1
|
Langenberg KPS, van Hooff SR, Koopmans B, Strijker JGM, Kholosy WM, Ober K, Zwijnenburg DA, van der Hoek JJF, Keller KM, Vernooij L, Schild LG, Looze EJ, Ebus ME, Essing AHW, Vree PD, Tas ML, Matser YAH, Wienke J, Volckmann R, Tops BBJ, Kester LA, Badloe S, Hehir-Kwa JY, Kemmeren P, Goemans BF, Zwaan CM, Oehme I, Jäger N, Witt O, van Eijkelenburg NKA, Dierselhuis MP, Tytgat GAM, Wijnen MHW, van Noesel MM, de Krijger RR, Eising S, Koster J, Dolman EM, Molenaar JJ. Exploring high-throughput drug sensitivity testing in neuroblastoma cell lines and patient-derived tumor organoids in the era of precision medicine. Eur J Cancer 2025; 218:115275. [PMID: 39954414 PMCID: PMC11884408 DOI: 10.1016/j.ejca.2025.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Despite druggable events to be present in 80 % of neuroblastomapatients within the Princess Máxima Center precision medicine program 'iTHER', clinical uptake of treatment recommendations has been low, and the clinical impact for individual patients remains hard to predict. This stresses the need for a method integrating genomics and transcriptomics with functional approaches into therapeutic decision making. METHODS We aimed to launch an online repository integrating genomics and transcriptomics with high-throughput drug screening (HTS) of nineteen commonly used neuroblastoma cell lines and fifteen neuroblastoma patient-derived organoids (NBL-PDOs). Cell lines, NBL-PDOs and their parental tumors were characterized utilizing (lc)WGS, WES and RNAseq. Cells were exposed to ∼200 compounds. Results were transferred to the R2 visualization platform. RESULTS A powerful reference set of cell lines is available, reflecting distinct known pharmacologic vulnerabilities. HTS identified additional therapeutic vulnerabilities, such as a striking correlation between a positive mesenchymal signature and sensitivity to BCL2-inhibitor venetoclax. Finally, we explored personalized drug sensitivities within iTHER, demonstrating HTS can support genomic and transcriptomic results, thereby strengthening the rationale for clinical uptake. CONCLUSION We established a dynamic publicly available dataset with detailed genomic, transcriptomic, and pharmacological annotation of classical neuroblastoma cell lines as well as novel sharable NBL-PDOs, representing the heterogeneous landscape of neuroblastoma. We anticipate that in vitro drug screening will be complementary to genomic-guided precision medicine by supporting clinical decision making, thereby improving prognosis for all neuroblastoma patients in the future.
Collapse
Affiliation(s)
- Karin P S Langenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Sander R van Hooff
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Josephine G M Strijker
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Waleed M Kholosy
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Kimberley Ober
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Cancer Center Amsterdam, Amsterdam UMC, the Netherlands.
| | - Jessica J F van der Hoek
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Kaylee M Keller
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Lindy Vernooij
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Linda G Schild
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Eleonora J Looze
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Marli E Ebus
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Anke H W Essing
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Paula de Vree
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Michelle L Tas
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Yvette A H Matser
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Richard Volckmann
- Department of Oncogenomics, Cancer Center Amsterdam, Amsterdam UMC, the Netherlands.
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Shashi Badloe
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands.
| | - Bianca F Goemans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg 69120 , the Netherlands; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 430, Heidelberg 69120, Germany.
| | - Nathalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg 69120 , the Netherlands.
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg 69120 , the Netherlands; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 430, Heidelberg 69120, Germany; Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital,National Center for Tumor Diseases (NCT) Network, Heidelberg, Germany.
| | | | - Miranda P Dierselhuis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Marc H W Wijnen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands; Division Imaging & Cancer, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands.
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands; Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands.
| | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Jan Koster
- Department of Oncogenomics, Cancer Center Amsterdam, Amsterdam UMC, the Netherlands.
| | - Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands.
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands; Department of Pharmaceutical Sciences, Utrecht University, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands.
| |
Collapse
|
2
|
Strijker JGM, Pascual-Pasto G, Grothusen GP, Kalmeijer YJ, Kalaitsidou E, Zhao C, McIntyre B, Matlaga S, Visser LL, Barisa M, Himsworth C, Shah R, Muller H, Schild LG, Hains PG, Zhong Q, Reddel RR, Robinson PJ, Catena X, Soengas MS, Margaritis T, Dekker FJ, Anderson J, Molenaar JJ, Bosse KR, Wu W, Wienke J. Blocking MIF secretion enhances CAR T-cell efficacy against neuroblastoma. Eur J Cancer 2025; 218:115263. [PMID: 39908652 PMCID: PMC11884407 DOI: 10.1016/j.ejca.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cell therapy is a promising and innovative cancer therapy. However, immunosuppressive tumor microenvironments (TME) limit T cell persistence and durable efficacy. Here, we aimed to identify and target immunosuppressive factors in the TME of neuroblastoma, a pediatric extracranial solid tumor, to improve CAR-T efficacy. METHODS Immunosuppressive factors were identified using a multi-omics approach, including single-cell RNA sequencing (scRNA-seq) of 24 neuroblastoma tumors, published bulk-RNA sequencing datasets, and mass-spectrometry of patient-derived tumoroid models. Candidate targets were validated with functional assays in vitro and in vivo. Protein degradation of the top immunosuppressive target by PROTAC technology was used to evaluate the effect on CAR T-cell activity. RESULTS ScRNA-seq revealed 13 immunosuppressive interactions in the TME of neuroblastoma, two effectors of which, Midkine (MDK) and Macrophage Migration Inhibitory Factor (MIF), were validated as candidate targets across multiple published datasets. Both factors were among the top 6 % of most abundantly secreted factors by patient-derived tumoroid models, substantiating their potential relevance in the TME. In vitro and in vivo functional assays confirmed MIF to be a potent inhibitor of CAR T-cell activation and killing capacity. To translate these findings into a potentially clinically applicable treatment, we explored MIF targeting by PROTAC technology, which significantly enhanced activation of CAR T-cells targeting GPC2 and B7-H3. CONCLUSION By defining the immunosuppressive effects of neuroblastoma's TME on CAR T-cell efficacy, revealing the pivotal role of MIF, we provide an analytic pipeline and therapeutic strategy for improving adoptive cell therapies for this pediatric malignancy and potentially other solid tumors.
Collapse
Affiliation(s)
| | - Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Grant P Grothusen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | | | - Elisavet Kalaitsidou
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chunlong Zhao
- Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Stephanie Matlaga
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Lindy L Visser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marta Barisa
- UCL Great Ormond St Institute of Child Health, London, UK
| | | | - Rivani Shah
- UCL Great Ormond St Institute of Child Health, London, UK
| | - Henrike Muller
- UCL Great Ormond St Institute of Child Health, London, UK
| | - Linda G Schild
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Qing Zhong
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Roger R Reddel
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - John Anderson
- UCL Great Ormond St Institute of Child Health, London, UK
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, University Utrecht, Utrecht, the Netherlands
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117543, Singapore; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Chan C, Stip M, Nederend M, Jansen M, Passchier E, van den Ham F, Wienke J, van Tetering G, Leusen J. Enhancing IgA-mediated neutrophil cytotoxicity against neuroblastoma by CD47 blockade. J Immunother Cancer 2024; 12:e008478. [PMID: 38782540 PMCID: PMC11116899 DOI: 10.1136/jitc-2023-008478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Approximately half of the neuroblastoma patients develop high-risk neuroblastoma. Current treatment involves a multimodal strategy, including immunotherapy with dinutuximab (IgG ch14.18) targeting GD2. Despite achieving promising results, the recurrence rate remains high and poor survival persists. The therapeutic efficacy of dinutuximab is compromised by suboptimal activation of neutrophils and severe neuropathic pain, partially induced by complement activation. METHODS To enhance neutrophil cytotoxicity, IgG ch14.18 was converted to the IgA isotype, resulting in potent neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), without complement activation. However, myeloid checkpoint molecules hamper neutrophil cytotoxicity, for example through CD47 that is overexpressed on neuroblastomas and orchestrates an immunosuppressive environment upon ligation to signal regulatory protein alpha (SIRPα) expressed on neutrophils. In this study, we combined IgA therapy with CD47 blockade. RESULTS In vitro killing assays showed enhanced IgA-mediated ADCC by neutrophils targeting neuroblastoma cell lines and organoids in comparison to IgG. Notably, when combined with CD47 blockade, both IgG and IgA therapy were enhanced, though the combination with IgA resulted in the greatest improvement of ADCC. Furthermore, in a neuroblastoma xenograft model, we systemically blocked CD47 with a SIRPα fusion protein containing an ablated IgG1 Fc, and compared IgA therapy to IgG therapy. Only IgA therapy combined with CD47 blockade increased neutrophil influx to the tumor microenvironment. Moreover, the IgA combination strategy hampered tumor outgrowth most effectively and prolonged tumor-specific survival. CONCLUSION These promising results highlight the potential to enhance immunotherapy efficacy against high-risk neuroblastoma through improved neutrophil cytotoxicity by combining IgA therapy with CD47 blockade.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marjolein Stip
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marco Jansen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Femke van den Ham
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith Wienke
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Geert van Tetering
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jeanette Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Cornel AM, van der Sman L, van Dinter JT, Arrabito M, Dunnebach E, van Hoesel M, Kluiver TA, Lopes AP, Dautzenberg NMM, Dekker L, van Rijn JM, van den Beemt DAMH, Buhl JL, du Chatinier A, Barneh F, Lu Y, Lo Nigro L, Krippner-Heidenreich A, Sebestyén Z, Kuball J, Hulleman E, Drost J, van Heesch S, Heidenreich OT, Peng WC, Nierkens S. Targeting pediatric cancers via T-cell recognition of the monomorphic MHC class I-related protein MR1. J Immunother Cancer 2024; 12:e007538. [PMID: 38519054 PMCID: PMC10961533 DOI: 10.1136/jitc-2023-007538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 03/24/2024] Open
Abstract
Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Loutje van der Sman
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jip T van Dinter
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marta Arrabito
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Center of Pediatric Hematology & Oncology, University of Catania, Catania, Italy
| | - Ester Dunnebach
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Thomas A Kluiver
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Ana P Lopes
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | - Linde Dekker
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jorik M van Rijn
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Juliane L Buhl
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aimee du Chatinier
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Farnaz Barneh
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Yuyan Lu
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Luca Lo Nigro
- Center of Pediatric Hematology & Oncology, University of Catania, Catania, Italy
| | | | - Zsolt Sebestyén
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Jurgen Kuball
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Department of Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - Esther Hulleman
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jarno Drost
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Olaf T Heidenreich
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Weng Chuan Peng
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Wienke J, Visser LL, Kholosy WM, Keller KM, Barisa M, Poon E, Munnings-Tomes S, Himsworth C, Calton E, Rodriguez A, Bernardi R, van den Ham F, van Hooff SR, Matser YAH, Tas ML, Langenberg KPS, Lijnzaad P, Borst AL, Zappa E, Bergsma FJ, Strijker JGM, Verhoeven BM, Mei S, Kramdi A, Restuadi R, Sanchez-Bernabeu A, Cornel AM, Holstege FCP, Gray JC, Tytgat GAM, Scheijde-Vermeulen MA, Wijnen MHWA, Dierselhuis MP, Straathof K, Behjati S, Wu W, Heck AJR, Koster J, Nierkens S, Janoueix-Lerosey I, de Krijger RR, Baryawno N, Chesler L, Anderson J, Caron HN, Margaritis T, van Noesel MM, Molenaar JJ. Integrative analysis of neuroblastoma by single-cell RNA sequencing identifies the NECTIN2-TIGIT axis as a target for immunotherapy. Cancer Cell 2024; 42:283-300.e8. [PMID: 38181797 PMCID: PMC10864003 DOI: 10.1016/j.ccell.2023.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. Since novel and improved immunotherapies may fill this need, we dissect the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 24 tumors (10 pre- and 14 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas are infiltrated by natural killer (NK), T and B cells, and immunosuppressive myeloid populations. NK cells show reduced cytotoxicity and T cells have a dysfunctional profile. Interaction analysis reveals a vast immunoregulatory network and identifies NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduces neuroblastoma growth, with complete responses (CR) in vivo. Moreover, addition of TIGIT+PD-L1 blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model induces CR. In conclusion, our integrative analysis provides promising targets and a rationale for immunotherapeutic combination strategies.
