1
|
Fjermeros K, Ghannoum S, Geisler SB, Bhargava S, Tahiri A, Klajic J, Lüders T, Fongård M, Nawaz MS, Bosnjak-Olsen T, Buvarp UCE, Rosenskiold AKJ, Nguyen NT, Sletbak TT, Seyedzadeh M, Selsås K, Porojnicu AC, Skjerven HK, Hovda T, Sahlberg KK, Torland LA, Lyngra M, Hammarström CL, Hönigsperger EB, Noone JC, Mathiassen S, Hurtado A, Goel S, Koff A, Tekpli X, Kristensen VN, Geisler J. The NEOLETRIB trial: neoadjuvant treatment with Letrozole and Ribociclib in ER-positive, HER2-negative breast cancer. Future Oncol 2024; 20:2457-2466. [PMID: 39073142 PMCID: PMC11520546 DOI: 10.1080/14796694.2024.2377531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Chemotherapy is used as neoadjuvant therapy for all subgroups of breast cancer, including ER-positive, and HER2-negative cases. However, studies have suggested that using aromatase inhibitors combined with CDK4/6-inhibitors might be an appropriate alternative in selected patients. Thus, the NEOLETRIB trial evaluates the response of ER-positive, HER2-negative luminal A/B breast cancer to the combination of letrozole and ribociclib in the neoadjuvant setting. Comprehensive molecular biology procedures, including sequential single-cell RNA-sequencing of tumor biopsies, are performed during 6 months of treatment with extensive biobanking of blood samples, tumor biopsies and gut microbiome specimens. Our findings will hopefully contribute to an improved selection of patients who may benefit from this drug combination and give new insights into the intra-tumoral changes during this treatment.Trial registration number: NCT05163106 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Kamilla Fjermeros
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Salim Ghannoum
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Sameer Bhargava
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Andliena Tahiri
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Jovana Klajic
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Torben Lüders
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Marie Fongård
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Meh Sameen Nawaz
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
- Department of Health and Exercise, School of Health Sciences, Kristiania University College, Oslo, Norway
| | | | | | | | - Nam Thi Nguyen
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | | | | | - Knut Selsås
- Department of Endocrine & Breast Surgery, Akershus University Hospital, Lørenskog, Norway
| | | | - Helle Kristine Skjerven
- Department of Breast & Endocrine Surgery, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Tone Hovda
- Department of Radiology, Drammen Hospital, Vestre Viken Hospital Trust, Norway
| | - Kristine Kleivi Sahlberg
- Department of Research & Innovation, Vestre Viken Hospital Trust, Drammen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Lilly Anne Torland
- Department of Research & Innovation, Vestre Viken Hospital Trust, Drammen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Marianne Lyngra
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | | | | | | | - Silje Mathiassen
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Antoni Hurtado
- Functional Genomics group & Molecular Pathology Unit, Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Campus Universitario Miguel de Unamuno s/n. 37007, Salamanca, Spain
| | - Shom Goel
- Peter MacCallum Cancer Centre, Australia & The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Andrew Koff
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center & Weill Cornell Medical College, New York, NY USA
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
2
|
Wang Y, Jing F, Wang H. Role of Exemestane in the Treatment of Estrogen-Receptor-Positive Breast Cancer: A Narrative Review of Recent Evidence. Adv Ther 2022; 39:862-891. [PMID: 34989983 DOI: 10.1007/s12325-021-01924-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 11/01/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most common type of cancer diagnosed among women worldwide with an estimated 2.3 million new cases every year. Almost two-thirds of all patients with BC have estrogen receptor-positive (ER+) tumors. In this review, the clinical evidence of exemestane in different treatment settings in ER+ BC is presented and summarized. SEARCH STRATEGY A search strategy with the keywords "breast cancer [MeSH Terms]" AND "exemestane [Title/Abstract]" was devised and a search was performed in PubMed. RESULTS The efficacy of exemestane in different treatment settings has been established by numerous clinical studies. Exemestane is recommended as an adjuvant treatment in postmenopausal women previously treated with tamoxifen in trials comparing 5 years of tamoxifen with 2-3 years of tamoxifen combined with 2-3 years of exemestane, which proved that treatment with exemestane provided better survival outcomes. Similarly, exemestane could be considered as a safe treatment option for neoadjuvant treatment, prevention of chemotherapy, and treatment of advanced BC either alone or in combination with other targeted therapy drugs in both pre- and postmenopausal women. CONCLUSION Exemestane could be considered as a reasonable therapeutic option in the treatment of ER+ BC at any stage in pre- and postmenopausal women.
Collapse
|
3
|
Bahrami N, Jabeen S, Tahiri A, Sauer T, Ødegård HP, Geisler SB, Gravdehaug B, Reitsma LC, Selsås K, Kristensen V, Geisler J. Lack of cross-resistance between non-steroidal and steroidal aromatase inhibitors in breast cancer patients: the potential role of the adipokine leptin. Breast Cancer Res Treat 2021; 190:435-449. [PMID: 34554372 PMCID: PMC8558290 DOI: 10.1007/s10549-021-06399-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/11/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE The aromatase inactivator exemestane may cause clinical disease stabilization following progression on non-steroidal aromatase inhibitors like letrozole in patients with metastatic breast cancer, indicating that additional therapeutic effects, not necessarily related to estrogen-suppression, may be involved in this well-known "lack of cross-resistance". METHODS Postmenopausal women with ER positive, HER-2 negative, locally advanced breast cancer were enrolled in the NEOLETEXE-trial and randomized to sequential treatment starting with either letrozole (2.5 mg o.d.) or exemestane (25 mg o.d.) followed by the alternative aromatase inhibitor. Serum levels of 54 cytokines, including 12 adipokines were assessed using Luminex xMAP technology (multiple ELISA). RESULTS Serum levels of leptin were significantly decreased during treatment with exemestane (p < 0.001), regardless whether exemestane was given as first or second neoadjuvant therapy. In contrast, letrozole caused a non-significant increase in serum leptin levels in vivo. CONCLUSIONS Our findings suggest an additional and direct effect of exemestane on CYP-19 (aromatase) synthesis presumably due to effects on the CYP19 promoter use that is not present during therapy with the non-steroidal aromatase inhibitor letrozole. Our findings provide new insights into the influence of clinically important aromatase inhibitors on cytokine levels in vivo that contribute to the understanding of the clinically observed lack of cross-resistance between non-steroidal and steroidal aromatase inhibitors in breast cancer patients. TRIAL REGISTRATION Registered on March 23rd 2015 in the National trial database of Norway (Registration number: REK-SØ-84-2015).
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shakila Jabeen
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | | | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | | | - Knut Selsås
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Augusto TV, Amaral C, Wang Y, Chen S, Almeida CF, Teixeira N, Correia-da-Silva G. Effects of PI3K inhibition in AI-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Res Treat 2021; 190:227-240. [PMID: 34498152 DOI: 10.1007/s10549-021-06376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women. The aromatase inhibitors (AIs), Anastrozole (Ana), Letrozole (Let), and Exemestane (Exe) are a first-line treatment option for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Nevertheless, the development of acquired resistance to this therapy is a major drawback. The involvement of PI3K in resistance, through activation of the PI3K/AKT/mTOR survival pathway or through a cytoprotective autophagic process, is widely described. MATERIALS AND METHODS The involvement of autophagy in response to Ana and Let treatments and the effects of the combination of BYL-719, a PI3K inhibitor, with AIs were explored in AI-resistant breast cancer cell lines (LTEDaro, AnaR, LetR, and ExeR). RESULTS We demonstrate that Ana and Let treatments do not promote autophagy in resistant breast cancer cells, contrary to Exe. Moreover, the combinations of BYL-719 with AIs decrease cell viability by different mechanisms by nonsteroidal vs. steroidal AIs. The combination of BYL-719 with Ana or Let induced cell cycle arrest while the combination with Exe promoted cell cycle arrest and apoptosis. In addition, BYL-719 decreased AnaR, LetR, and ExeR cell viability in a dose- and time-dependent manner, being more effective in the ExeR cell line. This decrease was further exacerbated by ICI 182,780. CONCLUSION These results corroborate the lack of cross-resistance between AIs verified in the clinic, excluding autophagy as a mechanism of resistance to Ana or Let and supporting the ongoing clinical trials combining BYL-719 with AIs.
