1
|
Li L, Zhu H, Zhang X, Hu A, Viswanathan M, Zhu W, Zu Z. Specific APT and NOE Imaging Using DSP-CEST in Humans at 3 T. NMR IN BIOMEDICINE 2025; 38:e70052. [PMID: 40312958 DOI: 10.1002/nbm.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
Specific chemical exchange saturation transfer (CEST) imaging, especially at low-field clinical 3-T scanners where multiple pools overlap, is challenging. Recently, a double saturation power (DSP)-CEST method has been developed to improve the specificity in quantifying two major CEST variations: amide proton transfer (APT) and nuclear Overhauser enhancement (NOE). This method avoids the mutual interference between APT and NOE, unlike the conventional asymmetry analysis method. It is also model-free, making it more robust compared to various Lorentzian fitting methods. Initially, this method was developed for continuous-wave saturation and tested in animals on preclinical MRI. This paper aims to further develop the method for pulsed-CEST saturation and apply it to human imaging at 3 T. Simulations and phantom experiments were first conducted to validate its specificity. Subsequently, in vivo experiments were performed on six healthy human brains to demonstrate its applications. Two CEST quantification metrics, including the magnetization transfer ratio (MTR) and apparent exchange-dependent relaxation (AREX), were evaluated. The DSP-CEST successfully eliminated all confounding components and specifically quantified the APT and NOE effects. It demonstrated significantly lower MTR-quantified APT effects and higher AREX-quantified APT effects in white matter (WM) than in gray matter (GM). Moreover, it revealed no significant difference in the MTR-quantified NOE effect between WM and GM, but a significantly higher AREX-quantified NOE effect in WM than in GM. These results, differing from those obtained using the asymmetry analysis, confirmed their different origins. In contrast, they align with those obtained using a Lorentzian difference (LD) analysis, suggesting both methods have improved specificity. Yet, without the need to assume the fitting models and set fitting parameters, the DSP-CEST method proves to be more robust than the LD method.
Collapse
Affiliation(s)
- Li Li
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Hongquan Zhu
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiaoxiao Zhang
- Clinical & Technical Solutions, Philips Healthcare, Wuhan, China
| | - Anqi Hu
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
| | - Wenzhen Zhu
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
2
|
Zhang XY, Xu C, Wu XC, Qu QQ, Deng K. Evaluation of Amide Proton Transfer Imaging Combined With Serum Squamous Cell Carcinoma Antigen for Grading Cervical Cancer. J Comput Assist Tomogr 2025; 49:399-406. [PMID: 39582402 DOI: 10.1097/rct.0000000000001699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
OBJECTIVE The aim of the study is to investigate the efficacy of amide proton transfer-weighted (APT) imaging combined with serum squamous cell carcinoma antigen (SCC-Ag) in grading cervical cancer. METHODS Sixty-three patients with surgically confirmed cervical SCC were enrolled and categorized into 3 groups: highly differentiated (G1), moderately differentiated (G2), and poorly differentiated (G3). The diagnostic efficacies of APT imaging and serum SCC-Ag, alone or in combination, for grading cervical SCC were compared. RESULTS The APT values measured by the 2 observers were in excellent agreement (intraclass correlation coefficient >0.75). Mean (± standard deviation) APT values for the high, moderate, and poor differentiation groups were 2.542 ± 0.215% (95% confidence interval [CI]: 2.423-2.677), 2.784 ± 0.175% (95% CI: 2.701-2.856), and 3.120 ± 0.221% (95% CI: 2.950-3.250), respectively. APT values for groups G2 and G3 were significantly higher than those for G1 ( P < 0.05). APT values for identifying cervical SCC in groups G1 and G2, G2 and G3, and G1 and G3, had areas under the receiver operating characteristic curve, sensitivities, and specificities of 0.815 (95% confidence interval [CI]: 0.674-0.914), 82.1%, and 72.2%, 0.882 (95% CI: 0.751-0.959), 70.6%, and 92.7%, and 0.961 (95% CI: 0.835-0.998), 94.1%, and 94.4%, respectively. APT values were significantly and positively correlated with the histological grade of cervical SCC (Spearman's correlation [ rs ] = 0.731, P < 0.01). Serum SCC-Ag levels for the high, moderate, and poor differentiation groups were 1.60 (0.88-4.63) ng/mL, 4.10 (1.85-6.98) ng/mL, and 26.10 (9.65-70.00) ng/mL, respectively. The differences were statistically significant only between groups G1 and G3 and G2 and G3 ( P < 0.05), whereas the differences between groups G1 and G2 were not statistically significant ( P > 0.05). Spearman's analysis revealed a positive correlation between SCC-Ag levels and the histological grade of cervical SCC ( rs = 0.573, P < 0.01). The diagnostic efficacy of APT imaging for the histological grading of cervical SCC was better than that of serum SCC-Ag, and the discriminatory efficacy of the combination of the 2 parameters was better than that of either alone. CONCLUSIONS The diagnostic efficacy of APT imaging was better than that of serum SCC-Ag, and the combined diagnostic utility of APT and SCC-Ag was better than that of the individual parameters.
Collapse
Affiliation(s)
| | - Chen Xu
- Clinical Medical College of Jining Medical University, Jining, Shandong, China; and
| | - Xing-Chen Wu
- Shandong Second Medical University, Weifang, Shandong, China
| | - Qian-Qian Qu
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan Shandong, China
| | - Kai Deng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan Shandong, China
| |
Collapse
|
3
|
Ramaglia A, Parodi C, Milanaccio C, Verrico A, Molteni M, Garrè ML, Pacetti M, Vella S, Resaz M, Tortora D, Severino M, Rossi A. Use of amide proton transfer (APT) imaging in the differentiation of pediatric low-grade brain tumors from tumor-like brain lesions. Neuroradiology 2025:10.1007/s00234-025-03582-5. [PMID: 40116946 DOI: 10.1007/s00234-025-03582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND AND PURPOSE Low grade tumors (LGT) are the most frequent central nervous system lesions observed in children. Despite the high-throughput research, differentiating LGT from tumor- like lesions (TLL) and providing an accurate differential diagnosis based on conventional MRI remains a challenge. For this reason, advanced MR sequences are routinely investigated and applied in clinical practice. The aim of this study is to explore the potential of the amide proton transfer (APTw) sequence as a tool for discriminating LGT from TLL. MATERIALS AND METHODS In this single-center retrospective study, we recruited 35 patients (20 with a histologically confirmed LGT, and 15 with a TLL) with both conventional and APT MRI images obtained on a 3T clinical scanner at onset or prior to treatment/surgery. Two volumes of interest (VOI), namely the whole lesion and the normal appearing white matter (NAWM), were defined using the semi-automatic segmentation tool from Philips Intellispace portal for Windows (v. 8). The mean APTw (mAPTw) and difference between the mAPTw lesion and the NAWM (dAPTw) were measured and compared between the two groups. RESULTS Lower values were found in the TLL group compared to the LGT group for both the mAPTw (1.51 ± 0.64% vs. 2.87 ± 0.96%) and dAPTw (0.24 ± 0.72% vs. 1.53 ± 1.08%) (p-value < 0.001). Based on ROC curve analysis, optimal cut-offs value for mAPTw and dATPw were 1.79 and 0.53, respectively. CONCLUSION APT imaging may prove useful to discriminate between LGT and TLL in pediatric patients.
Collapse
Affiliation(s)
- Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy.
| | - Costanza Parodi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Claudia Milanaccio
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Antonio Verrico
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Marta Molteni
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Mattia Pacetti
- Division of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Stephanie Vella
- Medical Imaging Department, Mater Dei Hospital, Msida, Malta
| | - Martina Resaz
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | | | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
4
|
Knutsson M, Salomonsson T, Durmo F, Johansson ER, Seidemo A, Lätt J, Rydelius A, Kinhult S, Englund E, Bengzon J, van Zijl PCM, Knutsson L, Sundgren PC. Differentiation between glioblastoma and solitary brain metastases using perfusion and amide proton transfer weighted MRI. Front Neurosci 2025; 19:1533799. [PMID: 39975970 PMCID: PMC11836003 DOI: 10.3389/fnins.2025.1533799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Objectives Early diagnostic separation between glioblastoma (GBM) and solitary metastases (MET) is important for patient management but remains challenging when based on imaging only. The objective of this study was to assess whether amide proton transfer weighted (APTw) MRI alone or combined with dynamic susceptibility contrast (DSC) MRI parameters, including cerebral blood volume (CBV), cerebral blood flow (CBF), and leakage parameter (K2) measurements, can differentiate GBM from MET. Methods APTw MRI and DSC-MRI were performed on 18 patients diagnosed with GBM (N = 10) or MET (N = 8). Quantitative parameter maps were calculated, and regions-of-interest (ROIs) were placed in whole tumor, contrast-enhanced tumor (ET), edema, necrosis and normal-appearing white matter (NAWM). The mean and max of the APTw signal, CBF, leakage-corrected CBV and K2 were obtained from each ROI. Except for K2, all were normalized to NAWM (nAPTwmean/max, nCBFmean/max, ncCBVmean/max,). Receiver Operating Characteristic (ROC) curves and area-under-the-curve (AUC) were assessed for different parameter combinations. Statistical analyses were performed using Mann-Whitney U test. Results When comparing GBM to MET, nAPTmax, nCBFmax, ncCBVmax and ncCBVmean were significantly increased (p < 0.05) in ET with AUC being 0.81, 0.83, 0.85, and 0.83, respectively. Combinations of nAPTwmax + ncCBVmax, nAPTwmean + ncCBVmean, nAPTwmax + nCBFmax, nAPTwmax + K2max and nAPTwmax + ncCBVmax + K2max in ET showed significant prediction in differentiating GBM and MET (AUC = 0.92, 0.82, 0.92, 0.85, and 0.92 respectively). Conclusion When assessed in Gd-enhanced tumor areas, nAPTw MRI signal intensity alone or combined with DSC-MRI parameters, was an excellent predictor for differentiating GBM and MET. However, the small cohort warrants future studies.
Collapse
Affiliation(s)
- Malte Knutsson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Tim Salomonsson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Faris Durmo
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Emelie Ryd Johansson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Anina Seidemo
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Anna Rydelius
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Sweden
| | - Sara Kinhult
- Department of Clinical Sciences, Division of Oncology, Lund University, Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Sciences, Division of Pathology, Lund University, Lund, Sweden
| | - Johan Bengzon
- Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Linda Knutsson
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- LBIC, Lund University Bioimaging Center, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Simegn GL, Sun PZ, Zhou J, Kim M, Reddy R, Zu Z, Zaiss M, Yadav NN, Edden RA, van Zijl PC, Knutsson L. Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review. NMR IN BIOMEDICINE 2025; 38:e5294. [PMID: 39532518 PMCID: PMC11606773 DOI: 10.1002/nbm.5294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B0 and B1 +) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B0 and B1 + inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B0 and B1 + inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.
