1
|
Ciccarelli O, Colson A, De Saeger C, Reding R, Sempoux C, Leclercq IA, Stärkel P. Tumoral response and tumoral phenotypic changes in a rat model of diethylnitrosamine-induced hepatocellular carcinoma after salirasib and sorafenib administration. Onco Targets Ther 2018; 11:7143-7153. [PMID: 30410370 PMCID: PMC6200087 DOI: 10.2147/ott.s176903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Several intracellular signaling pathways that are deregulated during hepatocarcinogenesis might constitute potential targets for hepatocellular carcinoma (HCC) therapy. The aim of this study was to test the potential synergic antitumor effect of salirasib and sorafenib in a diethylnitrosamine (DEN)-induced HCC model in rat. The hypothesis of tumor phenotype changes during treatment was also analyzed. Materials and methods DEN was administered to Wistar rats during 9 weeks to induce cirrhosis and liver cancer. After tumor development, rats were treated with intraperitoneal injections of dimethyl sulfoxide (DMSO), or salirasib, and/or with oral sorafenib 5 days/week, during 4 weeks. At sacrifice, number and size of liver tumors as well as tumor burden were recorded, and all liver tumors were processed for histological and immunohistological analyses. Results Mortality rate was significantly higher in rats treated with salirasib and/or sorafenib than in the control group (P=0.001). Tumor burden was smaller in the treated group compared with the DMSO control group (P=0.044), but a synergistic effect of the two chemotherapies could not be observed. In 62.5% of rats (10/16) treated with salirasib and/or sorafenib, a cytokeratin-7 and -19-positive hepatocholangiocellular carcinoma (HCC/CHC) was found vs 20% (5/25) developing such phenotype in the DMSO control group (P=0.018). Ki67 immunostaining showed significantly reduced tumor cell proliferation in treated rats (P=0.001), whereas apoptosis as assessed by caspase-3 activity in cell lysate was similar in all groups. Conclusions The addition of sorafenib to salirasib did not seem to provide any synergistic therapeutic effect in this study. Both chemotherapeutic agents, administered alone or in combination, induced tumoral phenotypic changes in the majority of rats, a finding not associated with an increased tumor cell proliferation or decreased apoptosis. The rat model described in this work constitutes the first experimental tool generating putatively more aggressive combined HCC/CHC tumors following chemotherapy. Further work is required to better characterize this clinically relevant phenomenon.
Collapse
Affiliation(s)
- Olga Ciccarelli
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium; .,Department of Surgery and Abdominal Transplantation, St Luc University Hospital, Université catholique de Louvain, Brussels, Belgium,
| | - Arthur Colson
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium;
| | - Christine De Saeger
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium;
| | - Raymond Reding
- Department of Surgery and Abdominal Transplantation, St Luc University Hospital, Université catholique de Louvain, Brussels, Belgium,
| | - Christine Sempoux
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium;
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium; .,Department of Gastroenterology, St Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Zayoud M, Marcu-Malina V, Vax E, Jacob-Hirsch J, Elad-Sfadia G, Barshack I, Kloog Y, Goldstein I. Ras Signaling Inhibitors Attenuate Disease in Adjuvant-Induced Arthritis via Targeting Pathogenic Antigen-Specific Th17-Type Cells. Front Immunol 2017; 8:799. [PMID: 28736556 PMCID: PMC5500629 DOI: 10.3389/fimmu.2017.00799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
The Ras family of GTPases plays an important role in signaling nodes downstream to T cell receptor and CD28 activation, potentially lowering the threshold for T-cell receptor activation by autoantigens. Somatic mutation in NRAS or KRAS may cause a rare autoimmune disorder coupled with abnormal expansion of lymphocytes. T cells from rheumatoid arthritis (RA) patients show excessive activation of Ras/MEK/ERK pathway. The small molecule farnesylthiosalicylic acid (FTS) interferes with the interaction between Ras GTPases and their prenyl-binding chaperones to inhibit proper plasma membrane localization. In the present study, we tested the therapeutic and immunomodulatory effects of FTS and its derivative 5-fluoro-FTS (F-FTS) in the rat adjuvant-induced arthritis model (AIA). We show that AIA severity was significantly reduced by oral FTS and F-FTS treatment compared to vehicle control treatment. FTS was as effective as the mainstay anti-rheumatic drug methotrexate, and combining the two drugs significantly increased efficacy compared to each drug alone. We also discovered that FTS therapy inhibited both the CFA-driven in vivo induction of Th17 and IL-17/IFN-γ producing “double positive” as well as the upregulation of serum levels of the Th17-associated cytokines IL-17A and IL-22. By gene microarray analysis of effector CD4+ T cells from CFA-immunized rats, re-stimulated in vitro with the mycobacterium tuberculosis heat-shock protein 65 (Bhsp65), we determined that FTS abrogated the Bhsp65-induced transcription of a large list of genes (e.g., Il17a/f, Il22, Ifng, Csf2, Lta, and Il1a). The functional enrichment bioinformatics analysis showed significant overlap with predefined gene sets related to inflammation, immune system processes and autoimmunity. In conclusion, FTS and F-FTS display broad immunomodulatory effects in AIA with inhibition of the Th17-type response to a dominant arthritogenic antigen. Hence, targeting Ras signal-transduction cascade is a potential novel therapeutic approach for RA.