Collapse
Affiliation(s)
- Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Lindy L Visser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Waleed M Kholosy
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kaylee M Keller
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Sophie Munnings-Tomes
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Courtney Himsworth
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Elizabeth Calton
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | | | - Ronald Bernardi
- Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Femke van den Ham
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Yvette A H Matser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Michelle L Tas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Anne L Borst
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Elisa Zappa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Bronte M Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Amira Kramdi
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Restuadi Restuadi
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK; NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Alvaro Sanchez-Bernabeu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht University, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Juliet C Gray
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | | | | | - Marc H W A Wijnen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Karin Straathof
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; UCL Cancer Institute, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht University, Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht University, Utrecht, the Netherlands
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Isabelle Janoueix-Lerosey
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, UK
| | | | | | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Division Imaging & Cancer, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
6
|
Mlakar V, Dupanloup I, Gonzales F, Papangelopoulou D, Ansari M, Gumy-Pause F. 17q Gain in Neuroblastoma: A Review of Clinical and Biological Implications. Cancers (Basel) 2024; 16:338. [PMID: 38254827 PMCID: PMC10814316 DOI: 10.3390/cancers16020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent extracranial solid childhood tumor. Despite advances in the understanding and treatment of this disease, the prognosis in cases of high-risk NB is still poor. 17q gain has been shown to be the most frequent genomic alteration in NB. However, the significance of this remains unclear because of its high frequency and association with other genetic modifications, particularly segmental chromosomal aberrations, 1p and 11q deletions, and MYCN amplification, all of which are also associated with a poor clinical prognosis. This work reviewed the evidence on the clinical and biological significance of 17q gain. It strongly supports the significance of 17q gain in the development of NB and its importance as a clinically relevant marker. However, it is crucial to distinguish between whole and partial chromosome 17q gains. The most important breakpoints appear to be at 17q12 and 17q21. The former distinguishes between whole and partial chromosome 17q gain; the latter is a site of IGF2BP1 and NME1 genes that appear to be the main oncogenes responsible for the functional effects of 17q gain.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
| | - Isabelle Dupanloup
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Fanny Gonzales
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Danai Papangelopoulou
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| |
Collapse
|
7
|
Mayoh C, Mao J, Xie J, Tax G, Chow SO, Cadiz R, Pazaky K, Barahona P, Ajuyah P, Trebilcock P, Malquori A, Gunther K, Avila A, Yun DY, Alfred S, Gopalakrishnan A, Kamili A, Wong M, Cowley MJ, Jessop S, Lau LM, Trahair TN, Ziegler DS, Fletcher JI, Gifford AJ, Tsoli M, Marshall GM, Haber M, Tyrrell V, Failes TW, Arndt GM, Lock RB, Ekert PG, Dolman MEM. High-Throughput Drug Screening of Primary Tumor Cells Identifies Therapeutic Strategies for Treating Children with High-Risk Cancer. Cancer Res 2023; 83:2716-2732. [PMID: 37523146 PMCID: PMC10425737 DOI: 10.1158/0008-5472.can-22-3702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 08/01/2023]
Abstract
For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.
Collapse
Affiliation(s)
- Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jie Mao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Gabor Tax
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Shu-Oi Chow
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Roxanne Cadiz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Karina Pazaky
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Pamela Ajuyah
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Peter Trebilcock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Angela Malquori
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Kate Gunther
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Anica Avila
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Doo Young Yun
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Stephanie Alfred
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Anjana Gopalakrishnan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Marie Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Mark J. Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Sophie Jessop
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Loretta M.S. Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Toby N. Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Jamie I. Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Andrew J. Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Timothy W. Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Greg M. Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard B. Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Paul G. Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - M. Emmy M. Dolman
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
8
|
van Gerven MR, Schild L, van Arkel J, Koopmans B, Broeils LA, Meijs LAM, van Oosterhout R, van Noesel MM, Koster J, van Hooff SR, Molenaar JJ, van den Boogaard ML. Two opposing gene expression patterns within ATRX aberrant neuroblastoma. PLoS One 2023; 18:e0289084. [PMID: 37540673 PMCID: PMC10403137 DOI: 10.1371/journal.pone.0289084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 08/06/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. A subgroup of high-risk patients is characterized by aberrations in the chromatin remodeller ATRX that is encoded by 35 exons. In contrast to other pediatric cancer where ATRX point mutations are most frequent, multi-exon deletions (MEDs) are the most frequent type of ATRX aberrations in neuroblastoma. 75% of these MEDs are predicted to produce in-frame fusion proteins, suggesting a potential gain-of-function effect compared to nonsense mutations. For neuroblastoma there are only a few patient-derived ATRX aberrant models. Therefore, we created isogenic ATRX aberrant models using CRISPR-Cas9 in several neuroblastoma cell lines and one tumoroid and performed total RNA-sequencing on these and the patient-derived models. Gene set enrichment analysis (GSEA) showed decreased expression of genes related to both ribosome biogenesis and several metabolic processes in our isogenic ATRX exon 2-10 MED model systems, the patient-derived MED models and in tumor data containing two patients with an ATRX exon 2-10 MED. In sharp contrast, these same processes showed an increased expression in our isogenic ATRX knock-out and exon 2-13 MED models. Our validations confirmed a role of ATRX in the regulation of ribosome homeostasis. The two distinct molecular expression patterns within ATRX aberrant neuroblastomas that we identified imply that there might be a need for distinct treatment regimens.
Collapse
Affiliation(s)
- Michael R van Gerven
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Linda Schild
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Jennemiek van Arkel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Luuk A Broeils
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Loes A M Meijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Romy van Oosterhout
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
- Department of Cancer and Imaging, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, University Medical Center Amsterdam, Amsterdam, North-Holland, The Netherlands
| | - Sander R van Hooff
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
10
|
Aaltonen K, Radke K, Adamska A, Seger A, Mañas A, Bexell D. Patient-derived models: Advanced tools for precision medicine in neuroblastoma. Front Oncol 2023; 12:1085270. [PMID: 36776363 PMCID: PMC9910084 DOI: 10.3389/fonc.2022.1085270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
Neuroblastoma is a childhood cancer derived from the sympathetic nervous system. High-risk neuroblastoma patients have a poor overall survival and account for ~15% of childhood cancer deaths. There is thus a need for clinically relevant and authentic models of neuroblastoma that closely resemble the human disease to further interrogate underlying mechanisms and to develop novel therapeutic strategies. Here we review recent developments in patient-derived neuroblastoma xenograft models and in vitro cultures. These models can be used to decipher mechanisms of metastasis and treatment resistance, for drug screening, and preclinical drug testing. Patient-derived neuroblastoma models may also provide useful information about clonal evolution, phenotypic plasticity, and cell states in relation to neuroblastoma progression. We summarize current opportunities for, but also barriers to, future model development and application. Integration of patient-derived models with patient data holds promise for the development of precision medicine treatment strategies for children with high-risk neuroblastoma.
Collapse
|
11
|
Cornel AM, Dunnebach E, Hofman DA, Das S, Sengupta S, van den Ham F, Wienke J, Strijker JGM, van den Beemt DAMH, Essing AHW, Koopmans B, Engels SAG, Lo Presti V, Szanto CS, George RE, Molenaar JJ, van Heesch S, Dierselhuis MP, Nierkens S. Epigenetic modulation of neuroblastoma enhances T cell and NK cell immunogenicity by inducing a tumor-cell lineage switch. J Immunother Cancer 2022; 10:jitc-2022-005002. [PMID: 36521927 PMCID: PMC9756225 DOI: 10.1136/jitc-2022-005002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL. METHODS Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids. RESULTS Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFκB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage. CONCLUSIONS This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ester Dunnebach
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Damon A Hofman
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Femke van den Ham
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Judith Wienke
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | - Denise A M H van den Beemt
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Anke H W Essing
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Bianca Koopmans
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Sem A G Engels
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Vania Lo Presti
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Celina S Szanto
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan J Molenaar
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | | | - S Nierkens
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Keller KM, Eleveld TF, Schild L, van den Handel K, van den Boogaard M, Amo-Addae V, Eising S, Ober K, Koopmans B, Looijenga L, Tytgat GA, Ylstra B, Molenaar JJ, Dolman MEM, van Hooff SR. Chromosome 11q loss and MYCN amplification demonstrate synthetic lethality with checkpoint kinase 1 inhibition in neuroblastoma. Front Oncol 2022; 12:929123. [PMID: 36237330 PMCID: PMC9552537 DOI: 10.3389/fonc.2022.929123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor found in children and despite intense multi-modal therapeutic approaches, low overall survival rates of high-risk patients persist. Tumors with heterozygous loss of chromosome 11q and MYCN amplification are two genetically distinct subsets of neuroblastoma that are associated with poor patient outcome. Using an isogenic 11q deleted model system and high-throughput drug screening, we identify checkpoint kinase 1 (CHK1) as a potential therapeutic target for 11q deleted neuroblastoma. Further investigation reveals MYCN amplification as a possible additional biomarker for CHK1 inhibition, independent of 11q loss. Overall, our study highlights the potential power of studying chromosomal aberrations to guide preclinical development of novel drug targets and combinations. Additionally, our study builds on the growing evidence that DNA damage repair and replication stress response pathways offer therapeutic vulnerabilities for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Kaylee M. Keller
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Thomas F. Eleveld
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Linda Schild
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Kim van den Handel
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Vicky Amo-Addae
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Selma Eising
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Kimberley Ober
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bianca Koopmans
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Leendert Looijenga
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Godelieve A.M. Tytgat
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Jan J. Molenaar
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pharmaceutical Sciences, University Utrecht, Utrecht, Netherlands
- *Correspondence: Jan J. Molenaar,
| | - M. Emmy M. Dolman
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Sander R. van Hooff
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
13
|
Olsen TK, Dyberg C, Embaie BT, Alchahin A, Milosevic J, Ding J, Otte J, Tümmler C, Hed Myrberg I, Westerhout EM, Koster J, Versteeg R, Ding HF, Kogner P, Johnsen JI, Sykes DB, Baryawno N. DHODH is an independent prognostic marker and potent therapeutic target in neuroblastoma. JCI Insight 2022; 7:153836. [PMID: 35943801 PMCID: PMC9798925 DOI: 10.1172/jci.insight.153836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/04/2022] [Indexed: 01/11/2023] Open
Abstract
Despite intensive therapy, children with high-risk neuroblastoma are at risk of treatment failure. We applied a multiomic system approach to evaluate metabolic vulnerabilities in human neuroblastoma. We combined metabolomics, CRISPR screening, and transcriptomic data across more than 700 solid tumor cell lines and identified dihydroorotate dehydrogenase (DHODH), a critical enzyme in pyrimidine synthesis, as a potential treatment target. Of note, DHODH inhibition is currently under clinical investigation in patients with hematologic malignancies. In neuroblastoma, DHODH expression was identified as an independent risk factor for aggressive disease, and high DHODH levels correlated to worse overall and event-free survival. A subset of tumors with the highest DHODH expression was associated with a dismal prognosis, with a 5-year survival of less than 10%. In xenograft and transgenic neuroblastoma mouse models treated with the DHODH inhibitor brequinar, tumor growth was dramatically reduced, and survival was extended. Furthermore, brequinar treatment was shown to reduce the expression of MYC targets in 3 neuroblastoma models in vivo. A combination of brequinar and temozolomide was curative in the majority of transgenic TH-MYCN neuroblastoma mice, indicating a highly active clinical combination therapy. Overall, DHODH inhibition combined with temozolomide has therapeutic potential in neuroblastoma, and we propose this combination for clinical testing.