Collapse
Affiliation(s)
- Tiago V Augusto
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Cristina F Almeida
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Bahrami N, Chang G, Kanaya N, Sauer T, Park D, Loeng M, Gravdehaug B, Chen S, Geisler J. Changes in serum estrogenic activity during neoadjuvant therapy with letrozole and exemestane. J Steroid Biochem Mol Biol 2020; 200:105641. [PMID: 32151708 DOI: 10.1016/j.jsbmb.2020.105641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/29/2022]
Abstract
The aromatase inhibitors (AIs), letrozole (Femar®/Femara®) and exemestane (Aromasin®), are widely used to treat estrogen receptor (ER) positive breast cancer in postmenopausal patients. In the setting of metastatic breast cancer, these drugs may be used after another causing new responses in selected patients after progressing on the first choice. The precise explanation for this "lack of cross resistance" is still missing. NEOLETEXE is a neoadjuvant, randomized, open-label, cross-over trial. Postmenopausal patients with ER-positive, HER-2 negative, locally advanced breast cancer were enrolled. All patients were randomized to treatment starting with either letrozole or exemestane for at least 2 months followed by another 2 months on the alternative AI. The total estrogenic activities in blood samples were determined using the AroER tri-screen assay developed in the Chen laboratory. Using this highly sensitive assay, estrogenic activity was detected at three time points for all patients. Importantly, a significantly higher total estrogenic activity was found during therapy with exemestane compared to letrozole in 21 out of 26 patients. When letrozole was included in the AroER tri-screen assay, the estrogenic activities in most samples collected during exemestane treatment were further reduced, suggesting that low levels of androgens remained in specimens obtained after exemestane treatment. Our results suggest the AroER tri-screen to be a very sensitive method to estimate the overall estrogen-mediated activity in human samples even during therapy with highly potent aromatase inhibitors. In the present study, serum estrogen activity was significantly higher during exemestane therapy when compared to letrozole therapy.
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway
| | - Daehoon Park
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Marie Loeng
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
| | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway.
| |
Collapse
|
6
|
Ferreira Almeida C, Oliveira A, João Ramos M, Fernandes PA, Teixeira N, Amaral C. Estrogen receptor-positive (ER +) breast cancer treatment: Are multi-target compounds the next promising approach? Biochem Pharmacol 2020; 177:113989. [PMID: 32330493 DOI: 10.1016/j.bcp.2020.113989] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Endocrine therapy is currently the main therapeutic approach for estrogen receptor-positive (ER+) breast cancer, the most frequent subtype of breast cancer in women worldwide. For this subtype of tumors, the current clinical treatment includes aromatase inhibitors (AIs) and anti-estrogenic compounds, such as Tamoxifen and Fulvestrant, being AIs the first-line treatment option for post-menopausal women. Moreover, the recent guidelines also suggest the use of these compounds by pre-menopausal women after suppressing ovaries function. However, besides its therapeutic efficacy, the prolonged use of this type of therapies may lead to the development of several adverse effects, as well as, endocrine resistance, limiting the effectiveness of such treatments. In order to surpass this issues and clinical concerns, during the last years, several studies have been suggesting alternative therapeutic approaches, considering the function of aromatase, ERα and ERβ. Here, we review the structural and functional features of these three targets and their importance in ER+ breast cancer treatment, as well as, the current treatment strategies used in clinic, emphasizing the importance of the development of multi-target compounds able to simultaneously modulate these key targets, as a novel and promising therapeutic strategy for this type of cancer.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Oliveira
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria João Ramos
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Bahrami N, Sauer T, Engebretsen S, Aljabri B, Bemanian V, Lindstrøm J, Lüders T, Kristensen V, Lorentzen A, Loeng M, Ødegård HP, Kvaløy JØ, Vestøl IB, Geisler SB, Gravdehaug B, Gundersen JM, Geisler J. The NEOLETEXE trial: a neoadjuvant cross-over study exploring the lack of cross resistance between aromatase inhibitors. Future Oncol 2019; 15:3675-3682. [PMID: 31513453 DOI: 10.2217/fon-2019-0258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
The aromatase inhibitor letrozole (Femar®/Femara®) and the aromatase inactivator exemestane (Aromasin®) differ in their biochemical effect on the aromatase enzyme. Letrozole is a competitive aromatase inhibitor while exemestane binds irreversibly to the aromatase enzyme. This pharmacological difference is of clinical interest since a lack of cross-resistance has been documented. It has been demonstrated in several clinical trials that exemestane may cause a disease regression following resistance to nonsteroidal aromatase inhibitors. The exact mechanism(s) behind this phenomenon is yet unknown. Here, we present the NEOLETEXE trial with the aim of exploring the individual mechanisms involved behind the observed lack of cross resistance. Clinical trial registration: The trial has been approved by the Regional Ethics Committee of South-East Norway (project number 2015/84).
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
- Department of Breast & Endocrine Surgery (AHUS), Akershus University Hospital, Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Torill Sauer
- Department of Pathology (AHUS), Akershus University Hospital, Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus AHUS, University of Oslo, Norway
| | - Siri Engebretsen
- Department of Breast & Endocrine Surgery (AHUS), Akershus University Hospital, Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Belal Aljabri
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Vahid Bemanian
- Department of Gene Technology (AHUS), Akershus University Hospital, Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Jonas Lindstrøm
- Health Services Research Center (AHUS), Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus AHUS, University of Oslo, Norway
| | - Torben Lüders
- Department of Clinical Molecular Biology (AHUS/EpiGen), Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus AHUS, University of Oslo, Norway
| | - Vessela Kristensen
- Department of Clinical Molecular Biology (AHUS/EpiGen), Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus AHUS, University of Oslo, Norway
| | - Annika Lorentzen
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Marie Loeng
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Hilde Presterud Ødegård
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Jan Øyvind Kvaløy
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Ingeborg Berge Vestøl
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Stephanie Beate Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Berit Gravdehaug
- Department of Breast & Endocrine Surgery (AHUS), Akershus University Hospital, Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Joanna Majak Gundersen
- Department of Breast & Endocrine Surgery (AHUS), Akershus University Hospital, Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
- Translational Cancer Research Group, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus AHUS, University of Oslo, Norway
| |
Collapse
|
8
|
Augusto TV, Correia-da-Silva G, Rodrigues CMP, Teixeira N, Amaral C. Acquired resistance to aromatase inhibitors: where we stand! Endocr Relat Cancer 2018. [PMID: 29530940 DOI: 10.1530/erc-17-0425] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aromatase inhibitors (AIs) are one of the principal therapeutic approaches for estrogen receptor-positive (ER+) breast cancer in postmenopausal women. They block estrogen biosynthesis through aromatase inhibition, thus preventing tumour progression. Besides the therapeutic success of the third-generation AIs, acquired resistance may develop, leading to tumour relapse. This resistance is thought to be the result of a change in the behaviour of ER in these breast cancer cells, presumably by PI3K/AKT pathway enhancement along with alterations in other signalling pathways. Nevertheless, biological mechanisms, such as apoptosis, autophagy, cell cycle modulation and activation of androgen receptor (AR), are also implicated in acquired resistance. Moreover, clinical evidence demonstrated that there is a lack of cross-resistance among AIs, although the reason is not fully understood. Thus, there is a demand to understand the mechanisms involved in endocrine resistance to each AI, since the search for new strategies to surpass breast cancer acquired resistance is of major concern.
Collapse
Affiliation(s)
- Tiago Vieira Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
SGK3 sustains ERα signaling and drives acquired aromatase inhibitor resistance through maintaining endoplasmic reticulum homeostasis. Proc Natl Acad Sci U S A 2017; 114:E1500-E1508. [PMID: 28174265 DOI: 10.1073/pnas.1612991114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many estrogen receptor alpha (ERα)-positive breast cancers initially respond to aromatase inhibitors (AIs), but eventually acquire resistance. Here, we report that serum- and glucocorticoid-inducible kinase 3 (SGK3), a kinase transcriptionally regulated by ERα in breast cancer, sustains ERα signaling and drives acquired AI resistance. SGK3 is up-regulated and essential for endoplasmic reticulum (EnR) homeostasis through preserving sarcoplasmic/EnR calcium ATPase 2b (SERCA2b) function in AI-resistant cells. We have further found that EnR stress response down-regulates ERα expression through the protein kinase RNA-like EnR kinase (PERK) arm, and SGK3 retains ERα expression and signaling by preventing excessive EnR stress. Our study reveals regulation of ERα expression mediated by the EnR stress response and the feed-forward regulation between SGK3 and ERα in breast cancer. Given SGK3 inhibition reduces AI-resistant cell survival by eliciting excessive EnR stress and also depletes ERα expression/function, we propose SGK3 inhibition as a potential effective treatment of acquired AI-resistant breast cancer.
