1
|
Zhang X, Yang J, Feng Q, Gu L, Qin G, Cheng C, Hou S, Shi Z. The immune landscape and prognostic analysis of CXCL8 immune-related genes in cervical squamous cell carcinoma. ENVIRONMENTAL TOXICOLOGY 2025; 40:902-911. [PMID: 38597597 DOI: 10.1002/tox.24283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Cervical squamous cell carcinoma (CESC), one of the most common malignancies in women, imposes a significant burden on women's health worldwide. Despite extensive research, the molecular and pathogenic mechanisms of cervical squamous cell carcinoma and CESC remain unclear. This study aimed to explore the immune-related genes, immune microenvironment infiltration, and prognosis of CESC, providing a theoretical basis for guiding clinical treatment. Initially, by mining four gene sets and immune-related gene sets from public databases, 14 immune-related genes associated with CESC were identified. Through univariate and multivariate COX regression analyses, as well as lasso regression analysis, four CESC-independent prognostic genes were identified, and a prognostic model was constructed, dividing them into high and low-risk groups. The correlation between these genes and immune cells and immune functions were explored through ssGSEA enrichment analysis, revealing a close association between the high-risk group and processes such as angiogenesis and epithelial-mesenchymal transition. Furthermore, using public databases and qRT-PCR experiments, significant differences in CXCL8 expression between normal cervical cells and cervical cancer cells were discovered. Subsequently, a CXCL8 knockdown plasmid was constructed, and the efficiency of CXCL8 knockdown was validated in two CESC cell lines, MEG-01 and HCE-1. Through CCK-8, scratch, and Transwell assays, it was confirmed that CXCL8 knockdown could inhibit the proliferation, invasion, and migration abilities of CESC cells. Targeting CXCL8 holds promise for personalized therapy for CESC, providing a strong theoretical basis for achieving clinical translation.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qianqian Feng
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Liping Gu
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Gongzhao Qin
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chen Cheng
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shunyu Hou
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhouhong Shi
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Di Giacomo AM, Subudhi S, Vos W, Andreatta M, Carmona S, McTavish W, Seliger B, Ibrahim R, Lahn M, Smith M, Eggermont A, Fox BA, Maio M. Perspectives on the role of "-Omics" in predicting response to immunotherapy. Eur J Cancer 2025; 220:115393. [PMID: 40168935 DOI: 10.1016/j.ejca.2025.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
The annual Immuno-Oncology "Think Tank" held in October 2023 in Siena reviewed the rapidly evolving systems-biological approaches which are now providing a deeper understanding of tumor and tumor microenvironment heterogeneity. Based on this understanding opportunities for novel therapies may be identified to overcome resistance to immunotherapy. There is increasing evidence that malignant disease processes are not limited to purely intracellular or genetic events but constitute a dynamic interaction between the host and disease. Tumor responses are influenced by many host tissue determinants across different cellular compartments, which can now be investigated by high-throughput molecular profiling technologies, often labelled with a suffix "-omics". "Omics" together with ever increasing computational power, fast developments in machine learning, and high-resolution detection tools offer an unrivalled opportunity to connect high-dimensional data and create a holistic view of disease processes in cancer. This review describes advances in several state-of-the-art "-omics" approaches with perspectives on how these can be applied to the clinical development of new immunotherapeutic strategies and ultimately adopted in clinical practice.
Collapse
Affiliation(s)
- Anna Maria Di Giacomo
- University of Siena, Siena, Italy; Center for Immuno-Oncology, University Hospitalof Siena, Viale Bracci 16, Siena 53100, Italy; NIBIT Foundation Onlus, Italy.
| | - Sumit Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wim Vos
- Radiomics.bio (Oncoradiomics SA), Liège 4000, Belgium.
| | - Massimo Andreatta
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
| | - Santiago Carmona
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
| | - Will McTavish
- Nanostring Technologies Inc, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Barbara Seliger
- Institute of Translational Medicine, Brandenburg Medical School "Theodor Fontane" & Faculty of Health Sciences, Gertrud-Piter Platz 7, Brandenburg 14770, Germany; Medical Faculty, Martin Luther University Halle-Wittenberg, Halle and Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | - Ramy Ibrahim
- Georgiamune Inc., 942 Clopper Rd, Gaithersburg, MD 20878, USA
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, Geneva 1202, Switzerland.
| | - Michael Smith
- iOnctura SA, Avenue Secheron 15, Geneva 1202, Switzerland
| | - Alexander Eggermont
- Princess Máxima Center and the University Medical Center Utrecht, Heidelberglaan 25, Utrecht 3584, the Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximiliaan University, Munich, Germany.
| | - Bernard A Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, Providence Cancer Institute, 4805 NE Glisan St. Suite 2N35, Portland, OR 97213, USA; Department of Molecular Microbiology and Immunology, and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97213, USA.
| | - Michele Maio
- University of Siena, Siena, Italy; Center for Immuno-Oncology, University Hospitalof Siena, Viale Bracci 16, Siena 53100, Italy; NIBIT Foundation Onlus, Italy.
