secondary endpoints included safety, 6-month progression-free rate (PFR), progression-free survival (PFS), overall survival, and biomarker analyses. RESULTS 40 patients were included (dose escalation: n=9; STS cohort: n=16; ovarian cohort: n=15, 80% platinum resistant/refractory). The most frequent toxicities were grade 1-2 fatigue, nausea, neutropenia, and alanine/aspartate aminotransferase increase. One patient experienced a dose-limiting toxicity at dose level 2. Trabectedin at 1.2 mg/m2 was selected as the RP2D. In the STS cohort, 43% of patients experienced tumor shrinkage, the ORR was 7% (95% CI 0.2 - 33.9) and the 6-month PFR 28.6% (95% CI 8.4-58.1). In the ovarian carcinoma cohort, 43% of patients experienced tumor shrinkage, the ORR was 21.4% (95% CI 4.7 - 50.8) and the 6-month PFR 42.9% (95% CI 17.7 - 71.1). Baseline levels of PD-L1 expression and CD8-positive T-cell infiltrates were associated with PFS in ovarian carcinoma patients. CONCLUSIONS Combining trabectedin and durvalumab is manageable. Promising activity is observed in platinum-refractory ovarian carcinoma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sabrina Albert
- Clinical research and Epidemiology Unit, Institut Bergonié
| | | | | | | | | | | | - Jean-Yves Blay
- Medecine, Centre Leon Bérard, Univ Claude Bernard, Unicancer
| | | | | | | |
Collapse
|
16
|
Souid S, Aissaoui D, Srairi-Abid N, Essafi-Benkhadir K. Trabectedin (Yondelis®) as a Therapeutic Option in Gynecological Cancers: A Focus on its Mechanisms of Action, Clinical Activity and Genomic Predictors of Drug Response. Curr Drug Targets 2021; 21:996-1007. [PMID: 31994460 DOI: 10.2174/1389450121666200128161733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The use of predictive biomarkers provides potential individualized cancer therapeutic options to prevent therapy failure as well as serious toxicities. Several recent studies showed that predictive and prognostic biomarkers are a notable personalized strategy to improve patients' care in several cancers. Trabectedin (Yondelis®) is a cytotoxic agent, derived from a marine organism, harbouring a significant antitumor activity against several cancers such as soft tissue sarcoma, ovarian, and breast cancers. Recently and with the advent of molecular genetic testing, BRCA mutational status was found as an important predictor of response to this anticancer drug, especially in gynecological cancers. The aim of this updated review is to discuss the mechanisms of action of trabectedin against the wellknown cancer hallmarks described until today. The current advances were also examined related to genomic biomarkers that can be used in the future to predict the efficacy of this potent anticancer natural molecule in various gynecological cancers.
Collapse
Affiliation(s)
- Soumaya Souid
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT04 Epidemiologie Moleculaire et Pathologie Experimentale appliquee aux Maladies infectieuses, 1002, Tunis, Tunisia
| | - Dorra Aissaoui
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT08 Venins et biomolecules therapeutiques, 1002, Tunis, Tunisia
| | - Najet Srairi-Abid
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT08 Venins et biomolecules therapeutiques, 1002, Tunis, Tunisia
| | - Khadija Essafi-Benkhadir
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT04 Epidemiologie Moleculaire et Pathologie Experimentale appliquee aux Maladies infectieuses, 1002, Tunis, Tunisia
| |
Collapse
|
17
|
Hindi N, Carrasco García I, Sánchez-Camacho A, Gutierrez A, Peinado J, Rincón I, Benedetti J, Sancho P, Santos P, Sánchez-Bustos P, Marcilla D, Encinas V, Chacon S, Muñoz-Casares C, Moura D, Martin-Broto J. Trabectedin Plus Radiotherapy for Advanced Soft-Tissue Sarcoma: Experience in Forty Patients Treated at a Sarcoma Reference Center. Cancers (Basel) 2020; 12:cancers12123740. [PMID: 33322663 PMCID: PMC7764328 DOI: 10.3390/cancers12123740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Active therapeutic options in advanced sarcomas, able to induce durable objective responses, are scarce beyond first line. New strategies for disease and symptomatic control are thus needed. Our aim was to analyze the activity of the combination of trabectedin and palliative radiotherapy in the real-life setting, in patients with pretreated metastatic sarcoma. Our findings on 40 pretreated metastatic soft-tissue sarcoma patients, in terms of objective responses (overall response rate by RECIST of 32.5%) and outcome (median progression-free survival of 7.5 months and median overall survival of 23.5 months), confirm the activity of this regimen, which is a valuable option to consider, especially in patients in which a dimensional response could help for symptomatic control. Abstract Symptomatic control and tumoral shrinkage is an unmet need in advanced soft-tissue sarcoma (STS) patients beyond first-line. The combination of trabectedin and radiotherapy showed activity in a recently reported clinical trial in this setting. This retrospective series aims to analyze our experience with the same regimen in the real-life setting. We retrospectively reviewed advanced sarcoma patients treated with trabectedin concomitantly with radiotherapy with palliative intent. Growth-modulation index (GMI) was calculated as a surrogate of efficacy. Forty metastatic patients were analyzed. According to RECIST, there was one (2.5%) complete response, 12 (30%) partial responses, 18 (45%) disease stabilizations, and nine (22.5%) progressions. After a median follow-up of 15 months (range 2–38), median progression-free survival (PFS) and overall survival (OS) were 7.5 months (95% CI 2.8–12.2) and 23.5 months (95% CI 1.1–45.8), respectively. Median GMI was 1.42 (range 0.19–23.76), and in 16 (53%) patients, it was >1.33. In patients with GMI >1.33, median OS was significantly longer than in those with GMI 0–1.33 (median OS 52.1 months (95% CI not reached) vs. 8.9 months (95% CI 6.3–11.6), p = 0.028). The combination of trabectedin plus radiotherapy is an active therapeutic option in patients with advanced STS, especially when tumor shrinkage for symptomatic relief is needed.
Collapse
Affiliation(s)
- Nadia Hindi
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain; (N.H.); (I.C.G.); (A.S.-C.); (J.B.); (P.S.); (P.S.)
- TERABIS Group, IBiS (Instituto de Biomedicina de Sevilla), 41013 Sevilla, Spain; (P.S.-B.); (D.M.)
| | - Irene Carrasco García
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain; (N.H.); (I.C.G.); (A.S.-C.); (J.B.); (P.S.); (P.S.)
- TERABIS Group, IBiS (Instituto de Biomedicina de Sevilla), 41013 Sevilla, Spain; (P.S.-B.); (D.M.)
| | - Alberto Sánchez-Camacho
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain; (N.H.); (I.C.G.); (A.S.-C.); (J.B.); (P.S.); (P.S.)
| | - Antonio Gutierrez
- Hematology Department, University Hospital Son Espases, 07120 Mallorca, Spain;
| | - Javier Peinado
- Radiation Oncology Department, University Hospital Virgen del Rocio, 41013 Sevilla, Spain; (J.P.); (I.R.)