Collapse
|
10
|
Cotargeting of CYP-19 (aromatase) and emerging, pivotal signalling pathways in metastatic breast cancer. Br J Cancer 2016; 116:10-20. [PMID: 27923036 PMCID: PMC5220158 DOI: 10.1038/bjc.2016.405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
Aromatase inhibition is one of the cornerstones of modern endocrine therapy of oestrogen receptor-positive (ER+) metastatic breast cancer (MBC). The nonsteroidal aromatase inhibitors anastrozole and letrozole, as well as the steroidal aromatase inactivator exemestane, are the preferred drugs and established worldwide in all clinical phases of the disease. However, although many patients suffering from MBC experience an initial stabilisation of their metastatic burden, drug resistance and disease progression occur frequently, following in general only a few months on treatment. Extensive translational research during the past two decades has elucidated the major pathways contributing to endocrine resistance and paved the way for clinical studies investigating the efficacy of novel drug combinations involving aromatase inhibitors and emerging drugable targets like mTOR, PI3K and CDK4/6. The present review summarises the basic research that provided the rationale for new drug combinations involving aromatase inhibitors and the main findings of pivotal clinical trials that have already started to change our way to treat hormone-sensitive MBC. The challenging situation of oestrogen receptor-positive and human epidermal growth factor receptor 2-positive (HER2+) MBC is also shortly reviewed to underline the complexity of the clinical scenario in the heterogeneous subgroups of hormone receptor-positive breast cancer patients and the increasing need for personalised medicine. Finally, we summarise some of the promising findings made with the combination of aromatase inhibitors with other potent endocrine treatment options like fulvestrant, a selective oestrogen receptor downregulator.
Collapse
|
11
|
Sobral AF, Amaral C, Correia-da-Silva G, Teixeira N. Unravelling exemestane: From biology to clinical prospects. J Steroid Biochem Mol Biol 2016; 163:1-11. [PMID: 26992705 DOI: 10.1016/j.jsbmb.2016.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/29/2016] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
Aromatase inhibitors (AIs) are anti-tumor agents used in clinic to treat hormone-dependent breast cancer. AIs block estrogens biosynthesis by inhibiting the enzyme aromatase, preventing tumor progression. Exemestane, a third-generation steroidal AI, belongs to this class of drugs and is currently used in clinic to treat postmenopausal women, due to its high efficacy and good tolerability. Here, its pharmacological and biological aspects as well as its clinical applications and comparison to other endocrine therapeutic agents, are reviewed. It is also focused the benefits and risks of exemestane, drawbacks to be overcome and aspects to be explored.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas 3000-456 Coimbra, Portugal; UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Georgina Correia-da-Silva
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Kümler I, Knoop AS, Jessing CAR, Ejlertsen B, Nielsen DL. Review of hormone-based treatments in postmenopausal patients with advanced breast cancer focusing on aromatase inhibitors and fulvestrant. ESMO Open 2016; 1:e000062. [PMID: 27843622 PMCID: PMC5070302 DOI: 10.1136/esmoopen-2016-000062] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022] Open
Abstract
Background Endocrine therapy constitutes a central modality in the treatment of oestrogen receptor (ER)-positive advanced breast cancer. Purpose To evaluate the evidence for endocrine treatment in postmenopausal patients with advanced breast cancer focusing on the aromatase inhibitors, letrozole, anastrozole, exemestane and fulvestrant. Methods A review was carried out using PubMed. Randomised phase II and III trials reporting on ≥100 patients were included. Results 35 trials met the inclusion criteria. If not used in the adjuvant setting, a non-steroid aromatase inhibitor was the optimal first-line option. In general, the efficacy of the different aromatase inhibitors and fulvestrant was similar in tamoxifen-refractory patients. A randomised phase II trial of palbociclib plus letrozole versus letrozole alone showed significantly increased progression-free survival (PFS) when compared with endocrine therapy alone in the first-line setting (20.2 vs 10.2 months). Furthermore, the addition of everolimus to exemestane in the Breast Cancer Trials of OraL EveROlimus-2 (BOLERO-2) study resulted in an extension of median PFS by 4.5 months after recurrence/progression on a non-steroid aromatase inhibitor. However, overall survival was not significantly increased. Conclusion Conventional treatment with an aromatase inhibitor or fulvestrant may be an adequate treatment option for most patients with hormone receptor-positive advanced breast cancer. Mammalian target of rapamycin (mTOR) inhibition and cyclin-dependent kinase 4/6 (CDK4/6) inhibition might represent substantial advances for selected patients in some specific settings. However, there is an urgent need for prospective biomarker-driven trials to identify patients for whom these treatments are cost-effective.
Collapse
Affiliation(s)
- Iben Kümler
- Department of Oncology , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| | - Ann S Knoop
- Department of Oncology , Finsen Centre, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Christina A R Jessing
- Department of Oncology , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| | - Bent Ejlertsen
- Department of Oncology , Finsen Centre, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Dorte L Nielsen
- Department of Oncology , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| |
Collapse
|
13
|
Chan HJ, Petrossian K, Chen S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J Steroid Biochem Mol Biol 2016; 161:73-83. [PMID: 26277097 PMCID: PMC4752924 DOI: 10.1016/j.jsbmb.2015.07.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
Aromatase and estrogen receptor α (ER) are two key proteins for the proliferation of endocrine-responsive and -resistant breast cancers. Aromatase is an enzyme involved in the conversion of androgen (such as testosterone) to estrogen (such as 17β-estradiol). It is also a very effective therapeutic target for the treatment of endocrine-responsive breast cancer. Comparing endocrine-responsive and -resistant breast cancer, aromatase protein levels do not change significantly. Aromatase activity; however, can be increased via PI3K/Akt/IGFR signaling pathways in endocrine resistant cells. The activity of aromatase has been reported to be modulated by phosphorylation. The ER is an important steroid nuclear receptor in the proliferation of both endocrine-responsive and -resistant cells. Although the mutation or amplification of ER can cause endocrine resistance, it is not commonly found. Some point mutations and translocation events have been characterized and shown to promote estrogen-independent growth. Phosphorylation by cross-talk with growth factor pathways is one of the main mechanisms for ligand-independent activation of ER. Taken together, both ER and aromatase are important in ER-dependent breast cancer and the development of endocrine resistance.
Collapse
Affiliation(s)
- Hei Jason Chan
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
14
|
Chen SM, Atchley DH, Murphy MA, Gurley BJ, Kamdem LK. Impact of UGT2B17 Gene Deletion on the Pharmacokinetics of 17-Hydroexemestane in Healthy Volunteers. J Clin Pharmacol 2015; 56:875-84. [PMID: 26608382 DOI: 10.1002/jcph.673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/04/2015] [Indexed: 11/06/2022]
Abstract
Exemestane is an aromatase inhibitor drug used for the treatment of hormone-dependent breast cancer. 17-Hydroexemestane, the major and biologically active metabolite of exemestane in humans, is eliminated via glucuronidation by the polymorphic UGT2B17 phase II drug-metabolizing enzyme. Previous microsomal studies have shown that UGT2B17 gene deletion affects the intrinsic hepatic clearances of 17-hydroexemestane in vitro. In this open-label study we set out to assess the effect of UGT2B17 gene deletion on the pharmacokinetics of 17-hydroexemestane in healthy female volunteers with and without UGT2B17. To achieve this goal, 14 healthy postmenopausal women (8 carriers of the homozygous UGT2B17 wild-type allele and 6 carriers of the homozygous UGT2B17 gene-deletion allele) were enrolled and invited to receive a single 25-mg oral dose of exemestane. Pharmacokinetics was assessed over 72 hours postdosing. Our results showed that there were statistically significant differences in plasma 17-hydroexemestane AUC0-∞ (P = .0007) and urine 17-hydroexemestane C24h (P = .001) between UGT2B17 genotype groups. Our data suggest that UGT2B17 gene deletion influences 17-hydroexemestane pharmacokinetics in humans.