| |
Collapse
|
3
|
Casciano F, Caruso L, Zauli E, Gonelli A, Zauli G, Vaccarezza M. Emerging Mechanisms of Physical Exercise Benefits in Adjuvant and Neoadjuvant Cancer Immunotherapy. Biomedicines 2024; 12:2528. [PMID: 39595094 PMCID: PMC11591576 DOI: 10.3390/biomedicines12112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The primary factors that can be modified in one's lifestyle are the most influential determinants and significant preventable causes of various types of cancer. Exercise has demonstrated numerous advantages in preventing cancer and aiding in its treatment. However, the precise mechanisms behind these effects are still not fully understood. To contribute to our comprehension of exercise's impact on cancer immunotherapy and provide recommendations for future research in exercise oncology, we will examine the roles and underlying mechanisms of exercise on immune cells. In addition to reducing the likelihood of developing cancer, exercise can also improve the effectiveness of certain approved anticancer treatments, such as targeted therapy, immunotherapy, and radiotherapy. Exercise is a pivotal modulator of the immune response, and thus, it can play an emerging important role in new immunotherapies. The mechanisms responsible for these effects involve the regulation of intra-tumoral angiogenesis, myokines, adipokines, their associated pathways, cancer metabolism, and anticancer immunity. Our review assesses the potential of physical exercise as an adjuvant/neoadjuvant tool, reducing the burden of cancer relapse, and analyzes emerging molecular mechanisms predicting favorable adjuvanticity effects.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Environmental Sciences and Prevention and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Mauro Vaccarezza
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
4
|
Huang J, Wang Y, Xu F, Wang Z, Wu G, Kong W, Cheoklong NG, Tricard T, Wu X, Zhai W, Zhang W, Zhang J, Zhang D, Chen S, Lian Y, Chen Y, Zhang J, Huang Y, Xue W. Neoadjuvant toripalimab combined with axitinib in patients with locally advanced clear cell renal cell carcinoma: a single-arm, phase II trial. J Immunother Cancer 2024; 12:e008475. [PMID: 38862251 PMCID: PMC11168135 DOI: 10.1136/jitc-2023-008475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND A combination of axitinib and immune checkpoint inhibitors (ICIs) demonstrated promising efficacy in the treatment of advanced renal cell carcinoma (RCC). This study aims to prospectively evaluate the safety, efficacy, and biomarkers of neoadjuvant toripalimab plus axitinib in non-metastatic clear cell RCC. METHODS This is a single-institution, single-arm phase II clinical trial. Patients with non-metastatic biopsy-proven clear cell RCC (T2-T3N0-1M0) are enrolled. Patients will receive axitinib 5 mg twice daily combined with toripalimab 240 mg every 3 weeks (three cycles) for up to 12 weeks. Patients then will receive partial (PN) or radical nephrectomy (RN) after neoadjuvant therapy. The primary endpoint is objective response rate (ORR). Secondary endpoints include disease-free survival, safety, and perioperative complication rate. Predictive biomarkers are involved in exploratory analysis. RESULTS A total of 20 patients were enrolled in the study, with 19 of them undergoing surgery. One patient declined surgery. The primary endpoint ORR was 45%. The posterior distribution of πORR had a mean of 0.44 (95% credible intervals: 0.24-0.64), meeting the predefined primary endpoint with an ORR of 32%. Tumor shrinkage was observed in 95% of patients prior to nephrectomy. Furthermore, four patients achieved a pathological complete response. Grade ≥3 adverse events occurred in 25% of patients, including hypertension, hyperglycemia, glutamic pyruvic transaminase/glutamic oxaloacetic transaminase (ALT/AST) increase, and proteinuria. Postoperatively, one grade 4a and eight grade 1-2 complications were noted. In comparison to patients with stable disease, responders exhibited significant differences in immune factors such as Arginase 1(ARG1), Melanoma antigen (MAGEs), Dendritic Cell (DC), TNF Superfamily Member 13 (TNFSF13), Apelin Receptor (APLNR), and C-C Motif Chemokine Ligand 3 Like 1 (CCL3-L1). The limitation of this trial was the small sample size. CONCLUSION Neoadjuvant toripalimab combined with axitinib shows encouraging activity and acceptable toxicity in locally advanced clear cell RCC and warrants further study. TRIAL REGISTRATION NUMBER clinicaltrials.gov, NCT04118855.
Collapse
Affiliation(s)
- Jiwei Huang
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yueming Wang
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fan Xu
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zaoyu Wang
- Department of Pathology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Guangyu Wu
- Department of Radiology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wen Kong
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - N G Cheoklong
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Thibault Tricard
- Department of Urology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Xiaorong Wu
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wei Zhai
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | - Ding Zhang
- The Medical Department, 3D Medicines Inc, Shanghai, China
| | - Shuyin Chen
- Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Yuqing Lian
- Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Yonghui Chen
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yiran Huang
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wei Xue
- Department of Urology, RenJi Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Kroemer G, Chan TA, Eggermont AMM, Galluzzi L. Immunosurveillance in clinical cancer management. CA Cancer J Clin 2024; 74:187-202. [PMID: 37880100 PMCID: PMC10939974 DOI: 10.3322/caac.21818] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
The progression of cancer involves a critical step in which malignant cells escape from control by the immune system. Antineoplastic agents are particularly efficient when they succeed in restoring such control (immunosurveillance) or at least establish an equilibrium state that slows down disease progression. This is true not only for immunotherapies, such as immune checkpoint inhibitors (ICIs), but also for conventional chemotherapy, targeted anticancer agents, and radiation therapy. Thus, therapeutics that stress and kill cancer cells while provoking a tumor-targeting immune response, referred to as immunogenic cell death, are particularly useful in combination with ICIs. Modern oncology regimens are increasingly using such combinations, which are referred to as chemoimmunotherapy, as well as combinations of multiple ICIs. However, the latter are generally associated with severe side effects compared with single-agent ICIs. Of note, the success of these combinatorial strategies against locally advanced or metastatic cancers is now spurring successful attempts to move them past the postoperative (adjuvant) setting to the preoperative (neoadjuvant) setting, even for patients with operable cancers. Here, the authors critically discuss the importance of immunosurveillance in modern clinical cancer management.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France; Institut du Cancer Paris Carpem, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Timothy A. Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Alexander M. M. Eggermont
- University Medical Center Utrecht & Princess Maxima Center, Utrecht, the Netherlands; Comprehensive Cancer Center München, Technical University München & Ludwig Maximilian University, München, Germany
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
6
|
Di Giacomo AM, Lahn M, Eggermont AM, Fox B, Ibrahim R, Sharma P, Allison JP, Maio M. The future of targeting cytotoxic T-lymphocyte-associated protein-4: Is there a role? Eur J Cancer 2024; 198:113501. [PMID: 38169219 DOI: 10.1016/j.ejca.2023.113501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
The 2022 yearly Think Tank Meeting in Siena, Tuscany (Italy), organized by the Italian Network for Tumor Biotherapy (NIBIT) Foundation, the Parker Institute for Cancer Immunotherapy and the World Immunotherapy Council, included a focus on the future of integrating and expanding the use of targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). The conference members exchanged their views on the lessons from targeting CTLA-4 and compared the effect to the impact of blocking Programmed cell death protein 1 (PD1) or its ligand (PDL1). The increasing experience with both therapeutic approaches and their combination suggests that targeting CTLA-4 may lead to more durable responses for a sizeable proportion of patients, though the specific mechanism is not entirely understood. Overcoming toxicity of blocking CTLA-4 is currently being addressed with different doses and dose regimens, especially when combined with PD1/PDL1 blocking antibodies. Novel therapeutics targeting CTLA-4 hold the promise to reduce toxicities and thus allow different combination strategies in the future. On the whole, the consent was that targeting CTLA-4 remains an important strategy to improve the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Anna Maria Di Giacomo
- University of Siena, Siena, Italy; Center for Immuno-Oncology. University Hospital of Siena, Viale Bracci, 16, Siena, Italy; NIBIT Foundation Onlus, Italy
| | - Michael Lahn
- IOnctura SA, Avenue Secheron 15, Geneva, Switzerland
| | - Alexander Mm Eggermont
- Princess Máxima Center and the University Medical Center Utrecht, Heidelberglaan 25, 3584 Utrecht, the Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximiliaan University, Munich, Germany
| | - Bernard Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, 4805 NE Glisan St. Suite 2N35 Portland, OR 97213, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, D3500, San Francisco, CA, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson, 1515 Holcombe Blvd, Houston, Texas 77030, USA
| | - James P Allison
- James P Allison Institute, MD Anderson, 1515 Holcombe Blvd, Texas 77030, USA
| | - Michele Maio
- University of Siena, Siena, Italy; Center for Immuno-Oncology. University Hospital of Siena, Viale Bracci, 16, Siena, Italy; NIBIT Foundation Onlus, Italy.