Collapse
Affiliation(s)
- Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30329, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jinyuan Zhou
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mina Kim
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Moritz Zaiss
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nirbhay Narayan Yadav
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Peter C.M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Kurmi Y, Viswanathan M, Zu Z. Enhancing SNR in CEST imaging: A deep learning approach with a denoising convolutional autoencoder. Magn Reson Med 2024; 92:2404-2419. [PMID: 39030953 DOI: 10.1002/mrm.30228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE To develop a SNR enhancement method for CEST imaging using a denoising convolutional autoencoder (DCAE) and compare its performance with state-of-the-art denoising methods. METHOD The DCAE-CEST model encompasses an encoder and a decoder network. The encoder learns features from the input CEST Z-spectrum via a series of one-dimensional convolutions, nonlinearity applications, and pooling. Subsequently, the decoder reconstructs an output denoised Z-spectrum using a series of up-sampling and convolution layers. The DCAE-CEST model underwent multistage training in an environment constrained by Kullback-Leibler divergence, while ensuring data adaptability through context learning using Principal Component Analysis-processed Z-spectrum as a reference. The model was trained using simulated Z-spectra, and its performance was evaluated using both simulated data and in vivo data from an animal tumor model. Maps of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects were quantified using the multiple-pool Lorentzian fit, along with an apparent exchange-dependent relaxation metric. RESULTS In digital phantom experiments, the DCAE-CEST method exhibited superior performance, surpassing existing denoising techniques, as indicated by the peak SNR and Structural Similarity Index. Additionally, in vivo data further confirm the effectiveness of the DCAE-CEST in denoising the APT and NOE maps when compared with other methods. Although no significant difference was observed in APT between tumors and normal tissues, there was a significant difference in NOE, consistent with previous findings. CONCLUSION The DCAE-CEST can learn the most important features of the CEST Z-spectrum and provide the most effective denoising solution compared with other methods.
Collapse
Affiliation(s)
- Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Tang PLY, Romero AM, Nout RA, van Rij C, Slagter C, Swaak-Kragten AT, Smits M, Warnert EAH. Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study. Eur Radiol Exp 2024; 8:123. [PMID: 39477835 PMCID: PMC11525355 DOI: 10.1186/s41747-024-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Extensive glioblastoma infiltration justifies a 15-mm margin around the gross tumor volume (GTV) to define the radiotherapy clinical target volume (CTV). Amide proton transfer (APT)-weighted imaging could enable visualization of tumor infiltration, allowing more accurate GTV delineation. We quantified the impact of integrating APT-weighted imaging into GTV delineation of glioblastoma and compared two APT-weighted quantification methods-magnetization transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) analysis-for target delineation. METHODS Nine glioblastoma patients underwent an extended imaging protocol prior to radiotherapy, yielding APT-weighted MTRasym and LD maps. From both maps, biological tumor volumes were generated (BTVMTRasym and BTVLD) and added to the conventional GTV to generate biological GTVs (GTVbio,MTRasym and GTVbio,LD). Wilcoxon signed-rank tests were performed for comparisons. RESULTS The GTVbio,MTRasym and GTVbio,LD were significantly larger than the conventional GTV (p ≤ 0.022), with a median volume increase of 9.3% and 2.1%, respectively. The GTVbio,MTRasym and GTVbio,LD were significantly smaller than the CTV (p = 0.004), with a median volume reduction of 72.1% and 70.9%, respectively. There was no significant volume difference between the BTVMTRasym and BTVLD (p = 0.074). In three patients, BTVMTRasym delineation was affected by elevated signals at the brain periphery due to residual motion artifacts; this elevation was absent on the APT-weighted LD maps. CONCLUSION Larger biological GTVs compared to the conventional GTV highlight the potential of APT-weighted imaging for radiotherapy target delineation of glioblastoma. APT-weighted LD mapping may be advantageous for target delineation as it may be more robust against motion artifacts. RELEVANCE STATEMENT The introduction of APT-weighted imaging may, ultimately, enhance visualization of tumor infiltration and eliminate the need for the substantial 15-mm safety margin for target delineation of glioblastoma. This could reduce the risk of radiation toxicity while still effectively irradiating the tumor. TRIAL REGISTRATION NCT05970757 (ClinicalTrials.gov). KEY POINTS Integration of APT-weighted imaging into target delineation for radiotherapy is feasible. The integration of APT-weighted imaging yields larger GTVs in glioblastoma. APT-weighted LD mapping may be more robust against motion artifacts than APT-weighted MTRasym.
Collapse
Affiliation(s)
- Patrick L Y Tang
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alejandra Méndez Romero
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Caroline van Rij
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cleo Slagter
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annemarie T Swaak-Kragten
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marion Smits
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Esther A H Warnert
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Borges de Almeida G, Pascuzzo R, Mambrin F, Aquino D, Verri M, Moscatelli M, Del Bene M, DiMeco F, Silvani A, Pollo B, Grisoli M, Doniselli FM. The Role of Amide Proton Transfer (APT)-Weighted Imaging in Glioma: Assessment of Tumor Grading, Molecular Profile and Survival in Different Tumor Components. Cancers (Basel) 2024; 16:3014. [PMID: 39272871 PMCID: PMC11394364 DOI: 10.3390/cancers16173014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Amide Proton Transfer-weighted (APTw) imaging is a molecular MRI technique used to quantify protein concentrations in gliomas, which have heterogeneous components with varying cellularity and metabolic activity. This study aimed to assess the correlation between the component-specific APT signal of the neoplasm and WHO grade, molecular profile and survival status. Sixty-one patients with adult-type diffuse gliomas were retrospectively analyzed. APT values were semi-automatically extracted from tumor solid and, whenever present, necrotic components. APT values were compared between groups stratified by WHO grade, IDH-mutation, MGMT promoter methylation and 1- and 2-year survival status using Wilcoxon rank-sum test, adjusting for multiple comparisons. Overall survival (OS) was analyzed in the subgroup of 48 patients with grade 4 tumors using Cox proportional-hazards models. Random-effects models were used to assess inter-subject heterogeneity of the mean APT values in each tumor component. APT values of the solid component significantly differed between patients with grades 2-3 and 4 tumors (mean 1.58 ± 0.50 vs. 2.04 ± 0.56, p = 0.028) and correlated with OS after 1 year (1.81 ± 0.58 in survivors vs. 2.17 ± 0.51 in deceased patients, p = 0.030). APT values did not differ by IDH-mutation, MGMT methylation, and 2-year survival status. Within grade 4 glioma patients, higher APT kurtosis of the solid component was a negative prognostic factor (hazard ratio = 1.60, p = 0.040). Mean APT values of the necrosis showed high inter-subject variability, although most necrotic tumors were grade 4 and IDH wildtype. In conclusion, APTw imaging in the solid component provided metrics associated with glioma grade and survival status but showed weak correlation with IDH-mutation and MGMT promoter methylation status, in contrast to previous works. Further research is needed to understand APT signal variability within the necrotic component of high-grade gliomas.
Collapse
Affiliation(s)
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Francesca Mambrin
- Neuroradiology Unit, Department of Diagnostics and Pathology, Azienda Ospedaliera Universitaria Integrata Verona, Piazzale Aristide Stefani 1, 37126 Verona, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Mattia Verri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Massimiliano Del Bene
- Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Francesco DiMeco
- Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
- Department of Oncology and Hematology-Oncology, Università Degli Studi di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Antonio Silvani
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Fabio Martino Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| |
Collapse
|
9
|
Filimonova E, Pashkov A, Borisov N, Kalinovsky A, Rzaev J. Utilizing the amide proton transfer technique to characterize diffuse gliomas based on the WHO 2021 classification of CNS tumors. Neuroradiol J 2024; 37:490-499. [PMID: 38548655 PMCID: PMC11366199 DOI: 10.1177/19714009241242658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
PURPOSE Diffuse gliomas present a significant challenge for healthcare systems globally. While brain MRI plays a vital role in diagnosis, prognosis, and treatment monitoring, accurately characterizing gliomas using conventional MRI techniques alone is challenging. In this study, we explored the potential of utilizing the amide proton transfer (APT) technique to predict tumor grade and type based on the WHO 2021 Classification of CNS Tumors. METHODS Forty-two adult patients with histopathologically confirmed brain gliomas were included in the study. They underwent 3T MRI imaging, which involved APT sequence. Multinomial and binary logistic regression models were employed to classify patients into clinically relevant groups based on MRI findings and demographic variables. RESULTS We found that the best model for tumor grade classification included patient age along with APT values. The highest sensitivity (88%) was observed for Grade 4 tumors, while Grade 3 tumors showed the highest specificity (79%). For tumor type classification, our model incorporated four predictors: APT values, patient's age, necrosis, and the presence of hemorrhage. The glioblastoma group had the highest sensitivity and specificity (87%), whereas balanced accuracy was the lowest for astrocytomas (0.73). CONCLUSION The APT technique shows great potential for noninvasive evaluation of diffuse gliomas. The changes in the classification of gliomas as per the WHO 2021 version of the CNS Tumor Classification did not affect its usefulness in predicting tumor grade or type.
Collapse
Affiliation(s)
- Elena Filimonova
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anton Pashkov
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Norayr Borisov
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anton Kalinovsky
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Jamil Rzaev
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
10
|
Liu C, Li Z, Chen Z, Zhao B, Zheng Z, Song X. Highly-accelerated CEST MRI using frequency-offset-dependent k-space sampling and deep-learning reconstruction. Magn Reson Med 2024; 92:688-701. [PMID: 38623899 DOI: 10.1002/mrm.30089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 03/02/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE To develop a highly accelerated CEST Z-spectral acquisition method using a specifically-designed k-space sampling pattern and corresponding deep-learning-based reconstruction. METHODS For k-space down-sampling, a customized pattern was proposed for CEST, with the randomized probability following a frequency-offset-dependent (FOD) function in the direction of saturation offset. For reconstruction, the convolution network (CNN) was enhanced with a Partially Separable (PS) function to optimize the spatial domain and frequency domain separately. Retrospective experiments on a self-acquired human brain dataset (13 healthy adults and 15 brain tumor patients) were conducted using k-space resampling. The prospective performance was also assessed on six healthy subjects. RESULTS In retrospective experiments, the combination of FOD sampling and PS network (FOD + PSN) showed the best quantitative metrics for reconstruction, outperforming three other combinations of conventional sampling with varying density and a regular CNN (nMSE and SSIM, p < 0.001 for healthy subjects). Across all acceleration factors from 4 to 14, the FOD + PSN approach consistently outperformed the comparative methods in four contrast maps including MTRasym, MTRrex, as well as the Lorentzian Difference maps of amide and nuclear Overhauser effect (NOE). In the subspace replacement experiment, the error distribution demonstrated the denoising benefits achieved in the spatial subspace. Finally, our prospective results obtained from healthy adults and brain tumor patients (14×) exhibited the initial feasibility of our method, albeit with less accurate reconstruction than retrospective ones. CONCLUSION The combination of FOD sampling and PSN reconstruction enabled highly accelerated CEST MRI acquisition, which may facilitate CEST metabolic MRI for brain tumor patients.