- Biología Molecular del Cáncer, IBiS (Instituto de Biomedicina de Sevilla), 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Inmaculada Rincón
- Radiation Oncology Department, University Hospital Virgen del Rocio, 41013 Sevilla, Spain; (J.P.); (I.R.)
| | - Johanna Benedetti
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain; (N.H.); (I.C.G.); (A.S.-C.); (J.B.); (P.S.); (P.S.)
| | - Pilar Sancho
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain; (N.H.); (I.C.G.); (A.S.-C.); (J.B.); (P.S.); (P.S.)
| | - Paloma Santos
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain; (N.H.); (I.C.G.); (A.S.-C.); (J.B.); (P.S.); (P.S.)
- TERABIS Group, IBiS (Instituto de Biomedicina de Sevilla), 41013 Sevilla, Spain; (P.S.-B.); (D.M.)
| | - Paloma Sánchez-Bustos
- TERABIS Group, IBiS (Instituto de Biomedicina de Sevilla), 41013 Sevilla, Spain; (P.S.-B.); (D.M.)
| | - David Marcilla
- Pathology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain;
| | - Victor Encinas
- Musculoskeletal Unit, Radiology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain;
| | - Sara Chacon
- Musculoskeletal Tumor Unit, Orthopedics Surgery Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain;
| | - Cristobal Muñoz-Casares
- Surgery Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain;
| | - David Moura
- TERABIS Group, IBiS (Instituto de Biomedicina de Sevilla), 41013 Sevilla, Spain; (P.S.-B.); (D.M.)
| | - Javier Martin-Broto
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain; (N.H.); (I.C.G.); (A.S.-C.); (J.B.); (P.S.); (P.S.)
- TERABIS Group, IBiS (Instituto de Biomedicina de Sevilla), 41013 Sevilla, Spain; (P.S.-B.); (D.M.)
- Correspondence: ; Tel.: +34-629-108-979
| |
Collapse
|
18
|
Guffanti F, Alvisi MF, Caiola E, Ricci F, De Maglie M, Soldati S, Ganzinelli M, Decio A, Giavazzi R, Rulli E, Damia G. Impact of ERCC1, XPF and DNA Polymerase β Expression on Platinum Response in Patient-Derived Ovarian Cancer Xenografts. Cancers (Basel) 2020; 12:cancers12092398. [PMID: 32847049 PMCID: PMC7564949 DOI: 10.3390/cancers12092398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Platinum resistance is an unmet medical need in ovarian carcinoma. Molecular biomarkers to predict the response to platinum-based therapy could allow patient stratification and alternative therapeutic strategies early in clinical management. Sensitivity and resistance to platinum therapy are partially determined by the tumor’s intrinsic DNA repair activities, including nucleotide excision repair (NER) and base excision repair (BER). We investigated the role of the NER proteins—ERCC1, XPF, ERCC1/XPF complex—and of the BER protein DNA polymerase β, as possible biomarkers of cisplatin (DDP) response in a platform of recently established patient-derived ovarian carcinoma xenografts (OC-PDXs). ERCC1 and DNA polymerase β protein expressions were measured by immunohistochemistry, the ERCC1/XPF foci number was detected by proximity ligation assay (PLA) and their mRNA levels by real-time PCR. We then correlated the proteins, gene expression and ERCC1/XPF complexes with OC-PDXs’ response to platinum. To the best of our knowledge, this is the first investigation of the role of the ERCC1/XPF complex, detected by PLA, in relation to the response to DDP in ovarian carcinoma. None of the proteins in the BER and NER pathways studied predicted platinum activity in this panel of OC-PDXs, nor did the ERCC1/XPF foci number. These results were partially explained by the experimental evidence that the ERCC1/XPF complex increases after DDP treatment and this possibly better associates with the cancer cells’ abilities to activate the NER pathway to repair platinum-induced damage than its basal level. Our findings highlight the need for DNA functional assays to predict the response to platinum-based therapy.
Collapse
Affiliation(s)
- Federica Guffanti
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Maria Francesca Alvisi
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.F.A.); (E.R.)
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Francesca Ricci
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Marcella De Maglie
- Mouse and Animal Pathology Lab (MAPLab), Filarete Foundation, Department of Veterinary Medicine, University of Milan, 20139 Milan, Italy;
| | - Sabina Soldati
- Department of Veterinary Pathology, University of Milan, 20133 Milan, Italy;
| | - Monica Ganzinelli
- Unit of Thoracic Oncology, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (A.D.); (R.G.)
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (A.D.); (R.G.)
| | - Eliana Rulli
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.F.A.); (E.R.)
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
- Correspondence: ; Tel.: +39-0239014234
| |
Collapse
|
19
|
Monk BJ, Herzog TJ, Wang G, Triantos S, Maul S, Knoblauch R, McGowan T, Shalaby WS, Coleman RL. A phase 3 randomized, open-label, multicenter trial for safety and efficacy of combined trabectedin and pegylated liposomal doxorubicin therapy for recurrent ovarian cancer. Gynecol Oncol 2020; 156:535-544. [DOI: 10.1016/j.ygyno.2019.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023]
|
20
|
Manda K, Präkelt T, Schröder T, Kriesen S, Hildebrandt G. Radiosensitizing effects of trabectedin on human A549 lung cancer cells and HT-29 colon cancer cells. Invest New Drugs 2019; 38:967-976. [PMID: 31482373 DOI: 10.1007/s10637-019-00852-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/30/2019] [Indexed: 01/31/2023]
Abstract
Background and Purpose Trabectedin is a unique alkylating agent with promising effects against a range of solid tumors. In this study, we aimed to examine the cytotoxic and radiosensitizing effects of trabectedin on two human epithelial tumor cell lines in vitro, and its effects on DNA repair capacity. Methods Cancer cells (A549: human lung cancer cells, HT-29: colon cancer cells) were treated with either trabectedin alone for the determination of their growth, or in combination with radiation for the determination of their metabolic activity, proliferation, and clonogenic survival. Besides, the γH2AX foci assay was performed for the assessment of ionizing radiation-induced DNA damage and to evaluate the influence of trabectedin on DNA damage repair. Results Treatment with trabectedin resulted in a growth-inhibiting effect on both cell lines, with the IC50 values remaining within a low nanomolar range. Analyses of metabolic activity confirmed a cytotoxic influence of trabectedin and a BrdU assay demonstrated an antiproliferative effect. When combined with radiation, incubation with trabectedin was found to enhance the radiosensitivity of the tumor cells. The γH2AX foci assay resulted in an increased number of DNA double-strand breaks (DSBs) in cells treated with trabectedin. Conclusion The results of this study underline the antitumor activity of trabectedin at low nanomolar concentrations. We demonstrated that trabectedin enhanced radiation response in human lung (A549) cancer cells and colon (HT-29) cancer cells. Further studies are necessary to examine trabectedin as a potential candidate for future applications in radiotherapy.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, 18059 Rostock, Südring 75, 18059, Rostock, Germany.