| |
Collapse
|
7
|
Spiliopoulou P, Kaur P, Hammett T, Di Conza G, Lahn M. Targeting T regulatory (T reg) cells in immunotherapy-resistant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:2. [PMID: 38318526 PMCID: PMC10838381 DOI: 10.20517/cdr.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Primary or secondary (i.e., acquired) resistance is a common occurrence in cancer patients and is often associated with high numbers of T regulatory (Treg) cells (CD4+CD25+FOXP3+). The approval of ipilimumab and the development of similar pharmacological agents targeting cell surface proteins on Treg cells demonstrates that such intervention may overcome resistance in cancer patients. Hence, the clinical development and subsequent approval of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) targeting agents can serve as a prototype for similar agents. Such new agents aspire to be highly specific and have a reduced toxicity profile while increasing effector T cell function or effector T/T regulatory (Teff/Treg) ratio. While clinical development with large molecules has shown the greatest advancement, small molecule inhibitors that target immunomodulation are increasingly entering early clinical investigation. These new small molecule inhibitors often target specific intracellular signaling pathways [e.g., phosphoinositide-3-kinase delta (PI3K-δ)] that play an important role in regulating the function of Treg cells. This review will summarize the lessons currently applied to develop novel clinical agents that target Treg cells.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Department of Drug Development Program, Phase I Unit, Beatson West of Scotland Cancer Center, Glasgow G12 0YN, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Paramjit Kaur
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Tracey Hammett
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Giusy Di Conza
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Michael Lahn
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| |
Collapse
|
8
|
Jiang S, Liu Y, Zheng H, Zhang L, Zhao H, Sang X, Xu Y, Lu X. Evolutionary patterns and research frontiers in neoadjuvant immunotherapy: a bibliometric analysis. Int J Surg 2023; 109:2774-2783. [PMID: 37216225 PMCID: PMC10498839 DOI: 10.1097/js9.0000000000000492] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Research has shown that neoadjuvant immunotherapy may provide more significant clinical benefits to cancer patients undergoing surgery than adjuvant therapy. This study examines the development of neoadjuvant immunotherapy research using bibliometric analysis. As of 12 February 2023, articles on neoadjuvant immunotherapy in the Web of Science Core Collection were collected. Co-authorship and keyword co-occurrence analyses and visualizations were performed using VOSviewer, while CiteSpace was used to identify bursting keywords and references. The study analyzed a total of 1222 neoadjuvant immunotherapy publications. The top contributors to this field were the United States, China, and Italy, and the journal with the most publications was Frontiers in Oncology. Francesco Montorsi had the highest H-index. The most common keywords were 'immunotherapy' and 'neoadjuvant therapy'. The study conducted a bibliometric analysis of over 20 years of neoadjuvant immunotherapy research, identifying the countries, institutions, authors, journals, and publications involved in this field. The findings provide a comprehensive overview of neoadjuvant immunotherapy research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Wei C, Lan X, Qiu M, Cui R, Fu Q, Shinge SAU, Muluh TA, Jiang O. Expanding the role of combined immunochemotherapy and immunoradiotherapy in the management of head and neck cancer (Review). Oncol Lett 2023; 26:372. [PMID: 37965160 PMCID: PMC10641411 DOI: 10.3892/ol.2023.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become one of the most promising approaches in tumor therapy, and there are numerous associated clinical trials in China. As an immunosuppressive tumor, head and neck squamous cell carcinoma (HNSCC) carries a high mutation burden, making immune checkpoint inhibitors promising candidates in this field due to their unique mechanism of action. The present review outlines a comprehensive multidisciplinary cancer treatment approach and elaborates on how combining immunochemotherapy and immunoradiotherapy guidelines could enhance clinical efficacy in patients with HNSCC. Furthermore, the present review explores the immunology of HNSCC, current immunotherapeutic strategies to enhance antitumor activity, ongoing clinical trials and the future direction of the current immune landscape in HNSCC. Advanced-stage HNSCC presents with a poor prognosis, low survival rates and minimal improvement in patient survival trends over time. Understanding the potential of immunotherapy and ways to combine it with surgery, chemotherapy and radiotherapy confers good prospects for the management of human papillomavirus (HPV)-positive HNSCC, as well as other HPV-positive malignancies. Understanding the immune system and its effect on HNSCC progression and metastasis will help to uncover novel biomarkers for the selection of patients and to enhance the efficacy of treatments. Further research on why current immune checkpoint inhibitors and targeted drugs are only effective for some patients in the clinic is needed; therefore, further research is required to improve the overall survival of affected patients.