Collapse
Affiliation(s)
- Chuyu Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhongsen Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Benqi Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Deng HZ, Zhang HW, Huang B, Deng JH, Luo SP, Li WH, Lei Y, Liu XL, Lin F. Advances in diffuse glioma assessment: preoperative and postoperative applications of chemical exchange saturation transfer. Front Neurosci 2024; 18:1424316. [PMID: 39148521 PMCID: PMC11325484 DOI: 10.3389/fnins.2024.1424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) is a technique that uses specific off-resonance saturation pulses to pre-saturate targeted substances. This process influences the signal intensity of free water, thereby indirectly providing information about the pre-saturated substance. Among the clinical applications of CEST, Amide Proton Transfer (APT) is currently the most well-established. APT can be utilized for the preoperative grading of gliomas. Tumors with higher APTw signals generally indicate a higher likelihood of malignancy. In predicting preoperative molecular typing, APTw values are typically lower in tumors with favorable molecular phenotypes, such as isocitrate dehydrogenase (IDH) mutations, compared to IDH wild-type tumors. For differential diagnosis, the average APTw values of meningiomas are significantly lower than those of high-grade gliomas. Various APTw measurement indices assist in distinguishing central nervous system lesions with similar imaging features, such as progressive multifocal leukoencephalopathy, central nervous system lymphoma, solitary brain metastases, and glioblastoma. Regarding prognosis, APT effectively differentiates between tumor recurrence and treatment effects, and also possesses predictive capabilities for overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Hua-Zhen Deng
- Shantou University Medical College, Shantou City, China
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Si-Ping Luo
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Hua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
12
|
Kurmi Y, Viswanathan M, Zu Z. A Denoising Convolutional Autoencoder for SNR Enhancement in Chemical Exchange Saturation Transfer imaging: (DCAE-CEST). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597818. [PMID: 38895366 PMCID: PMC11185751 DOI: 10.1101/2024.06.07.597818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose To develop a SNR enhancement method for chemical exchange saturation transfer (CEST) imaging using a denoising convolutional autoencoder (DCAE), and compare its performance with state-of-the-art denoising methods. Method The DCAE-CEST model encompasses an encoder and a decoder network. The encoder learns features from the input CEST Z-spectrum via a series of 1D convolutions, nonlinearity applications and pooling. Subsequently, the decoder reconstructs an output denoised Z-spectrum using a series of up-sampling and convolution layers. The DCAE-CEST model underwent multistage training in an environment constrained by Kullback-Leibler divergence, while ensuring data adaptability through context learning using Principal Component Analysis processed Z-spectrum as a reference. The model was trained using simulated Z-spectra, and its performance was evaluated using both simulated data and in-vivo data from an animal tumor model. Maps of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects were quantified using the multiple-pool Lorentzian fit, along with an apparent exchange-dependent relaxation metric. Results In digital phantom experiments, the DCAE-CEST method exhibited superior performance, surpassing existing denoising techniques, as indicated by the peak SNR and Structural Similarity Index. Additionally, in vivo data further confirms the effectiveness of the DCAE-CEST in denoising the APT and NOE maps when compared to other methods. While no significant difference was observed in APT between tumors and normal tissues, there was a significant difference in NOE, consistent with previous findings. Conclusion The DCAE-CEST can learn the most important features of the CEST Z-spectrum and provide the most effective denoising solution compared to other methods.
Collapse
Affiliation(s)
- Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
| |
Collapse
|
13
|
Chen L, Huang L, Zhang J, Li S, Li Y, Tang L, Chen W, Wu M, Li T. Amide proton transfer-weighted and arterial spin labeling imaging may improve differentiation between high-grade glioma recurrence and radiation-induced brain injury. Heliyon 2024; 10:e32699. [PMID: 38961946 PMCID: PMC11219995 DOI: 10.1016/j.heliyon.2024.e32699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Rationale and objectives The management of tumor recurrence (TR) and radiation-induced brain injury (RIBI) poses significant challenges, necessitating the development of effective differentiation strategies. In this study, we investigated the potential of amide proton transfer-weighted (APTw) and arterial spin labeling (ASL) imaging for discriminating between TR and RIBI in patients with high-grade glioma (HGG). Methods A total of 64 HGG patients receiving standard treatment were enrolled in this study. The patients were categorized based on secondary pathology or MRI follow-up results, and the demographic characteristics of each group were presented. The APTw, rAPTw, cerebral blood flow (CBF) and rCBF values were quantified. The differences in various parameters between TR and RIBI were assessed using the independent-samples t-test. The discriminative performance of these MRI parameters in distinguishing between the two conditions was assessed using receiver operating characteristic (ROC) curve analysis. Additionally, the Delong test was employed to further evaluate their discriminatory ability. Results The APTw and CBF values of TR were significantly higher compared to RIBI (P < 0.05). APTw MRI demonstrated superior diagnostic efficiency in distinguishing TR from RIBI (area under the curve [AUC]: 0.864; sensitivity: 75.0 %; specificity: 81.8 %) when compared to ASL imaging. The combined utilization of APTw and CBF value further enhanced the AUC to 0.922. The Delong test demonstrated that the combination of APTw and ASL exhibited superior performance in the identification of TR and RIBI, compared to ASL alone (P = 0.048). Conclusion APTw exhibited superior diagnostic efficacy compared to ASL in the evaluation of TR and RIBI. Furthermore, the combination of APTw and ASL exhibits greater discriminatory capability and diagnostic performance.
Collapse
Affiliation(s)
- Ling Chen
- Department of Radiology, Liuzhou Workers Hospital, Guangxi, China
| | - Lizhao Huang
- Department of Radiology, Liuzhou Workers Hospital, Guangxi, China
| | - Jinhuan Zhang
- Department of Radiology, Liuzhou Workers Hospital, Guangxi, China
| | - Shuanghong Li
- Department of Radiology, Liuzhou Workers Hospital, Guangxi, China
| | - Yao Li
- Department of Neurosurgery, Liuzhou Workers Hospital, Guangxi, China
| | - Lifang Tang
- Department of Radiology, Liuzhou Workers Hospital, Guangxi, China
| | - Weijiao Chen
- Department of Radiology, Liuzhou Workers Hospital, Guangxi, China
| | - Min Wu
- Department of Radiology, Liuzhou Workers Hospital, Guangxi, China
| | - Tao Li
- Department of Radiology, Liuzhou Workers Hospital, Guangxi, China
| |
Collapse
|
14
|
Kersch CN, Kim M, Stoller J, Barajas RF, Park JE. Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity. AJNR Am J Neuroradiol 2024; 45:537-548. [PMID: 38548303 PMCID: PMC11288537 DOI: 10.3174/ajnr.a8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/09/2023] [Indexed: 04/12/2024]
Abstract
An improved understanding of the cellular and molecular biologic processes responsible for brain tumor development, growth, and resistance to therapy is fundamental to improving clinical outcomes. Imaging genomics is the study of the relationships between microscopic, genetic, and molecular biologic features and macroscopic imaging features. Imaging genomics is beginning to shift clinical paradigms for diagnosing and treating brain tumors. This article provides an overview of imaging genomics in gliomas, in which imaging data including hallmarks such as IDH-mutation, MGMT methylation, and EGFR-mutation status can provide critical insights into the pretreatment and posttreatment stages. This article will accomplish the following: 1) review the methods used in imaging genomics, including visual analysis, quantitative analysis, and radiomics analysis; 2) recommend suitable analytic methods for imaging genomics according to biologic characteristics; 3) discuss the clinical applicability of imaging genomics; and 4) introduce subregional tumor habitat analysis with the goal of guiding future radiogenetics research endeavors toward translation into critically needed clinical applications.
Collapse
Affiliation(s)
- Cymon N Kersch
- From the Department of Radiation Medicine (C.N.K.), Oregon Health and Science University, Portland, Oregon
| | - Minjae Kim
- Department of Radiology and Research Institute of Radiology (M.K., J.E.P.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jared Stoller
- Department of Diagnostic Radiology (J.S., R.F.B.), Oregon Health and Science University, Portland, Oregon
| | - Ramon F Barajas
- Department of Diagnostic Radiology (J.S., R.F.B.), Oregon Health and Science University, Portland, Oregon
- Knight Cancer Institute (R.F.B.), Oregon Health and Science University, Portland, Oregon
- Advanced Imaging Research Center (R.F.B.), Oregon Health and Science University, Portland, Oregon
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology (M.K., J.E.P.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Viswanathan M, Yin L, Kurmi Y, Zu Z. Machine learning-based amide proton transfer imaging using partially synthetic training data. Magn Reson Med 2024; 91:1908-1922. [PMID: 38098340 PMCID: PMC10955622 DOI: 10.1002/mrm.29970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE Machine learning (ML) has been increasingly used to quantify CEST effect. ML models are typically trained using either measured data or fully simulated data. However, training with measured data often lacks sufficient training data, whereas training with fully simulated data may introduce bias because of limited simulations pools. This study introduces a new platform that combines simulated and measured components to generate partially synthetic CEST data, and to evaluate its feasibility for training ML models to predict amide proton transfer (APT) effect. METHODS Partially synthetic CEST signals were created using an inverse summation of APT effects from simulations and the other components from measurements. Training data were generated by varying APT simulation parameters and applying scaling factors to adjust the measured components, achieving a balance between simulation flexibility and fidelity. First, tissue-mimicking CEST signals along with ground truth information were created using multiple-pool model simulations to validate this method. Second, an ML model was trained individually on partially synthetic data, in vivo data, and fully simulated data, to predict APT effect in rat brains bearing 9 L tumors. RESULTS Experiments on tissue-mimicking data suggest that the ML method using the partially synthetic data is accurate in predicting APT. In vivo experiments suggest that our method provides more accurate and robust prediction than the training using in vivo data and fully synthetic data. CONCLUSION Partially synthetic CEST data can address the challenges in conventional ML methods.
Collapse
Affiliation(s)
- Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| | - Leqi Yin
- School of Engineering, Vanderbilt University, Nashville, US
| | - Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| |
Collapse
|
16
|
Wu J, Huang Q, Shen Y, Guo P, Zhou J, Jiang S. Radiomic feature reliability of amide proton transfer-weighted MR images acquired with compressed sensing at 3T. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2024; 34:e23027. [PMID: 39185083 PMCID: PMC11343505 DOI: 10.1002/ima.23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/08/2024] [Indexed: 08/27/2024]
Abstract
Compressed sensing (CS) is a novel technique for MRI acceleration. The purpose of this paper was to assess the effects of CS on the radiomic features extracted from amide proton transfer-weighted (APTw) images. Brain tumor MRI data of 40 scans were studied. Standard images using sensitivity encoding (SENSE) with an acceleration factor (AF) of 2 were used as the gold standard, and APTw images using SENSE with CS (CS-SENSE) with an AF of 4 were assessed. Regions of interest (ROIs), including normal tissue, edema, liquefactive necrosis, and tumor, were manually drawn, and the effects of CS-SENSE on radiomics were assessed for each ROI category. An intraclass correlation coefficient (ICC) was first calculated for each feature extracted from APTw images with SENSE and CS-SENSE for all ROIs. Different filters were applied to the original images, and the effects of these filters on the ICCs were further compared between APTw images with SENSE and CS-SENSE. Feature deviations were also provided for a more comprehensive evaluation of the effects of CS-SENSE on radiomic features. The ROI-based comparison showed that most radiomic features extracted from CS-SENSE-APTw images and SENSE-APTw images had moderate or greater reliabilities (ICC ≥ 0.5) for all four ROIs and all eight image sets with different filters. Tumor showed significantly higher ICCs than normal tissue, edema, and liquefactive necrosis. Compared to the original images, filters (such as Exponential or Square) may improve the reliability of radiomic features extracted from CS-SENSE-APTw and SENSE-APTw images.