Collapse
Affiliation(s)
- Shanly M Chen
- Harding University College of Pharmacy, Searcy, AR, USA
| | - Daniel H Atchley
- University of Pikeville, Kentucky College of Osteopathic Medicine, Pikeville, KY, USA
| | | | - Bill J Gurley
- University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, USA
| | | |
Collapse
|
15
|
González Espinoza IR, Villarreal Garza C, Juárez León OA, Adel Álvarez LA, Cruz López JC, Téllez Bernal E. Cáncer de mama con receptores hormonales positivos: tratamiento adyuvante, primera línea en cáncer metastásico y nuevas estrategias (inhibición de mTOR). GACETA MEXICANA DE ONCOLOGÍA 2015. [DOI: 10.1016/j.gamo.2015.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
16
|
Wolfe H, Bunch K, Stany M. Prolonged response to exemestane following multiple surgical resections and hormonal therapies in a patient with recurrent endometrial stromal sarcoma. Gynecol Oncol Rep 2015; 15:4-6. [PMID: 26937477 PMCID: PMC4750016 DOI: 10.1016/j.gore.2015.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 12/28/2022] Open
Abstract
Background Endometrial stromal sarcomas (ESSs) are rare, indolent tumors with high recurrence rates. Management includes surgery and hormonal therapy given high estrogen and progesterone receptor (ER/PR) expression. Case A pre-menopausal patient with stage II ESSs (ER +/PR +) underwent primary surgery followed by adjuvant megestrol. Recurrence in the bladder/upper vagina (ER +/PR −) was diagnosed one year later and treated with anterior pelvic exenteration and adjuvant letrozole. Two years later she recurred and was treated with radical surgery and adjuvant exemestane therapy (tumor ER strongly +/PR +). The patient then had a five-year disease free interval before being diagnosed with her third recurrence (ER +). Conclusion Exemestane treatment for ESSs can lead to a prolonged response, even in the setting of progression after prior aromatase inhibitor treatment. Aromatase inhibitors (AIs) are used in the treatment of endometrial stromal sarcoma. Letrozole and anastrozole are type 2 reversible nonsteroidal AIs. Exemestane is a type 1 irreversible steroidal AI. Exemestane demonstrated a prolonged clinical response and is well-tolerated.
Collapse
Affiliation(s)
- Heather Wolfe
- Walter Reed National Military Medical Center,Department of Obstetrics and Gynecology, United States
| | - Kristen Bunch
- Walter Reed National Military Medical Center,Department of Obstetrics and Gynecology,Division of Gynecologic Oncology, United States
| | - Michael Stany
- Walter Reed National Military Medical Center,Department of Obstetrics and Gynecology,Division of Gynecologic Oncology, United States
| |
Collapse
|
17
|
Revisiting the estrogen receptor pathway and its role in endocrine therapy for postmenopausal women with estrogen receptor-positive metastatic breast cancer. Breast Cancer Res Treat 2015; 150:231-42. [DOI: 10.1007/s10549-015-3316-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 01/27/2023]
|
18
|
Hole S, Pedersen AM, Hansen SK, Lundqvist J, Yde CW, Lykkesfeldt AE. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol 2015; 46:1481-90. [PMID: 25625755 PMCID: PMC4356498 DOI: 10.3892/ijo.2015.2850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/12/2014] [Indexed: 01/13/2023] Open
Abstract
Aromatase inhibitor (AI) treatment is first-line systemic treatment for the majority of postmenopausal breast cancer patients with estrogen receptor (ER)-positive primary tumor. Although many patients benefit from treatment, some will develop resistance, and models mimicking acquired resistance will be valuable tools to unravel the resistance mechanisms and to find new treatments and biomarkers. Cell culture models for acquired resistance to the three clinically relevant AIs letrozole, anastrozole and exemestane were developed by selection and expansion of colonies of MCF-7 breast cancer cells surviving long-term AI treatment under conditions where endogenous aromatase-mediated conversion of androgen to estrogen was required for growth. Four cell lines resistant to each of the AIs were established and characterized. Maintenance of ER expression and function was a general finding, but ER loss was seen in one of twelve cell lines. HER receptor expression was increased, in particular EGFR expression in letrozole-resistant cell lines. The AI-resistant cell lines had acquired ability to grow without aromatase-mediated conversion of testosterone to estradiol, but upon withdrawal of AI treatment, testosterone induced minor growth stimulation. Letrozole, exemestane and tamoxifen were able to abrogate the testosterone stimulation but could not reduce growth to below the level in standard growth medium with AI, demonstrating cross-resistance between letrozole, exemestane and tamoxifen. In contrast, fulvestrant totally blocked growth of the AI resistant cell lines both after withdrawal of AI and with AI treatment. These data show that ER is the main driver of growth of the AI-resistant cell lines and indicate ligand-independent activation of ER. Fulvestrant is an efficient treatment option for these AI-resistant breast cancer cells, and the cell lines will be useful tools to disclose the underlying molecular mechanism for resistance to the different AIs.
Collapse
Affiliation(s)
- Stine Hole
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Astrid M Pedersen
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Susanne K Hansen
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Christina W Yde
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Anne E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
19
|
Elliott KM, Dent J, Stanczyk FZ, Woodley L, Coombes RC, Purohit A, Palmieri C. Effects of aromatase inhibitors and body mass index on steroid hormone levels in women with early and advanced breast cancer. Br J Surg 2014; 101:939-48. [PMID: 24687409 DOI: 10.1002/bjs.9477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Aromatase inhibitors (AIs) are central to the management of oestrogen receptor-positive breast cancer in the adjuvant and metastatic setting. Levels of circulating steroid hormones (SHs) were measured in patients established on AIs to investigate: the influence of body mass index (BMI) in both the adjuvant and metastatic setting; the class of AI utilized in the adjuvant setting (steroidal versus non-steroidal); and differences in SH levels between women treated adjuvantly and those receiving a second-line AI for locally advanced/metastatic disease. METHODS Plasma levels of androstenedione, 5-androstene-3β,17β-diol, dehydroepiandrosterone, oestradiol and testosterone were measured by radioimmunoassay in women with breast cancer who were receiving AIs in either an adjuvant or a metastatic setting. Differences between mean SH levels by class of AI, BMI, and second-line versus adjuvant therapy were assessed. RESULTS Sixty-four women were receiving AI therapy, 45 (70 per cent) in an adjuvant setting and 19 (30 per cent) were taking a second-line AI. There was no significant correlation between BMI and SH levels. However, BMI was significantly higher in the second-line AI cohort compared with the adjuvant cohort (29.8 versus 26.2 kg/m2 respectively; P = 0.026). In the adjuvant setting, patients receiving a steroidal AI had significantly higher levels of all five hormones (P < 0.050). In the second-line AI cohort, oestradiol levels were significantly higher than in the adjuvant cohort (4.5 versus 3.3 pg/ml respectively; P = 0.022). Multivariable analysis adjusted for BMI confirmed the higher residual oestradiol level in the second-line AI group (P = 0.063) and a significantly higher androstenedione level (P = 0.022). CONCLUSION Residual levels of SH were not significantly influenced by BMI. However, the significant differences in residual SH levels between the second-line and adjuvant AI cohort is of relevance in the context of resistance to AI therapy, and warrants further investigation.
Collapse
Affiliation(s)
- K M Elliott
- Department of Biosurgery and Surgical Technology, Imperial College London, London, UK; Cancer Research UK Laboratories, Imperial Centre for Translational and Experimental Medicine, Division of Cancer, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Doddamane I, Butler R, Jhaveri A, Chung GG, Cheng D. Where does radioimmunotherapy fit in the management of breast cancer? Immunotherapy 2014; 5:895-904. [PMID: 23902558 DOI: 10.2217/imt.13.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed malignancies and is the main cause of death in women aged 40-49 years. Metastatic breast cancer is a heterogeneous disease that has a variety of different clinical presentations, ranging from solitary metastatic lesion to diffuse and multiple organ involvement. The biological heterogeneity of metastatic breast cancer has led to its unpredictable clinical behavior. One of the major challenges, therefore, is to identify predictive and prognostic models facilitating the selection of patients who can benefit from more aggressive and potentially curative options. This article provides an overview of the current management of metastatic breast cancer with focused emphasis on radioimmunotherapy.