| | - Tina Präkelt
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, 18059 Rostock, Südring 75, 18059, Rostock, Germany
| | - Tonja Schröder
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, 18059 Rostock, Südring 75, 18059, Rostock, Germany
| | - Stephan Kriesen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, 18059 Rostock, Südring 75, 18059, Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, 18059 Rostock, Südring 75, 18059, Rostock, Germany
| |
Collapse
|
21
|
Pereira RB, Evdokimov NM, Lefranc F, Valentão P, Kornienko A, Pereira DM, Andrade PB, Gomes NGM. Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Mar Drugs 2019; 17:E329. [PMID: 31159480 PMCID: PMC6627313 DOI: 10.3390/md17060329] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/13/2023] Open
Abstract
The role of the marine environment in the development of anticancer drugs has been widely reviewed, particularly in recent years. However, the innovation in terms of clinical benefits has not been duly emphasized, although there are important breakthroughs associated with the use of marine-derived anticancer agents that have altered the current paradigm in chemotherapy. In addition, the discovery and development of marine drugs has been extremely rewarding with significant scientific gains, such as the discovery of new anticancer mechanisms of action as well as novel molecular targets. Approximately 50 years since the approval of cytarabine, the marine-derived anticancer pharmaceutical pipeline includes four approved drugs and eighteen agents in clinical trials, six of which are in late development. Thus, the dynamic pharmaceutical pipeline consisting of approved and developmental marine-derived anticancer agents offers new hopes and new tools in the treatment of patients afflicted with previously intractable types of cancer.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Nikolai M Evdokimov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
22
|
Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers (Basel) 2019. [PMID: 30669514 DOI: 10.3390/cancers11010119]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. It is initially responsive to cisplatin and carboplatin, two DNA damaging agents used in first line therapy. However, almost invariably, patients relapse with a tumor resistant to subsequent treatment with platinum containing drugs. Several mechanisms associated with the development of acquired drug resistance have been reported. Here we focused our attention on DNA repair mechanisms, which are fundamental for recognition and removal of platinum adducts and hence for the ability of these drugs to exert their activity. We analyzed the major DNA repair pathways potentially involved in drug resistance, detailing gene mutation, duplication or deletion as well as polymorphisms as potential biomarkers for drug resistance development. We dissected potential ways to overcome DNA repair-associated drug resistance thanks to the development of new combinations and/or drugs directly targeting DNA repair proteins or taking advantage of the vulnerability arising from DNA repair defects in EOCs.
Collapse
|
23
|
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. It is initially responsive to cisplatin and carboplatin, two DNA damaging agents used in first line therapy. However, almost invariably, patients relapse with a tumor resistant to subsequent treatment with platinum containing drugs. Several mechanisms associated with the development of acquired drug resistance have been reported. Here we focused our attention on DNA repair mechanisms, which are fundamental for recognition and removal of platinum adducts and hence for the ability of these drugs to exert their activity. We analyzed the major DNA repair pathways potentially involved in drug resistance, detailing gene mutation, duplication or deletion as well as polymorphisms as potential biomarkers for drug resistance development. We dissected potential ways to overcome DNA repair-associated drug resistance thanks to the development of new combinations and/or drugs directly targeting DNA repair proteins or taking advantage of the vulnerability arising from DNA repair defects in EOCs.
Collapse
|
24
|
Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers (Basel) 2019; 11:cancers11010119. [PMID: 30669514 PMCID: PMC6357127 DOI: 10.3390/cancers11010119] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. It is initially responsive to cisplatin and carboplatin, two DNA damaging agents used in first line therapy. However, almost invariably, patients relapse with a tumor resistant to subsequent treatment with platinum containing drugs. Several mechanisms associated with the development of acquired drug resistance have been reported. Here we focused our attention on DNA repair mechanisms, which are fundamental for recognition and removal of platinum adducts and hence for the ability of these drugs to exert their activity. We analyzed the major DNA repair pathways potentially involved in drug resistance, detailing gene mutation, duplication or deletion as well as polymorphisms as potential biomarkers for drug resistance development. We dissected potential ways to overcome DNA repair-associated drug resistance thanks to the development of new combinations and/or drugs directly targeting DNA repair proteins or taking advantage of the vulnerability arising from DNA repair defects in EOCs.
Collapse
|
25
|
Ventriglia J, Paciolla I, Cecere S, Pisano C, Di Napoli M, Arenare L, Setola S, Losito N, Califano D, Orditura M, Pignata S. Trabectedin in Ovarian Cancer: is it now a Standard of Care? Clin Oncol (R Coll Radiol) 2018; 30:498-503. [DOI: 10.1016/j.clon.2018.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
|
26
|
Locatelli F, Algeri M, Merli P, Strocchio L. Novel approaches to diagnosis and treatment of Juvenile Myelomonocytic Leukemia. Expert Rev Hematol 2018; 11:129-143. [DOI: 10.1080/17474086.2018.1421937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Franco Locatelli
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luisa Strocchio
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
27
|
Dual inhibition of ATR and ATM potentiates the activity of trabectedin and lurbinectedin by perturbing the DNA damage response and homologous recombination repair. Oncotarget 2017; 7:25885-901. [PMID: 27029031 PMCID: PMC5041952 DOI: 10.18632/oncotarget.8292] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/04/2016] [Indexed: 12/27/2022] Open
Abstract
Trabectedin (Yondelis®, ecteinascidin-743, ET-743) is a marine-derived natural product approved for treatment of advanced soft tissue sarcoma and relapsed platinum-sensitive ovarian cancer. Lurbinectedin is a novel anticancer agent structurally related to trabectedin. Both ecteinascidins generate DNA double-strand breaks that are processed through homologous recombination repair (HRR), thereby rendering HRR-deficient cells particularly sensitive. We here characterize the DNA damage response (DDR) to trabectedin and lurbinectedin in HeLa cells. Our results show that both compounds activate the ATM/Chk2 (ataxia-telangiectasia mutated/checkpoint kinase 2) and ATR/Chk1 (ATM and RAD3-related/checkpoint kinase 1) pathways. Interestingly, pharmacological inhibition of Chk1/2, ATR or ATM is not accompanied by any significant improvement of the cytotoxic activity of the ecteinascidins while dual inhibition of ATM and ATR strongly potentiates it. Accordingly, concomitant inhibition of both ATR and ATM is an absolute requirement to efficiently block the formation of γ-H2AX, MDC1, BRCA1 and Rad51 foci following exposure to the ecteinascidins. These results are not restricted to HeLa cells, but are shared by cisplatin-sensitive and -resistant ovarian carcinoma cells. Together, our data identify ATR and ATM as central coordinators of the DDR to ecteinascidins and provide a mechanistic rationale for combining these compounds with ATR and ATM inhibitors.