Collapse
Affiliation(s)
- Jingpu Wu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qianqi Huang
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiqing Shen
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pengfei Guo
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Sun C, Zhao Y, Zu Z. Evaluation of the molecular origin of amide proton transfer-weighted imaging. Magn Reson Med 2024; 91:716-734. [PMID: 37749854 PMCID: PMC10841347 DOI: 10.1002/mrm.29878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE To evaluate the assumption in amide proton transfer weighted (APTw) imaging that the APT dominates over the relayed nuclear Overhauser enhancement (rNOE) and other CEST effects such as those from amines/guanidines, thereby providing imaging of mobile proteins/peptides. METHODS We introduced two auxiliary asymmetric analysis metrics that can vary the relative contributions from amine/guanidinium CEST and other effects. By comparing these metrics with the conventional asymmetric analysis metric on healthy rat brains, we can approximately assess the contribution from amines/guanidines to APTw and determine whether the APT dominates over the rNOE effect. To further investigate the molecular origin of APTw, we used samples of dialyzed tissue homogenates to eliminate small metabolites and supernatants of homogenates to separate lipids from other components. RESULTS When the APTw signal is positive using high saturation amplitudes (e.g., 2-3 μT), the contributions from amines/guanidines are significant and cannot be ignored. The APTw signal from the dialyzed homogenates and the controls has negligible changes, indicating that it primarily originates from macromolecules rather than small metabolites. Additionally, the APTw signals with low saturation amplitudes (e.g., 1 μT) were negative in tissue homogenates but positive in their supernatants, suggesting that proteins contribute positively to APTw signals, whereas lipids contribute negatively to it. CONCLUSION The positive APTw signal using high saturation amplitudes could have significant contributions from soluble proteins through CEST, including amide/amine/guanidine proton transfer effects. In contrast, the negative APTw signal using low saturation amplitudes has significant contribution from lipids through rNOE.
Collapse
Affiliation(s)
- Casey Sun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
18
|
Viswanathan M, Yin L, Kurmi Y, Zu Z. Amide Proton Transfer (APT) imaging in tumor with a machine learning approach using partially synthetic data. ARXIV 2023:arXiv:2311.01683v2. [PMID: 37961738 PMCID: PMC10635304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purpose Machine learning (ML) has been increasingly used to quantify chemical exchange saturation transfer (CEST) effect. ML models are typically trained using either measured data or fully simulated data. However, training with measured data often lacks sufficient training data, while training with fully simulated data may introduce bias due to limited simulations pools. This study introduces a new platform that combines simulated and measured components to generate partially synthetic CEST data, and to evaluate its feasibility for training ML models to predict amide proton transfer (APT) effect. Methods Partially synthetic CEST signals were created using an inverse summation of APT effects from simulations and the other components from measurements. Training data were generated by varying APT simulation parameters and applying scaling factors to adjust the measured components, achieving a balance between simulation flexibility and fidelity. First, tissue-mimicking CEST signals along with ground truth information were created using multiple-pool model simulations to validate this method. Second, an ML model was trained individually on partially synthetic data, in vivo data, and fully simulated data, to predict APT effect in rat brains bearing 9L tumors. Results Experiments on tissue-mimicking data suggest that the ML method using the partially synthetic data is accurate in predicting APT. In vivo experiments suggest that our method provides more accurate and robust prediction than the training using in vivo data and fully synthetic data. Conclusion Partially synthetic CEST data can address the challenges in conventional ML methods.
Collapse
Affiliation(s)
- Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| | - Leqi Yin
- School of Engineering, Vanderbilt University, Nashville, US
| | - Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| |
Collapse
|
19
|
Wu Y, Wood TC, Derks SHAE, Pruis IJ, van der Voort S, van Zanten SEMV, Smits M, Warnert EAH. Reproducibility of APT-weighted CEST-MRI at 3T in healthy brain and tumor across sessions and scanners. Sci Rep 2023; 13:18115. [PMID: 37872418 PMCID: PMC10593824 DOI: 10.1038/s41598-023-44891-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Amide proton transfer (APT)-weighted chemical exchange saturation transfer (CEST) imaging is a recent MRI technique making its way into clinical application. In this work, we investigated whether APT-weighted CEST imaging can provide reproducible measurements across scan sessions and scanners. Within-session, between-session and between scanner reproducibility was calculated for 19 healthy volunteers and 7 patients with a brain tumor on two 3T MRI scanners. The APT-weighted CEST effect was evaluated by calculating the Lorentzian Difference (LD), magnetization transfer ratio asymmetry (MTRasym), and relaxation-compensated inverse magnetization transfer ratio (MTRREX) averaged in whole brain white matter (WM), enhancing tumor and necrosis. Within subject coefficient of variation (COV) calculations, Bland-Altman plots and mixed effect modeling were performed to assess the repeatability and reproducibility of averaged values. The group median COVs of LD APT were 0.56% (N = 19), 0.84% (N = 6), 0.80% (N = 9) in WM within-session, between-session and between-scanner respectively. The between-session COV of LD APT in enhancing tumor (N = 6) and necrotic core (N = 3) were 4.57% and 5.67%, respectively. There were no significant differences in within session, between session and between scanner comparisons of the APT effect. The COVs of LD and MTRREX were consistently lower than MTRasym in all experiments, both in healthy tissues and tumor. The repeatability and reproducibility of APT-weighted CEST was clinically acceptable across scan sessions and scanners. Although MTRasym is simple to acquire and compute and sufficient to provide robust measurement, it is beneficial to include LD and MTRREX to obtain higher reproducibility for detecting minor signal difference in different tissue types.
Collapse
Affiliation(s)
- Yulun Wu
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sophie H A E Derks
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC-University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ilanah J Pruis
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sebastian van der Voort
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Sophie E M Veldhuijzen van Zanten
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Esther A H Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Sun C, Zhao Y, Zu Z. Validation of the presence of fast exchanging amine CEST effect at low saturation powers and its influence on the quantification of APT. Magn Reson Med 2023; 90:1502-1517. [PMID: 37317709 PMCID: PMC10614282 DOI: 10.1002/mrm.29742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Accurately quantifying the amide proton transfer (APT) effect and the underlying exchange parameters is crucial for its applications, but previous studies have reported conflicting results. In these quantifications, the CEST effect from the fast exchange amine was always ignored because it was considered weak with low saturation powers. This paper aims to evaluate the influence of the fast exchange amine CEST on the quantification of APT at low saturation powers. METHODS A quantification method with low and high saturation powers was used to distinguish APT from the fast exchange amine CEST effect. Simulations were conducted to assess the method's capability to separate APT from the fast exchange amine CEST effect. Animal experiments were performed to assess the relative contributions from the fast exchange amine and amide to CEST signals at 3.5 ppm. Three APT quantification methods, each with varying degrees of contamination from the fast exchange amine, were employed to process the animal data to assess the influence of the amine on the quantification of APT effect and the exchange parameters. RESULTS The relative size of the fast exchange amine CEST effect to APT effect gradually increases with increasing saturation power. At 9.4 T, it increases from approximately 20% to 40% of APT effect with a saturation power increase from 0.25 to 1 μT. CONCLUSION The fast exchange amine CEST effect leads overestimation of APT effect, fitted amide concentration, and amide-water exchange rate, potentially contributing to the conflicting results reported in previous studies.
Collapse
Affiliation(s)
- Casey Sun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
21
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
22
|
Özdemir İ, Ganji S, Gillen J, Etyemez S, Považan M, Barker PB. Downfield proton MRSI with whole-brain coverage at 3T. Magn Reson Med 2023; 90:814-822. [PMID: 37249071 PMCID: PMC10330175 DOI: 10.1002/mrm.29706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE To develop a 3D downfield (DF) MRSI protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. METHODS A 3D, circularly phase-encoded version of the previously developed 2D DF MRSI sequence with1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation and frequency selective refocusing was implemented and tested in five healthy volunteers at 3T. The DF metabolite maps with a nominal spatial resolution of 0.7 cm3 were recorded in eight slices at 3T in a scan time of 22 m 40 s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine DF peaks. RESULTS LCModel analysis showed Cramer Rao lower bounds average values of 3%-4% for protein amide resonances in the three selected regions (anterior cingulate, dorsolateral prefrontal cortex, and centrum semiovale); Cramer Rao lower bounds were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between centrum semiovale and dorsolateral prefrontal cortex for peaks at 7.09 ppm (p = 0.014), 7.90 ppm (p = 0.009), 8.18 ppm (p = 0.009), combined amides (p = 0.009), and between anterior cingulate and dorsolateral prefrontal cortex for the 7.30 ppm peak (p = 0.020). Cramer Rao lower bounds values were not significantly different between brain regions for any of the DF peaks. CONCLUSION The 3D DF MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm3 .
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Joseph Gillen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, United States
| | | | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
23
|
Zhao Y, Sun C, Zu Z. Isolation of amide proton transfer effect and relayed nuclear Overhauser enhancement effect at -3.5ppm using CEST with double saturation powers. Magn Reson Med 2023; 90:1025-1040. [PMID: 37154382 PMCID: PMC10646838 DOI: 10.1002/mrm.29691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/18/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Quantifications of amide proton transfer (APT) and nuclear Overhauser enhancement (rNOE(-3.5)) mediated saturation transfer with high specificity are challenging because their signals measured in a Z-spectrum are overlapped with confounding signals from direct water saturation (DS), semi-solid magnetization transfer (MT), and CEST of fast-exchange pools. In this study, based on two canonical CEST acquisitions with double saturation powers (DSP), a new data-postprocessing method is proposed to specifically quantify the effects of APT and rNOE. METHODS For CEST imaging with relatively low saturation powers (ω 1 2 $$ {\upomega}_1^2 $$ ), both the fast-exchange CEST effect and the semi-solid MT effect roughly depend onω 1 2 $$ {\upomega}_1^2 $$ , whereas the slow-exchange APT/rNOE(-3.5) effect do not, which is exploited to isolate a part of the APT and rNOE effects from the confounding signals in this study. After a mathematical derivation for the establishment of the proposed method, numerical simulations based on Bloch equations are then performed to demonstrate its specificity to detections of the APT and rNOE effects. Finally, an in vivo validation of the proposed method is conducted using an animal tumor model at a 4.7 T MRI scanner. RESULTS The simulations show that DSP-CEST can quantify the effects of APT and rNOE and substantially eliminate the confounding signals. The in vivo experiments demonstrate that the proposed DSP-CEST method is feasible for the imaging of tumors. CONCLUSION The data-postprocessing method proposed in this study can quantify the APT and rNOE effects with considerably increased specificities and a reduced cost of imaging time.