Collapse
Affiliation(s)
- Morad Zayoud
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Victoria Marcu-Malina
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einav Vax
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | - Galit Elad-Sfadia
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Barshack
- Institute of Pathology, Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | - Yoel Kloog
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Itamar Goldstein
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
3
|
Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett 2017; 13:1041-1047. [PMID: 28454211 DOI: 10.3892/ol.2017.5557] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
Although the biological basis of hepatocellular carcinoma (HCC) remains unclear, effective treatments and improvement of the survival rate remain worthwhile research goals. Abnormal protein signaling pathways contributing to uncontrolled cell proliferation, differentiation, survival and apoptosis are biomarkers of the carcinogenic process. Certain mutated components or overexpression of the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway are increasingly being studied in HCC carcinogenesis. The present review addresses the effect of the Ras/Raf/MEK/ERK signaling pathway on the pathogenesis of HCC, and provides an update on the preclinical and clinical development of various inhibitors targeting this core signaling pathway, which include various Ras inhibitors, Raf inhibitors and MEK inhibitors for HCC.
Collapse
Affiliation(s)
- Sufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical Collage, Shantou, Guangdong 515041, P.R. China
| | - Guohua Liu
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical Collage, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
4
|
Abstract
Hepatocellular cancer (HCC) is a leading cause of cancer death worldwide, and most patients who are diagnosed with HCC are ineligible for curative local therapy. The targeted agent sorafenib provides modest survival benefits in the setting of advanced disease. Novel systemic treatment options for HCC are sorely needed. In this review, we identify and categorize the drugs and targets that are in various phases of testing for use against HCC. We also focus on the potential for combining these agents with radiotherapy. This would help identify directions for future study that are likely to yield positive findings and improve outcomes for patients with HCC.
Collapse
Affiliation(s)
- Nitin Ohri
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Andreas Kaubisch
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Madhur Garg
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
5
|
Delire B, Stärkel P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest 2015; 45:609-23. [PMID: 25832714 DOI: 10.1111/eci.12441] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/27/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is still a major health problem, often diagnosed at an advanced stage. The multikinase inhibitor sorafenib is to date the sole approved systemic therapy. Several signalling pathways are implicated in tumour development and progression. Among these pathways, the Ras/MAPK pathway is activated in 50-100% of human HCCs and is correlated with a poor prognosis. The aim of this work was to review the main intracellular mechanisms leading to aberrant Ras pathway activation in HCC and the potential therapeutic implications. MATERIALS AND METHODS This review is based on the material found on PubMed up to December 2014. 'Ras signaling, Ras dysregulation, Ras inhibition, MAPK pathway, cancer, hepatocarcinoma and liver cancer' alone or in combination were the main terms used for online research. RESULTS Multiple mechanisms lead to the deregulation of the Ras pathway in liver cancer. Ras and Raf gene mutations are rare events in human hepatocarcinogenesis in contrast to experimental models in rodents. Downregulation of several Ras/MAPK pathway inhibitors such as GAPs, RASSF proteins, DUSP1, Sprouty and Spred proteins is largely implicated in the aberrant activation of this pathway in the context of wild-type Ras and Raf genes. Epigenetic or post-transcriptional mechanisms lead to the downregulation of these tumour suppressor genes. CONCLUSION Ras/MAPK pathway effectors may be considered as potential therapeutic targets in the field of HCC. In particular after the arrival of sorafenib, more Ras/MAPK inhibitors have emerged and are still in preclinical or clinical investigation for HCC therapy.