Collapse
Affiliation(s)
- Indu Doddamane
- Department of Diagnostic Radiology, Yale University School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT 06520-8042, USA.
| | | | | | | | | |
Collapse
|
21
|
Austreid E, Lonning PE, Eikesdal HP. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin Pharmacother 2014; 15:681-700. [PMID: 24579888 DOI: 10.1517/14656566.2014.885952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Deregulated signaling pathways are associated with resistance to chemotherapy and endocrine treatment, providing a rationale for the implementation of novel targeted therapies in breast cancer therapy. Key molecules targeted therapeutically in ongoing clinical breast cancer trials are phosphoinositide 3-kinase-Akt-mammalian target of rapamycin (mTOR), Src, insulin-like growth factor 1 receptor, heat shock protein-90, histone deacetylases, cyclin-dependent kinases (CDKs), Notch and human epidermal growth factor receptors (HERs). AREAS COVERED This review provides an overview of novel targeted agents currently explored in clinical breast cancer trials and registered in ClinicalTrials.gov. The main focus will be on their ability to prevent or reverse endocrine resistance and chemoresistance in breast cancer. EXPERT OPINION HER2 targeted agents have extended survival substantially, both in the adjuvant and metastatic setting, pointing to a crucial dependency on this pathway in HER2-amplified breast cancer, including drug resistance reversal. While data on mTOR inhibitors are encouraging and preliminary results on CDK4/6 and Src inhibitors exciting, so far other targeted agents have been of limited benefit when added in concert with conventional therapies. Future clinical trials should systematically explore biomarkers and defects in functional gene cascades to identify relevant biological mechanisms to be targeted therapeutically in breast cancer.
Collapse
Affiliation(s)
- Eilin Austreid
- University of Bergen, Department of Clinical Science, Section of Oncology , Bergen , Norway
| | | | | |
Collapse
|
22
|
Van Asten K, Neven P, Lintermans A, Wildiers H, Paridaens R. Aromatase inhibitors in the breast cancer clinic: focus on exemestane. Endocr Relat Cancer 2014; 21:R31-49. [PMID: 24434719 DOI: 10.1530/erc-13-0269] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Breast cancer is the most prevalent type of cancer in women and responsible for significant female cancer-related mortality worldwide. In the Western world, over 80% of breast cancers are hormone-receptor positive for which endocrine therapy is administered. The main anti-estrogen treatments in use consist of selective estrogen-receptor modulators, such as tamoxifen, and third-generation aromatase inhibitors (AIs), such as exemestane, letrozole, and anastrozole. In this review, the focus will lie on exemestane, its clinical use, and its side-effect profile. Exemestane is the only third-generation steroidal AI. Its efficacy as a first-line treatment in metastatic breast cancer has been demonstrated. Therefore, exemestane could be considered a valid first-line therapeutic option, but it also can be used in second-line or further situations. Exemestane is mostly used as part of sequential adjuvant treatment following tamoxifen, but in this setting it is also active in monotherapy. Furthermore, this AI has been studied in the neoadjuvant setting as presurgical treatment, and even as chemoprevention in high-risk healthy postmenopausal women. It may reverse side effects of tamoxifen, such as endometrial changes and thromboembolic disease but may also cause some inconvenient side effects itself. Additionally, there is a lack of total cross-resistance between exemestane and nonsteroidal AIs as far as their anti-tumoral efficacy is concerned; moreover the two classes of AIs display a nontotal overlapping toxicity profile. Taking together, exemestane can be considered as a useful treatment option at all stages of breast cancer.
Collapse
Affiliation(s)
- Kathleen Van Asten
- KU Leuven, Department of Oncology, Leuven, Belgium University Hospitals Leuven, Department of Gynecology and Obstetrics, Leuven, Belgium University Hospitals Leuven, Department of General Medical Oncology, Leuven, Belgium
| | | | | | | | | |
Collapse
|
23
|
Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ. Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 2014; 382:695-723. [PMID: 23933149 DOI: 10.1016/j.mce.2013.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/29/2022]
Abstract
Endocrine therapy forms a central modality in the treatment of estrogen receptor positive breast cancer. The routine use of 5 years of adjuvant tamoxifen has improved survival rates for early breast cancer, and more recently has evolved in the postmenopausal setting to include aromatase inhibitors. The optimal duration of adjuvant endocrine therapy remains an active area of clinical study with recent data supporting 10 years rather than 5 years of adjuvant tamoxifen. However, endocrine therapy is limited by the development of resistance, this can occur by a number of possible mechanisms and numerous studies have been performed which combine endocrine therapy with agents that modulate these mechanisms with the aim of preventing or delaying the emergence of resistance. Recent trial data regarding the combination of the mammalian target of rapamycin (mTOR) inhibitor, everolimus with endocrine therapy have resulted in a redefinition of the clinical treatment pathway in the metastatic setting. This review details the current endocrine therapy utilized in both early and advanced disease, as well as exploring potential new targets which modulate pathways of resistance, as well as agents which aim to modulate adrenal derived steroidogenic hormones.
Collapse
Affiliation(s)
- Carlo Palmieri
- The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, Liverpool L69 3GA, UK; Liverpool & Merseyside Breast Academic Unit, The Linda McCartney Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, UK; Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wiral CH63 4JY, UK.
| | - Darren K Patten
- Department of Surgery, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK
| | - Adam Januszewski
- Department of Medical Oncology, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK
| | - Giorgia Zucchini
- The University of Manchester, Institute of Cancer Studies, Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Sacha J Howell
- The University of Manchester, Institute of Cancer Studies, Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
24
|
Zhou J, Teng R, Wang Q, Xu C, Guo J, Yuan C, Shen J, Hu W, Wang L, Xie S. Endocrine resistance in breast cancer: Current status and a perspective on the roles of miRNAs (Review). Oncol Lett 2013; 6:295-305. [PMID: 24137320 PMCID: PMC3789028 DOI: 10.3892/ol.2013.1405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/03/2013] [Indexed: 12/11/2022] Open
Abstract
Current endocrine therapies for females with estrogen receptor-positive breast cancer have facilitated substantial improvements in outcomes. The effectiveness of endocrine therapy is limited by either initial de novo resistance or acquired endocrine resistance. Multiple mechanisms responsible for endocrine resistance have been proposed, including deregulation of various components of the estrogen receptor (ER) pathway, alterations in cell cycle and cell survival signaling molecules, and the activation of escape pathways. Dysregulation of miRNA expression has been associated with experimental and clinical endocrine therapy resistance. miRNAs are pivotal to understanding the complex biological mechanism of endocrine resistance, and may serve as novel candidate predictive and prognostic surrogates and therapeutic targets. This review focuses on current progress concerning the roles of miRNAs in endocrine resistance, and discusses the challenges and opportunities for implementing miRNA-based assays and treatment for patients with endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Amaral C, Varela C, Azevedo M, da Silva ET, Roleira FMF, Chen S, Correia-da-Silva G, Teixeira N. Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: aromatase inhibition and autophagy. J Steroid Biochem Mol Biol 2013; 135:51-9. [PMID: 23318878 DOI: 10.1016/j.jsbmb.2012.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 01/31/2023]
Abstract
Several therapeutic approaches are used in estrogen receptor positive (ER(+)) breast cancers, being one of them the use of aromatase inhibitors (AIs). Although AIs demonstrate higher efficacy than tamoxifen, they can also exhibit de novo or acquired resistance after prolonged treatment. Recently, we have described the synthesis and biochemical evaluation of four steroidal AIs, 3β-hydroxyandrost-4-en-17-one (1), androst-4-en-17-one (12), 4α,5α-epoxyandrostan-17-one (13a) and 5α-androst-2-en-17-one (16), obtained from modifications in the A-ring of the aromatase substrate, androstenedione. In this study, it was investigated the biological effects of these AIs in different breast cancer cell lines, an ER(+) aromatase-overexpressing human breast cancer cell line (MCF-7aro cells), an estrogen-receptor negative (ER(-)) human breast cancer cell line (SK-BR-3 cells), and a late stage of acquired resistance cell line (LTEDaro cells). The effects of an autophagic inhibitor (3-methyladenine) plus AIs 1, 12, 13a or exemestane in LTEDaro cells were also studied to understand the involvement of autophagy in AI acquired resistance. Our results showed that these steroids inhibit aromatase of MCF-7aro cells and decrease cell viability in a dose- and time-dependent manner. The new AI 1 is the most potent inhibitor, although the AI 12 demonstrates to be the most effective in decreasing cell viability. Besides, and in advantage over exemestane, AIs 12 and 13a also reduced LTEDaro cells viability. The use of the autophagic inhibitor allowed AIs to diminish viability of LTEDaro cells, presenting a similar behavior to the sensitive cells. Thus, inhibition of autophagy may sensitize hormone-resistant cancer cells to anti-estrogen therapies.