Collapse
Affiliation(s)
- Yu Zhao
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Casey Sun
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| |
Collapse
|
24
|
Cui J, Zhao Y, Sun C, Xu J, Zu Z. Evaluation of contributors to amide proton transfer-weighted imaging and nuclear Overhauser enhancement-weighted imaging contrast in tumors at a high magnetic field. Magn Reson Med 2023; 90:596-614. [PMID: 37093984 PMCID: PMC10616782 DOI: 10.1002/mrm.29675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE The purpose is to evaluate the relative contribution from confounding factors (T1 weighting and magnetization transfer) to the CEST ratio (CESTR)-quantified amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) (-3.5) in tumors as well as whether the CESTR can reflect the distribution of the solute concentration (fs ). METHODS We first provided a signal model that shows the separate dependence of CESTR on these confounding factors and the clean CEST/NOE effects quantified by an apparent exchange-dependent relaxation (AREX) method. We then measured the change in these effects in the 9-L tumor model in rats, through which we calculated the relative contribution of each confounding factor. fs was also fitted, and its correlations with the CESTR and AREX were assessed to evaluate their capabilities to reflect fs . RESULTS The CESTR-quantified APT shows "positive" contrast in tumors, which arises primarily from R1w at low powers and both R1w and magnetization transfer at high powers. CESTR-quantified NOE (-3.5) shows no or weak contrast in tumors, which is due to the cancelation of R1w and NOE (-3.5), which have opposite contributions. CESTR-quantified APT has a stronger correlation with APT fs than AREX-quantified APT. CESTR-quantified NOE (-3.5) has a weaker correlation with NOE (-3.5) fs than AREX-quantified NOE (-3.5). CONCLUSION CESTR reflects a combined effect of T1 weighting and CEST/NOE. Both factors depend on fs , which contributes positively to the dependence of CESTR on fs in APT imaging and enhances its correlation with fs . In contrast, these factors have opposite contributions to its dependence on fs in NOE (-3.5) imaging, thereby weakening the correlation.
Collapse
Affiliation(s)
- Jing Cui
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Casey Sun
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
- Department of Physics and Astronomy, Vanderbilt University, Nashville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
25
|
Jiang S, Wen Z, Ahn SS, Cai K, Paech D, Eberhart CG, Zhou J. Applications of chemical exchange saturation transfer magnetic resonance imaging in identifying genetic markers in gliomas. NMR IN BIOMEDICINE 2023; 36:e4731. [PMID: 35297117 PMCID: PMC10557022 DOI: 10.1002/nbm.4731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) imaging is an important molecular magnetic resonance imaging technique that can image numerous low-concentration biomolecules with water-exchangeable protons (such as cellular proteins) and tissue pH. CEST, or more specially amide proton transfer-weighted imaging, has been widely used for the detection, diagnosis, and response assessment of brain tumors, and its feasibility in identifying molecular markers in gliomas has also been explored in recent years. In this paper, after briefing on the basic principles and quantification methods of CEST imaging, we review its early applications in identifying isocitrate dehydrogenase mutation status, MGMT methylation status, 1p/19q deletion status, and H3K27M mutation status in gliomas. Finally, we discuss the limitations or weaknesses in these studies.
Collapse
Affiliation(s)
- Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
- Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | | | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Xu J, Chung JJ, Jin T. Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues. NMR IN BIOMEDICINE 2023; 36:e4671. [PMID: 34978371 PMCID: PMC9250548 DOI: 10.1002/nbm.4671] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 05/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has become a promising technique to assay target proteins and metabolites through their exchangeable protons, noninvasively. The ubiquity of creatine (Cr) and phosphocreatine (PCr) due to their pivotal roles in energy homeostasis through the creatine phosphate pathway has made them prime targets for CEST in the diagnosis and monitoring of disease pathologies, particularly in tissues heavily dependent on the maintenance of rich energy reserves. Guanidinium CEST from protein arginine residues (i.e. arginine CEST) can also provide information about the protein profile in tissue. However, numerous obfuscating factors stand as obstacles to the specificity of arginine, Cr, and PCr imaging through CEST, such as semisolid magnetization transfer, fast chemical exchanges such as primary amines, and the effects of nuclear Overhauser enhancement from aromatic and amide protons. In this review, the specific exchange properties of protein arginine residues, Cr, and PCr, along with their validation, are discussed, including the considerations necessary to target and tune their signal effects through CEST imaging. Additionally, strategies that have been employed to enhance the specificity of these exchanges in CEST imaging are described, along with how they have opened up possible applications of protein arginine residues, Cr and PCr CEST imaging in the study and diagnosis of pathology. A clear understanding of the capabilities and caveats of using CEST to image these vital metabolites and mitigation strategies is crucial to expanding the possibilities of this promising technology.
Collapse
Affiliation(s)
- Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Zhou Y, Bie C, van Zijl PC, Yadav NN. The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2023; 36:e4778. [PMID: 35642102 PMCID: PMC9708952 DOI: 10.1002/nbm.4778] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/29/2022] [Indexed: 05/23/2023]
Abstract
Magnetic resonance (MR) is a powerful technique for noninvasively probing molecular species in vivo but suffers from low signal sensitivity. Saturation transfer (ST) MRI approaches, including chemical exchange saturation transfer (CEST) and conventional magnetization transfer contrast (MTC), allow imaging of low-concentration molecular components with enhanced sensitivity using indirect detection via the abundant water proton pool. Several recent studies have shown the utility of chemical exchange relayed nuclear Overhauser effect (rNOE) contrast originating from nonexchangeable carbon-bound protons in mobile macromolecules in solution. In this review, we describe the mechanisms leading to the occurrence of rNOE-based signals in the water saturation spectrum (Z-spectrum), including those from mobile and immobile molecular sources and from molecular binding. While it is becoming clear that MTC is mainly an rNOE-based signal, we continue to use the classical MTC nomenclature to separate it from the rNOE signals of mobile macromolecules, which we will refer to as rNOEs. Some emerging applications of the use of rNOEs for probing macromolecular solution components such as proteins and carbohydrates in vivo or studying the binding of small substrates are discussed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong 518055 (China)
| | - Chongxue Bie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
- Department of Information Science and Technology, Northwest University, No.1 Xuefu Avenue, Xi’an, Shanxi 710127 (China)
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| |
Collapse
|
28
|
3D Amide Proton Transfer-Weighted Imaging for Grading Glioma and Correlating IDH Mutation Status: Added Value to 3D Pseudocontinuous Arterial Spin Labelling Perfusion. Mol Imaging Biol 2023; 25:343-352. [PMID: 35962302 DOI: 10.1007/s11307-022-01762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE The goal of this study was to evaluate the diagnostic performance of 3D amide proton transfer-weighted (3D-APTW) imaging and 3D pseudocontinuous arterial spin labelling (3D-pCASL) alone and in combination in grading gliomas (low-grade glioma (LGG) vs. high-grade glioma (HGG)) and correlating isocitrate dehydrogenase (IDH) mutation status. PROCEDURES Preoperatively, 81 patients with pathologically confirmed gliomas underwent 3.0-T magnetic resonance imaging (MRI) examinations. The APTW, relative APTW (rAPTW), cerebral blood flow (CBF), and relative CBF (rCBF) values were calculated to evaluate the solid components of the tumours. The MRI parameters were compared in the classification of gliomas by independent- and paired-samples t tests. A receiver operating characteristic (ROC) curve was constructed, and the area under the ROC curve (AUC) was calculated to assess the diagnostic performance of each parameter and the combination of the rAPTW and rCBF values. RESULTS Patients with HGG showed significantly higher APTW, rAPTW, CBF, and rCBF values than those with LGG (all p < 0.001). In the ROC curve analysis, the AUC of rAPTW was the highest at 0.90. By adding the rAPTW signal to the rCBF values, the diagnostic ability of the combined parameters improved from 0.90 to 0.96. The rAPTW value yielded the highest AUC (0.92) in correlating the IDH mutation status, and the diagnostic ability improved to 0.96 by adding it to the rCBF value. CONCLUSION 3D-APTW imaging combined with 3D-pCASL imaging may be used to aid assessment of grading glioma and IDH mutation status.
Collapse
|
29
|
Cui J, Sun C, Zu Z. NOE-weighted imaging in tumors using low-duty-cycle 2π-CEST. Magn Reson Med 2023; 89:636-651. [PMID: 36198015 PMCID: PMC9792266 DOI: 10.1002/mrm.29475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Nuclear Overhauser enhancement (NOE)-mediated CEST imaging at -3.5 ppm has shown clinical interest in diagnosing tumors. Multiple-pool Lorentzian fit has been used to quantify NOE, which, however, requires a long scan time. Asymmetric analysis of CEST signals could be a simple and fast method to quantify this NOE, but it has contamination from the amide proton transfer (APT) at 3.5 ppm. This work proposes a new method using an asymmetric analysis of a low-duty-cycle pulsed-CEST sequence with a flip angle of 360°, termed 2π-CEST, to reduce the contribution from APT. METHODS Simulations were used to evaluate the capability of the 2π-CEST to reduce APT. Experiments on animal tumor models were performed to show its advantages compared with the conventional asymmetric analysis. Samples of reconstituted phospholipids and proteins were used to evaluate the molecular origin of this NOE. RESULTS The 2π-CEST has reduced contribution from APT. In tumors where we show that the NOE is comparable to the APT effect, reducing the contamination from APT is crucial. The results show that the NOE signal obtained with 2π-CEST in tumor regions appears more homogeneous than that obtained with the conventional method. The phantom study showed that both phospholipids and proteins contribute to the NOE at -3.5 ppm. CONCLUSION The NOE at -3.5 ppm has a different contrast mechanism from APT and other CEST/NOE effects. The proposed 2π-CEST is more accurate than the conventional asymmetric analysis in detecting NOE, and requires much less scan time than the multiple-pool Lorentzian fit.
Collapse
Affiliation(s)
- Jing Cui
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Casey Sun
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Chemistry, University of Florida, Gainesville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| |
Collapse
|
30
|
Jellema PEJ, Wijnen JP, De Luca A, Mutsaerts HJMM, Obdeijn IV, van Baarsen KM, Lequin MH, Hoving EW. Advanced intraoperative MRI in pediatric brain tumor surgery. Front Physiol 2023; 14:1098959. [PMID: 37123260 PMCID: PMC10134397 DOI: 10.3389/fphys.2023.1098959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: In the pediatric brain tumor surgery setting, intraoperative MRI (ioMRI) provides "real-time" imaging, allowing for evaluation of the extent of resection and detection of complications. The use of advanced MRI sequences could potentially provide additional physiological information that may aid in the preservation of healthy brain regions. This review aims to determine the added value of advanced imaging in ioMRI for pediatric brain tumor surgery compared to conventional imaging. Methods: Our systematic literature search identified relevant articles on PubMed using keywords associated with pediatrics, ioMRI, and brain tumors. The literature search was extended using the snowball technique to gather more information on advanced MRI techniques, their technical background, their use in adult ioMRI, and their use in routine pediatric brain tumor care. Results: The available literature was sparse and demonstrated that advanced sequences were used to reconstruct fibers to prevent damage to important structures, provide information on relative cerebral blood flow or abnormal metabolites, or to indicate the onset of hemorrhage or ischemic infarcts. The explorative literature search revealed developments within each advanced MRI field, such as multi-shell diffusion MRI, arterial spin labeling, and amide-proton transfer-weighted imaging, that have been studied in adult ioMRI but have not yet been applied in pediatrics. These techniques could have the potential to provide more accurate fiber tractography, information on intraoperative cerebral perfusion, and to match gadolinium-based T1w images without using a contrast agent. Conclusion: The potential added value of advanced MRI in the intraoperative setting for pediatric brain tumors is to prevent damage to important structures, to provide additional physiological or metabolic information, or to indicate the onset of postoperative changes. Current developments within various advanced ioMRI sequences are promising with regard to providing in-depth tissue information.