Collapse
Affiliation(s)
- Chun Wei
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Xiaojun Lan
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Maona Qiu
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Ran Cui
- Department of Oncology, The First People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Qiuxia Fu
- Department of General Medicine, The People's Hospital of Luzhou City, Luzhou, Sichuan 646000, P.R. China
| | - Shafiu A. Umar Shinge
- Department of Cardiothoracic Surgery, Sun Yat Sen Memorial Hospital, Sun Yat Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Ou Jiang
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
10
|
Chung R, McKiernan J, Arpaia N, Marabelle A, Rouanne M. Neo-Adjuvant immunotherapies: Bladder cancer as a platform for drug development targeting mucosal immunity. Eur J Cancer 2023; 187:58-64. [PMID: 37116288 DOI: 10.1016/j.ejca.2023.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/30/2023]
Abstract
Bacillus Calmette-Guerin (BCG) is a live attenuated Mycobacterium bovis strain, originally developed as a vaccine against tuberculosis. It is also the only bacterial cancer therapy approved by the US Food & Drug Administration for clinical use. BCG is delivered in the bladder, shortly after tumour resection, for patients with high-risk non-muscle invasive bladder cancer (NMIBC). Modulating mucosal immunity by exposing the urothelium to intravesical BCG has been the main therapeutic strategy for high-risk NMIBC over the last three decades. Thus, BCG provides a benchmark for the clinical development of bacteria-or other live attenuated pathogens-as cancer therapy. Currently, a myriad of immuno-oncology compounds is under clinical evaluation in BCG-unresponsive and BCG-naïve patients as an alternative therapy in the context of worldwide BCG shortages. For patients with non-metastatic muscle-invasive bladder cancer (MIBC), studies investigating neoadjuvant immunotherapy with either anti-PD-1/PD-L1 monoclonal antibodies in monotherapy or in combination with anti-CTLA-4 monoclonal antibodies have shown overall efficacy and acceptable safety profiles prior to radical cystectomy. Emerging clinical investigations are testing synergistic approaches by combining intravesical delivery of drugs with systemic immune checkpoint blockades in the neoadjuvant setting for patients with MIBC. Such novel strategy aims to prime a local anti-tumour immunity and reduce distant metastatic relapses by enhancing a systemic adaptive anti-tumour immune response. Here, we present and discuss some of the most promising clinical trials developing such novel therapeutic approaches.
Collapse
Affiliation(s)
- Rainjade Chung
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA; Centre d'Investigation Clinique de Biothérapies du Cancer (CICBT), 94805 Villejuif, France
| | - James McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA; Centre d'Investigation Clinique de Biothérapies du Cancer (CICBT), 94805 Villejuif, France
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Centre d'Investigation Clinique de Biothérapies du Cancer (CICBT), 94805 Villejuif, France
| | - Aurélien Marabelle
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France; Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; Centre d'Investigation Clinique de Biothérapies du Cancer (CICBT), 94805 Villejuif, France
| | - Mathieu Rouanne
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; Centre d'Investigation Clinique de Biothérapies du Cancer (CICBT), 94805 Villejuif, France.
| |
Collapse
|
11
|
DeLuca VJ, Saleh T. Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer Metastasis Rev 2023; 42:19-35. [PMID: 36681750 DOI: 10.1007/s10555-023-10082-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/12/2023] [Indexed: 01/23/2023]
Abstract
One of the most formidable challenges in oncology and tumor biology research is to provide an accurate understanding of tumor dormancy mechanisms. Dormancy refers to the ability of tumor cells to go undetected in the body for a prolonged period, followed by "spontaneous" escape. Various models of dormancy have been postulated, including angiogenic, immune-mediated, and cellular dormancy. While the former two propose mechanisms by which tumor growth may remain static at a population level, cellular dormancy refers to molecular processes that restrict proliferation at the cell level. Senescence is a form of growth arrest, during which cells undergo distinct phenotypic, epigenetic, and metabolic changes. Senescence is also associated with the development of a robust secretome, comprised of various chemokines and cytokines that interact with the surrounding microenvironment, including other tumor cells, stromal cells, endothelial cells, and immune cells. Both tumor and non-tumor cells can undergo senescence following various stressors, many of which are present during tumorigenesis and therapy. As such, senescent cells are present within forming tumors and in residual tumors post-treatment and therefore play a major role in tumor biology. However, the contributions of senescence to dormancy are largely understudied. Here, we provide an overview of multiple processes that have been well established as being involved in tumor dormancy, and we speculate on how senescence may contribute to these mechanisms.
Collapse
Affiliation(s)
- Valerie J DeLuca
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
12
|
Wang H, Jiang Z, Wang Q, Wu T, Guo F, Xu Z, Yang W, Yang S, Feng S, Wang X, Chen S, Cheng C, Chen W. Pathological response and prognostic factors of neoadjuvant PD-1 blockade combined with chemotherapy in resectable esophageal squamous cell carcinoma. Eur J Cancer 2023; 186:196-210. [PMID: 37045666 DOI: 10.1016/j.ejca.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE We aimed to investigate the pathological changes, clinicopathological correlation and prognostic factors of neoadjuvant programmed cell death 1 (PD-1) blockade camrelizumab combined with carboplatin and nab-paclitaxel (CCNP) which we have proved its effectiveness in previous research for resectable esophageal squamous cell carcinoma (ESCC). METHODS 108 patients of resectable ESCC, with a mean follow-up of 13 m (ranging 1-30 m), treated with neoadjuvant CCNP from March 2020 to October 2022 in the First Affiliated Hospital of Sun Yat-sen University were enrolled. RESULTS One year overall survival (OS) and disease-free survival (DFS) were 96.4% and 84.7% respectively. Pathological complete response or major pathological response (pCR/MPR) of the primary tumour (T-pCR/T-MPR) and the metastatic lymph node (N-pCR/N-MPR) were 58.3% and 47.5%. Pathological response of both primary tumours (PT) and lymph nodes (LN) metastasis correlated with DFS. LN pathological response was consistent with PT in 70.0% and inconsistent in 30.0% metastatic cases. Higher ratio of CD8+ to FoxP3+ tumour-infiltrating lymphocytes (TILs), earlier ypT stage and PT invasion not beyond circular muscle correlated with better pathological response. Four types of regression patterns of PT and two types of metastatic LN regression were found. A total of 18 (16.7%) out of 108 developed recurrence with a mean time of 6.9 ± 5.3 months. PT pathological response plus ypN and PT invasion beyond circular muscle or not were independent prognostic factors of DFS. CONCLUSIONS This study suggested that camrelizumab plus chemotherapy had a high rate of T-pCR/T-MPR for resectable ESCC. T-pCR/T-MPR plus ypN0 and tumour invasion not beyond circular muscle predicted better DFS.