Collapse
Affiliation(s)
- Thale Kristin Olsen
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Cecilia Dyberg
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Bethel Tesfai Embaie
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Adele Alchahin
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jane Ding
- Division of Molecular and Cellular Pathology, Department of Pathology, Heersink School of Medicine, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jörg Otte
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Conny Tümmler
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ida Hed Myrberg
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ellen M. Westerhout
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Han-Fei Ding
- Division of Molecular and Cellular Pathology, Department of Pathology, Heersink School of Medicine, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Per Kogner
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ninib Baryawno
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Nunes C, Depestel L, Mus L, Keller KM, Delhaye L, Louwagie A, Rishfi M, Whale A, Kara N, Andrews SR, Dela Cruz F, You D, Siddiquee A, Cologna CT, De Craemer S, Dolman E, Bartenhagen C, De Vloed F, Sanders E, Eggermont A, Bekaert SL, Van Loocke W, Bek JW, Dewyn G, Loontiens S, Van Isterdael G, Decaesteker B, Tilleman L, Van Nieuwerburgh F, Vermeirssen V, Van Neste C, Ghesquiere B, Goossens S, Eyckerman S, De Preter K, Fischer M, Houseley J, Molenaar J, De Wilde B, Roberts SS, Durinck K, Speleman F. RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition. SCIENCE ADVANCES 2022; 8:eabn1382. [PMID: 35857500 PMCID: PMC9278860 DOI: 10.1126/sciadv.abn1382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/26/2022] [Indexed: 05/06/2023]
Abstract
High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Depestel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Liselot Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Louis Delhaye
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Amber Louwagie
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Muhammad Rishfi
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alex Whale
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Neesha Kara
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camila Takeno Cologna
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sam De Craemer
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Emmy Dolman
- Princess Maxima Center, Utrecht, Netherlands
| | - Christoph Bartenhagen
- Center for Molecular Medicine Cologne, Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
| | - Fanny De Vloed
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ellen Sanders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Aline Eggermont
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Givani Dewyn
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Siebe Loontiens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Bieke Decaesteker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laurentijn Tilleman
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Neste
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Ghesquiere
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Matthias Fischer
- Center for Molecular Medicine Cologne, Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
| | - Jon Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stephen S. Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaat Durinck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
15
|
Westerhout EM, Hamdi M, Stroeken P, Nowakowska NE, Lakeman A, van Arkel J, Hasselt NE, Bleijlevens B, Akogul N, Haneveld F, Chan A, van Sluis P, Zwijnenburg D, Volckmann R, van Noesel CJ, Adameyko I, van Groningen T, Koster J, Valentijn LJ, van Nes J, Versteeg R. Mesenchymal type neuroblastoma cells escape ALK inhibitors. Cancer Res 2021; 82:484-496. [PMID: 34853072 DOI: 10.1158/0008-5472.can-21-1621] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Cancer therapy frequently fails due to the emergence of resistance. Many tumors include phenotypically immature tumor cells, which have been implicated in therapy resistance. Neuroblastoma cells can adopt a lineage committed adrenergic (ADRN) or an immature mesenchymal (MES) state. They differ in epigenetic landscape and transcription factors, and MES cells are more resistant to chemotherapy. Here we analyzed the response of MES cells to targeted drugs. Activating ALK mutations are frequently found in neuroblastoma and ALK inhibitors (ALKi) are in clinical trials. ALKi treatment of ADRN neuroblastoma cells with a tumor-driving ALK mutation induced cell death. Conversely, MES cells did not express either mutant or wild-type ALK and were resistant to ALKi, and MES cells formed tumors that progressed under ALKi therapy. In assessing the role of MES cells in relapse development, TRAIL was identified to specifically induce apoptosis in MES cells and suppress MES tumor growth. Addition of TRAIL to ALKi treatment of neuroblastoma xenografts delayed relapses in a subset of the animals, suggesting a role for MES cells in relapse formation. While ADRN cells resembled normal embryonal neuroblasts, MES cells resembled immature precursor cells which also lacked ALK expression. Resistance to targeted drugs can therefore be an intrinsic property of immature cancer cells based on their resemblance to developmental precursors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Boris Bleijlevens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam
| | | | | | | | | | | | | | | | | | | | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam
| | | | | | | |
Collapse
|
16
|
αβ-T Cells Engineered to Express γδ-T Cell Receptors Can Kill Neuroblastoma Organoids Independent of MHC-I Expression. J Pers Med 2021; 11:jpm11090923. [PMID: 34575700 PMCID: PMC8471928 DOI: 10.3390/jpm11090923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.
Collapse
|
17
|
Shim J, Goldsmith KC. A New Player in Neuroblastoma: YAP and Its Role in the Neuroblastoma Microenvironment. Cancers (Basel) 2021; 13:cancers13184650. [PMID: 34572875 PMCID: PMC8472533 DOI: 10.3390/cancers13184650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial pediatric solid tumor that accounts for more than 15% of childhood cancer-related deaths. High risk neuroblastomas that recur during or after intense multimodal therapy have a <5% chance at a second sustained remission or cure. The solid tumor microenvironment (TME) has been increasingly recognized to play a critical role in cancer progression and resistance to therapy, including in neuroblastoma. The Yes-Associated Protein (YAP) in the Hippo pathway can regulate cancer proliferation, tumor initiation, and therapy response in many cancer types and as such, its role in the TME has gained interest. In this review, we focus on YAP and its role in neuroblastoma and further describe its demonstrated and potential effects on the neuroblastoma TME. We also discuss the therapeutic strategies for inhibiting YAP in neuroblastoma.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kelly C. Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-2655
| |
Collapse
|
18
|
Defects in 8-oxo-guanine repair pathway cause high frequency of C > A substitutions in neuroblastoma. Proc Natl Acad Sci U S A 2021; 118:2007898118. [PMID: 34479993 PMCID: PMC8433536 DOI: 10.1073/pnas.2007898118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022] Open
Abstract
The collection of large amounts of whole-genome sequencing data allowed for identification of mutational signatures, which are characteristic combinations of substitutions in the context of neighboring bases. The clinical significance of these mutational signatures is still largely unknown. In neuroblastoma, we showed that high levels of cytosine > adenine (C > A) substitutions are associated with poor survival. We identified that these high levels of C > A substitutions result from defects in 8-oxo-guanine repair, specifically from copy number loss of the DNA glycosylases MUTYH and OGG1. The high frequency of C > A substitutions in neuroblastoma contributes to the increased adaptive capacity of these tumors. Thereby, we link basic molecular genetic mutation patterns to clinically significant tumor evolution processes. Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH. Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.
Collapse
|
19
|
Neuroblastoma and DIPG Organoid Coculture System for Personalized Assessment of Novel Anticancer Immunotherapies. J Pers Med 2021; 11:jpm11090869. [PMID: 34575646 PMCID: PMC8466534 DOI: 10.3390/jpm11090869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has transformed the landscape of adult cancer treatment and holds a great promise to treat paediatric malignancies. However, in vitro test coculture systems to evaluate the efficacy of immunotherapies on representative paediatric tumour models are lacking. Here, we describe a detailed procedure for the establishment of an ex vivo test coculture system of paediatric tumour organoids and immune cells that enables assessment of different immunotherapy approaches in paediatric tumour organoids. We provide a step-by-step protocol for an efficient generation of patient-derived diffuse intrinsic pontine glioma (DIPG) and neuroblastoma organoids stably expressing eGFP-ffLuc transgenes using defined serum-free medium. In contrast to the chromium-release assay, the new platform allows for visualization, monitoring and robust quantification of tumour organoid cell cytotoxicity using a non-radioactive assay in real-time. To evaluate the utility of this system for drug testing in the paediatric immuno-oncology field, we tested our in vitro assay using a clinically used immunotherapy strategy for children with high-risk neuroblastoma, dinutuximab (anti-GD2 monoclonal antibody), on GD2 proficient and deficient patient-derived neuroblastoma organoids. We demonstrated the feasibility and sensitivity of our ex vivo coculture system using human immune cells and paediatric tumour organoids as ex vivo tumour models. Our study provides a novel platform for personalized testing of potential anticancer immunotherapies for aggressive paediatric cancers such as neuroblastoma and DIPG.
Collapse
|
20
|
CD47-SIRPα Checkpoint Inhibition Enhances Neutrophil-Mediated Killing of Dinutuximab-Opsonized Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13174261. [PMID: 34503071 PMCID: PMC8428220 DOI: 10.3390/cancers13174261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Current immunotherapy for high-risk neuroblastoma patients involves treatment with anti-GD2 antibody dinutuximab, which has significantly improved the survival rate. Still, approximately half of the patients succumb to the tumor; therefore, efforts to improve their prognosis are urgently needed. Since T cell targeting immune checkpoint inhibitors in neuroblastoma are limited due to the low immunogenicity of these tumors, alternative immunotherapeutic approaches should be studied. The therapeutic targeting of the innate immune checkpoint CD47-SIRPα has the ability to enhance antitumor effects of myeloid cells, especially in the presence of cancer-opsonizing antibodies. Given that neutrophil ADCC is a dominant effector mechanism leading to the eradication of dinutuximab-opsonized neuroblastoma cells, we have investigated the therapeutic potential of anti-GD2 antibody in combination with CD47-SIRPα inhibition. We demonstrate here that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is controlled by the CD47-SIRPα axis and its disruption promotes their cytotoxic potential even further, significantly improving dinutuximab responsiveness. Abstract High-risk neuroblastoma, especially after recurrence, still has a very low survival rate. Immune checkpoint inhibitors targeting T cells have shown remarkable clinical efficacy in adult solid tumors, but their effects in pediatric cancers have been limited so far. On the other hand, targeting myeloid immune checkpoints, such as CD47-SIPRα, provide the opportunity to enhance antitumor effects of myeloid cells, including that of neutrophils, especially in the presence of cancer-opsonizing antibodies. Disialoganglioside (GD2)-expressing neuroblastoma cells targeted with anti-GD2 antibody dinutuximab are in part eradicated by neutrophils, as they recognize and bind the antibody targeted tumor cells through their Fc receptors. Therapeutic targeting of the innate immune checkpoint CD47-SIRPα has been shown to promote the potential of neutrophils as cytotoxic cells in different solid tumor indications using different cancer-targeting antibodies. Here, we demonstrate that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is also controlled by the CD47-SIRPα axis and can be further enhanced by antagonizing CD47-SIRPα interactions. In particular, CD47-SIRPa checkpoint inhibition enhanced neutrophil-mediated ADCC of dinutuximab-opsonized adrenergic neuroblastoma cells, whereas mesenchymal neuroblastoma cells may evade immune recognition by a reduction of GD2 expression. These findings provide a rational basis for targeting CD47-SIRPα interactions to potentiate dinutuximab responsiveness in neuroblastomas with adrenergic phenotype.