Collapse
Affiliation(s)
- Bénédicte Delire
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique (IREC), Catholic University of Louvain, Brussels, Belgium
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique (IREC), Catholic University of Louvain, Brussels, Belgium.,Department of Gastroenterology, Saint-Luc Academic Hospital and Institute of Clinical Research, Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Bishayee A. The role of inflammation and liver cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:401-35. [PMID: 24818732 DOI: 10.1007/978-3-0348-0837-8_16] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Persistent inflammation is known to promote and exacerbate malignancy. Primary liver cancer, mostly hepatocellular carcinoma (HCC), is a clear example of inflammation-related cancer as more than 90 % of HCCs arise in the context of hepatic injury and inflammation. HCC represents the fifth most common malignancy and the third leading cause of cancer-related death worldwide with about one million new cases diagnosed every year with almost an equal number of deaths. Chronic unresolved inflammation is associated with persistent hepatic injury and concurrent regeneration, leading to sequential development of fibrosis, cirrhosis, and eventually HCC. Irrespective of the intrinsic differences among various etiological factors, a common denominator at the origin of HCC is the perpetuation of a wound-healing response activated by parenchymal cell death and the resulting inflammatory cascade. Hence, the identification of fundamental inflammatory signaling pathways causing transition from chronic liver injury to dysplasia and HCC could depict new predictive biomarkers and targets to identify and treat patients with chronic liver inflammation. This chapter critically discusses the roles of several major cytokines, chemokines, growth factors, transcription factors, and enzymes as well as a distinct network of inflammatory signaling pathways in the development and progression of HCC. It also highlights and analyzes preclinical animal studies showing innovative approaches of targeting inflammatory mediators and signaling by a variety of natural compounds and synthetic agents to achieve effective therapy as well as prevention of hepatic malignancy. Additionally, current limitations and potential challenges associated with the inhibition of inflammatory signaling as well as future directions of research to accelerate clinical development of anti-inflammatory agents to prevent and treat liver cancer are presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, 1600 East Hill Street, Signal Hill, CA, 90755, USA,
| |
Collapse
|
7
|
Ling Y, Wang Z, Wang X, Li X, Wang X, Zhang W, Dai H, Chen L, Zhang Y. Hybrid molecule from Farnesylthiosalicylic acid-diamine and phenylpropenoic acid as Ras-related signaling inhibitor with potent antitumor activities. Chem Biol Drug Des 2014; 85:145-52. [PMID: 25043275 DOI: 10.1111/cbdd.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 12/30/2022]
Abstract
Novel series of Farnesylthiosalicylic acid-diamine/phenylpropenoic acid hybrids were designed and synthesized. Their in vitro growth inhibitory assays showed that most compounds displayed strong antiproliferation activity against seven cancer cells. Especially, the new hybrid 12 f, by the conjugation of 10a with ferulic acid, could selectively suppress the proliferation of tumor cells and display significantly lower toxicities to normal cells than its intermediate 10a. Furthermore, 12 f dose-dependently induced SMMC-7721 cell apoptosis. Additionally, our observations demonstrated that 12 f inhibited both Ras-related signaling and phosphorylated NF-κB synergistically, which may be advantageous to the strong antitumor activities of 12 f. Our findings suggest that these novel hybrids may hold a great promise as therapeutic agents for the intervention of human cancers.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
CAO LEI, WANG PING, LUO HUI, WANG XIRUI, WANG XIEFENG, ZHANG JUNXIA, WANG YINGYI, YAO LEI, LIU NING, YOU YONGPING. Inhibition of activated Ras suppresses multiple oncogenic Hub genes in human epithelial tumors. Int J Oncol 2014; 45:1609-17. [DOI: 10.3892/ijo.2014.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/10/2014] [Indexed: 11/06/2022] Open
|
9
|
Salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis through DR5 and survivin-dependent mechanisms. Cell Death Dis 2013; 4:e471. [PMID: 23348585 PMCID: PMC3563988 DOI: 10.1038/cddis.2012.200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ras activation is a frequent event in human hepatocarcinoma that may contribute to resistance towards apoptosis. Salirasib is a ras and mTOR inhibitor that induces a pro-apoptotic phenotype in human hepatocarcinoma cell lines. In this work, we evaluate whether salirasib sensitizes those cells to TRAIL-induced apoptosis. Cell viability, cell death and apoptosis were evaluated in vitro in HepG2, Hep3B and Huh7 cells treated with DMSO, salirasib and YM155 (a survivin inhibitor), alone or in combination with recombinant TRAIL. Our results show that pretreatment with salirasib sensitized human hepatocarcinoma cell lines, but not normal human hepatocytes, to TRAIL-induced apoptosis. Indeed, FACS analysis showed that 25 (Huh7) to 50 (HepG2 and Hep3B) percent of the cells treated with both drugs were apoptotic. This occurred through activation of the extrinsic and the intrinsic pathways, as evidenced by a marked increase in caspase 3/7 (five to ninefold), caspase 8 (four to sevenfold) and caspase 9 (eight to 12-fold) activities in cells treated with salirasib and TRAIL compared with control. Survivin inhibition had an important role in this process and was sufficient to sensitize hepatocarcinoma cells to apoptosis. Furthermore, TRAIL-induced apoptosis in HCC cells pretreated with salirasib was dependent on activation of death receptor (DR) 5. In conclusion, salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis by a mechanism involving the DR5 receptor and survivin inhibition. These results in human hepatocarcinoma cell lines and primary hepatocytes provide a rationale for testing the combination of salirasib and TRAIL agonists in human hepatocarcinoma.