Collapse
Affiliation(s)
- Pien E. J. Jellema
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
- *Correspondence: Pien E. J. Jellema,
| | - Jannie P. Wijnen
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Alberto De Luca
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Iris V. Obdeijn
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Kirsten M. van Baarsen
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Maarten H. Lequin
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Eelco W. Hoving
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
31
|
Wamelink IJ, Kuijer JP, Padrela BE, Zhang Y, Barkhof F, Mutsaerts HJ, Petr J, van de Giessen E, Keil VC. Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients With Brain Glioma. J Magn Reson Imaging 2023; 57:206-215. [PMID: 35633282 PMCID: PMC10084114 DOI: 10.1002/jmri.28239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Amide proton transfer (APT) imaging is a chemical exchange saturation transfer (CEST) technique offering potential clinical applications such as diagnosis, characterization, and treatment planning and monitoring in glioma patients. While APT-CEST has demonstrated high potential, reproducibility remains underexplored. PURPOSE To investigate whether cerebral APT-CEST with clinically feasible scan time is reproducible in healthy tissue and glioma for clinical use at 3 T. STUDY TYPE Prospective, longitudinal. SUBJECTS Twenty-one healthy volunteers (11 females; mean age ± SD: 39 ± 11 years) and 6 glioma patients (3 females; 50 ± 17 years: 4 glioblastomas, 1 oligodendroglioma, 1 radiologically suspected low-grade glioma). FIELD STRENGTH/SEQUENCE 3 T, Turbo Spin Echo - ampling perfection with application optimized contrasts using different flip angle evolution - chemical exchange saturation transfer (TSE SPACE-CEST). ASSESSMENT APT-CEST measurement reproducibility was assessed within-session (glioma patients, scan session 1; healthy volunteers scan sessions 1, 2, and 3), between-sessions (healthy volunteers scan sessions 1 and 2), and between-days (healthy volunteers, scan sessions 1 and 3). The mean APTCEST values and standard deviation of the within-subject difference (SDdiff ) were calculated in whole tumor enclosed by regions of interest (ROIs) in patients, and eight ROIs in healthy volunteers-whole-brain, cortical gray matter, putamen, thalami, orbitofrontal gyri, occipital lobes, central brain-and compared. STATISTICAL TESTS Brown-Forsythe tests and variance component analysis (VCA) were used to assess the reproducibility of ROIs for the three time intervals. Significance was set at P < 0.003 after Bonferroni correction. RESULTS Intratumoral mean APTCEST was significantly higher than APTCEST in healthy-appearing tissue in patients (0.5 ± 0.46%). The average within-session, between-sessions, and between-days SDdiff of healthy control brains was 0.2% and did not differ significantly with each other (0.76 > P > 0.22). The within-session SDdiff of whole-brain was 0.2% in both healthy volunteers and patients, and 0.21% in the segmented tumor. VCA showed that within-session factors were the most important (60%) for scanning variance. DATA CONCLUSION Cerebral APT-CEST imaging may show good scan-rescan reproducibility in healthy tissue and tumors with clinically feasible scan times at 3 T. Short-term measurement effects may be the dominant components for reproducibility. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ivar J.H.G. Wamelink
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Joost P.A. Kuijer
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Beatriz E. Padrela
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Henk J.M.M. Mutsaerts
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jan Petr
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam University Medical CenterAmsterdamThe Netherlands
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Vera C. Keil
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
32
|
Hou H, Diao Y, Yu J, Xu M, Wang L, Li Z, Song T, Liu Y, Yuan Z. Differentiation of true progression from treatment response in high-grade glioma treated with chemoradiation: a comparison study of 3D-APTW and 3D-PcASL imaging and DWI. NMR IN BIOMEDICINE 2023; 36:e4821. [PMID: 36031734 DOI: 10.1002/nbm.4821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE To assess and compare the diagnostic performance of 3D amide proton-transfer-weighted (3D-APTW) imaging, 3D pseudocontinuous arterial spin-labeling (3D-PcASL) imaging, and diffusion-weighted imaging in distinguishing true progression (TP) from treatment response (TR) in posttreatment malignant glioma patients. MATERIALS AND METHODS Forty-eight patients with suspected tumor recurrence were prospectively enrolled. Histological or longitudinal routine MRI follow-up over six months was assessed to confirm lesion type. The apparent diffusion coefficient (ADC), relative APTWmax (rAPTW), and relative CBFmax values (rCBF) were measured in lesions with enhancing regions on post-gadolinium T1 -weighted MRI. MRI parameters between the TP and TR groups were compared using Student's t tests. In addition, a receiver operating characteristic (ROC) curve was constructed, and the area under the ROC curve (AUC) was calculated to assess the differentiation diagnostic performance of each parameter. RESULTS The TP group showed a significantly higher rAPTW and rCBF than the TR group; the AUCs of rAPTW and rCBF to distinguish between TP and TR were 0.911 (with sensitivity of 90.3% and specificity of 82.4%) and 0.852 (with sensitivity of 80.6% and specificity of 82.4%), respectively. By adding the rAPTW values to rCBF values, the diagnostic ability was improved from 0.852 to 0.951. ADC showed no significant differences between the TP and TR groups, with an AUC lower than 0.70. CONCLUSION Both 3D-PcASL and 3D-APTW imaging could distinguish TP from TR, and 3D-APTW had a better diagnostic performance. Combining the rAPTW values and rCBF values achieved a better diagnostic performance.
Collapse
Affiliation(s)
- Huimin Hou
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yanzhao Diao
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinchao Yu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Min Xu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Liming Wang
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Zhenzhi Li
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Tao Song
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu Liu
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenguo Yuan
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
33
|
Fatania K, Frood R, Tyyger M, McDermott G, Fernandez S, Shaw GC, Boissinot M, Salvatore D, Ottobrini L, Teh I, Wright J, Bailey MA, Koch-Paszkowski J, Schneider JE, Buckley DL, Murray L, Scarsbrook A, Short SC, Currie S. Exploratory Analysis of Serial 18F-fluciclovine PET-CT and Multiparametric MRI during Chemoradiation for Glioblastoma. Cancers (Basel) 2022; 14:3485. [PMID: 35884545 PMCID: PMC9315674 DOI: 10.3390/cancers14143485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Anti-1-amino-3-18fluorine-fluorocyclobutane-1-carboxylic acid (18F-fluciclovine) positron emission tomography (PET) shows preferential glioma uptake but there is little data on how uptake correlates with post-contrast T1-weighted (Gd-T1) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) activity during adjuvant treatment. This pilot study aimed to compare 18F-fluciclovine PET, DCE-MRI and Gd-T1 in patients undergoing chemoradiotherapy for glioblastoma (GBM), and in a parallel pre-clinical GBM model, to investigate correlation between 18F-fluciclovine uptake, MRI findings, and tumour biology. 18F-fluciclovine-PET-computed tomography (PET-CT) and MRI including DCE-MRI were acquired before, during and after adjuvant chemoradiotherapy (60 Gy in 30 fractions with temozolomide) in GBM patients. MRI volumes were manually contoured; PET volumes were defined using semi-automatic thresholding. The similarity of the PET and DCE-MRI volumes outside the Gd-T1 volume boundary was measured using the Dice similarity coefficient (DSC). CT-2A tumour-bearing mice underwent MRI and 18F-fluciclovine PET-CT. Post-mortem mice brains underwent immunohistochemistry staining for ASCT2 (amino acid transporter), nestin (stemness) and Ki-67 (proliferation) to assess for biologically active tumour. 6 patients were recruited (GBM 1-6) and grouped according to overall survival (OS)-short survival (GBM-SS, median OS 249 days) and long survival (GBM-LS, median 903 days). For GBM-SS, PET tumour volumes were greater than DCE-MRI, in turn greater than Gd-T1. For GBM-LS, Gd-T1 and DCE-MRI were greater than PET. Tumour-specific 18F-fluciclovine uptake on pre-clinical PET-CT corresponded to immunostaining for Ki-67, nestin and ASCT2. Results suggest volumes of 18F-fluciclovine-PET activity beyond that depicted by DCE-MRI and Gd-T1 are associated with poorer prognosis in patients undergoing chemoradiotherapy for GBM. The pre-clinical model confirmed 18F-fluciclovine uptake reflected biologically active tumour.
Collapse
Affiliation(s)
- Kavi Fatania
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK; (R.F.); (A.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| | - Russell Frood
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK; (R.F.); (A.S.); (S.C.)
| | - Marcus Tyyger
- Department of Medical Physics, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK; (M.T.); (G.M.)
| | - Garry McDermott
- Department of Medical Physics, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK; (M.T.); (G.M.)
| | - Sharon Fernandez
- Department of Clinical Oncology, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK;
| | - Gary C. Shaw
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| | - Marjorie Boissinot
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| | - Daniela Salvatore
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Segrate, Italy; (D.S.); (L.O.)
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Segrate, Italy; (D.S.); (L.O.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 20054 Segrate, Italy
| | - Irvin Teh
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - John Wright
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - Marc A. Bailey
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
- Leeds Vascular Institute, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Joanna Koch-Paszkowski
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - Jurgen E. Schneider
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - David L. Buckley
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - Louise Murray
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
- Department of Clinical Oncology, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK;
| | - Andrew Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK; (R.F.); (A.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| | - Susan C. Short
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
- Department of Clinical Oncology, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK;
| | - Stuart Currie
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK; (R.F.); (A.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| |
Collapse
|
34
|
Dong Y, Gu Y, Lu J, Wan J, Jiang S, Koehler RC, Wang J, Zhou J. Amide Proton Transfer-Weighted Magnetic Resonance Imaging for Detecting Severity and Predicting Outcome after Traumatic Brain Injury in Rats. Neurotrauma Rep 2022; 3:261-275. [PMID: 35982981 PMCID: PMC9380886 DOI: 10.1089/neur.2021.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After traumatic brain injury (TBI), early assessment of secondary injury severity is critically important for estimating prognosis and treatment stratification. Currently, secondary injury severity is difficult to estimate. The objective of this study was to investigate the capacity of non-invasive amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI) techniques to assess TBI injury in different brain regions and predict long-term neurobehavior outcomes. Fifty-five male and female rats were subjected to a controlled cortical impact with one of three different impactor depths to produce different degrees of TBI. Multi-parameter MRI data were acquired on a 4.7-Tesla scanner at 1 h, 1 day, and 3 days. Immunofluorescence staining was used to detect activated microglia at 3 days, and neurobehavioral tests were performed to assess long-term outcomes after 28 days. The APTw signal in the injury core at 1 day correlated with deficits in sensorimotor function, the sucrose preference test (a test for anhedonia), and spatial memory function on the Barnes maze. The APTw signal in the perilesion ipsilateral cortex gradually increased after TBI, and the value at 3 days correlated with microglia density at 3 days and with spatial memory decline and anhedonia at 28 days. The correlation between APTw and activated microglia was also observed in the ipsilateral thalamus, and its correlation to memory deficit and depression was evident in other ipsilateral sites. These results suggest that APTw imaging can be used for detecting secondary injury and as a potential predictor of long-term outcomes from TBI.