Collapse
|
21
|
Gautier M, Thirant C, Delattre O, Janoueix-Lerosey I. Plasticity in Neuroblastoma Cell Identity Defines a Noradrenergic-to-Mesenchymal Transition (NMT). Cancers (Basel) 2021; 13:2904. [PMID: 34200747 PMCID: PMC8230375 DOI: 10.3390/cancers13122904] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma, a pediatric cancer of the peripheral sympathetic nervous system, is characterized by an important clinical heterogeneity, and high-risk tumors are associated with a poor overall survival. Neuroblastoma cells may present with diverse morphological and biochemical properties in vitro, and seminal observations suggested that interconversion between two phenotypes called N-type and S-type may occur. In 2017, two main studies provided novel insights into these subtypes through the characterization of the transcriptomic and epigenetic landscapes of a panel of neuroblastoma cell lines. In this review, we focus on the available data that define neuroblastoma cell identity and propose to use the term noradrenergic (NOR) and mesenchymal (MES) to refer to these identities. We also address the question of transdifferentiation between both states and suggest that the plasticity between the NOR identity and the MES identity defines a noradrenergic-to-mesenchymal transition, reminiscent of but different from the well-established epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Margot Gautier
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; (M.G.); (C.T.); (O.D.)
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Cécile Thirant
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; (M.G.); (C.T.); (O.D.)
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Olivier Delattre
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; (M.G.); (C.T.); (O.D.)
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Isabelle Janoueix-Lerosey
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; (M.G.); (C.T.); (O.D.)
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| |
Collapse
|
22
|
Martinez Sanz P, van Rees DJ, van Zogchel LMJ, Klein B, Bouti P, Olsman H, Schornagel K, Kok I, Sunak A, Leeuwenburg K, Timmerman I, Dierselhuis MP, Kholosy WM, Molenaar JJ, van Bruggen R, van den Berg TK, Kuijpers TW, Matlung HL, Tytgat GAM, Franke K. G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment. J Immunother Cancer 2021; 9:jitc-2020-002259. [PMID: 34049929 PMCID: PMC8166600 DOI: 10.1136/jitc-2020-002259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current immunotherapy for patients with high-risk neuroblastoma involves the therapeutic antibody dinutuximab that targets GD2, a ganglioside expressed on the majority of neuroblastoma tumors. Opsonized tumor cells are killed through antibody-dependent cellular cytotoxicity (ADCC), a process mediated by various immune cells, including neutrophils. The capacity of neutrophils to kill dinutuximab-opsonized tumor cells can be further enhanced by granulocyte-macrophage colony-stimulating factor (GM-CSF), which has been shown in the past to improve responses to anti-GD2 immunotherapy. However, access to GM-CSF (sargramostim) is limited outside of Northern America, creating a high clinical need for an alternative method to stimulate dinutuximab responsiveness in the treatment of neuroblastoma. In this in vitro study, we have investigated whether clinically well-established granulocyte colony-stimulating factor (G-CSF) can be a potentially suitable alternative for GM-CSF in the dinutuximab immunotherapy regimen of patients with neuroblastoma. METHODS We compared the capacity of neutrophils stimulated either in vitro or in vivo with GM-CSF or G-CSF to kill dinutuximab-opsonized GD2-positive neuroblastoma cell lines and primary patient tumor material. Blocking experiments with antibodies inhibiting either respective Fc gamma receptors (FcγR) or neutrophil integrin CD11b/CD18 demonstrated the involvement of these receptors in the process of ADCC. Flow cytometry and live cell microscopy were used to quantify and visualize neutrophil-neuroblastoma interactions. RESULTS We found that G-CSF was as potent as GM-CSF in enhancing the killing capacity of neutrophils towards neuroblastoma cells. This was observed with in vitro stimulated neutrophils, and with in vivo stimulated neutrophils from both patients with neuroblastoma and healthy donors. Enhanced killing due to GM-CSF or G-CSF stimulation was consistent regardless of dinutuximab concentration, tumor-to-neutrophil ratio and concentration of the stimulating cytokine. Both GM-CSF and G-CSF stimulated neutrophils required FcγRIIa and CD11b/CD18 integrin to perform ADCC, and this was accompanied by trogocytosis of tumor material by neutrophils and tumor cell death in both stimulation conditions. CONCLUSIONS Our preclinical data support the use of G-CSF as an alternative stimulating cytokine to GM-CSF in the treatment of high-risk neuroblastoma with dinutuximab, warranting further testing of G-CSF in a clinical setting.
Collapse
Affiliation(s)
- Paula Martinez Sanz
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Dieke J van Rees
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Lieke M J van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
| | - Bart Klein
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Panagiota Bouti
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Hugo Olsman
- Laboratory for Immunotherapy, Sanquin Research, Amsterdam, The Netherlands
| | - Karin Schornagel
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Ivana Kok
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Ali Sunak
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Kira Leeuwenburg
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Ilse Timmerman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | | | - Waleed M Kholosy
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Laboratory for Immunotherapy, Sanquin Research, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital UMC, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | | | - Katka Franke
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Xie J, Kumar A, Dolman MEM, Mayoh C, Khuong-Quang DA, Cadiz R, Wong-Erasmus M, Mould EVA, Grebert-Wade D, Barahona P, Kamili A, Tsoli M, Failes TW, Chow SO, Arndt GM, Bhatia K, Marshall GM, Ziegler DS, Haber M, Lock RB, Tyrrell V, Lau L, Athanasatos P, Gifford AJ. The important role of routine cytopathology in pediatric precision oncology. Cancer Cytopathol 2021; 129:805-818. [PMID: 34043284 DOI: 10.1002/cncy.22448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The development of high-throughput drug screening (HTS) using primary cultures provides a promising, clinically translatable approach to tailoring treatment strategies for patients with cancer. However, this has been challenging for solid tumors because of often limited amounts of tissue available. In most cases, in vitro expansion is required before HTS, which may lead to overgrowth and contamination by non-neoplastic cells. METHODS In this study, hematoxylin and eosin staining and immunohistochemical staining were performed on 129 cytopathology cases from 95 patients. These cytopathology cases comprised cell block preparations derived from primary tumor specimens or patient-derived xenografts as part of a pediatric precision oncology trial. Cytopathology cases were compared with the morphology and immunohistochemical staining profile of the original tumor. Cases were reported as tumor cells present, equivocal, or tumor cells absent. The HTS results from cytopathologically validated cultures were incorporated into a multidisciplinary tumor board report issued to the treating clinician to guide clinical decision making. RESULTS On cytopathologic examination, tumor cells were present in 77 of 129 cases (60%) and were absent in 38 of 129 cases (29%), whereas 14 of 129 cases (11%) were equivocal. Cultures that contained tumor cells resembled the tumors from which they were derived. CONCLUSIONS Cytopathologic examination of tumor cell block preparations is feasible and provides detailed morphologic characterization. Cytopathologic examination is essential for ensuring that samples submitted for HTS contain representative tumor cells and that in vitro drug sensitivity data are clinically translatable.
Collapse
Affiliation(s)
- Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Amit Kumar
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - M Emmy M Dolman
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Center, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Roxanne Cadiz
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Marie Wong-Erasmus
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Emily V A Mould
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Dylan Grebert-Wade
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Timothy W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Australian Cancer Research Foundation Drug Discovery Center, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Shu-Oi Chow
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Australian Cancer Research Foundation Drug Discovery Center, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Australian Cancer Research Foundation Drug Discovery Center, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Kanika Bhatia
- Children's Cancer Center, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Kids Cancer Center, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia.,Kids Cancer Center, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia
| | - Loretta Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,Children's Cancer Center, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Penny Athanasatos
- Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, New South Wales, Australia.,Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
24
|
Tucker ER, George S, Angelini P, Bruna A, Chesler L. The Promise of Patient-Derived Preclinical Models to Accelerate the Implementation of Personalised Medicine for Children with Neuroblastoma. J Pers Med 2021; 11:248. [PMID: 33808071 PMCID: PMC8065808 DOI: 10.3390/jpm11040248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Patient-derived preclinical models are now a core component of cancer research and have the ability to drastically improve the predictive power of preclinical therapeutic studies. However, their development and maintenance can be challenging, time consuming, and expensive. For neuroblastoma, a developmental malignancy of the neural crest, it is possible to establish patient-derived models as xenografts in mice and zebrafish, and as spheroids and organoids in vitro. These varied approaches have contributed to comprehensive packages of preclinical evidence in support of new therapeutics for neuroblastoma. We discuss here the ethical and technical considerations for the creation of patient-derived models of neuroblastoma and how their use can be optimized for the study of tumour evolution and preclinical therapies. We also discuss how neuroblastoma patient-derived models might become avatars for personalised medicine for children with this devastating disease.
Collapse
Affiliation(s)
- Elizabeth R. Tucker
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| | - Sally George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| | - Paola Angelini
- Children and Young People’s Unit, The Royal Marsden, Downs Road, Sutton, Surrey SM2 5PT, UK;
| | - Alejandra Bruna
- Preclinical Paediatric Cancer Evolution, Centre for Cancer Drug Discovery, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK;
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| |
Collapse
|
25
|
van Zogchel LMJ, Zappeij-Kannegieter L, Javadi A, Lugtigheid M, Gelineau NU, Lak NSM, Zwijnenburg DA, Koster J, Stutterheim J, van der Schoot CE, Tytgat GAM. Specific and Sensitive Detection of Neuroblastoma mRNA Markers by Multiplex RT-qPCR. Cancers (Basel) 2021; 13:E150. [PMID: 33466359 PMCID: PMC7796198 DOI: 10.3390/cancers13010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
mRNA RT-qPCR is shown to be a very sensitive technique to detect minimal residual disease (MRD) in patients with neuroblastoma. Multiple mRNA markers are known to detect heterogeneous neuroblastoma cells in bone marrow (BM) or blood from patients. However, the limited volumes of BM and blood available can hamper the detection of multiple markers. To make optimal use of these samples, we developed a multiplex RT-qPCR for the detection of MRD in neuroblastoma. GUSB and PHOX2B were tested as single markers. The adrenergic markers TH, GAP43, CHRNA3 and DBH and mesenchymal markers POSTN, PRRX1 and FMO3 were tested in multiplex. Using control blood and BM, we established new thresholds for positivity. Comparison of multiplex and singleplex RT-qPCR results from 21 blood and 24 BM samples from neuroblastoma patients demonstrated a comparable sensitivity. With this multiplex RT-qPCR, we are able to test seven different neuroblastoma mRNA markers, which overcomes tumor heterogeneity and improves sensitivity of MRD detection, even in those samples of low RNA quantity. With resources and time being saved, reduction in sample volume and consumables can assist in the introduction of MRD by RT-qPCR into clinical practice.
Collapse
Affiliation(s)
- Lieke M. J. van Zogchel
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (L.M.J.v.Z.); (N.U.G.); (N.S.M.L.); (J.S.)
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (L.Z.-K.); (A.J.); (M.L.); (C.E.v.d.S.)
| | - Lily Zappeij-Kannegieter
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (L.Z.-K.); (A.J.); (M.L.); (C.E.v.d.S.)
| | - Ahmad Javadi
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (L.Z.-K.); (A.J.); (M.L.); (C.E.v.d.S.)
| | - Marjolein Lugtigheid
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (L.Z.-K.); (A.J.); (M.L.); (C.E.v.d.S.)
| | - Nina U. Gelineau
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (L.M.J.v.Z.); (N.U.G.); (N.S.M.L.); (J.S.)
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (L.Z.-K.); (A.J.); (M.L.); (C.E.v.d.S.)
| | - Nathalie S. M. Lak
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (L.M.J.v.Z.); (N.U.G.); (N.S.M.L.); (J.S.)