Collapse
|
13
|
van Akkooi ACJ, Blank C, Eggermont AMM. Neo-adjuvant immunotherapy emerges as best medical practice, and will be the new standard of care for macroscopic stage III melanoma. Eur J Cancer 2023; 182:38-42. [PMID: 36738540 DOI: 10.1016/j.ejca.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Survival of macroscopic stage III melanoma is poor. Five-year overall survival and relapse-free survival rates for surgery alone range from 40 to 59% and 30 to-39%, respectively. The current standard of care is therapeutic lymph node dissection (TLND) followed by a year of adjuvant systemic therapy. Multiple phase 2 trials have shown that neo-adjuvant immunotherapy induces major pathologic response (MPR) rates (pathologic complete response (pCR): pCR, 0% viable tumour cells; near-pCR, <10% viable tumour cells), which translate into durable relapse free survival rates. Single agent anti-PD-1 achieves 20-30% MPR, the combination of ipilimumab and nivolumab doubles the MPR rates to 50-60%. The OpACIN trial demonstrated that neoadjuvant immunotherapy induced both higher numbers and a broader repertoire of tumour-resident T-cells in peripheral blood compared with adjuvant immunotherapy. Very recently, the randomised phase 2 trial S1801 reported its first interim results. S1801 compared TLND, followed by 18 courses of adjuvant pembrolizumab, to three courses of neoadjuvant pembrolizumab, followed by surgery and 15 adjuvant doses. With a median follow-up of 14 months, a 23% EFS rate benefit was observed. The ongoing phase 3 NADINA trial randomises patients between TLND + one year of adjuvant nivolumab (control arm) or 2 courses of neoadjuvant therapy with ipilimumab + nivolumab, followed by adjuvant therapy only for non-MPR patients. There is rapid, consistent, and accumulating evidence generated from all phase 1 and phase 2 trials, indicating clinical superiority of neoadjuvant immunotherapy over adjuvant systemic therapy for macroscopic stage III melanoma. Therefore, payers should consider neoadjuvant immunotherapy for reimbursement as this approach is the best option for our patients, and classify it as the best medical practice.
Collapse
Affiliation(s)
- Alexander C J van Akkooi
- Melanoma Institute Australia, Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Royal Prince Alfred Hospital, Sydney, Australia.
| | - Christian Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Leiden University Medical Center, Faculty of Medicine, Leiden, the Netherlands
| | - Alexander M M Eggermont
- University Medical Center Utrecht & Princess Maxima Center, Utrecht, the Netherlands; Comprehensive Cancer Center München, Technical University München & Ludwig Maximiliaan University, München, Germany
| |
Collapse
|
14
|
Yang Y, Cai Z, Huang K, Li M, Wang X, Lin Y, Chen S, Yang Z, Lin Z. A composite score based on immune-related gene prognostic index and m 6A risk score of head and neck squamous cell carcinoma. Front Genet 2023; 14:1061569. [PMID: 36845378 PMCID: PMC9948032 DOI: 10.3389/fgene.2023.1061569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Immunotherapy has been demonstrated favorable in head and neck squamous cell carcinoma (HNSCC). Studies indicated that immune-related gene prognostic index (IRGPI) was a robust signature, and N6-methyladenosine (m6A) methylation had a significant impact on the tumor immune microenvironment (TIME) and immunotherapy of head and neck squamous cell carcinoma. Thus, combining indicated that immune-related gene prognostic index with m6A status should offer a better predictive power for immune responses. Methods: Head and neck squamous cell carcinoma samples from the cancer genome atlas (TCGA, n = 498) and gene expression omnibus database (GSE65858, n = 270) were used in this study. Cox regression analysis was used to construct the indicated that immune-related gene prognostic index through immune-related hub genes which were identified by weighted gene co-expression network analysis (WGCNA). The m6A risk score was constructed by least absolute shrinkage and selection operator (LASSO) regression analysis. Principal component analysis was used to construct a composite score, and systematically correlate subgroups according to tumor immune microenvironment cell-infiltrating characteristics. Results: A composite score was determined based on indicated that immune-related gene prognostic index and m6A risk score. Head and neck squamous cell carcinoma patients in the cancer genome atlas were divided into four subgroups: A (IRGPI-High&m6A-risk-High, n = 127), B (IRGPI-High&m6A-risk-Low, n = 99), C (IRGPI-Low&m6A-risk-High, n = 99), and D (IRGPI-Low&m6A-risk-Low, n = 128), and overall survival (OS) was significantly different between subgroups (p < 0.001). The characteristics of tumor immune microenvironment cell infiltration in the four subgroups were significantly different in subgroups (p < 0.05). The receiver operating characteristic (ROC) curves show the predictive value of composite score for overall survival was superior to other scores. Conclusion: The composite score is a promising prognostic signature which might distinguish immune and molecular characteristics, predict prognosis, and guide more effective immunotherapeutic strategies for head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Yizhou Yang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zeman Cai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kaichun Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Mei Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao Wang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yinbing Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Sijie Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zhining Yang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhixiong Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Nasopharyngeal Carcinoma Research Center of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- *Correspondence: Zhixiong Lin,
| |
Collapse
|
15
|
Blomberg OS, Kos K, Spagnuolo L, Isaeva OI, Garner H, Wellenstein MD, Bakker N, Duits DE, Kersten K, Klarenbeek S, Hau CS, Kaldenbach D, Raeven EA, Vrijland K, Kok M, de Visser KE. Neoadjuvant immune checkpoint blockade triggers persistent and systemic T reg activation which blunts therapeutic efficacy against metastatic spread of breast tumors. Oncoimmunology 2023; 12:2201147. [PMID: 37089449 PMCID: PMC10114978 DOI: 10.1080/2162402x.2023.2201147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
The clinical successes of immune checkpoint blockade (ICB) in advanced cancer patients have recently spurred the clinical implementation of ICB in the neoadjuvant and perioperative setting. However, how neoadjuvant ICB therapy affects the systemic immune landscape and metastatic spread remains to be established. Tumors promote both local and systemic expansion of regulatory T cells (Tregs), which are key orchestrators of tumor-induced immunosuppression, contributing to immune evasion, tumor progression and metastasis. Tregs express inhibitory immune checkpoint molecules and thus may be unintended targets for ICB therapy counteracting its efficacy. Using ICB-refractory models of spontaneous primary and metastatic breast cancer that recapitulate the poor ICB response of breast cancer patients, we observed that combined anti-PD-1 and anti-CTLA-4 therapy inadvertently promotes proliferation and activation of Tregs in the tumor, tumor-draining lymph node and circulation. Also in breast cancer patients, Treg levels were elevated upon ICB. Depletion of Tregs during neoadjuvant ICB in tumor-bearing mice not only reshaped the intratumoral immune landscape into a state favorable for ICB response but also induced profound and persistent alterations in systemic immunity, characterized by elevated CD8+ T cells and NK cells and durable T cell activation that was maintained after treatment cessation. While depletion of Tregs in combination with neoadjuvant ICB did not inhibit primary tumor growth, it prolonged metastasis-related survival driven predominantly by CD8+ T cells. This study demonstrates that neoadjuvant ICB therapy of breast cancer can be empowered by simultaneous targeting of Tregs, extending metastasis-related survival, independent of a primary tumor response.