Collapse
|
28
|
Ascites interferes with the activity of lurbinectedin and trabectedin: Potential role of their binding to alpha 1-acid glycoprotein. Biochem Pharmacol 2017; 144:52-62. [DOI: 10.1016/j.bcp.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023]
|
29
|
Ray-Coquard I. Trabectedin mechanism of action and platinum resistance: molecular rationale. Future Oncol 2017; 13:17-21. [DOI: 10.2217/fon-2017-0318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trabectedin presents a complex mode of action affecting key cell biology processes in tumor cells and in the tumor microenvironment. In ovarian cancer patients with a platinum treatment-free interval of 6–12 months treated with trabectedin + pegylated liposomal doxorubicin (PLD) or single-agent PLD, and retreated with platinum after relapse, overall survival was significantly prolonged in the trabectedin + PLD group. Mechanisms by which trabectedin restores tumor sensitivity to platinum include its interaction with components of the nucleotide excision repair machinery in tumor cells and inhibition of inflammatory mediators such as IL-6 in the tumor microenvironment. Additionally, BRCA mutations and associated homologous recombination repair deficiency may contribute to enhanced sensitivity to trabectedin observed in BRCA-mutated patients with ovarian cancer.
Collapse
|
30
|
Tomao F, D'Incalci M, Biagioli E, Peccatori FA, Colombo N. Restoring platinum sensitivity in recurrent ovarian cancer by extending the platinum-free interval: Myth or reality? Cancer 2017; 123:3450-3459. [PMID: 28678350 DOI: 10.1002/cncr.30830] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 11/08/2022]
Abstract
The platinum-free interval is the most important predictive factor of a response to subsequent lines of chemotherapy and the most important prognostic factor for progression-free and overall survival in patients with recurrent epithelial ovarian cancer. A nonplatinum regimen is generally considered the most appropriate approach when the disease recurs very early after the end of chemotherapy, whereas platinum-based chemotherapy is usually adopted when the platinum-free interval exceeds 12 months. However, the therapeutic management of patients with intermediate sensitivity (ie, when the relapse occurs between 6 and 12 months) remains debatable. Preclinical and clinical data suggest that the extension of platinum-free interval (using a nonplatinum-based regimen) might restore platinum sensitivity, thus allowing survival improvement. The objective of this review was to critically analyze preclinical and clinical evidences supporting this hypothesis. Cancer 2017;123:3450-9. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Federica Tomao
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University, Rome, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research, Hospitalization, and Health Care (IRCCS), Milan, Italy
| | - Elena Biagioli
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research, Hospitalization, and Health Care (IRCCS), Milan, Italy
| | - Fedro A Peccatori
- Fertility and Procreation Unit, European Institute of Oncology, Institute for Treatment and Research (IRCCS), Milan, Italy
| | - Nicoletta Colombo
- Department of Gynecologic Oncology, European Institute of Oncology, Institute for Treatment and Research (IRCCS), Milan, Italy.,Department of Surgical Sciences, University of Milan Bicocca, Milan, Italy
| |
Collapse
|
31
|
Martinez-Cruzado L, Tornin J, Rodriguez A, Santos L, Allonca E, Fernandez-Garcia MT, Astudillo A, Garcia-Pedrero JM, Rodriguez R. Trabectedin and Campthotecin Synergistically Eliminate Cancer Stem Cells in Cell-of-Origin Sarcoma Models. Neoplasia 2017; 19:460-470. [PMID: 28494349 PMCID: PMC5421973 DOI: 10.1016/j.neo.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Trabectedin has been approved for second-line treatment of soft tissue sarcomas. However, its efficacy to target sarcoma initiating cells has not been addressed yet. Here, we used pioneer models of myxoid/round cell liposarcoma (MRCLS) and undifferentiated pleomorphic sarcoma (UPS) developed from transformed human mesenchymal stromal/stem cells (MSCs) to evaluate the effect of trabectedin in the cell type responsible for initiating sarcomagenesis and their derived cancer stem cells (CSC) subpopulations. We found that low nanomolar concentrations of trabectedin efficiently inhibited the growth of sarcoma-initiating cells, induced cell cycle arrest, DNA damage and apoptosis. Interestingly, trabectedin treatment repressed the expression of multiple genes responsible for the development of the CSC phenotype, including pluripotency factors, CSC markers and related signaling pathways. Accordingly, trabectedin induced apoptosis and reduced the survival of CSC-enriched tumorsphere cultures with the same efficiency that inhibits the growth of bulk tumor population. In vivo, trabectedin significantly reduced the mitotic index of MRCLS xenografts and inhibited tumor growth at a similar extent to that observed in doxorubicin-treated tumors. Combination of trabectedin with campthotecin (CPT), a chemotherapeutic drug that shows a robust anti-tumor activity when combined with alkylating agents, resulted in a very strong synergistic inhibition of tumor cell growth and highly increased DNA damage and apoptosis induction. Importantly, the enhanced anti-tumor activity of this combination was also observed in CSC subpopulations. These data suggest that trabectedin and CPT combination may constitute a novel strategy to effectively target both the cell-of-origin and CSC subpopulations in sarcoma.
Collapse
Affiliation(s)
- Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Juan Tornin
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Aida Rodriguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias
| | - Laura Santos
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias
| | - Eva Allonca
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juana Maria Garcia-Pedrero
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER en oncología (CIBERONC), Madrid, Spain
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER en oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
32
|
Uboldi S, Craparotta I, Colella G, Ronchetti E, Beltrame L, Vicario S, Marchini S, Panini N, Dagrada G, Bozzi F, Pilotti S, Galmarini CM, D'Incalci M, Gatta R. Mechanism of action of trabectedin in desmoplastic small round cell tumor cells. BMC Cancer 2017; 17:107. [PMID: 28166781 PMCID: PMC5294815 DOI: 10.1186/s12885-017-3091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/27/2017] [Indexed: 11/26/2022] Open
Abstract
Background Desmoplastic small round cell tumor (DSRCT) is a rare and highly aggressive disease, that can be described as a member of the family of small round blue cell tumors. The molecular diagnostic marker is the t(11;22)(p13;q12) translocation, which creates an aberrant transcription factor, EWS-WT1, that underlies the oncogenesis of DSRCT. Current treatments are not very effective so new active drugs are needed. Trabectedin, now used as a single agent for the treatment of soft tissue sarcoma, was reported to be active in some pre-treated DSRCT patients. Using JN-DSRCT-1, a cell line derived from DSRCT expressing the EWS-WT1 fusion protein, we investigated the ability of trabectedin to modify the function of the chimeric protein, as in other sarcomas expressing fusion proteins. After detailed characterization of the EWS-WT1 transcripts structure, we investigated the mode of action of trabectedin, looking at the expression and function of the oncogenic chimera. Methods We characterized JN-DSRCT-1 cells using cellular approaches (FISH, Clonogenicity assay) and molecular approaches (Sanger sequencing, ChIP, GEP). Results JN-DSRCT-1 cells were sensitive to trabectedin at nanomolar concentrations. The cell line expresses different variants of EWS-WT1, some already identified in patients. EWS-WT1 mRNA expression was affected by trabectedin and chimeric protein binding on its target gene promoters was reduced. Expression profiling indicated that trabectedin affects the expression of genes involved in cell proliferation and apoptosis. Conclusions The JN-DSRCT-1 cell line, in vitro, is sensitive to trabectedin: after drug exposure, EWS-WT1 chimera expression decreases as well as binding on its target promoters. Probably the heterogeneity of chimera transcripts is an obstacle to precisely defining the molecular mode of action of drugs, calling for further cellular models of DSRCT, possibly growing in vivo too, to mimic the biological complexity of this disease. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Uboldi
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - I Craparotta
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - G Colella
- Experimental Oncology and Pharmacogenomics, IRCCS Fondazione "Salvatore Maugeri"-Istituto di Pavia, Pavia, Italy
| | - E Ronchetti
- Experimental Oncology and Pharmacogenomics, IRCCS Fondazione "Salvatore Maugeri"-Istituto di Pavia, Pavia, Italy
| | - L Beltrame
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Vicario
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Marchini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - N Panini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - G Dagrada
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - F Bozzi
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Pilotti
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - C M Galmarini
- Cell Biology and Pharmacogenomics Department, PharmaMar, Madrid, 28770, Spain
| | - M D'Incalci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - R Gatta
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy.