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (L.Z.-K.); (A.J.); (M.L.); (C.E.v.d.S.)
| | - Danny A. Zwijnenburg
- Academic Medical Center, Department of Oncogenomics, 1105 AZ Amsterdam, The Netherlands; (D.A.Z.); (J.K.)
| | - Jan Koster
- Academic Medical Center, Department of Oncogenomics, 1105 AZ Amsterdam, The Netherlands; (D.A.Z.); (J.K.)
| | - Janine Stutterheim
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (L.M.J.v.Z.); (N.U.G.); (N.S.M.L.); (J.S.)
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (L.Z.-K.); (A.J.); (M.L.); (C.E.v.d.S.)
| | - Godelieve A. M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (L.M.J.v.Z.); (N.U.G.); (N.S.M.L.); (J.S.)
| |
Collapse
|
26
|
Fusco P, Mattiuzzo E, Frasson C, Viola G, Cimetta E, Esposito MR, Tonini GP. Verteporfin induces apoptosis and reduces the stem cell-like properties in Neuroblastoma tumour-initiating cells through inhibition of the YAP/TAZ pathway. Eur J Pharmacol 2020; 893:173829. [PMID: 33347823 DOI: 10.1016/j.ejphar.2020.173829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is an embryonal malignancy of early childhood arising from the embryonic sympatho-adrenal lineage of the neural crest. About half of all cases are currently classified as high-risk of disease recurrence, with an overall survival rate of less than 40% at 5 years despite intensive therapy. Recent studies on matched primary tumours and at the relapse revealed downregulation of genes transcriptionally silenced by YAP as significant association with neuroblastoma relapse. Here, we evaluated the pharmacological targeting of YAP/TAZ with the YAP/TAZ-TEAD inhibitor Verteporfin (VP) in Tumour Initiating Cells (TICs) derived from High-Risk Neuroblastoma patients. VP treatment suppresses YAP/TAZ expression, induces apoptosis and causes the re-organization of the cytoskeleton reducing cells migration and clonogenic ability. Moreover, VP reduces the percentage of side population cells and ABC transporters involved in drug resistance, and the percentage of stem cell subpopulations CD133+ and CD44+ of TICs. Finally, we demonstrated that VP sensitizes TICs to the standard drugs used for neuroblastoma therapy etoposide and cis-platin opening the way to use VP as drug repositioning candidate for recurrent neuroblastoma.
Collapse
Affiliation(s)
- Pina Fusco
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Elena Mattiuzzo
- Department of Women's and Children's Health, University of Padova, Italy.
| | - Chiara Frasson
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Italy.
| | - Elisa Cimetta
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padova, Italy; University of Padua, Department of Industrial Engineering (DII), Via Marzolo 9, 35131, Padova, Italy.
| | - Maria Rosaria Esposito
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Gian Paolo Tonini
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy
| |
Collapse
|
27
|
Hochheuser C, van Zogchel LMJ, Kleijer M, Kuijk C, Tol S, van der Schoot CE, Voermans C, Tytgat GAM, Timmerman I. The Metastatic Bone Marrow Niche in Neuroblastoma: Altered Phenotype and Function of Mesenchymal Stromal Cells. Cancers (Basel) 2020; 12:E3231. [PMID: 33147765 PMCID: PMC7692745 DOI: 10.3390/cancers12113231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The bone marrow (BM) is the main site of metastases and relapse in patients with neuroblastoma (NB). BM-residing mesenchymal stromal cells (MSCs) were shown to promote tumor cell survival and chemoresistance. Here we characterize the MSC compartment of the metastatic NB BM niche. Methods: Fresh BM of 62 NB patients (all stages), and control fetal and adult BM were studied by flow cytometry using well-established MSC-markers (CD34-, CD45-, CD90+, CD105+), and CD146 and CD271 subtype-markers. FACS-sorted BM MSCs and tumor cells were validated by qPCR. Moreover, isolated MSCs were tested for multilineage differentiation and Colony-forming-unit-fibroblasts (CFU-Fs) capacity. Results: Metastatic BM contains a higher number of MSCs (p < 0.05) with increased differentiation capacity towards the osteoblast lineage. Diagnostic BM contains a MSC-subtype (CD146+CD271-), only detected in BM of patients with metastatic-NB, determined by flow cytometry. FACS-sorting clearly discriminated MSC(-subtypes) and NB fractions, validated by mRNA and DNA qPCR. Overall, the CD146+CD271- subtype decreased during therapy and was detected again in the majority of patients at relapse. Conclusions: We demonstrate that the neuroblastoma BM-MSC compartment is different in quantity and functionality and contains a metastatic-niche-specific MSC-subtype. Ultimately, the MSCs contribution to tumor progression could provide targets with potential for eradicating resistant metastatic disease.
Collapse
Affiliation(s)
- Caroline Hochheuser
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
- Department of Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| | - Lieke M. J. van Zogchel
- Department of Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Marion Kleijer
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
| | - Carlijn Kuijk
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
| | - Simon Tol
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Carlijn Voermans
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
| | - Godelieve A. M. Tytgat
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
- Department of Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| | - Ilse Timmerman
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.H.); (M.K.); (C.K.); (C.V.); (G.A.M.T.)
- Department of Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| |
Collapse
|
28
|
Anti-GD2-IRDye800CW as a targeted probe for fluorescence-guided surgery in neuroblastoma. Sci Rep 2020; 10:17667. [PMID: 33077751 PMCID: PMC7573590 DOI: 10.1038/s41598-020-74464-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
Neuroblastoma resection represents a major challenge in pediatric surgery, because of the high risk of complications. Fluorescence-guided surgery (FGS) could lower this risk by facilitating discrimination of tumor from normal tissue and is gaining momentum in adult oncology. Here, we provide the first molecular-targeted fluorescent agent for FGS in pediatric oncology, by developing and preclinically evaluating a GD2-specific tracer consisting of the immunotherapeutic antibody dinutuximab-beta, recently approved for neuroblastoma treatment, conjugated to near-infrared (NIR) fluorescent dye IRDye800CW. We demonstrated specific binding of anti-GD2-IRDye800CW to human neuroblastoma cells in vitro and in vivo using xenograft mouse models. Furthermore, we defined an optimal dose of 1 nmol, an imaging time window of 4 days after administration and show that neoadjuvant treatment with anti-GD2 immunotherapy does not interfere with fluorescence imaging. Importantly, as we observed universal, yet heterogeneous expression of GD2 on neuroblastoma tissue of a wide range of patients, we implemented a xenograft model of patient-derived neuroblastoma organoids with differential GD2 expression and show that even low GD2 expressing tumors still provide an adequate real-time fluorescence signal. Hence, the imaging advancement presented in this study offers an opportunity for improving surgery and potentially survival of a broad group of children with neuroblastoma.
Collapse
|
29
|
George SL, Lorenzi F, King D, Hartlieb S, Campbell J, Pemberton H, Toprak UH, Barker K, Tall J, da Costa BM, van den Boogaard ML, Dolman MEM, Molenaar JJ, Bryant HE, Westermann F, Lord CJ, Chesler L. Therapeutic vulnerabilities in the DNA damage response for the treatment of ATRX mutant neuroblastoma. EBioMedicine 2020; 59:102971. [PMID: 32846370 PMCID: PMC7452577 DOI: 10.1016/j.ebiom.2020.102971] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In neuroblastoma, genetic alterations in ATRX, define a distinct poor outcome patient subgroup. Despite the need for new therapies, there is a lack of available models and a dearth of pre-clinical research. METHODS To evaluate the impact of ATRX loss of function (LoF) in neuroblastoma, we utilized CRISPR-Cas9 gene editing to generate neuroblastoma cell lines isogenic for ATRX. We used these and other models to identify therapeutically exploitable synthetic lethal vulnerabilities associated with ATRX LoF. FINDINGS In isogenic cell lines, we found that ATRX inactivation results in increased DNA damage, homologous recombination repair (HRR) defects and impaired replication fork processivity. In keeping with this, high-throughput compound screening showed selective sensitivity in ATRX mutant cells to multiple PARP inhibitors and the ATM inhibitor KU60019. ATRX mutant cells also showed selective sensitivity to the DNA damaging agents, sapacitabine and irinotecan. HRR deficiency was also seen in the ATRX deleted CHLA-90 cell line, and significant sensitivity demonstrated to olaparib/irinotecan combination therapy in all ATRX LoF models. In-vivo sensitivity to olaparib/irinotecan was seen in ATRX mutant but not wild-type xenografts. Finally, sustained responses to olaparib/irinotecan therapy were seen in an ATRX deleted neuroblastoma patient derived xenograft. INTERPRETATION ATRX LoF results in specific DNA damage repair defects that can be therapeutically exploited. In ATRX LoF models, preclinical sensitivity is demonstrated to olaparib and irinotecan, a combination that can be rapidly translated into the clinic. FUNDING This work was supported by Christopher's Smile, Neuroblastoma UK, Cancer Research UK, and the Royal Marsden Hospital NIHR BRC.
Collapse
Affiliation(s)
- Sally L George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT United Kingdom.
| | - Federica Lorenzi
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - David King
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Sabine Hartlieb
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James Campbell
- Bioinformatics Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Helen Pemberton
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research London, SW3 6JB, United Kingdom
| | - Umut H Toprak
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karen Barker
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Jennifer Tall
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Barbara Martins da Costa
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | | | - M Emmy M Dolman
- Princess Maxima Center for Pediatric Cancer, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Maxima Center for Pediatric Cancer, Utrecht, The Netherlands
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Frank Westermann
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher J Lord
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research London, SW3 6JB, United Kingdom
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT United Kingdom
| |
Collapse
|
30
|
Hee E, Wong MK, Tan SH, Choo Z, Kuick CH, Ling S, Yong MH, Jain S, Lian DWQ, Ng EHQ, Yong YFL, Ren MH, Syed Sulaiman N, Low SYY, Chua YW, Syed MF, Lim TKH, Soh SY, Iyer P, Seng MSF, Lam JCM, Tan EEK, Chan MY, Tan AM, Chen Y, Chen Z, Chang KTE, Loh AHP. Neuroblastoma patient-derived cultures are enriched for a mesenchymal gene signature and reflect individual drug response. Cancer Sci 2020; 111:3780-3792. [PMID: 32777141 PMCID: PMC7540996 DOI: 10.1111/cas.14610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Ex vivo evaluation of personalized models can facilitate individualized treatment selection for patients, and advance the discovery of novel therapeutic options. However, for embryonal malignancies, representative primary cultures have been difficult to establish. We developed patient‐derived cell cultures (PDCs) from chemo‐naïve and post–treatment neuroblastoma tumors in a consistent and efficient manner, and characterized their in vitro growth dynamics, histomorphology, gene expression, and functional chemo‐response. From 34 neuroblastoma tumors, 22 engrafted in vitro to generate 31 individual PDC lines, with higher engraftment seen with metastatic tumors. PDCs displayed characteristic immunohistochemical staining patterns of PHOX2B, TH, and GD2 synthase. Concordance of MYCN amplification, 1p and 11q deletion between PDCs and patient tumors was 83.3%, 72.7%, and 80.0% respectively. PDCs displayed a predominantly mesenchymal‐type gene expression signature and showed upregulation of pro‐angiogenic factors that were similarly enriched in culture medium and paired patient serum samples. When tested with standard‐of‐care cytotoxics at human Cmax‐equivalent concentrations, MYCN‐amplified and non‐MYCN‐amplified PDCs showed a differential response to cyclophosphamide and topotecan, which mirrored the corresponding patients’ responses, and correlated with gene signatures of chemosensitivity. In this translational proof‐of‐concept study, early‐phase neuroblastoma PDCs enriched for the mesenchymal cell subpopulation recapitulated the individual molecular and phenotypic profile of patient tumors, and highlighted their potential as a platform for individualized ex vivo drug‐response testing.