Collapse
Affiliation(s)
- Olga S. Blomberg
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kevin Kos
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lorenzo Spagnuolo
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Olga I. Isaeva
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hannah Garner
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Max D. Wellenstein
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Noor Bakker
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danique E.M. Duits
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kelly Kersten
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Cheei-Sing Hau
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Elisabeth A.M. Raeven
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Kim Vrijland
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Marleen Kok
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E. de Visser
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- CONTACT Karin E. de Visser Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam1066 CX, The Netherlands
| |
Collapse
|
16
|
Bunse L, Bunse T, Krämer C, Chih YC, Platten M. Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics 2022; 19:1799-1817. [PMID: 36303101 PMCID: PMC9723056 DOI: 10.1007/s13311-022-01313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas are highly treatment refractory against immune checkpoint blockade, an immunotherapeutic modality that revolutionized therapy for many tumors. At the same time, technological innovation has dramatically accelerated the development of immunotherapeutic approaches such as personalized tumor-specific vaccine production, dendritic cell vaccine manufacture, patient-individual target selection and chimeric antigen receptor, and T cell receptor T cell manufacture. Here we review recent clinical and translational advances in glioma immunotherapy with a focus on targets and their cognate immune receptor derivates as well as concepts to improve intratumoral T cell effector functions.
Collapse
Affiliation(s)
- Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chan Chih
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
17
|
Yang Y, Lin Z, Cai Z, Huang K, Li M, Wang X, Lin Y, Chen S, Yang Z. A composite score based on immune-related gene prognostic index and m6A risk score of head and neck squamous cell carcinoma.. [DOI: 10.21203/rs.3.rs-1987322/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractBackground:Immunotherapy has been demonstrated favorable in head and neck squamous cell carcinoma (HNSCC). Studies indicated that immune-related gene prognostic index (IRGPI) was a robust signature, and N6-methyladenosine (m6A) methylation had a significant impact on the tumor immune microenvironment (TIME) and immunotherapy of HNSCC. Thus, combining IRGPI with m6A status should offer a better predictive power for immune responses.Methods:HNSCC samples from The Cancer Genome Atlas (TCGA, n=498) and Gene Expression Omnibus database (GSE65858, n = 270) were used in this study. Cox regression analysis was used to construct the IRGPI through immune-related hub genes which were identified by weighted gene co-expression network analysis (WGCNA). The m6A risk score was constructed by least absolute shrinkage and selection operator regression analysis. Principal component analysis was used to construct a composite score, and systematically correlate subgroups according to TIME cell-infiltrating characteristics.Results:A composite score was determined based on IRGPI and m6A risk score. HNSCC patients in the TCGA were divided into four subgroups:A (IRGPI-High&m6A-risk-High, n=127), B (IRGPI-High&m6A-risk-Low, n=99), C (IRGPI-Low&m6A-risk-High, n=99) and D (IRGPI-Low&m6A-risk-Low, n=128), and overall survival (OS) was significantly different between subgroups (P< 0.001). The characteristics of TIME cell infiltration in the four subgroups were significantly different in subgroups (P< 0.05). The ROC curves show the predictive value of composite score for OS was superior to any other scores.Conclusions:The composite score is a promising prognostic signature which might distinguish immune and molecular characteristics, predict prognosis, and guide more effective immunotherapeutic strategies for HNSCC.
Collapse
Affiliation(s)
- Yizhou Yang
- Shantou University Medical College, Shantou University, Shantou
| | - Zhixiong Lin
- Department of Radiation Oncology, Cancer Hospital, Shantou University Medical College, Shantou University
| | - Zeman Cai
- Department of Radiation Oncology, Cancer Hospital, Shantou University Medical College, Shantou University
| | - Kaichun Huang
- Department of Radiation Oncology, Cancer Hospital, Shantou University Medical College, Shantou University
| | - Mei Li
- Department of Radiation Oncology, Cancer Hospital, Shantou University Medical College, Shantou University
| | - Xiao Wang
- Shantou University Medical College, Shantou University, Shantou
| | - Yinbing Lin
- Shantou University Medical College, Shantou University, Shantou
| | - Sijie Chen
- Shantou University Medical College, Shantou University, Shantou
| | - Zhining Yang
- Department of Radiation Oncology, Cancer Hospital, Shantou University Medical College, Shantou University
| |
Collapse
|
18
|
Eggermont AMM, Hamid O, Long GV, Luke JJ. Optimal systemic therapy for high-risk resectable melanoma. Nat Rev Clin Oncol 2022; 19:431-439. [PMID: 35468949 PMCID: PMC11075933 DOI: 10.1038/s41571-022-00630-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Immunotherapy with immune-checkpoint inhibitors and molecularly targeted therapy with BRAF inhibitors were pioneered in the setting of advanced-stage, unresectable melanoma, where they revolutionized treatment and considerably improved patient survival. These therapeutic approaches have also been successfully transitioned into the resectable disease setting, with the regulatory approvals of ipilimumab, pembrolizumab, nivolumab, and dabrafenib plus trametinib as postoperative (adjuvant) treatments for various, overlapping groups of patients with high-risk melanoma. Moreover, these agents have shown variable promise when used in the preoperative (neoadjuvant) period. The expanding range of treatment options available for resectable high-risk melanoma, all of which come with risks as well as benefits, raises questions over selection of the optimal therapeutic strategy and agents for each individual, also considering that many patients might be cured with surgery alone. Furthermore, the use of perioperative therapy has potentially important implications for the management of patients who have disease recurrence. In this Viewpoint, we asked four expert investigators and medical or surgical oncologists who have been involved in the key studies of perioperative systemic therapies for their perspectives on the optimal management of patients with high-risk melanoma.