| |
Collapse
|
33
|
Teplinsky E, Herzog TJ. The efficacy of trabectedin in treating ovarian cancer. Expert Opin Pharmacother 2017; 18:313-323. [DOI: 10.1080/14656566.2017.1285282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Eleonora Teplinsky
- Don Monti Division of Hematology & Medical Oncology, Hofstra Northwell School of Medicine, Monter Cancer Center, Lake Success, NY, USA
| | - Thomas J. Herzog
- Paul & Carolyn Flory Endowed Professor, University of Cincinnati Cancer Institute, Cincinnati, OH, USA
- Department of Obstetrics and Gynecology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
34
|
Romano M, Della Porta MG, Gallì A, Panini N, Licandro SA, Bello E, Craparotta I, Rosti V, Bonetti E, Tancredi R, Rossi M, Mannarino L, Marchini S, Porcu L, Galmarini CM, Zambelli A, Zecca M, Locatelli F, Cazzola M, Biondi A, Rambaldi A, Allavena P, Erba E, D'Incalci M. Antitumour activity of trabectedin in myelodysplastic/myeloproliferative neoplasms. Br J Cancer 2017; 116:335-343. [PMID: 28072764 PMCID: PMC5294481 DOI: 10.1038/bjc.2016.424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Juvenile myelomonocytic leukaemia (JMML) and chronic myelomonocytic leukaemia (CMML) are myelodysplastic myeloproliferative (MDS/MPN) neoplasms with unfavourable prognosis and without effective chemotherapy treatment. Trabectedin is a DNA minor groove binder acting as a modulator of transcription and interfering with DNA repair mechanisms; it causes selective depletion of cells of the myelomonocytic lineage. We hypothesised that trabectedin might have an antitumour effect on MDS/MPN. METHODS Malignant CD14+ monocytes and CD34+ haematopoietic progenitor cells were isolated from peripheral blood/bone marrow mononuclear cells. The inhibition of CFU-GM colonies and the apoptotic effect on CD14+ and CD34+ induced by trabectedin were evaluated. Trabectedin's effects were also investigated in vitro on THP-1, and in vitro and in vivo on MV-4-11 cell lines. RESULTS On CMML/JMML cells, obtained from 20 patients with CMML and 13 patients with JMML, trabectedin - at concentration pharmacologically reasonable, 1-5 nM - strongly induced apoptosis and inhibition of growth of haematopoietic progenitors (CFU-GM). In these leukaemic cells, trabectedin downregulated the expression of genes belonging to the Rho GTPases pathway (RAS superfamily) having a critical role in cell growth and cytoskeletal dynamics. Its selective activity on myelomonocytic malignant cells was confirmed also on in vitro THP-1 cell line and on in vitro and in vivo MV-4-11 cell line models. CONCLUSIONS Trabectedin could be good candidate for clinical studies in JMML/CMML patients.
Collapse
Affiliation(s)
- Michela Romano
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Matteo Giovanni Della Porta
- Department of Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Anna Gallì
- Department of Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Nicolò Panini
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Simonetta Andrea Licandro
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Ezia Bello
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Ilaria Craparotta
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Vittorio Rosti
- IRCCS Policlinico S. Matteo Foundation, Center for the Study of Myelofibrosis, Pavia, Italy
| | - Elisa Bonetti
- IRCCS Policlinico S. Matteo Foundation, Center for the Study of Myelofibrosis, Pavia, Italy
| | - Richard Tancredi
- Division of Clinical Oncology, IRCCS Fondazione S. Maugeri, Pavia, Italy
| | - Marianna Rossi
- Department of Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Mannarino
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Sergio Marchini
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Luca Porcu
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | | | - Alberto Zambelli
- Medical Oncology Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Marco Zecca
- Department of Pediatric Hematology-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Roma, Italy.,Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Department of Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Andrea Biondi
- Clinica Pediatrica, Università di Milano, Ospedale San Gerardo, Monza, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Paola Allavena
- IRCCS Clinical and Research Institute Humanitas, Rozzano, Milano, Italy
| | - Eugenio Erba
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| |
Collapse
|
35
|
The impact of DNA damage response gene polymorphisms on therapeutic outcomes in late stage ovarian cancer. Sci Rep 2016; 6:38142. [PMID: 27905519 PMCID: PMC5131275 DOI: 10.1038/srep38142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
Late stage epithelial ovarian cancer has a dismal prognosis. Identification of pharmacogenomic markers (i.e. polymorphisms) to stratify patients to optimize individual therapy is of paramount importance. We here report the retrospective analysis of polymorphisms in 5 genes (ATM, ATR, Chk1, Chk2 and CDK12) involved in the cellular response to platinum in a cohort of 240 cancer patients with late stage ovarian cancer. The aim of the present study was to evaluate associations between the above mentioned SNPs and patients’ clinical outcomes: overall survival (OS) and progression free survival (PFS). None of the ATM, ATR, Chk1 and Chk2 polymorphisms was found to significantly affect OS nor PFS in this cohort of patients. Genotype G/G of CDK12 polymorphism (rs1054488) predicted worse OS and PFS than the genotype A/A-A/G in univariate analysis. The predictive value was lost in the multivariate analysis. The positive correlation observed between this polymorphism and age, grade and residual tumor may explain why the CDK12 variant was not confirmed as an independent prognostic factor in multivariate analysis.The importance of CDK12 polymorphism as possible prognostic biomarker need to be confirmed in larger ovarian cancer cohorts, and possibly in other cancer population responsive to platinum agents.