Collapse
Affiliation(s)
- Esther Hee
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhang'E Choo
- Neurodevelopment and Cancer Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sharon Ling
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Min Hwee Yong
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yvonne F L Yong
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mee Hiong Ren
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nurfarhanah Syed Sulaiman
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Sharon Y Y Low
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Yong Wei Chua
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Muhammad Fahmy Syed
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony K H Lim
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Prasad Iyer
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Michaela S F Seng
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joyce C M Lam
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Enrica E K Tan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mei Yoke Chan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ah Moy Tan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yong Chen
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhixiong Chen
- Neurodevelopment and Cancer Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
31
|
Monitoring Immune Responses in Neuroblastoma Patients during Therapy. Cancers (Basel) 2020; 12:cancers12020519. [PMID: 32102342 PMCID: PMC7072382 DOI: 10.3390/cancers12020519] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NBL) is the most common extracranial solid tumor in childhood. Despite intense treatment, children with this high-risk disease have a poor prognosis. Immunotherapy showed a significant improvement in event-free survival in high-risk NBL patients receiving chimeric anti-GD2 in combination with cytokines and isotretinoin after myeloablative consolidation therapy. However, response to immunotherapy varies widely, and often therapy is stopped due to severe toxicities. Objective markers that help to predict which patients will respond or develop toxicity to a certain treatment are lacking. Immunotherapy guided via immune monitoring protocols will help to identify responders as early as possible, to decipher the immune response at play, and to adjust or develop new treatment strategies. In this review, we summarize recent studies investigating frequency and phenotype of immune cells in NBL patients prior and during current treatment protocols and highlight how these findings are related to clinical outcome. In addition, we discuss potential targets to improve immunogenicity and strategies that may help to improve therapy efficacy. We conclude that immune monitoring during therapy of NBL patients is essential to identify predictive biomarkers to guide patients towards effective treatment, with limited toxicities and optimal quality of life.
Collapse
|
32
|
Krawczyk E, Hong SH, Galli S, Trinh E, Wietlisbach L, Misiukiewicz SF, Tilan JU, Chen YS, Schlegel R, Kitlinska J. Murine neuroblastoma cell lines developed by conditional reprogramming preserve heterogeneous phenotypes observed in vivo. J Transl Med 2020; 100:38-51. [PMID: 31409888 PMCID: PMC6920526 DOI: 10.1038/s41374-019-0297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric tumor of the peripheral nervous system. Treatment of the disease represents an unsolved clinical problem, as survival of patients with aggressive form of NB remains below 50%. Despite recent identification of numerous potential therapeutic targets, clinical trials validating them are challenging due to the rarity of the disease and its high patient-to-patient heterogeneity. Hence, there is a need for the accurate preclinical models that would allow testing novel therapeutic approaches and prioritizing the clinical studies, preferentially in personalized way. Here, we propose using conditional reprogramming (CR) technology for rapid development of primary NB cell cultures that could become a new model for such tests. This newly established method allowed for indefinite propagation of normal and tumor cells of epithelial origin in an undifferentiated state by their culture in the presence of Rho-associated kinase (ROCK) inhibitor, Y-27632, and irradiated mouse feeder cells. Using a modification of this approach, we isolated cell lines from tumors arising in the TH-MYCN murine transgenic model of NB (CR-NB). The cells were positive for neuronal markers, including Phox2B and peripherin and consisted of two distinct populations: mesenchymal and adrenergic expressing corresponding markers of their specific lineage. This heterogeneity of the CR-NB cells mimicked the different tumor cell phenotypes in TH-MYCN tumor tissues. The CR-NB cells preserved anchorage-independent growth capability and were successfully passaged, frozen and biobanked. Further studies are required to determine the utility of this method for isolation of human NB cultures, which can become a novel model for basic, translational, and clinical research, including individualized drug testing.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington DC, USA.
| | - Sung-Hyeok Hong
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Emily Trinh
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Larissa Wietlisbach
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Sara F. Misiukiewicz
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington DC
| | - Jason U. Tilan
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington DC
| | - You-Shin Chen
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Richard Schlegel
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington DC
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| |
Collapse
|
33
|
Ornell KJ, Coburn JM. Developing preclinical models of neuroblastoma: driving therapeutic testing. BMC Biomed Eng 2019; 1:33. [PMID: 32903387 PMCID: PMC7422585 DOI: 10.1186/s42490-019-0034-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40–50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| |
Collapse
|
34
|
Fusco P, Parisatto B, Rampazzo E, Persano L, Frasson C, Di Meglio A, Leslz A, Santoro L, Cafferata B, Zin A, Cimetta E, Basso G, Esposito MR, Tonini GP. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer 2019; 19:970. [PMID: 31638925 PMCID: PMC6802324 DOI: 10.1186/s12885-019-6149-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a paediatric tumour of the sympathetic nervous system. Half of all cases are defined high-risk with an overall survival less than 40% at 5 years from diagnosis. The lack of in vitro models able to recapitulate the intrinsic heterogeneity of primary NB tumours has hindered progress in understanding disease pathogenesis and therapy response. METHODS Here we describe the establishment of 6 patient-derived organoids (PDOs) from cells of NB tumour biopsies capable of self-organising in a structure resembling the tissue of origin. RESULTS PDOs recapitulate the histological architecture typical of the NB tumour. Moreover, PDOs expressed NB specific markers such as neural cell adhesion molecules, NB84 antigen, synaptophysin (SYP), chromogranin A (CHGA) and neural cell adhesion molecule NCAM (CD56). Analyses of whole genome genotyping array revealed that PDOs maintained patient-specific chromosomal aberrations such as MYCN amplification, deletion of 1p and gain of chromosome 17q. Furthermore, the PDOs showed stemness features and retained cellular heterogeneity reflecting the high heterogeneity of NB tumours. CONCLUSIONS We were able to create a novel preclinical model for NB exhibiting self-renewal property and allowing to obtain a reservoir of NB patients' biological material useful for the study of NB molecular pathogenesis and to test drugs for personalised treatments.
Collapse
Affiliation(s)
- P Fusco
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Neuroblastoma Laboratory Corso Stati Uniti 4, 35127, Padova, Italy
| | - B Parisatto
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Neuroblastoma Laboratory Corso Stati Uniti 4, 35127, Padova, Italy
| | - E Rampazzo
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Corso Stati Uniti 4, 35127, Padova, Italy.,University of Padova, Department of Women's and Children's Health, 35128, Padova, Italy
| | - L Persano
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Corso Stati Uniti 4, 35127, Padova, Italy
| | - C Frasson
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Corso Stati Uniti 4, 35127, Padova, Italy
| | - A Di Meglio
- University of Padova, Department of Women's and Children's Health, 35128, Padova, Italy
| | - A Leslz
- University of Padova, Department of Women's and Children's Health, 35128, Padova, Italy
| | - L Santoro
- Department of Medicine DIMED, Pathology and Cytopathology Unit, University of Padua, 35127, Padova, Italy
| | - B Cafferata
- Department of Medicine DIMED, Pathology and Cytopathology Unit, University of Padua, 35127, Padova, Italy
| | - A Zin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Corso Stati Uniti 4, 35127, Padova, Italy
| | - E Cimetta
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Corso Stati Uniti 4, 35127, Padova, Italy.,University of Padua, Department of Industrial Engineering (DII), 35127, Padova, Italy
| | - G Basso
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Corso Stati Uniti 4, 35127, Padova, Italy.,University of Padova, Department of Women's and Children's Health, 35128, Padova, Italy
| | - M R Esposito
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Neuroblastoma Laboratory Corso Stati Uniti 4, 35127, Padova, Italy.
| | - G P Tonini
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP) - Neuroblastoma Laboratory Corso Stati Uniti 4, 35127, Padova, Italy
| |
Collapse
|
35
|
van Wezel EM, van Zogchel LMJ, van Wijk J, Timmerman I, Vo NK, Zappeij-Kannegieter L, deCarolis B, Simon T, van Noesel MM, Molenaar JJ, van Groningen T, Versteeg R, Caron HN, van der Schoot CE, Koster J, van Nes J, Tytgat GAM. Mesenchymal Neuroblastoma Cells Are Undetected by Current mRNA Marker Panels: The Development of a Specific Neuroblastoma Mesenchymal Minimal Residual Disease Panel. JCO Precis Oncol 2019; 3:1800413. [PMID: 34036221 PMCID: PMC8133311 DOI: 10.1200/po.18.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Patients with neuroblastoma in molecular remission remain at considerable risk for disease recurrence. Studies have found that neuroblastoma tissue contains adrenergic (ADRN) and mesenchymal (MES) cells; the latter express low levels of commonly used markers for minimal residual disease (MRD). We identified MES-specific MRD markers and studied the dynamics of these markers during treatment. PATIENTS AND METHODS Microarray data were used to identify genes differentially expressed between ADRN and MES cell lines. Candidate genes were then studied using real-time quantitative polymerase chain reaction in cell lines and control bone marrow and peripheral blood samples. After selecting a panel of markers, serial bone marrow, peripheral blood, and peripheral blood stem cell samples were obtained from patients with high-risk neuroblastoma and tested for marker expression; survival analyses were also performed. RESULTS PRRX1, POSTN, and FMO3 mRNAs were used as a panel for specifically detecting MES mRNA in patient samples. MES mRNA was detected only rarely in peripheral blood; moreover, the presence of MES mRNA in peripheral blood stem cell samples was associated with low event-free survival and overall survival. Of note, during treatment, serial bone marrow samples obtained from 29 patients revealed a difference in dynamics between MES mRNA markers and ADRN mRNA markers. Furthermore, MES mRNA was detected in a higher percentage of patients with recurrent disease than in those who remained disease free (53% v 32%, respectively; P = .03). CONCLUSION We propose that the markers POSTN and PRRX1, in combination with FMO3, be used for real-time quantitative polymerase chain reaction-based detection of MES neuroblastoma mRNA in patient samples because these markers have a unique pattern during treatment and are more prevalent in patients with poor outcome. Together with existing markers of MRD, these new markers should be investigated further in large prospective studies.
Collapse
Affiliation(s)
- Esther M van Wezel
- Sanquin Research Amsterdam, the Netherlands.,Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Lieke M J van Zogchel
- Sanquin Research Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jalenka van Wijk
- Sanquin Research Amsterdam, the Netherlands.,Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ilse Timmerman
- Sanquin Research Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | | | - Thorsten Simon
- Children's Hospital University of Cologne, Cologne, Germany
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Rogier Versteeg
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Huib N Caron
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | - Jan Koster
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Johan van Nes
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Godelieve A M Tytgat
- Amsterdam University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
36
|
Thole TM, Toedling J, Sprüssel A, Pfeil S, Savelyeva L, Capper D, Messerschmidt C, Beule D, Groeneveld-Krentz S, Eckert C, Gambara G, Henssen AG, Finkler S, Schulte JH, Sieber A, Bluethgen N, Regenbrecht CRA, Künkele A, Lodrini M, Eggert A, Deubzer HE. Reflection of neuroblastoma intratumor heterogeneity in the new OHC-NB1 disease model. Int J Cancer 2019; 146:1031-1041. [PMID: 31304977 DOI: 10.1002/ijc.32572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
Accurate modeling of intratumor heterogeneity presents a bottleneck against drug testing. Flexibility in a preclinical platform is also desirable to support assessment of different endpoints. We established the model system, OHC-NB1, from a bone marrow metastasis from a patient diagnosed with MYCN-amplified neuroblastoma and performed whole-exome sequencing on the source metastasis and the different models and passages during model development (monolayer cell line, 3D spheroid culture and subcutaneous xenograft tumors propagated in mice). OHC-NB1 harbors a MYCN amplification in double minutes, 1p deletion, 17q gain and diploid karyotype, which persisted in all models. A total of 80-540 single-nucleotide variants (SNVs) was detected in each sample, and comparisons between the source metastasis and models identified 34 of 80 somatic SNVs to be propagated in the models. Clonal reconstruction using the combined copy number and SNV data revealed marked clonal heterogeneity in the originating metastasis, with four clones being reflected in the model systems. The set of OHC-NB1 models represents 43% of somatic SNVs and 23% of the cellularity in the originating metastasis with varying clonal compositions, indicating that heterogeneity is partially preserved in our model system.