Collapse
Affiliation(s)
- Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee JK, Im SA, Lee D, Kim JY, Lim Y, Lee E, Moon HG, Kim TY, Han SW, Oh DY, Lee SH, Han W, Kim DW, Kim TY, Noh DY. Efficacy of exemestane in korean patients with metastatic breast cancer after failure of nonsteroidal aromatase inhibitors. J Breast Cancer 2013; 16:66-71. [PMID: 23593084 PMCID: PMC3625772 DOI: 10.4048/jbc.2013.16.1.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/05/2013] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Exemestane has shown good efficacy and tolerability in postmenopausal women with hormone receptor-positive metastatic breast cancer. However, clinical outcomes in Korean patients have not yet been reported. METHODS Data on 112 postmenopausal women with metastatic breast cancer were obtained retrospectively. Clinicopathological characteristics and treatment history were extracted from medical records. All patients received 25 mg exemestane daily until objective disease progression. Progression-free survival (PFS) was the primary endpoint, and secondary endpoints were overall survival (OS), objective response rate (ORR), and clinical benefit rate (CBR=complete response+partial response+stable disease for 6 months). RESULTS The median age of the subjects was 55 years (range, 28-76 years). Exemestane treatment resulted in a median PFS of 5.7 months (95% confidence interval [CI], 4.4-7.0 months) and median OS of 21.9 months (95% CI, 13.6-30.3 months). ORR was 6.4% and CBR was 46.4% for the 110 patients with evaluable lesions. Symptomatic visceral disease was independently associated with shorter PFS (hazard ratio, 3.611; 95% CI, 1.904-6.848; p<0.001), compared with bone-dominant disease in a multivariate analysis of PFS after adjusting for age, hormone receptor, human epidermal growth factor receptor 2, Ki-67 status, dominant metastasis site, and sensitivity to nonsteroidal aromatase inhibitor (AI) treatment. Sensitivity to previous nonsteroidal AI treatment was not associated with PFS, suggesting no cross-resistance between exemestane and nonsteroidal AIs. CONCLUSION Exemestane was effective in postmenopausal Korean women with hormone receptor-positive metastatic breast cancer who failed previous nonsteroidal AI treatment.
Collapse
Affiliation(s)
- June Koo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pritchard KI, Gelmon KA, Rayson D, Provencher L, Webster M, McLeod D, Verma S. Endocrine therapy for postmenopausal women with hormone receptor-positive her2-negative advanced breast cancer after progression or recurrence on nonsteroidal aromatase inhibitor therapy: a Canadian consensus statement. ACTA ACUST UNITED AC 2013; 20:48-61. [PMID: 23443928 DOI: 10.3747/co.20.1316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Approximately 22,700 Canadian women were expected to be diagnosed with breast cancer in 2012. Despite improvements in screening and adjuvant treatment options, a substantial number of postmenopausal women with hormone receptor positive (hr+) breast cancer will continue to develop metastatic disease during or after adjuvant endocrine therapy. Guidance on the selection of endocrine therapy for patients with hr+ disease that is negative for the human epidermal growth factor receptor 2 (her2-) and that has relapsed or progressed on earlier nonsteroidal aromatase inhibitor (nsai) therapy is of increasing clinical importance. Exemestane, fulvestrant, and tamoxifen are approved therapeutic options in this context. Four phase iii trials involving 2876 patients-efect, sofea, confirm, and bolero-2-have assessed the efficacy of various treatment options in this clinical setting. Data from those trials suggest that standard-dose fulvestrant (250 mg monthly) and exemestane are of comparable efficacy, that doubling the dose of fulvestrant from 250 mg to 500 mg monthly results in a 15% reduction in the risk of progression, and that adding everolimus to exemestane (compared with exemestane alone) results in a 57% reduction in the risk of progression, albeit with increased toxicity. Multiple treatment options are now available to women with hr+ her2- advanced breast cancer recurring or progressing on earlier nsai therapy, although current clinical trial data suggest more robust clinical efficacy with everolimus plus exemestane. Consideration should be given to the patient's age, functional status, and comorbidities during selection of an endocrine therapy, and use of a proactive everolimus safety management strategy is encouraged.
Collapse
Affiliation(s)
- K I Pritchard
- Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, ON
| | | | | | | | | | | | | |
Collapse
|
28
|
Lønning PE. Poor-prognosis estrogen receptor- positive disease: present and future clinical solutions. Ther Adv Med Oncol 2012; 4:127-37. [PMID: 22590486 DOI: 10.1177/1758834012439338] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Use of chemotherapy for patients with estrogen receptor (ER)-positive breast cancer has been a conflicting issue. Recent studies have identified predictive markers allowing identification of poor-prognosis ER-positive breast cancers in need of more aggressive therapy. In general, tumours belonging to the so-called luminal B class, tumours expressing a high Ki67, human epidermal growth factor receptor 2 (HER-2) overexpression or a high score on the Oncotype DX gene expression profile reveal a poor prognosis compared with ER-rich tumours of the luminal A class. In contrast, recent studies have shown these tumours, contrasting tumours of the luminal A class, to benefit from more aggressive anthracycline-containing chemotherapy including a taxane. In the case of metastatic disease, patients with HER-2-positive, ER-positive tumours may benefit from having endocrine therapy and an anti-HER-2 agent administered in combination.
Collapse
Affiliation(s)
- Per E Lønning
- Professor and Consultant Oncologist, Section of Oncology, Institute of Medicine, University of Bergen; Department of Oncology, Haukeland University Hospital, N-5021, Bergen, Norway
| |
Collapse
|
29
|
Amaral C, Borges M, Melo S, da Silva ET, Correia-da-Silva G, Teixeira N. Apoptosis and autophagy in breast cancer cells following exemestane treatment. PLoS One 2012; 7:e42398. [PMID: 22912703 PMCID: PMC3418278 DOI: 10.1371/journal.pone.0042398] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/05/2012] [Indexed: 01/11/2023] Open
Abstract
Aromatase inhibitors (AIs), which block the conversion of androgens to estrogens, are used for hormone-dependent breast cancer treatment. Exemestane, a steroidal that belongs to the third-generation of AIs, is a mechanism-based inhibitor that binds covalently and irreversibly, inactivating and destabilizing aromatase. Since the biological effects of exemestane in breast cancer cells are not totally understood, its effects on cell viability, cell proliferation and mechanisms of cell death were studied in an ER-positive aromatase-overexpressing breast cancer cell line (MCF-7aro). The effects of 3-methyladenine (3-MA), an inhibitor of autophagy and of ZVAD-FMK, an apoptotic inhibitor, in exemestane treated cells were also investigated. Our results indicate that exemestane induces a strong inhibition in MCF-7aro cell proliferation in a dose- and time-dependent manner, promoting a significant cell cycle arrest in G(0)/G1 or in G(2)/M phases after 3 and 6 days of treatment, respectively. This was accompanied by a decrease in cell viability due to activation of cell death by apoptosis, via mitochondrial pathway and the occurrence of autophagy. Inhibition of autophagy by the autophagic inhibitor, 3-MA, resulted in a reduction of cell viability and activation of caspases. All together the results obtained suggest that exemestane induced mitochondrial-mediated apoptosis and autophagy, which act as a pro-survival process regulating breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Margarida Borges
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Soraia Melo
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Elisiário Tavares da Silva
- Center of Pharmaceutical Studies, Pharmaceutical Chemistry Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
30
|
Villarreal-Garza C, Cortes J, Andre F, Verma S. mTOR inhibitors in the management of hormone receptor-positive breast cancer: the latest evidence and future directions. Ann Oncol 2012; 23:2526-2535. [PMID: 22553196 DOI: 10.1093/annonc/mds075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND There is an unmet therapeutic need in endocrine-resistant, hormone receptor (HR)-positive, human epidermal growth factor receptor 2-negative advanced breast cancer (BC). Preclinical studies support the hypothesis that the mammalian target of rapamycin (mTOR) inhibition could potentially overcome resistance to endocrine therapy. MATERIALS AND METHODS A literature review regarding BC and mTOR inhibitors was undertaken. The reference lists from retrieved manuscripts were reviewed to identify further studies. RESULTS Phase II studies have reported that the combination of mTOR inhibitors with endocrine therapy shows efficacy in patients with advanced disease that progressed after treatment with aromatase inhibitors. The recent findings of the phase III BOLERO-2 confirmed that everolimus in combination with exemestane significantly improved progression-free survival and response rate, with a manageable safety profile. CONCLUSIONS The addition of everolimus to exemestane for women with HR-positive metastatic BC is now considered a new therapeutic strategy. However, a word of caution should be added regarding toxic effects, which might limit practical use and compliance. It is essential that clinicians are educated about key recommendations for toxicity management and specific guideline dose modifications. Additional research efforts with the addition of these compounds in the early-stage setting is greatly needed to improve the survival of patients with HR-positive BC.