Collapse
|
36
|
Colombo N, Hardy-Bessard AC, Ferrandina G, Marth C, Romero I. Experience with trabectedin + pegylated liposomal doxorubicin for recurrent platinum-sensitive ovarian cancer unsuited to platinum rechallenge. Expert Rev Anticancer Ther 2016; 16:11-19. [DOI: 10.1080/14737140.2016.1243475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Miolo G, Viel A, Canzonieri V, Baresic T, Buonadonna A, Santeufemia DA, Lara DP, Corona G. Association of the germline BRCA2 missense variation Glu2663Lys with high sensitivity to trabectedin-based treatment in soft tissue sarcoma. Cancer Biol Ther 2016; 17:1017-1021. [PMID: 27561088 DOI: 10.1080/15384047.2016.1219812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We report an interesting clinical case of a patient carrying a specific BRCA2 germline variant affected by bone and hepatic metastases from a high grade uterine stromal sarcoma who obtained a complete metabolic response after only 3 cycles of trabectedin treatment (1.5 mg/m2 given intravenously over 24 hours every 21 days). Molecular investigations linked this outstanding positive pharmacological response with the loss of heterozygosity (LOH) of the mutated BRCA2 gene. These data support the hypothesis that the response to trabectedin may be positively conditioned by the different DNA repair defects present in the neoplasm and that BRCAness tumor genotype is important in determining the efficacy of trabectedin-based chemotherapy.
Collapse
Affiliation(s)
- Gianmaria Miolo
- a Division of Medical Oncology B , IRCCS, National Cancer Institute (CRO) , Aviano , Italy
| | - Alessandra Viel
- b Division of Experimental Oncology 1 , IRCCS, National Cancer Institute (CRO) , Aviano , Italy
| | - Vincenzo Canzonieri
- c Department of Diagnostic Laboratories and Cell Therapy, Division of Pathology , IRCCS, National Cancer Institute (CRO) , Aviano , Italy
| | - Tania Baresic
- d Nuclear Medicine Unit, IRCCS National Cancer Institute (CRO) , Aviano , Italy
| | - Angela Buonadonna
- a Division of Medical Oncology B , IRCCS, National Cancer Institute (CRO) , Aviano , Italy
| | | | - Della Puppa Lara
- b Division of Experimental Oncology 1 , IRCCS, National Cancer Institute (CRO) , Aviano , Italy
| | - Giuseppe Corona
- f Department of Translational Research , IRCCS, National Cancer Institute (CRO) , Aviano , Italy
| |
Collapse
|
38
|
Awada A, Cortés J, Martín M, Aftimos P, Oliveira M, López-Tarruella S, Espie M, Lardelli P, Extremera S, Fernández-García EM, Delaloge S. Phase 2 Study of Trabectedin in Patients With Hormone Receptor–Positive, HER-2–Negative, Advanced Breast Carcinoma According to Expression of Xeroderma Pigmentosum G Gene. Clin Breast Cancer 2016; 16:364-371. [DOI: 10.1016/j.clbc.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022]
|
39
|
De Sanctis R, Marrari A, Santoro A. Trabectedin for the treatment of soft tissue sarcomas. Expert Opin Pharmacother 2016; 17:1569-77. [PMID: 27328277 DOI: 10.1080/14656566.2016.1204295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Trabectedin, a marine-derived DNA-binding antineoplastic agent, has been registered by the EMA and recently also by the FDA for the treatment of patients with advanced soft-tissue sarcoma (STS), a rare and heterogeneous disease. AREAS COVERED The antitumor activity of trabectedin is related both to direct effects on cancer cells, such as growth inhibition, cell death and differentiation, and indirect effects related to its anti-inflammatory and anti-angiogenic properties. Furthermore, trabectedin is the first compound that targets an oncogenic transcription factor with high selectivity in mixoid liposarcomas. This peculiar mechanism of action is the basis of its clinical development. The clinical pharmacology of trabectedin, the subsequent phase I, II and III trials are summarized and put into perspectives in this review. EXPERT OPINION Trabectedin is a relevant pleiotropic antitumoral agent within the complex scenario of the management of STS. It can be used in advanced STS, either after failure of anthracyclines and ifosfamide or in patients unfit for these drugs, especially when reaching a high-tumor control and a long-term benefit is a priority. Toxicity profile is acceptable and manageable with no reported cumulative toxicities. Therefore, trabectedin has become one relevant therapeutic option in metastatic STS, especially in selected histologies.
Collapse
Affiliation(s)
- Rita De Sanctis
- a Department of Medical Oncology and Hematology , Humanitas Cancer Center IRCCS , Rozzano , Milan , Italy.,b Molecular and Cellular Networks Lab, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics , "Sapienza" University , Rome , Italy
| | - Andrea Marrari
- a Department of Medical Oncology and Hematology , Humanitas Cancer Center IRCCS , Rozzano , Milan , Italy
| | - Armando Santoro
- a Department of Medical Oncology and Hematology , Humanitas Cancer Center IRCCS , Rozzano , Milan , Italy.,c Humanitas University , Rozzano , Milan , Italy
| |
Collapse
|
40
|
Abstract
INTRODUCTION Trabectedin is an anti-tumor compound registered in Europe and in several other countries, for the second-line treatment of soft tissue sarcoma (STS) and for ovarian cancer in combination with liposomal doxorubicin. Trabectedin inhibits cancer cell proliferation mainly affecting the transcription regulation. Trabectedin also acts as a modulator of tumor microenvironment by reducing the number of tumor associated macrophages (TAM). Because of its unique mechanism of action, trabectedin has the potential to act as antineoplastic agent also in several solid malignancies, including breast cancer (BC). AREAS COVERED This article reviews the preclinical and clinical data of trabectedin focusing on development in metastatic BC (mBC). Comments regarding the nature and the results of these trials are included. EXPERT OPINION Trabectedin is thought to have a crucial activity with defective DNA-repair machinery and also in modulating the tumor micro-environment and the immune-system of cancer patients. From the current available data, we recognize a potential activity of trabectedin in mBC and support the renewed efforts to better elucidate the value of trabectedin in this indication.
Collapse
Affiliation(s)
- Maurizio D'Incalci
- a Department of Oncology , IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Via La Masa 19, Milan 20156 , Italy
| | - Alberto Zambelli
- b Medical Oncology , Papa Giovanni XXIII Hospital , P.zza OMS 1, Bergamo 24127 , Italy
| |
Collapse
|
41
|
Colmegna B, Uboldi S, Frapolli R, Licandro SA, Panini N, Galmarini CM, Badri N, Spanswick VJ, Bingham JP, Kiakos K, Erba E, Hartley JA, D'Incalci M. Increased sensitivity to platinum drugs of cancer cells with acquired resistance to trabectedin. Br J Cancer 2015; 113:1687-93. [PMID: 26633559 PMCID: PMC4701998 DOI: 10.1038/bjc.2015.407] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/29/2015] [Accepted: 11/06/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In order to investigate the mechanisms of acquired resistance to trabectedin, trabectedin-resistant human myxoid liposarcoma (402-91/T) and ovarian carcinoma (A2780/T) cell lines were derived and characterised in vitro and in vivo. METHODS Resistant cell lines were obtained by repeated exposures to trabectedin. Characterisation was performed by evaluating drug sensitivity, cell cycle perturbations, DNA damage and DNA repair protein expression. In vivo experiments were performed on A2780 and A2780/T xenografts. RESULTS 402-91/T and A2780/T cells were six-fold resistant to trabectedin compared with parental cells. Resistant cells were found to be hypersensitive to UV light and did not express specific proteins involved in the nucleotide excision repair (NER) pathway: XPF and ERCC1 in 402-91/T and XPG in A2780/T. NER deficiency in trabectedin-resistant cells was associated with the absence of a G2/M arrest induced by trabectedin and with enhanced sensitivity (two-fold) to platinum drugs. In A2780/T, this collateral sensitivity, confirmed in vivo, was associated with an increased formation of DNA interstrand crosslinks. CONCLUSIONS Our finding that resistance to trabectedin is associated with the loss of NER function, with a consequent increased sensitivity to platinum drugs, provides the rational for sequential use of these drugs in patients who have acquired resistance to trabectedin.