Collapse
Affiliation(s)
- Alexander M M Eggermont
- Comprehensive Cancer Center Munich, Munich, Germany.
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands.
- University Medical Center Utrecht, Utrecht, Netherlands.
| | - Omid Hamid
- The Angeles Clinic and Research Institute, Cedar Sinai Affiliate, Los Angeles, CA, USA.
| | - Georgia V Long
- Melanoma Institute Australia and Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Mater and Royal North Shore Hospitals, Sydney, New South Wales, Australia.
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Abstract
Melanoma is the most common cause of skin cancer-related death in the United States. Cutaneous melanoma is most prevalent in the head and neck. The long-term prognosis has been poor and chemotherapy is not curative. Complete surgical resection with locally advanced disease can be challenging and melanoma is resistant to radiation. Advances made in immunotherapy and genomically targeted therapy have transformed the treatment of metastatic melanoma; as of 2021, the 5-year survival for metastatic melanoma is greater than 50%. Ongoing clinical studies are underway to integrate these life-saving therapies into the presurgical or postsurgical settings. This article reviews that effort.
Collapse
Affiliation(s)
- Jay Ponto
- Earle A. Chiles Research Institute in the Robert W. Franz Cancer Center, Providence Cancer Institute, 4805 NE Glisan Street Suite 2N35, Portland, OR 97213, USA
| | - R Bryan Bell
- Earle A. Chiles Research Institute in the Robert W. Franz Cancer Center, Providence Cancer Institute, 4805 NE Glisan Street Suite 2N35, Portland, OR 97213, USA.
| |
Collapse
|
20
|
Deng H, Wei Z, Qiu S, Ye D, Gu S, Shen Y, Shen Z, Jin Y, Zhou C. Pyroptosis patterns and immune infiltrates characterization in head and neck squamous cell carcinoma. J Clin Lab Anal 2022; 36:e24292. [PMID: 35156730 PMCID: PMC8993614 DOI: 10.1002/jcla.24292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Background Pyroptosis plays an essential role in tumor immune responses and inflammation related to chemotherapy. Herein, we studied the characteristic patterns of pyroptosis in head and neck squamous cell carcinoma (HNSCC) to determine their prognostic and therapeutic effects. Methods Consensus clustering analysis was performed to classify patients into pyroptosis or gene clusters. A novel pyroptosis score was constructed by principal component analysis. Kaplan–Meier survival curves were used to show the prognostic value. We also assessed the functional enrichment, tumor mutation burden, immune cell infiltration, and the sensitivity to chemotherapy and immunotherapy between high and low pyroptosis score group. Results Two distinct pyroptosis clusters were defined based on the mRNA expression profiles of PRGs, which were related to immune activation in HNSCC. Notably, a pyroptosis score was constructed according to different expression gene signatures, and then, each HNSCC patient was classified into a low or high pyroptosis score group. Patients with low pyroptosis scores had better immunotherapeutic responses and higher sensitivities to chemotherapeutic agents (paclitaxel, docetaxel, and gemcitabine). Kaplan–Meier survival curves showed that the pyroptosis patterns were independent prognostic indicators regardless of the level of tumor mutation burden. Conclusions Pyroptosis plays an essential role in immune infiltration in HNSCC. Quantifying the pyroptosis score of individual patients might suggest prognostic, immunotherapeutic, and chemotherapeutic strategies for HNSCC.
Collapse
Affiliation(s)
- Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery Ningbo Medical Center Lihuili Hospital Ningbo China
- Department of Otorhinolaryngology Head and Neck Surgery Lihuili Hospital Affiliated to Ningbo University Ningbo China
| | - Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery Lihuili Hospital Affiliated to Ningbo University Ningbo China
| | - Shijie Qiu
- Department of Otorhinolaryngology Head and Neck Surgery Ningbo Medical Center Lihuili Hospital Ningbo China
- Department of Otorhinolaryngology Head and Neck Surgery Lihuili Hospital Affiliated to Ningbo University Ningbo China
| | - Dong Ye
- Department of Otorhinolaryngology Head and Neck Surgery Ningbo Medical Center Lihuili Hospital Ningbo China
- Department of Otorhinolaryngology Head and Neck Surgery Lihuili Hospital Affiliated to Ningbo University Ningbo China
| | - Shanshan Gu
- Department of Otorhinolaryngology Head and Neck Surgery Ningbo Medical Center Lihuili Hospital Ningbo China
- Department of Otorhinolaryngology Head and Neck Surgery Lihuili Hospital Affiliated to Ningbo University Ningbo China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery Ningbo Medical Center Lihuili Hospital Ningbo China
- Department of Otorhinolaryngology Head and Neck Surgery Lihuili Hospital Affiliated to Ningbo University Ningbo China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery Ningbo Medical Center Lihuili Hospital Ningbo China
- Department of Otorhinolaryngology Head and Neck Surgery Lihuili Hospital Affiliated to Ningbo University Ningbo China
| | - Yangli Jin
- Department of Ultrasonography Ningbo Yinzhou Second Hospital Ningbo China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery Ningbo Medical Center Lihuili Hospital Ningbo China
- Department of Otorhinolaryngology Head and Neck Surgery Lihuili Hospital Affiliated to Ningbo University Ningbo China
| |
Collapse
|
21
|
Identification and validation of an immune-related gene pairs signature for three urologic cancers. Aging (Albany NY) 2022; 14:1429-1447. [PMID: 35143414 PMCID: PMC8876921 DOI: 10.18632/aging.203886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Reliable biomarkers are needed to recognize urologic cancer patients at high risk for recurrence. In this study, we built a novel immune-related gene pairs signature to simultaneously predict recurrence for three urologic cancers. We gathered 14 publicly available gene expression profiles including bladder, prostate and kidney cancer. A total of 2,700 samples were classified into the training set (n = 1,622) and validation set (n = 1,078). The 25 immune-related gene pairs signature consisting of 41 unique genes was developed by the least absolute shrinkage and selection operator regression analysis and Cox regression model. The signature stratified patients into high- and low-risk groups with significantly different relapse-free survival in the meta-training set and its subpopulations, and was an independent prognostic factor of urologic cancers. This signature showed a robust ability in the meta-validation and multiple independent validation cohorts. Immune and inflammatory response, chemotaxis and cytokine activity were enriched with genes relevant to the signature. A significantly higher infiltration level of M1 macrophages was found in the high-risk group versus the low-risk group. In conclusion, our signature is a promising prognostic biomarker for predicting relapse-free survival in patients with urologic cancer.