Collapse
|
10
|
Stärkel P, Charette N, Borbath I, Schneider-Merck T, De Saeger C, Abarca J, Leclercq I, Horsmans Y. Ras inhibition in hepatocarcinoma by S-trans-trans-farnesylthiosalicyclic acid: Association of its tumor preventive effect with cell proliferation, cell cycle events, and angiogenesis. Mol Carcinog 2011; 51:816-25. [DOI: 10.1002/mc.20849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 12/27/2022]
|
11
|
Kunchithapautham K, Rohrer B. Sublytic membrane-attack-complex (MAC) activation alters regulated rather than constitutive vascular endothelial growth factor (VEGF) secretion in retinal pigment epithelium monolayers. J Biol Chem 2011; 286:23717-24. [PMID: 21566137 PMCID: PMC3129152 DOI: 10.1074/jbc.m110.214593] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/27/2011] [Indexed: 12/21/2022] Open
Abstract
Uncontrolled activation of the alternative complement pathway and secretion of vascular endothelial growth factor (VEGF) are thought to be associated with age-related macular degeneration (AMD). Previously, we have shown that in RPE monolayers, oxidative-stress reduced complement inhibition on the cell surface. The resulting increased level of sublytic complement activation resulted in VEGF release, which disrupted the barrier facility of these cells as determined by transepithelial resistance (TER) measurements. Induced rather than basal VEGF release in RPE is thought to be controlled by different mechanisms, including voltage-dependent calcium channel (VDCC) activation and mitogen-activated protein kinases. Here we examined the potential intracellular links between sublytic complement activation and VEGF release in RPE cells challenged with H(2)O(2) and complement-sufficient normal human serum (NHS). Disruption of barrier function by H(2)O(2) + NHS rapidly increased Ras expression and Erk and Src phosphorylation, but had no effect on P38 phosphorylation. Either treatment alone had little effect. TER reduction could be attenuated by inhibiting Ras, Erk and Src activation, or blocking VDCC or VEGF-R2 activation, but not by inhibiting P38. Combinatorial analysis of inhibitor effects demonstrated that sublytic complement activation triggers VEGF secretion via two pathways, Src and Ras-Erk, with the latter being amplified by VEGF-R2 activation, but has no effect on constitutive VEGF secretion mediated via P38. Finally, effects on TER were directly correlated with release of VEGF; and sublytic MAC activation decreased levels of zfp36, a negative modulator of VEGF transcription, resulting in increased VEGF expression. Taken together, identifying how sublytic MAC induces VEGF expression and secretion might offer opportunities to selectively inhibit pathological VEGF release only.
Collapse
Affiliation(s)
- Kannan Kunchithapautham
- From the Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bärbel Rohrer
- From the Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
12
|
Ling Y, Ye X, Zhang Z, Zhang Y, Lai Y, Ji H, Peng S, Tian J. Novel nitric oxide-releasing derivatives of farnesylthiosalicylic acid: synthesis and evaluation of antihepatocellular carcinoma activity. J Med Chem 2011; 54:3251-9. [PMID: 21504204 DOI: 10.1021/jm1014814] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel furoxan-based nitric oxide (NO) releasing derivatives (8a-p) of farnesylthiosalicylic acid (FTS) were synthesized. Compound 8l displayed the strongest inhibition on the proliferation of human hepatocellular carcinoma (HCC) cells in vitro, superior to FTS, sorafenib, and furoxan moiety, selectively induced high frequency of HCC cell apoptosis, and produced high levels of NO in HCC cells but not in nontumor liver cells. Furthermore, 8l exhibited low acute toxicity to mice and significantly inhibited the growth of HCC tumors in vivo and the Ras-related signaling in the tumors. Therefore, our novel findings may provide a new framework for the design of new NO-releasing furoxan/FTS hybrids for the intervention of human HCC.