Collapse
Affiliation(s)
- B Colmegna
- Department of Oncology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, Milan 20156, Italy
| | - S Uboldi
- Department of Oncology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, Milan 20156, Italy
| | - R Frapolli
- Department of Oncology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, Milan 20156, Italy
| | - S A Licandro
- Department of Oncology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, Milan 20156, Italy
| | - N Panini
- Department of Oncology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, Milan 20156, Italy
| | - C M Galmarini
- Department of Research and Development (R&D), PharmaMar S.A., Colmenar Viejo, Madrid 28770, Spain
| | - Nadia Badri
- Department of Research and Development (R&D), PharmaMar S.A., Colmenar Viejo, Madrid 28770, Spain
| | - V J Spanswick
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - J P Bingham
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - E Erba
- Department of Oncology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, Milan 20156, Italy
| | - J A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - M D'Incalci
- Department of Oncology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, Milan 20156, Italy
| |
Collapse
|
42
|
Lorusso D, Scambia G, Pignata S, Sorio R, Amadio G, Lepori S, Mosconi A, Pisano C, Mangili G, Maltese G, Sabbatini R, Artioli G, Gamucci T, Di Napoli M, Capoluongo E, Ludovini V, Raspagliesi F, Ferrandina G. Prospective phase II trial of trabectedin in BRCA-mutated and/or BRCAness phenotype recurrent ovarian cancer patients: the MITO 15 trial. Ann Oncol 2015; 27:487-93. [PMID: 26681678 DOI: 10.1093/annonc/mdv608] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/09/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Current evidence suggest that trabectedin is particularly effective in cells lacking functional homologous recombination repair mechanisms. A prospective phase II trial was designed to evaluate the activity of trabectedin in the treatment of recurrent ovarian cancer patients presenting BRCA mutation and/or BRCAness phenotype. PATIENTS AND METHODS A total of 100 patients with recurrent BRCA-mutated ovarian cancer and/or BRCAness phenotype (≥2 previous responses to platinum) were treated with trabectedin 1.3 mg/mq i.v. q 3 weeks. The activity of the drug with respect to BRCA mutational status and to a series of polymorphisms [single-nucleotide polymorphisms (SNPs)] involved in DNA gene repair was analyzed. RESULTS Ninety-four were evaluable for response; in the whole population, 4 complete and 33 partial responses were registered for an overall response rate (ORR) of 39.4. In the platinum-resistant (PR) and -sensitive (PS) population, an ORR of 31.2% and 47.8%, and an overall clinical benefit of 54.2% and 73.9%, respectively, were registered. In the whole series, the median progression-free survival (PFS) was 18 weeks and the median overall survival (OS) was 72 weeks; PS patients showed a more favorable PFS and OS compared with PR patients. BRCA gene mutational status was available in 69 patients. There was no difference in ORR, PFS and OS according to BRCA 1-2 status nor any association between SNPs of genes involved in DNA repair and NER machinery and response to trabectedin was reported. CONCLUSIONS Our data prospectively confirmed that the signature of 'repeated platinum sensitivity' identifies patients highly responsive to trabectedin. In this setting, the activity of trabectedin seems comparable to what could be obtained using platinum compounds and the drug may represent a valuable alternative option in patients who present contraindication to receive platinum. EUDRACT NUMBER 2011-001298-17.
Collapse
Affiliation(s)
- D Lorusso
- Gynecologic Oncology Unit, Fondazione IRCCS National Cancer Institute, Milan
| | - G Scambia
- Department of Obstetrics and Gynecology, Catholic University of Rome
| | - S Pignata
- Department of Gynecologic and Urologic Oncology, Fondazione Pascale, National Cancer Institute of Naples
| | - R Sorio
- Department of Oncology, CRO Aviano, Aviano
| | - G Amadio
- Department of Obstetrics and Gynecology, Catholic University of Rome
| | - S Lepori
- Gynecologic Oncology Unit, Fondazione IRCCS National Cancer Institute, Milan
| | - A Mosconi
- Medical Oncology Unit, University Hospital S. Maria della Misericordia, Perugia
| | - C Pisano
- Department of Gynecologic and Urologic Oncology, Fondazione Pascale, National Cancer Institute of Naples
| | - G Mangili
- Department of Obstetrics and Gynecology, San Raffaele Hospital, Milan
| | - G Maltese
- Gynecologic Oncology Unit, Fondazione IRCCS National Cancer Institute, Milan
| | - R Sabbatini
- Department of Oncology Haematology and Respiratory Disease, AOU Policlinico di Modena, Modena
| | - G Artioli
- Medical Oncology Unit, Hospital of Mirano, Mirano
| | - T Gamucci
- Medical Oncology Unit, Hospital 'SS. Trinità', Sora
| | - M Di Napoli
- Department of Gynecologic and Urologic Oncology, Fondazione Pascale, National Cancer Institute of Naples
| | - E Capoluongo
- Department of Molecular Biology, Catholic University of Rome
| | - V Ludovini
- Molecular Biology Unit, University Hospital S. Maria della Misericordia, Perugia, Italy
| | - F Raspagliesi
- Gynecologic Oncology Unit, Fondazione IRCCS National Cancer Institute, Milan
| | - G Ferrandina
- Department of Obstetrics and Gynecology, Catholic University of Rome
| |
Collapse
|
43
|
Unique features of trabectedin mechanism of action. Cancer Chemother Pharmacol 2015; 77:663-71. [DOI: 10.1007/s00280-015-2918-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022]
|
44
|
A comprehensive safety evaluation of trabectedin and drug-drug interactions of trabectedin-based combinations. BioDrugs 2015; 28:499-511. [PMID: 25209722 DOI: 10.1007/s40259-014-0100-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trabectedin (Yondelis(®)) is a potent marine-derived antineoplastic drug with high activity against various soft tissue sarcoma (STS) subtypes as monotherapy, and in combination with pegylated liposomal doxorubicin (PLD) for the treatment of patients with relapsed platinum-sensitive ovarian cancer. This article reviews the safety and pharmacokinetic profiles of trabectedin. Records were identified using predefined search criteria using electronic databases (e.g. PubMed, Cochrane Library Database of Systematic Reviews). Primary peer-reviewed articles published between 1 January 2006 and 1 April 2014 were included. The current safety and tolerability profile of trabectedin, based on the evaluation in clinical trials of patients treated with the recommended treatment regimens for STS and recurrent ovarian cancer, was reviewed. Trabectedin as monotherapy or in combination with PLD, was not associated with cumulative and/or irreversible toxicities, such as cardiac, pulmonary, renal, or oto-toxicities, often observed with other common chemotherapeutic agents. The most common adverse drug reactions (ADRs) were myelosuppression and transient hepatic transaminase increases that were usually not clinically relevant. However, trabectedin administration should be avoided in patients with severe hepatic impairment. Serious and fatal ADRs were likely to be related to pre-existing conditions. Doxorubicin or PLD, carboplatin, gemcitabine, or paclitaxel when administered before trabectedin, did not seem to influence its pharmacokinetics. Cytochrome P450 (CYP) 3A4 has an important role in the metabolism of trabectedin, suggesting a risk of drug-drug interactions with trabectedin used in combination with other CYP3A4 substrates. Trabectedin has a favorable risk/efficacy profile, even during extended treatment in pretreated patients.