Collapse
Affiliation(s)
- Theresa M Thole
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joern Toedling
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Sprüssel
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Pfeil
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Savelyeva
- Research Group Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Clemens Messerschmidt
- Core Unit Bioinformatics, Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | | | - Cornelia Eckert
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Guido Gambara
- CELLPhenomics GmbH, Berlin, Germany.,Charité Comprehensive Cancer Center (CCCC), Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anton G Henssen
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Sabine Finkler
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Anja Sieber
- Computational Modelling in Medicine, Charité - Universitätsmedizin Berlin, Institute for Pathology, Berlin, Germany.,IRI Life Sciences, Humboldt University Berlin, Berlin, Germany
| | - Nils Bluethgen
- Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,Computational Modelling in Medicine, Charité - Universitätsmedizin Berlin, Institute for Pathology, Berlin, Germany.,IRI Life Sciences, Humboldt University Berlin, Berlin, Germany
| | - Christian R A Regenbrecht
- CELLPhenomics GmbH, Berlin, Germany.,Department for Pathology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Annette Künkele
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Marco Lodrini
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
37
|
van Groningen T, Akogul N, Westerhout EM, Chan A, Hasselt NE, Zwijnenburg DA, Broekmans M, Stroeken P, Haneveld F, Hooijer GKJ, Savci-Heijink CD, Lakeman A, Volckmann R, van Sluis P, Valentijn LJ, Koster J, Versteeg R, van Nes J. A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma. Nat Commun 2019; 10:1530. [PMID: 30948783 PMCID: PMC6449373 DOI: 10.1038/s41467-019-09470-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/14/2019] [Indexed: 11/09/2022] Open
Abstract
Transition between differentiation states in development occurs swift but the mechanisms leading to epigenetic and transcriptional reprogramming are poorly understood. The pediatric cancer neuroblastoma includes adrenergic (ADRN) and mesenchymal (MES) tumor cell types, which differ in phenotype, super-enhancers (SEs) and core regulatory circuitries. These cell types can spontaneously interconvert, but the mechanism remains largely unknown. Here, we unravel how a NOTCH3 intracellular domain reprogrammed the ADRN transcriptional landscape towards a MES state. A transcriptional feed-forward circuitry of NOTCH-family transcription factors amplifies the NOTCH signaling levels, explaining the swift transition between two semi-stable cellular states. This transition induces genome-wide remodeling of the H3K27ac landscape and a switch from ADRN SEs to MES SEs. Once established, the NOTCH feed-forward loop maintains the induced MES state. In vivo reprogramming of ADRN cells shows that MES and ADRN cells are equally oncogenic. Our results elucidate a swift transdifferentiation between two semi-stable epigenetic cellular states.
Collapse
Affiliation(s)
- Tim van Groningen
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nurdan Akogul
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ellen M Westerhout
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Alvin Chan
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nancy E Hasselt
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marloes Broekmans
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Peter Stroeken
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Franciska Haneveld
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gerrit K J Hooijer
- Department of Pathology, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - C Dilara Savci-Heijink
- Department of Pathology, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arjan Lakeman
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Richard Volckmann
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Peter van Sluis
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Linda J Valentijn
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johan van Nes
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Dorneburg C, Goß AV, Fischer M, Roels F, Barth TFE, Berthold F, Kappler R, Oswald F, Siveke JT, Molenaar JJ, Debatin KM, Beltinger C. γ-Secretase inhibitor I inhibits neuroblastoma cells, with NOTCH and the proteasome among its targets. Oncotarget 2018; 7:62799-62813. [PMID: 27588497 PMCID: PMC5325329 DOI: 10.18632/oncotarget.11715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022] Open
Abstract
As high-risk neuroblastoma (NB) has a poor prognosis, new therapeutic modalities are needed. We therefore investigated the susceptibility of NB cells to γ-secretase inhibitor I (GSI-I). NOTCH signaling activity, the cellular effects of GSI-I and its mechanisms of cytotoxicity were evaluated in NB cells in vitro and in vivo. The results show that NOTCH signaling is relevant for human NB cells. Of the GSIs screened in vitro GSI-I was the most effective inhibitor of NB cells. Both MYCN-amplified and non-amplified NB cells were susceptible to GSI-I. Among the targets of GSI-I in NB cells were NOTCH and the proteasome. GSI-I caused G2/M arrest that was enhanced by acute activation of MYCN and led to mitotic dysfunction. GSI-I also induced proapoptotic NOXA. Survival of mice bearing an MYCN non-amplified orthotopic patient-derived NB xenograft was significantly prolonged by systemic GSI-I, associated with mitotic catastrophe and reduced angiogenesis, and without evidence of intestinal toxicity. In conclusion, the activity of GSI-I on multiple targets in NB cells and the lack of gastrointestinal toxicity in mice are advantageous and merit further investigations of GSI-I in NB.
Collapse
Affiliation(s)
- Carmen Dorneburg
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Annika V Goß
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Matthias Fischer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Frederik Roels
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Thomas F E Barth
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - Frank Berthold
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Franz Oswald
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Jens T Siveke
- Department of Internal Medicine, University Hospital Essen, Essen, Germany
| | - Jan J Molenaar
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
39
|
Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res 2018; 372:211-221. [PMID: 29445860 DOI: 10.1007/s00441-018-2796-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Neuroblastoma is an embryonal malignancy that affects normal development of the adrenal medulla and paravertebral sympathetic ganglia in early childhood. Extensive studies have revealed the molecular characteristics of human neuroblastomas, including abnormalities at genome, epigenome and transcriptome levels. However, neuroblastoma initiation mechanisms and even its origin are long-standing mysteries. In this review article, we summarize the current knowledge about normal development of putative neuroblastoma sources, namely sympathoadrenal lineage of neural crest cells and Schwann cell precursors that were recently identified as the source of adrenal chromaffin cells. A plausible origin of enigmatic stage 4S neuroblastoma is also discussed. With regard to the initiation mechanisms, we review genetic abnormalities in neuroblastomas and their possible association to initiation mechanisms. We also summarize evidences of neuroblastoma initiation observed in genetically engineered animal models, in which epigenetic alterations were involved, including transcriptomic upregulation by N-Myc and downregulation by polycomb repressive complex 2. Finally, several in vitro experimental methods are proposed that hopefully will accelerate our comprehension of neuroblastoma initiation. Thus, this review summarizes the state-of-the-art knowledge about the mechanisms of neuroblastoma initiation, which is critical for developing new strategies to cure children with neuroblastoma.
Collapse
|
40
|
Bate-Eya LT, den Hartog IJM, van der Ploeg I, Schild L, Koster J, Santo EE, Westerhout EM, Versteeg R, Caron HN, Molenaar JJ, Dolman MEM. High efficacy of the BCL-2 inhibitor ABT199 (venetoclax) in BCL-2 high-expressing neuroblastoma cell lines and xenografts and rational for combination with MCL-1 inhibition. Oncotarget 2017; 7:27946-58. [PMID: 27056887 PMCID: PMC5053701 DOI: 10.18632/oncotarget.8547] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/18/2016] [Indexed: 01/04/2023] Open
Abstract
The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression.
Collapse
Affiliation(s)
- Laurel T Bate-Eya
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ida van der Ploeg
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Schild
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Evan E Santo
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ellen M Westerhout
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Huib N Caron
- Department of Pediatric Oncology, Emma Kinderziekenhuis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J Molenaar
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - M Emmy M Dolman
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Rellinger EJ, Padmanabhan C, Qiao J, Craig BT, An H, Zhu J, Correa H, Waterson AG, Lindsley CW, Beauchamp RD, Chung DH. Isoxazole compound ML327 blocks MYC expression and tumor formation in neuroblastoma. Oncotarget 2017; 8:91040-91051. [PMID: 29207623 PMCID: PMC5710904 DOI: 10.18632/oncotarget.19406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022] Open
Abstract
Neuroblastomas are the most common extracranial solid tumors in children and arise from the embryonic neural crest. MYCN-amplification is a feature of ∼30% of neuroblastoma tumors and portends a poor prognosis. Neural crest precursors undergo epithelial-to-mesenchymal transition (EMT) to gain migratory potential and populate the sympathoadrenal axis. Neuroblastomas are posited to arise due to a blockade of neural crest differentiation. We have recently reported effects of a novel MET inducing compound ML327 (N-(3-(2-hydroxynicotinamido) propyl)-5-phenylisoxazole-3-carboxamide) in colon cancer cells. Herein, we hypothesized that forced epithelial differentiation using ML327 would promote neuroblastoma differentiation. In this study, we demonstrate that ML327 in neuroblastoma cells induces a gene signature consistent with both epithelial and neuronal differentiation features with adaptation of an elongated phenotype. These features accompany induction of cell death and G1 cell cycle arrest with blockage of anchorage-independent growth and neurosphere formation. Furthermore, pretreatment with ML327 results in persistent defects in proliferative potential and tumor-initiating capacity, validating the pro-differentiating effects of our compound. Intriguingly, we have identified destabilization of MYC signaling as an early and consistent feature of ML327 treatment that is observed in both MYCN-amplified and MYCN-single copy neuroblastoma cell lines. Moreover, ML327 blocked MYCN mRNA levels and tumor progression in established MYCN-amplified xenografts. As such, ML327 may have potential efficacy, alone or in conjunction with existing therapeutic strategies against neuroblastoma. Future identification of the specific intracellular target of ML327 may inform future drug discovery efforts and enhance our understanding of MYC regulation.
Collapse
Affiliation(s)
- Eric J. Rellinger
- Section of Surgical Sciences, Department of Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
- Department of Pediatric Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Chandrasekhar Padmanabhan
- Section of Surgical Sciences, Department of Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Jingbo Qiao
- Section of Surgical Sciences, Department of Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
- Department of Pediatric Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Brian T. Craig
- Section of Surgical Sciences, Department of Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
- Department of Pediatric Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Hanbing An
- Section of Surgical Sciences, Department of Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Jing Zhu
- Section of Surgical Sciences, Department of Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Hernán Correa
- Department of Pathology, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Alex G. Waterson
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Craig W. Lindsley
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - R. Daniel Beauchamp
- Section of Surgical Sciences, Department of Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
- Department of Cancer Biology, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
- Department of Cell and Developmental Biology, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| | - Dai H. Chung
- Section of Surgical Sciences, Department of Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
- Department of Cancer Biology, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
- Department of Pediatric Surgery, at Vanderbilt University Medical Center, TN 37232, Nashville, USA
| |
Collapse
|
42
|
Braekeveldt N, Bexell D. Patient-derived xenografts as preclinical neuroblastoma models. Cell Tissue Res 2017; 372:233-243. [PMID: 28924803 PMCID: PMC5915499 DOI: 10.1007/s00441-017-2687-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/27/2017] [Indexed: 11/26/2022]
Abstract
The prognosis for children with high-risk neuroblastoma is often poor and survivors can suffer from severe side effects. Predictive preclinical models and novel therapeutic strategies for high-risk disease are therefore a clinical imperative. However, conventional cancer cell line-derived xenografts can deviate substantially from patient tumors in terms of their molecular and phenotypic features. Patient-derived xenografts (PDXs) recapitulate many biologically and clinically relevant features of human cancers. Importantly, PDXs can closely parallel clinical features and outcome and serve as excellent models for biomarker and preclinical drug development. Here, we review progress in and applications of neuroblastoma PDX models. Neuroblastoma orthotopic PDXs share the molecular characteristics, neuroblastoma markers, invasive properties and tumor stroma of aggressive patient tumors and retain spontaneous metastatic capacity to distant organs including bone marrow. The recent identification of genomic changes in relapsed neuroblastomas opens up opportunities to target treatment-resistant tumors in well-characterized neuroblastoma PDXs. We highlight and discuss the features and various sources of neuroblastoma PDXs, methodological considerations when establishing neuroblastoma PDXs, in vitro 3D models, current limitations of PDX models and their application to preclinical drug testing.