Collapse
Affiliation(s)
- Yong Ling
- Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Charette N, De Saeger C, Lannoy V, Horsmans Y, Leclercq I, Stärkel P. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition. Mol Cancer 2010; 9:256. [PMID: 20860815 PMCID: PMC2955616 DOI: 10.1186/1476-4598-9-256] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/22/2010] [Indexed: 03/01/2023] Open
Abstract
Background Dysregulation of epidermal growth factor and insulin-like growth factor signaling play important roles in human hepatocellular carcinoma (HCC), leading to frequent activation of their downstream targets, the ras/raf/extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) pathways. Salirasib is an S-prenyl-cysteine analog that has been shown to block ras and/or mTOR activation in several non hepatic tumor cell lines. We investigated in vitro the effect of salirasib on cell growth as well as its mechanism of action in human hepatoma cell lines (HepG2, Huh7, and Hep3B) and its in vivo effect in a subcutaneous xenograft model with HepG2 cells. Results Salirasib induced a time and dose dependent growth inhibition in hepatocarcinoma cells through inhibition of proliferation and partially through induction of apoptosis. A 50 percent reduction in cell growth was obtained in all three cell lines at a dose of 150 μM when they were cultured with serum. By contrast, salirasib was more potent at reducing cell growth after stimulation with EGF or IGF2 under serum-free conditions, with an IC50 ranging from 60 μM to 85 μM. The drug-induced anti-proliferative effect was associated with downregulation of cyclin A and to a lesser extent of cyclin D1, and upregulation of p21 and p27. Apoptosis induction was related to a global pro-apoptotic balance with caspase 3 activation, cytochrome c release, death receptor upregulation, and a reduced mRNA expression of the apoptosis inhibitors cFLIP and survivin. These effects were associated with ras downregulation and mTOR inhibition, without reduction of ERK and Akt activation. In vivo, salirasib reduced tumour growth from day 5 onwards. After 12 days of treatment, mean tumor weight was diminished by 56 percent in the treated animals. Conclusions Our results show for the first time that salirasib inhibits the growth of human hepatoma cell lines through inhibition of proliferation and induction of apoptosis, which is associated with ras and mTOR inhibition. The therapeutic potential of salirasib in human HCC was further confirmed in a subcutaneous xenograft model.
Collapse
Affiliation(s)
- Nicolas Charette
- Laboratory of Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Fang M, Dewaele S, Zhao YP, Stärkel P, Vanhooren V, Chen YM, Ji X, Luo M, Sun BM, Horsmans Y, Dell A, Haslam SM, Grassi P, Libert C, Gao CF, Chen CC. Serum N-glycome biomarker for monitoring development of DENA-induced hepatocellular carcinoma in rat. Mol Cancer 2010; 9:215. [PMID: 20704698 PMCID: PMC2925372 DOI: 10.1186/1476-4598-9-215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/12/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There is a demand for serum markers for the routine assessment of the progression of liver cancer. We previously found that serum N-linked sugar chains are altered in hepatocellular carcinoma (HCC). Here, we studied glycomic alterations during development of HCC in a rat model. RESULTS Rat HCC was induced by the hepatocarcinogen, diethylnitrosamine (DENA). N-glycans were profiled using the DSA-FACE technique developed in our laboratory.In comparison with control rats, DENA rats showed a gradual but significant increase in two glycans (R5a and R5b) in serum total N-glycans during progression of liver cirrhosis and cancer, and a decrease in a biantennary glycan (P5). The log of the ratio of R5a to P1 (NGA2F) and R5b to P1 [log(R5a/P1) and log(R5b/P1)] were significantly (p < 0.0001) elevated in HCC rats, but not in rats with cirrhosis or fibrosis or in control rats. We thus propose a GlycoTest model using the above-mentioned serum glycan markers to monitor the progression of cirrhosis and HCC in the DENA-treated rat model. When DENA-treated rats were subsequently treated with farnesylthiosalicyclic acid, an anticancer drug, progression to HCC was prevented and GlycoTest markers (P5, R5a and R5b) reverted towards non-DENA levels, and the HCC-specific markers, log(R5a/P1) and log(R5b/P1), normalized completely. CONCLUSIONS We found an increase in core-alpha-1,6-fucosylated glycoproteins in serum and liver of rats with HCC, which demonstrates that fucosylation is altered during progression of HCC. Our GlycoTest model can be used to monitor progression of HCC and to follow up treatment of liver tumors in the DENA rat. This GlycoTest model is particularly important because a rapid non-invasive diagnostic procedure for tumour progression in this rat model would greatly facilitate the search for anticancer drugs.
Collapse
Affiliation(s)
- Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Hospital, Second Military Medical University, 200438 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|