Collapse
Affiliation(s)
- Yinfeng Dong
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yanting Gu
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianhua Lu
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Comparison of amide proton transfer imaging with perfusion imaging of using arterial spin-labeling for evidence of tumor invasion in glioblastoma. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Wu Y, Wood TC, Arzanforoosh F, Hernandez-Tamames JA, Barker GJ, Smits M, Warnert EAH. 3D APT and NOE CEST-MRI of healthy volunteers and patients with non-enhancing glioma at 3 T. MAGMA (NEW YORK, N.Y.) 2022; 35:63-73. [PMID: 34994858 PMCID: PMC8901510 DOI: 10.1007/s10334-021-00996-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Clinical application of chemical exchange saturation transfer (CEST) can be performed with investigation of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects. Here, we investigated APT- and NOE-weighted imaging based on advanced CEST metrics to map tumor heterogeneity of non-enhancing glioma at 3 T. MATERIALS AND METHODS APT- and NOE-weighted maps based on Lorentzian difference (LD) and inverse magnetization transfer ratio (MTRREX) were acquired with a 3D snapshot CEST acquisition at 3 T. Saturation power was investigated first by varying B1 (0.5-2 µT) in 5 healthy volunteers then by applying B1 of 0.5 and 1.5 µT in 10 patients with non-enhancing glioma. Tissue contrast (TC) and contrast-to-noise ratios (CNR) were calculated between glioma and normal appearing white matter (NAWM) and grey matter, in APT- and NOE-weighted images. Volume percentages of the tumor showing hypo/hyperintensity (VPhypo/hyper,CEST) in APT/NOE-weighted images were calculated for each patient. RESULTS LD APT resulting from using a B1 of 1.5 µT was found to provide significant positive TCtumor,NAWM and MTRREX NOE (B1 of 1.5 µT) provided significant negative TCtumor,NAWM in tissue differentiation. MTRREX-based NOE imaging under 1.5 µT provided significantly larger VPhypo,CEST than MTRREX APT under 1.5 µT. CONCLUSION This work showed that with a rapid CEST acquisition using a B1 saturation power of 1.5 µT and covering the whole tumor, analysis of both LD APT and MTRREX NOE allows for observing tumor heterogeneity, which will be beneficial in future studies using CEST-MRI to improve imaging diagnostics for non-enhancing glioma.
Collapse
Affiliation(s)
- Yulun Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Tobias C Wood
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Fatemeh Arzanforoosh
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Gareth J Barker
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Guo P, Unberath M, Heo HY, Eberhart CG, Lim M, Blakeley JO, Jiang S. Learning-based analysis of amide proton transfer-weighted MRI to identify true progression in glioma patients. NEUROIMAGE: CLINICAL 2022; 35:103121. [PMID: 35905666 PMCID: PMC9421489 DOI: 10.1016/j.nicl.2022.103121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Pengfei Guo
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mathias Unberath
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Hye-Young Heo
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | | | - Shanshan Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
40
|
Považan M, Schär M, Gillen J, Barker PB. Magnetic resonance spectroscopic imaging of downfield proton resonances in the human brain at 3 T. Magn Reson Med 2021; 87:1661-1672. [PMID: 34971460 DOI: 10.1002/mrm.29142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop an MRSI technique capable of mapping downfield proton resonances in the human brain. METHODS A spectral-spatial excitation and frequency-selective refocusing scheme, in combination with 2D phase encoding, was developed for mapping of downfield resonances without any perturbation of the water magnetization. An alternative scheme using spectral-spatial refocusing was also investigated for simultaneous detection of both downfield and upfield resonances. The method was tested in 5 healthy human volunteers. RESULTS Downfield metabolite maps with a nominal spatial resolution of 1.5 cm3 were recorded at 3 T in a scan time of 12 minutes. Cramer-Rao lower bounds for nine different downfield peaks were 20% or less over a single supraventricular slice. Downfield spectral profiles were similar to those in the literature recorded previously using single-voxel localization methods. The same approach was also used for upfield MRSI, and simultaneous upfield and downfield acquisitions. CONCLUSION The developed MRSI pulse sequence was shown to be an efficient way of rapidly mapping downfield resonances in the human brain at 3 T, maximizing sensitivity through the relaxation enhancement effect. Because the MRSI approach is efficient in terms of data collection and can be readily implemented at short TE, somewhat higher spatial resolution can be achieved than has been reported in previous single-voxel downfield MRS studies. With this approach, nine downfield resonances could be mapped in a single slice for the first time using MRSI at 3 T.
Collapse
Affiliation(s)
- Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Gillen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Li Y, Liu X, Wang X, Lin C, Qi Y, Chen B, Zhou H, Wu Q, Ren J, Zhao J, Yang J, Xiang Y, He Y, Jin Z, Xue H. Using amide proton transfer-weighted MRI to non-invasively differentiate mismatch repair deficient and proficient tumors in endometrioid endometrial adenocarcinoma. Insights Imaging 2021; 12:182. [PMID: 34894294 PMCID: PMC8665952 DOI: 10.1186/s13244-021-01126-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To investigate the utility of three-dimensional (3D) amide proton transfer-weighted (APTw) imaging to differentiate mismatch repair deficient (dMMR) and mismatch repair proficient (pMMR) tumors in endometrioid endometrial adenocarcinoma (EEA). METHODS Forty-nine patients with EEA underwent T1-weighted imaging, T2-weighted imaging, 3D APTw imaging, and diffusion-weighted imaging at 3 T MRI. Image quality and measurement confidence of APTw images were evaluated on a 5-point Likert scale. APTw and apparent diffusion coefficient (ADC) values were calculated and compared between the dMMR and pMMR groups and among the three EEA histologic grades based on the Federation of Gynecology and Obstetrics (FIGO) grading system criteria. Student's t-test, analysis of variance with Scheffe post hoc test, and receiver operating characteristic analysis were performed. Statistical significance was set at p < 0.05. RESULTS Thirty-five EEA patients (9 with dMMR tumors and 26 with pMMR tumors) with good image quality were enrolled in quantitative analysis. APTw values were significantly higher in the dMMR group than in the pMMR group (3.2 ± 0.3% and 2.8 ± 0.5%, respectively; p = 0.019). ADC values of the dMMR and pMMR groups were 0.874 ± 0.104 × 10-3 mm2/s and 0.903 ± 0.100 × 10-3 mm2/s, respectively. No significant between-group difference was noted (p = 0.476). No statistically significant differences were observed in APTw values or ADC values among the three histologic grades (p = 0.766 and p = 0.295, respectively). CONCLUSIONS APTw values may be used as potential imaging markers to differentiate dMMR from pMMR tumors in EEA.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, People's Republic of China
| | - Xinyu Liu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Xiaoqi Wang
- Philips Healthcare China, Beijing, People's Republic of China
| | - Chengyu Lin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Yafei Qi
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Bo Chen
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hailong Zhou
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Qiaoling Wu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Jing Ren
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Jia Zhao
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Junjun Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, People's Republic of China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, People's Republic of China
| | - Yonglan He
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| |
Collapse
|
42
|
Wu Y, Liu Z, Yang Q, Zou L, Zhang F, Qian L, Liu X, Zheng H, Luo D, Sun PZ. Fast and equilibrium CEST imaging of brain tumor patients at 3T. Neuroimage Clin 2021; 33:102890. [PMID: 34864285 PMCID: PMC8645967 DOI: 10.1016/j.nicl.2021.102890] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/01/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI, versatile for detecting endogenous mobile proteins and tissue pH, has proved valuable in tumor imaging. However, CEST MRI scans are often performed under non-equilibrium conditions, which confound tissue characterization. This study proposed a quasi-steady-state (QUASS) CEST MRI algorithm to standardize fast and accurate tumor imaging at 3 T. The CEST signal evolution was modeled by longitudinal relaxation rate during relaxation delay (Td) and spinlock relaxation during RF saturation time (Ts), from which the QUASS CEST effect is derived. Numerical simulation and human MR imaging experiments (7 healthy volunteers and 19 tumor patients) were conducted at 3 T to compare the CEST measurements obtained under two representative experimental conditions. In addition, amide proton transfer (APT), combined magnetization transfer (MT) and nuclear overhauser enhancement (NOE) effects, and direct water saturation were isolated using a 3-pool Lorentzian fitting in white matter and gray matter of healthy volunteers and for patients in the contralateral normal-appearing white matter and tumor regions. Finally, the student's t-test was performed between conventional and QUASS CEST measurements. The routine APT and combined MT & NOE measures significantly varied with Ts and Td (P < .001) and were significantly smaller than the corresponding QUASS indices (P < .001). In contrast, the results from the QUASS reconstruction showed little dependence on the scan protocol (P > .05), indicating the accuracy and robustness of QUASS CEST MRI for tumor imaging. To summarize, the QUASS CEST reconstruction algorithm enables fast and accurate tumor CEST imaging at 3 T, promising to expedite and standardize clinical CEST MRI.
Collapse
Affiliation(s)
- Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Zhou Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Liyan Zou
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Fan Zhang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA,Corresponding author at: Department of Radiology and Imaging Sciences, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| |
Collapse
|
43
|
Zhang H, Zhou J, Peng Y. Amide Proton Transfer-Weighted MR Imaging of Pediatric Central Nervous System Diseases. Magn Reson Imaging Clin N Am 2021; 29:631-641. [PMID: 34717850 DOI: 10.1016/j.mric.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amide proton transfer-weighted (APTw) imaging is a molecular MR imaging technique that can detect the concentration of the amide protons in mobile cellular proteins and peptides or a pH change in vivo. Previous studies have indicated that APTw MR imaging can be used to detect malignant brain tumors, stroke, and other neurologic diseases, although the clinical application in pediatric patients remains limited. The authors briefly introduce the basic principles of APTw imaging. Then, they review early clinical applications of this approach to pediatric central nervous system diseases, including pediatric brain development, hypoxic-ischemic encephalopathy, intracranial infection, and brain tumors.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nan Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 336, Baltimore, MD 21287, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nan Li Shi Road, Xi Cheng District, Beijing, 100045, China.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW This review aims to cover current MRI techniques for assessing treatment response in brain tumors, with a focus on radio-induced lesions. RECENT FINDINGS Pseudoprogression and radionecrosis are common radiological entities after brain tumor irradiation and are difficult to distinguish from real progression, with major consequences on daily patient care. To date, shortcomings of conventional MRI have been largely recognized but morphological sequences are still used in official response assessment criteria. Several complementary advanced techniques have been proposed but none of them have been validated, hampering their clinical use. Among advanced MRI, brain perfusion measures increase diagnostic accuracy, especially when added with spectroscopy and susceptibility-weighted imaging. However, lack of reproducibility, because of several hard-to-control variables, is still a major limitation for their standardization in routine protocols. Amide Proton Transfer is an emerging molecular imaging technique that promises to offer new metrics by indirectly quantifying intracellular mobile proteins and peptide concentration. Preliminary studies suggest that this noncontrast sequence may add key biomarkers in tumor evaluation, especially in posttherapeutic settings. SUMMARY Benefits and pitfalls of conventional and advanced imaging on posttreatment assessment are discussed and the potential added value of APT in this clinicoradiological evolving scenario is introduced.