Collapse
Affiliation(s)
- C Villarreal-Garza
- Department of Medical Oncology, Instituto Nacional de Cancerologia, Mexico DF, Mexico
| | - J Cortes
- Breast Cancer Unit, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F Andre
- Breast Cancer Unit, Department of Medical Oncology, University Paris XI and Institut Gustave Roussy, Villejuif, France
| | - S Verma
- Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada.
| |
Collapse
|
31
|
Kim SH, Park IH, Lee HW, Lee KS, Nam BH, Ro JS. Efficacy of Exemestane After Nonsteroidal Aromatase inhibitor Use in Metastatic Breast Cancer Patients. Asian Pac J Cancer Prev 2012; 13:979-83. [DOI: 10.7314/apjcp.2012.13.3.979] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Miller WR, Larionov AA. Understanding the mechanisms of aromatase inhibitor resistance. Breast Cancer Res 2012; 14:201. [PMID: 22277572 PMCID: PMC3496110 DOI: 10.1186/bcr2931] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aromatase inhibitors (AIs) have a central role in the treatment of breast cancer; however, resistance is a major obstacle to optimal management. Evidence from endocrine, molecular and pathological measurements in clinical material taken before and after therapy with AIs and data from clinical trials in which AIs have been given as treatment either alone or in combination with other targeted agents suggest diverse causes for resistance. These include inherent tumour insensitivity to oestrogen, ineffective inhibition of aromatase, sources of oestrogenic hormones independent of aromatase, activation of signalling by non-endocrine pathways, enhanced cell survival and selection of hormone-insensitive cellular clones during treatment.
Collapse
|
33
|
Llombart-Cussac A, Ruiz A, Antón A, Barnadas A, Antolín S, Alés-Martínez JE, Alvarez I, Andrés R, García Saenz JA, Lao J, Carrasco E, Cámara C, Casas I, Martín M. Exemestane versus anastrozole as front-line endocrine therapy in postmenopausal patients with hormone receptor-positive, advanced breast cancer: final results from the Spanish Breast Cancer Group 2001-03 phase 2 randomized trial. Cancer 2011; 118:241-7. [PMID: 21717449 DOI: 10.1002/cncr.26299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/15/2011] [Accepted: 04/25/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND Several aromatase inhibitor studies have reported variations in the inhibitory potency of these agents that could lead to differences in clinical outcomes. In the current study, the authors formally evaluated the activity of anastrozole and exemestane in postmenopausal women with hormone-responsive, advanced breast cancer. METHODS Postmenopausal women who had measurable disease according to Response Evaluation Criteria in Solid Tumors and had not received previous endocrine therapy for advanced breast cancer were randomized to receive either oral exemestane 25 mg daily or oral anastrozole 1 mg daily until they had disease progression. The primary endpoint was the objective response rate (ORR), and secondary endpoints included the clinical benefit rate (CBR), time to progression (TTP), overall survival, and safety. Crossover to the other aromatase inhibitor was permitted at the time of disease progression; ORR, CBR, and TTP after second-line treatment also were explored. RESULTS In total, 103 patients were enrolled. The median patient age was 71.6 years, 52.4% of patients had visceral disease, and 75.8% of patients had ≥ 2 disease sites. Half of the patients had received previous tamoxifen, and 60% had received previous chemotherapy. The efficacy observed in the exemestane and anastrozole groups was an ORR of 36.2% and 46%, respectively; a CBR of 59.6% and 68%, respectively, and a TTP of 6.1 months and 12.1 months, respectively. At progression, 28 patients crossed over to the other aromatase inhibitor, including 16 patients who switched to exemestane (CBR, 43.7%; TTP, 4.4 months) and 12 patients who switched to anastrozole (CBR, 8.3%; TTP, 2 months). Both drugs were generally well tolerated, and no study drug-related serious adverse events were reported. CONCLUSIONS In this phase 2 randomized trial, no significant differences in clinical activity were observed in favor of exemestane to justify a superiority phase 3 trial design in the first-line setting.
Collapse
Affiliation(s)
- Antonio Llombart-Cussac
- Medical Oncology Service, Biomedical Research Institute, Arnau de Vilanova University Hospital, Lleida, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen S. An "omics" approach to determine the mechanisms of acquired aromatase inhibitor resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:347-52. [PMID: 21332390 DOI: 10.1089/omi.2010.0097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aromatase inhibitors (AIs) are the major types of drugs to treat hormone-dependent breast cancer. Although these drugs work effectively, cancer still recurs in many patients after treatment as a result of acquired resistance to the AIs. To characterize the resistant mechanisms, a set of MCF-7aro cell lines that acquired resistance to the AIs was generated. Through an "Omics" approach, we found that the resistance mechanisms of the three AIs (anastrozole, letrozole, and exemestane) differ and activation of estrogen receptor alpha (ERα) is critical for acquired AI resistance. Our results reveal that growth factor/signal transduction pathways are upregulated after ERα-dependent pathways are suppressed by AIs, and ERα can then be activated through different crosstalk mechanisms.
Collapse
Affiliation(s)
- Shiuan Chen
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| |
Collapse
|
35
|
Beresford M, Tumur I, Chakrabarti J, Barden J, Rao N, Makris A. A qualitative systematic review of the evidence base for non-cross-resistance between steroidal and non-steroidal aromatase inhibitors in metastatic breast cancer. Clin Oncol (R Coll Radiol) 2010; 23:209-15. [PMID: 21134732 DOI: 10.1016/j.clon.2010.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 11/16/2022]
Abstract
AIMS The most effective sequence of tamoxifen and both steroidal (SAIs) and non-steroidal aromatase inhibitors (NSAIs) has been extensively studied in the adjuvant setting. However, treatments for women who have failed initial aromatase inhibitor therapy in the metastatic setting have received relatively little attention. A systematic review was undertaken to assess the use of SAIs and NSAIs in metastatic breast cancer. MATERIALS AND METHODS Medline, Embase and the Cochrane library were searched using free text and MeSH terms. Studies assessing the cross-resistance, efficacy and safety of SAIs and NSAIs for postmenopausal women with advanced metastatic breast cancer confirmed by histology/cytology were included. Patients had progressed/relapsed from previous adjuvant, first- or second-line aromatase inhibitor treatment and had undergone treatment with at least two regimens consisting of aminoglutethimide, anastrozole, letrozole and/or exemestane. RESULTS Nine studies reported results for patients treated with an SAI after treatment failure with an NSAI. For SAI after NSAI, clinical benefit was the most frequently reported outcome. The clinical benefit for exemestane (SAI) after any NSAI failure or before treatment ranged from 12% (complete response not recorded, partial response 2%, stable disease 10%) to 55% (complete response 6%, partial response 13%, stable disease 35%) Survival outcomes were infrequently reported; four studies reported disease progression. The time to progression ranged from 3.7 to 5.2 months. Only one study reported a median overall survival with exemestane at 15.2 months. Only one study reported information for an NSAI after SAI and an NSAI followed by another NSAI. DISCUSSION This review suggests that switching from an NSAI to an SAI is a reasonable option. This would be particularly important for patients who would probably respond to further endocrine manoeuvres; strongly oestrogen receptor-positive disease, non-visceral disease, a good prior response or a long duration of response. Further research to optimise the sequence of endocrine therapies in metastatic breast cancer is needed.