Collapse
|
22
|
Zhou C, Zhan G, Jin Y, Chen J, Shen Z, Shen Y, Deng H. A novel pyroptosis-related gene signature to predict outcomes in laryngeal squamous cell carcinoma. Aging (Albany NY) 2021; 13:25960-25979. [PMID: 34910689 PMCID: PMC8751611 DOI: 10.18632/aging.203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/02/2021] [Indexed: 12/09/2022]
Abstract
Pyroptosis, a pro-inflammatory form of programmed cell death, is associated with carcinogenesis and progression. However, there is little information concerning pyroptosis-related genes (PRGs) in laryngeal squamous cell carcinoma (LSCC). Herein, we aim to explore the prognostic value of PRGs in LSCC. The expression and clinical data of 47 PRGs in LSCC patients were obtained from The Cancer Genome Atlas. A novel prognostic PRG signature was constructed using least absolute shrinkage and selection operator analysis. Receiver operating characteristic (ROC) curves were drawn, and Kaplan-Meier survival Cox proportional hazard regression analyses were performed to measure the predictive capacity of the PRG signature. Furthermore, we constructed a six-PRG signature to divide LSCC patients into high- and low-risk groups. Patients in the high-risk group had worse overall survival than the low-risk group. The area under the time-dependent ROC curve was 0.696 for 1 year, 0.784 for 3 years, and 0.738 for 5 years. We proved that the PRGs signature was an independent predictor for LSCC. Functional enrichment analysis indicated that several immune-related pathways were significantly enriched in the low-risk group. Consistent with this, patients with low-risk scores had higher immune scores and better immunotherapeutic responses than the high-risk group. In conclusion, we established a novel PRGs signature that can predict outcome and response to immunotherapy of LSCC, pyroptosis may be a potential target for LSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Guowen Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Yangli Jin
- Department of Ultrasonography, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Jianneng Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo 315200, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| |
Collapse
|
23
|
Karschnia P, Le Rhun E, Vogelbaum MA, van den Bent M, Grau SJ, Preusser M, Soffietti R, von Baumgarten L, Westphal M, Weller M, Tonn JC. The evolving role of neurosurgery for central nervous system metastases in the era of personalized cancer therapy. Eur J Cancer 2021; 156:93-108. [PMID: 34425408 DOI: 10.1016/j.ejca.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Recent therapeutic advances involving the use of systemic targeted treatments and immunotherapeutic agents in patients with advanced cancers have translated into improved survival rates. Despite the emergence of such promising pharmacological therapies and extended survival, the frequency of metastases in the central nervous system has steadily increased. Effective medical and surgical therapies are available for many patients with brain metastases and need to be incorporated into multi-disciplinary care protocols. The role of neurosurgeons is evolving within these multi-disciplinary care teams. Surgical resection of brain metastases can provide immediate relief from neurological symptoms due to large lesions and provides the histopathological diagnosis in cases of no known primary malignancy. In situations where immunotherapy is part of the oncological treatment plan, surgery may be proposed for expeditious relief of edema to remove the need for steroids. In patients with multiple brain metastases and mixed response to therapeutics or radiosurgery, tumour resampling allows tissue analysis for druggable targets or to distinguish radiation effects from progression. Ventriculo-peritoneal shunting may improve quality of life in patients with hydrocephalus associated with leptomeningeal tumour dissemination and may allow for time to administer more therapy thus prolonging overall survival. Addressing the limited efficacy of many oncological drugs for brain metastases due to insufficient blood-brain barrier penetrance, clinical trial protocols in which surgical specimens are analysed after pre-surgical administration of therapeutics offer pharmacodynamic insights. Comprehensive neurosurgical assessment remains an integral element of multi-disciplinary oncological care of patients with brain metastases and is integral to tumour biology research and therapeutic advancement.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Emilie Le Rhun
- Department of Neurosurgery & Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stefan J Grau
- Department of Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians-University School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg, Hamburg, Germany
| | - Michael Weller
- Department of Neurology & Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
24
|
Maio M, Lahn M, Di Giacomo AM, Covre A, Calabrò L, Ibrahim R, Fox B. A vision of immuno-oncology: the Siena think tank of the Italian network for tumor biotherapy (NIBIT) foundation. J Exp Clin Cancer Res 2021; 40:240. [PMID: 34301276 PMCID: PMC8298945 DOI: 10.1186/s13046-021-02023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The yearly Think Tank Meeting of the Italian Network for Tumor Biotherapy (NIBIT) Foundation, brings together in Siena, Tuscany (Italy), experts in immuno-oncology to review the learnings from current immunotherapy treatments, and to propose new pre-clinical and clinical investigations in selected research areas. MAIN: While immunotherapies in non-small cell lung cancer and melanoma led to practice changing therapies, the same therapies had only modest benefit for patients with other malignancies, such as mesothelioma and glioblastoma. One way to improve on current immunotherapies is to alter the sequence of each combination agent. Matching the immunotherapy to the host's immune response may thus improve the activity of the current treatments. A second approach is to combine current immunotherapies with novel agents targeting complementary mechanisms. Identifying the appropriate novel agents may require different approaches than the traditional laboratory-based discovery work. For example, artificial intelligence-based research may help focusing the search for innovative and most promising combination partners. CONCLUSION Novel immunotherapies are needed in cancer patients with resistance to or relapse after current immunotherapeutic drugs. Such new treatments may include targeted agents or monoclonal antibodies to overcome the immune-suppressive tumor microenvironment. The mode of combining the novel treatments, including vaccines, needs to be matched to the patient's immune status for achieving the maximum benefit. In this scenario, specific attention should be also paid nowadays to the immune intersection between COVID-19 and cancer.
Collapse
Affiliation(s)
- Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy.
- Italian Network for Tumor Bio-Immunotherapy Foundation Onlus, Siena, Italy.
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, Geneva, Switzerland
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
- Italian Network for Tumor Bio-Immunotherapy Foundation Onlus, Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
| | - Luana Calabrò
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, San Francisco, 94012, USA
| | - Bernard Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, 4805 NE Glisan St. Suite 2N35, Portland, OR, 97213, USA
| |
Collapse
|