Collapse
|
45
|
Management Strategies in Advanced Uterine Leiomyosarcoma: Focus on Trabectedin. Sarcoma 2015; 2015:704124. [PMID: 26089739 PMCID: PMC4451518 DOI: 10.1155/2015/704124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/28/2015] [Indexed: 01/21/2023] Open
Abstract
The treatment of advanced uterine leiomyosarcomas (U-LMS) represents a considerable challenge. Radiological diagnosis prior to hysterectomy is difficult, with the diagnosis frequently made postoperatively. Whilst a total abdominal hysterectomy is the cornerstone of management of early disease, the role of routine adjuvant pelvic radiotherapy and adjuvant chemotherapy is less clear, since they may improve local tumor control in high risk patients but are not associated with an overall survival benefit. For recurrent or disseminated U-LMS, cytotoxic chemotherapy remains the mainstay of treatment. There have been few active chemotherapy drugs approved for advanced disease, although newer drugs such as trabectedin with its pleiotropic mechanism of actions represent an important addition to the standard front-line systemic therapy with doxorubicin and ifosfamide. In this review, we outline the therapeutic potential and in particular the emerging evidence-based strategy of therapy with trabectedin in patients with advanced U-LMS.
Collapse
|
46
|
Targeting the EWS-FLI1 transcription factor in Ewing sarcoma. Cancer Chemother Pharmacol 2015; 75:1317-20. [PMID: 25809543 DOI: 10.1007/s00280-015-2726-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/10/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Preclinical data indicate there is strong synergism of action against Ewing sarcoma in sequential treatment with trabectedin followed by irinotecan and it appears to be related to a selective blockade of the transcription factor EWS-FLI1. This combination was evaluated in Ewing sarcoma patient who was progressing with standard therapies. METHODS Trabectedin was given as a 24-h iv infusion on day 1 at the dose of 1 mg/sqm, and irinotecan 75 mg/sqm on day 2 and then on days 2 and 4, every 3 weeks from the seventh course. RESULTS The therapy was well tolerated with transient hematological toxicity and transaminitis and induced stabilization of the disease lasting for 11 courses, with clinical improvement and marked reduction of the need for opioids. However, shortly before the 12th course, sudden death occurred, possibly due to cerebral stroke, presumably not related to the drug treatment. CONCLUSIONS The encouraging clinical benefit observed with the combination and its good tolerability deserves further investigation in Ewing sarcoma.
Collapse
|
47
|
Trabectedin in soft tissue sarcomas. Mar Drugs 2015; 13:974-83. [PMID: 25686274 PMCID: PMC4344612 DOI: 10.3390/md13020974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 01/04/2023] Open
Abstract
Soft tissue sarcomas are a group of rare tumors derived from mesenchymal tissue, accounting for about 1% of adult cancers. There are over 60 different histological subtypes, each with their own unique biological behavior and response to systemic therapy. The outcome for patients with metastatic soft tissue sarcoma is poor with few available systemic treatment options. For decades, the mainstay of management has consisted of doxorubicin with or without ifosfamide. Trabectedin is a synthetic agent derived from the Caribbean tunicate, Ecteinascidia turbinata. This drug has a number of potential mechanisms of action, including binding the DNA minor groove, interfering with DNA repair pathways and the cell cycle, as well as interacting with transcription factors. Several phase II trials have shown that trabectedin has activity in anthracycline and alkylating agent-resistant soft tissue sarcoma and suggest use in the second- and third-line setting. More recently, trabectedin has shown similar progression-free survival to doxorubicin in the first-line setting and significant activity in liposarcoma and leiomyosarcoma subtypes. Trabectedin has shown a favorable toxicity profile and has been approved in over 70 countries for the treatment of metastatic soft tissue sarcoma. This manuscript will review the development of trabectedin in soft tissue sarcomas.
Collapse
|
48
|
Le VH, Inai M, Williams RM, Kan T. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics. Nat Prod Rep 2015; 32:328-47. [PMID: 25273374 PMCID: PMC4806878 DOI: 10.1039/c4np00051j] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ecteinascidin family comprises a number of biologically active compounds, containing two to three tetrahydroisoquinoline subunits. Although isolated from marine tunicates, these compounds share a common pentacyclic core with several antimicrobial compounds found in terrestrial bacteria. Among the tetrahydroisoquinoline natural products, ecteinascidin 743 (Et-743) stands out as the most potent antitumor antibiotics that it is recently approved for treatment of a number of soft tissue sarcomas. In this article, we will review the backgrounds, the mechanism of action, the biosynthesis, and the synthetic studies of Et-743. Also, the development of Et-743 as an antitumor drug is discussed.
Collapse
Affiliation(s)
- V H Le
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
49
|
Amaral AT, Garofalo C, Frapolli R, Manara MC, Mancarella C, Uboldi S, Giandomenico SD, Ordóñez JL, Sevillano V, Malaguarnera R, Picci P, Hassan AB, Alava ED, D'Incalci M, Scotlandi K. Trabectedin Efficacy in Ewing Sarcoma Is Greatly Increased by Combination with Anti-IGF Signaling Agents. Clin Cancer Res 2015; 21:1373-82. [DOI: 10.1158/1078-0432.ccr-14-1688] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
López-Guerrero JA, Romero I, Poveda A. Trabectedin therapy as an emerging treatment strategy for recurrent platinum-sensitive ovarian cancer. CHINESE JOURNAL OF CANCER 2015; 34:41-9. [PMID: 25556617 PMCID: PMC4302088 DOI: 10.5732/cjc.014.10278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
Abstract
Epithelial ovarian cancer (OC) is a common gynecologic malignancy in women. The standard treatment for OC is maximal cytoreductive surgical debulking followed by platinum-based chemotherapy. Despite the high response rate to primary therapy, approximately 85% of patients will develop recurrent ovarian cancer (ROC). This review identifies the clinical use of trabectedin in the treatment algorithm for ROC, with specific emphasis on platinum-sensitive ROC, for which trabectedin in combination with pegylated liposomal doxorubicin has been approved as a treatment protocol. The main mechanisms of action of trabectedin at the cellular level and in the tumor microenvironment is also discussed as bases for identifying biomarkers for selecting patients who may largely benefit from trabectedin-based therapies.
Collapse
|