Collapse
Affiliation(s)
- Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix
- Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, boulevard de l’Hôpital, Paris
| | - Stefano Casagranda
- Department of Research & Innovation, Olea Medical, avenue des Sorbiers, La Ciotat, France
| |
Collapse
|
45
|
Gao T, Zou C, Li Y, Jiang Z, Tang X, Song X. A Brief History and Future Prospects of CEST MRI in Clinical Non-Brain Tumor Imaging. Int J Mol Sci 2021; 22:11559. [PMID: 34768990 PMCID: PMC8584005 DOI: 10.3390/ijms222111559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) MRI is a promising molecular imaging tool which allows the specific detection of metabolites that contain exchangeable amide, amine, and hydroxyl protons. Decades of development have progressed CEST imaging from an initial concept to a clinical imaging tool that is used to assess tumor metabolism. The first translation efforts involved brain imaging, but this has now progressed to imaging other body tissues. In this review, we summarize studies using CEST MRI to image a range of tumor types, including breast cancer, pelvic tumors, digestive tumors, and lung cancer. Approximately two thirds of the published studies involved breast or pelvic tumors which are sites that are less affected by body motion. Most studies conclude that CEST shows good potential for the differentiation of malignant from benign lesions with a number of reports now extending to compare different histological classifications along with the effects of anti-cancer treatments. Despite CEST being a unique 'label-free' approach with a higher sensitivity than MR spectroscopy, there are still some obstacles for implementing its clinical use. Future research is now focused on overcoming these challenges. Vigorous ongoing development and further clinical trials are expected to see CEST technology become more widely implemented as a mainstream imaging technology.
Collapse
Affiliation(s)
- Tianxin Gao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Chuyue Zou
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Yifan Li
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Xiaolei Song
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
46
|
Guo P, Wang P, Yasarla R, Zhou J, Patel VM, Jiang S. Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2832-2844. [PMID: 33351754 PMCID: PMC8543492 DOI: 10.1109/tmi.2020.3046460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas in neuro-oncology, especially with the help of standard anatomic and advanced molecular MR images. However, data quantity and quality remain a key determinant, and a significant limit of the potential applications. In our previous work, we explored the synthesis of anatomic and molecular MR image networks (SAMR) in patients with post-treatment malignant gliomas. In this work, we extend this through a confidence-guided SAMR (CG-SAMR) that synthesizes data from lesion contour information to multi-modal MR images, including T1-weighted ( [Formula: see text]), gadolinium enhanced [Formula: see text] (Gd- [Formula: see text]), T2-weighted ( [Formula: see text]), and fluid-attenuated inversion recovery ( FLAIR ), as well as the molecular amide proton transfer-weighted ( [Formula: see text]) sequence. We introduce a module that guides the synthesis based on a confidence measure of the intermediate results. Furthermore, we extend the proposed architecture to allow training using unpaired data. Extensive experiments on real clinical data demonstrate that the proposed model can perform better than current the state-of-the-art synthesis methods. Our code is available at https://github.com/guopengf/CG-SAMR.
Collapse
|
47
|
Friismose AI, Markovic L, Nguyen N, Gerke O, Schulz MK, Mussmann BR. Amide proton transfer-weighted MRI in the clinical setting - correlation with dynamic susceptibility contrast perfusion in the post-treatment imaging of adult glioma patients at 3T. Radiography (Lond) 2021; 28:95-101. [PMID: 34509365 DOI: 10.1016/j.radi.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION We investigated the correlation between amide proton transfer-weighted magnetic resonance imaging (APTw MRI) and dynamic susceptibility contrast (DSC) perfusion in order to assess the potential of APTw MRI as an alternative to DSC in adult brain tumor (glioma) imaging. METHODS After Ethical Committee approval, forty adult patients, treated for histopathologically confirmed glioma (World Health Organization (WHO) grade II-IV), were prospectively imaged at 3 Tesla (3 T) with DSC perfusion and a commercially available three-dimensional (3D) APTw sequence. Two consultant neuroradiologists independently performed region of interest (ROI) measurements on relative cerebral blood volume (rCBV) and APTw maps, co-registered with anatomical images. The correlation APTw MRI-DSC perfusion was assessed using Spearman's rank-order test. Inter-observer agreement was evaluated by the intraclass correlation coefficient (ICC) and Bland-Altman (BA) plots. RESULTS A statistically significant moderately strong positive correlation was observed between maximum rCBV (rCBVmax) and maximum APTw (APTwmax) values (observer 1: r = 0.73; p < 0.01; observer 2: r = 0.62; p < 0.01). We found good inter-observer agreement for APTwmax (ICC = 0.82; 95% confidence interval (CI) 0.66-0.90), with somewhat broad outer 95% CI for the BA Limits of Agreement (LoA) (-1.6 to 1.9). ICC for APTwmax was higher than ICC for rCBVmax (ICC = 0.74; 95%; CI 0.50-0.86), but the difference was not statistically significant. CONCLUSION APTwmax values correlate positively with rCBVmax in patients treated for brain glioma. APTw imaging is a reproducible technique, with some observer dependence. Results need to be confirmed by a larger population analysis. IMPLICATIONS FOR PRACTICE APTw MRI can be a useful addition to glioma follow-up imaging and a potential alternative to DSC perfusion, especially in patients where contrast agent is contraindicated.
Collapse
Affiliation(s)
- A I Friismose
- Radiology Department, Odense University Hospital, Odense, Denmark.
| | - L Markovic
- Radiology Department, Odense University Hospital, Odense, Denmark
| | - N Nguyen
- Radiology Department, Odense University Hospital, Odense, Denmark
| | - O Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - M K Schulz
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - B R Mussmann
- Radiology Department, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; OPEN, Odense Patient Data Exploratory Network, Odense University Hospital, Odense, Denmark; Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
48
|
Li Y, Lin CY, Qi YF, Wang X, Chen B, Zhou HL, Ren J, Yang JJ, Xiang Y, He YL, Xue HD, Jin ZY. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: Correlation with Ki-67 proliferation status. Magn Reson Imaging 2021; 78:18-24. [PMID: 33556484 DOI: 10.1016/j.mri.2021.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND To evaluate 3-dimensional amide proton transfer weighted (APTw) imaging for type I endometrial carcinoma (EC), and investigate correlations of Ki-67 labelling index with APTw and intravoxel incoherent motion (IVIM) imaging. METHODS 54 consecutive patients suspected of endometrial lesions underwent pelvic APTw and IVIM imaging on a 3 T MR scanner. APTw values and IVIM-derived parameters (Dt, D*, f) were independently measured by two radiologists on 22 postoperative pathological confirmed of type I EC lesions. Results were compared between histological grades and Ki-67 proliferation groups. ROC analysis was performed. Pearson's correlation analysis was performed for APTw values and IVIM-derived parameters with Ki-67 labeling index. RESULTS APTw values and Dt, D*, f of all type I EC were 2.9 ± 0.1%, 0.677 ± 0.027 × 10-3 mm2/s, 31.801 ± 11.492 × 10-3 mm2/s, 0.179 ± 0.050 with inter-observer ICC 0.996, 0.850, 0.956, 0.995, respectively. APTw values of Ki-67 low-proliferation group (<30%, n = 8) were 2.5 ± 0.2%, significantly lower than the high-proliferation group (>30%, n = 14) with APTw values of 3.1 ± 0.1% (p = 0.016). Area under the curve was 0.768. APTw values of type I EC were moderately positively correlated with Ki-67 labelling index (r = 0.583, p = 0.004). There was no significant difference of Dt (p = 0.843), D* (p = 0.262), f (p = 0.553) between the two groups. No correlation was found between IVIM-derived parameters and Ki-67 labelling index (Dt, p = 0.717; D* p = 0.151; f, p = 0.153). CONCLUSION 3D TSE APTw imaging is a feasible approach for detecting type I EC. Ki-67 labeling index positively moderately correlates with APTw not with IVIM.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Cheng-Yu Lin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Ya-Fei Qi
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | | | - Bo Chen
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Hai-Long Zhou
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Jing Ren
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Jun-Jun Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Yong-Lan He
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Hua-Dan Xue
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
49
|
Yin H, Wang D, Yan R, Jin X, Hu Y, Zhai Z, Duan J, Zhang J, Wang K, Han D. Comparison of Diffusion Kurtosis Imaging and Amide Proton Transfer Imaging in the Diagnosis and Risk Assessment of Prostate Cancer. Front Oncol 2021; 11:640906. [PMID: 33937041 PMCID: PMC8082407 DOI: 10.3389/fonc.2021.640906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/16/2021] [Indexed: 01/31/2023] Open
Abstract
Objectives This study aims to evaluate and compare the diagnostic value of DKI and APT in prostate cancer (PCa), and their correlation with Gleason Score (GS). Materials and Methods DKI and APT imaging of 49 patients with PCa and 51 patients with benign prostatic hyperplasia (BPH) were collected and analyzed, respectively. According to the GS, the patients with PCa were divided into high-risk, intermediate-risk and low-risk groups. The mean kurtosis (MK), mean diffusion (MD) and magnetization transfer ratio asymmetry (MTRasym, 3.5 ppm) values among PCa, BPH, and different GS groups of PCa were compared and analyzed respectively. The diagnostic accuracy of each parameter was evaluated by using the receiver operating characteristic (ROC) curve. The correlation between each parameter and GS was analyzed by using Spearman’s rank correlation. Results The MK and MTRasym (3.5 ppm) values were significantly higher in PCa group than in BPH group, while the MD value was significantly lower than in BPH group. The differences of MK/MD/MTRasym (3.5 ppm) between any two of the low-risk, intermediate-risk, and high-risk groups were all statistically significant (p <0.05). The MK value showed the highest diagnostic accuracy in differentiating PCa and BPH, BPH and low-risk, low-risk and intermediate-risk, intermediate-risk and high-risk (AUC = 0.965, 0.882, 0.839, 0.836). The MK/MD/MTRasym (3.ppm) values showed good and moderate correlation with GS (r = 0.844, −0.811, 0.640, p <0.05), respectively. Conclusion DKI and APT imaging are valuable in the diagnosis of PCa and demonstrate strong correlation with GS, which has great significance in the risk assessment of PCa.
Collapse
Affiliation(s)
- Huijia Yin
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Dongdong Wang
- Department of Radiology, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Ruifang Yan
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Xingxing Jin
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Ying Hu
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Zhansheng Zhai
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Jinhui Duan
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Jian Zhang
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Dongming Han
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| |
Collapse
|
50
|
Quantitative Analysis of Mobile Proteins in Normal Brain Tissue by Amide Proton Transfer Imaging: Age Dependence and Sex Differences. J Comput Assist Tomogr 2021; 45:277-284. [PMID: 33661152 DOI: 10.1097/rct.0000000000001141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The aims of this study were to evaluate the relationship between age change and amide proton transfer (APT) signal in each region of the whole brain and to derive the standard value of APT signal in each brain region of normal adults. MATERIALS AND METHODS Using the mDIXON 3-dimensional-APT sequence of the fast spin echo method, an APT image was obtained. In total, 60 patients (mean age, 49.8 ± 16.9 years) with no abnormal findings on magnetic resonance imaging data were included. For image analysis, registration parameters were created using the FMRIB Software Library 5.0.11, and then a region of interest was set in the Montreal Neurological Institute structural atlas for analysis. Statistical analyses were performed using the age-dependent and sex differences in APT signals from each brain region. RESULTS No significant correlation was seen between APT signal and age and sex in all brain regions. CONCLUSION Under the APT imaging parameter conditions used in this study, local brain APT signals in healthy adults are independent of age and sex.
Collapse
|