Collapse
Affiliation(s)
- M Beresford
- Bristol Oncology and Haematology Centre, Horfield Road, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Lønning PE. The potency and clinical efficacy of aromatase inhibitors across the breast cancer continuum. Ann Oncol 2010; 22:503-514. [PMID: 20616198 PMCID: PMC3042921 DOI: 10.1093/annonc/mdq337] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The strategy of using estrogen suppression to treat breast cancer led to the development of aromatase inhibitors, including the third-generation nonsteroidal compounds anastrozole and letrozole, and the steroidal compound exemestane. Aromatase inhibitors potently inhibit aromatase activity and also suppress estrogen levels in plasma and tissue. In clinical studies in postmenopausal women with breast cancer, third-generation aromatase inhibitors were shown superior to tamoxifen for the treatment of metastatic disease. Studies of adjuvant therapy with aromatase inhibitors include (i) head-to-head studies of 5 years of the aromatase inhibitor versus 5 years of tamoxifen monotherapy; (ii) sequential therapy of 2-3 years of tamoxifen followed by an aromatase inhibitor (or the opposite sequence) versus 5 years of tamoxifen monotherapy; (iii) extended therapy with an aromatase inhibitor after 5 years of tamoxifen; and (iv) sequential therapy with an aromatase inhibitor versus aromatase inhibitor monotherapy. Recent results from the Arimidex, Tamoxifen, Alone or in Combination and Breast International Group 1-98 trials advocate using an aromatase inhibitor upfront. This article examines the clinical data with aromatase inhibitors, following a brief summary of their pharmacology.
Collapse
Affiliation(s)
- P E Lønning
- Section of Oncology, Institute of Medicine, University of Bergen, and Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
37
|
Bertelli G, Gangadhara S. Exemestane in postmenopausal women with early or advanced breast cancer: a review. Expert Opin Pharmacother 2010; 11:1933-42. [DOI: 10.1517/14656566.2010.495945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Lønning PE. Evolution of endocrine adjuvant therapy for early breast cancer. Expert Opin Investig Drugs 2010; 19 Suppl 1:S19-30. [DOI: 10.1517/13543781003714865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Lønning PE, Geisler J. Evaluation of plasma and tissue estrogen suppression with third-generation aromatase inhibitors: of relevance to clinical understanding? J Steroid Biochem Mol Biol 2010; 118:288-93. [PMID: 19808096 DOI: 10.1016/j.jsbmb.2009.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 11/23/2022]
Abstract
Development of aromatase inhibition and aromatase inhibitors as a therapeutic strategy was initiated through two different pathways. The one pathway went through systematic exploration of aromatase substrate analogues for enzyme inhibitions, subsequently leading to the development of steroidal agents for clinical use. The second involved clinical observation with an unsuccessful anti-epileptic compound named aminoglutethimide, attempting to achieve a "medical adrenalectomy". Endocrine studies on patients treated with aminoglutethimide lead to direct assessment of in vivo aromatase inhibition in patients on treatment, thus identifying a novel therapeutic strategy. As such, both research programs represent different examples of pioneering translational work leading towards a successful therapeutic strategy. Subsequent studies with respect to total aromatase inhibition have led to successful development of more potent strategies. Most importantly, these studies have revealed a correlation between aromatase inhibition and clinical outcome. Ongoing studies exploring tissue estrogen levels as well as gene expression profiles on therapy may further improve this important therapeutic area.
Collapse
Affiliation(s)
- P E Lønning
- Section of Oncology, Institute of Medicine, University of Bergen, and Department of Oncology, Haukeland University Hospital, Jonas Lies vei 26, N-5021 Bergen, Norway.
| | | |
Collapse
|
40
|
Chanplakorn N, Chanplakorn P, Suzuki T, Ono K, Chan MSM, Miki Y, Saji S, Ueno T, Toi M, Sasano H. Increased estrogen sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β-HSD1) following neoadjuvant aromatase inhibitor therapy in breast cancer patients. Breast Cancer Res Treat 2010; 120:639-48. [DOI: 10.1007/s10549-010-0785-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 02/03/2010] [Indexed: 11/28/2022]
|
41
|
Masri S, Liu Z, Phung S, Wang E, Yuan YC, Chen S. The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Res Treat 2010; 124:89-99. [PMID: 20054641 DOI: 10.1007/s10549-009-0716-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/23/2009] [Indexed: 12/19/2022]
Abstract
Resistance to endocrine therapy agents has presented a clinical obstacle in the treatment of hormone-dependent breast cancer. Our laboratory has initiated a study of microRNA regulation of signaling pathways that may result in breast cancer progression on aromatase inhibitors (AI). Microarray analysis of hormone refractory cell lines identified 115 differentially regulated microRNAs, of which 49 microRNAs were believed to be hormone-responsive. A group of microRNAs were inversely expressed in the AI-resistant lines versus LTEDaro and tamoxifen-resistant. We focused our work on hsa-miR-128a which was hormone-responsive and selectively up-regulated in the letrozole-resistant cell lines. Human miR-128a was predicted to target the TGFβ signaling pathway and indeed sensitivity to TGFβ was compromised in the letrozole-resistant cells, as compared to parental MCF-7aro. Human miR-128a was shown to negatively target TGFβRI protein expression by binding to the 3'UTR region of the gene. Inhibition of endogenous miR-128a resulted in resensitization of the letrozole-resistant lines to TGFβ growth inhibitory effects. These data suggest that the hormone-responsive miR-128a can modulate TGFβ signaling and survival of the letrozole-resistant cell lines. To our knowledge, this is the first study to address the role of microRNA regulation as well as TGFβ signaling in AI-resistant breast cancer cell lines. We believe that in addition to estrogen-modulation of gene expression, hormone-regulated microRNAs may provide an additional level of post-transcriptional regulation of signaling pathways critically involved in breast cancer progression and AI-resistance.
Collapse
Affiliation(s)
- Selma Masri
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
While novel endocrine treatment options have been implemented in the advanced - as well as adjuvant setting, recent results suggest a place for "old-fashioned" additive treatment with estrogens in advanced breast cancer. This paper reviews the biological rationale for endocrine therapy in general and additive treatment with estrogens in particular. The finding that patients becoming resistant to treatment with aromatase inhibitors may subsequently respond to estrogen therapy adds important information to our understanding of therapy resistance in general. Moreover, the return of a therapeutic option abandoned more than 20 years ago, now to be used in a different sequential setting, suggests a critical examination whether there may be other conventional treatment options still earning a place as treatment in advanced disease as well. While ablative therapies including surgical oophorectomy, hypophysectomy and adrenalectomy are not candidate treatment options due to morbidity, there are additive treatment options apart from estrogen therapy that may be considered. Androgens administered at therapeutic doses are not feasible for toxicity reasons; yet, the potential of adding androgens in small doses as adjuvant to aromatase inhibitors should be further explored. Whether patients become resistant to other treatment options may still benefit from megestrol acetate, remains to be explored.
Collapse
Affiliation(s)
- Per Eystein Lønning
- Section of Oncology, Institute of Medicine, University of Bergen, and Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
43
|
Lønning PE, Helle H, Duong NK, Ekse D, Aas T, Geisler J. Tissue estradiol is selectively elevated in receptor positive breast cancers while tumour estrone is reduced independent of receptor status. J Steroid Biochem Mol Biol 2009; 117:31-41. [PMID: 19591931 DOI: 10.1016/j.jsbmb.2009.06.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 01/29/2023]
Abstract
Previous studies have suggested elevated estrogen production in tumour-bearing breast quadrants as well as in breast cancers versus benign tissue. Using highly sensitive assays, we determined breast cancer tissue estrogen concentrations together with plasma and benign tissue estrogen concentrations in each quadrant obtained from mastectomy specimens (34 postmenopausal and 13 premenopausal women). We detected similar concentrations of each of the three major estrogens estradiol (E(2)), estrone (E(1)) and E(1)S in tumour-bearing versus non-tumour-bearing quadrants. Considering malignant tumours, intratumour E(1) levels were reduced in cancer tissue obtained from pre- as well as postmenopausal women independent of tumour ER status (average ratio E(1) cancer: benign tissue of 0.2 and 0.3, respectively; p<0.001 for both groups), suggesting intratumour aromatization to be of minor importance. The most striking finding was a significant (4.1-8.6-fold) increased E(2) concentration in ER positive tumours versus normal tissue (p<0.05 and <0.001 for pre- and postmenopausal patients, respectively), contrasting low E(2) concentrations in ER- tumours (p<0.01 and <0.001 comparing E(2) levels between ER+ and ER- tumours in pre- and postmenopausals, respectively). A possible explanation to our finding is increased ligand receptor binding capacity for E(2) in receptor positive tumours but alternative factors influencing intratumour estrogen disposition cannot be excluded.
Collapse
Affiliation(s)
- P E Lønning
- Section of Oncology, Institute of Medicine, University of Bergen, Jonas Lies vei 26, N-5021 Bergen, Norway.
| | | | | | | | | | | |
Collapse
|