Collapse
Affiliation(s)
- Noémie Braekeveldt
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404:C3, SE-223 81, Lund, Sweden
| | - Daniel Bexell
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404:C3, SE-223 81, Lund, Sweden.
| |
Collapse
|
43
|
Persson CU, von Stedingk K, Bexell D, Merselius M, Braekeveldt N, Gisselsson D, Arsenian-Henriksson M, Påhlman S, Wigerup C. Neuroblastoma patient-derived xenograft cells cultured in stem-cell promoting medium retain tumorigenic and metastatic capacities but differentiate in serum. Sci Rep 2017; 7:10274. [PMID: 28860499 PMCID: PMC5579187 DOI: 10.1038/s41598-017-09662-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022] Open
Abstract
Cultured cancer cells serve as important models for preclinical testing of anti-cancer compounds. However, the optimal conditions for retaining original tumor features during in vitro culturing of cancer cells have not been investigated in detail. Here we show that serum-free conditions are critical for maintaining an immature phenotype of neuroblastoma cells isolated from orthotopic patient-derived xenografts (PDXs). PDX cells could be grown either as spheres or adherent on laminin in serum-free conditions with retained patient-specific genomic aberrations as well as tumorigenic and metastatic capabilities. However, addition of serum led to morphological changes, neuronal differentiation and reduced cell proliferation. The epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were central for PDX cell proliferation and MYCN expression, and also hindered the serum-induced differentiation. Although serum induced a robust expression of neurotrophin receptors, stimulation with their cognate ligands did not induce further sympathetic differentiation, which likely reflects a block in PDX cell differentiation capacity coupled to their tumor genotype. Finally, PDX cells cultured as spheres or adherent on laminin responded similarly to various cytotoxic drugs, suggesting that both conditions are suitable in vitro screening models for neuroblastoma-targeting compounds.
Collapse
Affiliation(s)
- Camilla U Persson
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | | | - Daniel Bexell
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - My Merselius
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Noémie Braekeveldt
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Lund University, Department of Pathology, University and Regional Laboratories, Lund, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Caroline Wigerup
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden.
| |
Collapse
|
44
|
Paul P, Rellinger EJ, Qiao J, Lee S, Volny N, Padmanabhan C, Romain CV, Mobley B, Correa H, Chung DH. Elevated TIMP-1 expression is associated with a prometastatic phenotype, disease relapse, and poor survival in neuroblastoma. Oncotarget 2017; 8:82609-82620. [PMID: 29137288 PMCID: PMC5669914 DOI: 10.18632/oncotarget.19664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/04/2017] [Indexed: 12/26/2022] Open
Abstract
Approximately two-thirds of patients with neuroblastoma are found to have metastatic disease at time of diagnosis with frequent skeletal, lymph node, central nervous system, and liver involvement. Using a serial in vivo splenic injection model, we have isolated an aggressive subclone (BE(2)-C/LM2) from MYCN-amplified neuroblastomas that demonstrate an enhanced propensity to develop metastatic liver lesions. BE(2)-C/LM2 subclone cells demonstrate increased adherent, soft agar colony and tumorsphere growth in vitro. Components of the tumor microenvironment regulate cancer progression, via networks of cytokines and growth factors. Cytokine array analysis identified increased TIMP-1 in the plasma of mice injected with BE(2)-C/LM2 subclone cells, leading us to hypothesize that TIMP-1 may play a role in our observed prometastatic phenotype. Immunoblotting and ELISA demonstrated enhanced endogenous TIMP-1 expression in our isolated neuroblastoma subclone. Silencing endogenous TIMP-1 successfully blocked in vitro proliferation, soft agar colony formation and tumorsphere formation by BE(2)-C/LM2 cells. Stable RNA interference of endogenous TIMP-1 failed to reverse the prometastatic phenotype of our BE(2)-C/LM2 subclone in our liver metastasis model, suggesting that endogenous TIMP-1 levels may not be an essential component of this in vivo behavior. Notably, tissue microarray analysis and Kaplan-Meier by gene expression demonstrates that elevated TIMP-1 expression is correlated with increased disease relapse and mortality in patients with neuroblastoma. Taken together, our study identifies TIMP-1 as a novel soluble factor that is associated with a prometastatic phenotype in our in vivo model and adverse outcomes in patients with neuroblastoma.
Collapse
Affiliation(s)
- Pritha Paul
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eric J Rellinger
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jingbo Qiao
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sora Lee
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natasha Volny
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chandrasekhar Padmanabhan
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carmelle V Romain
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bret Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hernan Correa
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dai H Chung
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
45
|
van Groningen T, Koster J, Valentijn LJ, Zwijnenburg DA, Akogul N, Hasselt NE, Broekmans M, Haneveld F, Nowakowska NE, Bras J, van Noesel CJM, Jongejan A, van Kampen AH, Koster L, Baas F, van Dijk-Kerkhoven L, Huizer-Smit M, Lecca MC, Chan A, Lakeman A, Molenaar P, Volckmann R, Westerhout EM, Hamdi M, van Sluis PG, Ebus ME, Molenaar JJ, Tytgat GA, Westerman BA, van Nes J, Versteeg R. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet 2017. [PMID: 28650485 DOI: 10.1038/ng.3899] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroblastoma and other pediatric tumors show a paucity of gene mutations, which has sparked an interest in their epigenetic regulation. Several tumor types include phenotypically divergent cells, resembling cells from different lineage development stages. It has been proposed that super-enhancer-associated transcription factor (TF) networks underlie lineage identity, but the role of these enhancers in intratumoral heterogeneity is unknown. Here we show that most neuroblastomas include two types of tumor cells with divergent gene expression profiles. Undifferentiated mesenchymal cells and committed adrenergic cells can interconvert and resemble cells from different lineage differentiation stages. ChIP-seq analysis of isogenic pairs of mesenchymal and adrenergic cells identified a distinct super-enhancer landscape and super-enhancer-associated TF network for each cell type. Expression of the mesenchymal TF PRRX1 could reprogram the super-enhancer and mRNA landscapes of adrenergic cells toward a mesenchymal state. Mesenchymal cells were more chemoresistant in vitro and were enriched in post-therapy and relapse tumors. Two super-enhancer-associated TF networks, which probably mediate lineage control in normal development, thus dominate epigenetic control of neuroblastoma and shape intratumoral heterogeneity.
Collapse
Affiliation(s)
- Tim van Groningen
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Linda J Valentijn
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Nurdan Akogul
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Nancy E Hasselt
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Marloes Broekmans
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Franciska Haneveld
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Johannes Bras
- Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Aldo Jongejan
- Department of Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Antoine H van Kampen
- Department of Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Linda Koster
- Department of Genome Diagnostics, Academic Medical Center, Amsterdam, the Netherlands
| | - Frank Baas
- Department of Genome Diagnostics, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | - Maria C Lecca
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Alvin Chan
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Arjan Lakeman
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Piet Molenaar
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Richard Volckmann
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Ellen M Westerhout
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Mohamed Hamdi
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Peter G van Sluis
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Marli E Ebus
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Jan J Molenaar
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Godelieve A Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - Bart A Westerman
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Johan van Nes
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
46
|
Bate-Eya LT, Gierman HJ, Ebus ME, Koster J, Caron HN, Versteeg R, Dolman MEM, Molenaar JJ. Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity. Eur J Cancer 2017; 75:63-72. [DOI: 10.1016/j.ejca.2016.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
|
47
|
Corallo D, Candiani S, Ori M, Aveic S, Tonini GP. The zebrafish as a model for studying neuroblastoma. Cancer Cell Int 2016; 16:82. [PMID: 27822138 PMCID: PMC5093987 DOI: 10.1186/s12935-016-0360-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma is a tumor arising in the peripheral sympathetic nervous system and is the most common cancer in childhood. Since most of the cellular and molecular mechanisms underlying neuroblastoma onset and progression remain unknown, the generation of new in vivo models might be appropriate to better dissect the peripheral sympathetic nervous system development in both physiological and disease states. This review is focused on the use of zebrafish as a suitable and innovative model to study neuroblastoma development. Here, we briefly summarize the current knowledge about zebrafish peripheral sympathetic nervous system formation, focusing on key genes and cellular pathways that play a crucial role in the differentiation of sympathetic neurons during embryonic development. In addition, we include examples of how genetic changes known to be associated with aggressive neuroblastoma can mimic this malignancy in zebrafish. Thus, we note the value of the zebrafish model in the field of neuroblastoma research, showing how it can improve our current knowledge about genes and biological pathways that contribute to malignant transformation and progression during embryonic life.
Collapse
Affiliation(s)
- Diana Corallo
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132 Genoa, Italy
| | - Michela Ori
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, 56127 Pisa, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| |
Collapse
|
48
|
Spel L, Boelens JJ, van der Steen DM, Blokland NJG, van Noesel MM, Molenaar JJ, Heemskerk MHM, Boes M, Nierkens S. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma. Oncotarget 2016; 6:35770-81. [PMID: 26452036 PMCID: PMC4742140 DOI: 10.18632/oncotarget.5657] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20–40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses.
Collapse
Affiliation(s)
- Lotte Spel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap-Jan Boelens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina J G Blokland
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max M van Noesel
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan J Molenaar
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marianne Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
49
|
Craig BT, Rellinger EJ, Alvarez AL, Dusek HL, Qiao J, Chung DH. Induced differentiation inhibits sphere formation in neuroblastoma. Biochem Biophys Res Commun 2016; 477:255-9. [PMID: 27297102 DOI: 10.1016/j.bbrc.2016.06.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023]
Abstract
Neuroblastoma arises from the neural crest, the precursor cells of the sympathoadrenal axis, and differentiation status is a key prognostic factor used for clinical risk group stratification and treatment strategies. Neuroblastoma tumor-initiating cells have been successfully isolated from patient tumor samples and bone marrow using sphere culture, which is well established to promote growth of neural crest stem cells. However, accurate quantification of sphere-forming frequency of commonly used neuroblastoma cell lines has not been reported. Here, we show that MYCN-amplified neuroblastoma cell lines form spheres more frequently than non-MYCN-amplified cell lines. We also show that sphere formation is directly sensitive to cellular differentiation status. 13-cis-retinoic acid is a clinically used differentiating agent that induces a neuronal phenotype in neuroblastoma cells. Induced differentiation nearly completely blocked sphere formation. Furthermore, sphere formation was specifically FGF-responsive and did not respond to increasing doses of EGF. Taken together, these data suggest that sphere formation is an accurate method of quantifying the stemness phenotype in neuroblastoma.
Collapse
Affiliation(s)
- Brian T Craig
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric J Rellinger
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandra L Alvarez
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haley L Dusek
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jingbo Qiao
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dai H Chung
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
50
|
Middelbeek J, Visser D, Henneman L, Kamermans A, Kuipers AJ, Hoogerbrugge PM, Jalink K, van Leeuwen FN. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation. Oncotarget 2016; 6:8760-76. [PMID: 25797249 PMCID: PMC4496182 DOI: 10.18632/oncotarget.3315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Daan Visser
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Arthur J Kuipers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Princes Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|