1
|
Papayanis PN, Au C, Jelinek M, Tan A. Using liquid biopsies to guide treatment and monitor response in BRAF V600E positive adenocarcinoma of unknown primary. BMJ Case Rep 2025; 18:e264469. [PMID: 40425210 PMCID: PMC12107294 DOI: 10.1136/bcr-2024-264469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Liquid biopsies using circulating tumour DNA (ctDNA) have emerged as an alternative to conventional biopsies. They can be used to aid in diagnosing and selecting an agent for treatment and can possibly be used to monitor disease response to treatment. In this report, we present a patient who initially presented with lower abdominal pain. Imaging showed extensive retroperitoneal lymphadenopathy and lymph node biopsy demonstrated poorly differentiated carcinoma. Further workup did not reveal a primary lesion, but his genetic analysis revealed a BRAF V600E mutation and CD274 amplification which was used to guide treatment of the adenocarcinoma as a melanoma of unknown primary. He was initiated on ipilimumab and nivolumab and his ctDNA levels showed rapid improvement. After treatment was stopped due to adverse events, he was monitored via ctDNA, with an increase prompting repeat imaging that demonstrated enlargement of his lesions prompting a resumption of treatment.
Collapse
Affiliation(s)
| | - Cherry Au
- Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Michael Jelinek
- Hematology, Oncology and Cellular Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Alan Tan
- Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Mangiola S, Brown R, Zhan C, Berthelet J, Guleria S, Liyanage C, Ostrouska S, Wilcox J, Merdas M, Fuge-Larsen P, Bell C, Schröder J, Mielke LA, Mariadason JM, Tsao SCH, Chen Y, Yadav VK, Vodala S, Anderson RL, Merino D, Behren A, Yeo B, Papenfuss AT, Pal B. Circulating immune cells exhibit distinct traits linked to metastatic burden in breast cancer. Breast Cancer Res 2025; 27:73. [PMID: 40340807 PMCID: PMC12063295 DOI: 10.1186/s13058-025-01982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/14/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Circulating immune cells play a crucial role in the anti-tumour immune response, yet the systemic immune system in metastatic breast cancers is not fully characterised. Investigating the cellular and molecular changes in peripheral blood mononuclear cells (PBMCs) from breast cancer patients could elucidate the role of circulating immune cells in metastasis and aid in identifying biomarkers for disease burden and progression. METHODS In this study, we characterised the systemic immune landscape associated with varying levels of metastatic burden by analysing the single-cell transcriptomes of PBMCs from breast cancer patients and healthy controls. Our research focused on identifying changes in immune cell composition, transcriptional programs, and immune-cell communication networks linked to metastatic burden. Additionally, we compared these PBMC features onto a single-cell atlas of primary breast tumours to study corresponding traits in tumour-infiltrating immune cells. RESULTS In metastatic breast cancer, PBMCs exhibit a significant downregulation of the adaptive immune system and a decreased number and activity of unconventional T cells, such as γδ T cells. Additionally, metastatic burden is associated with impaired cell communication pathways involved in immunomodulatory functions. We also identified a gene signature derived from myeloid cells shared between tumour immune infiltrates and circulating immune cells in breast cancer patients. CONCLUSIONS Our study provides a comprehensive single-cell molecular profile of the peripheral immune system in breast cancer, offering a valuable resource for understanding metastatic disease in terms of tumour burden. By identifying immune traits linked to metastasis, we have unveiled potential new biomarkers of metastatic disease.
Collapse
Affiliation(s)
- S Mangiola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
- South Australian immunoGENomics Cancer Institute, Adelaide, SA, 5005, Australia.
| | - R Brown
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Zhan
- South Australian immunoGENomics Cancer Institute, Adelaide, SA, 5005, Australia
| | - J Berthelet
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Guleria
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Liyanage
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Ostrouska
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - J Wilcox
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - M Merdas
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - P Fuge-Larsen
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Bell
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - J Schröder
- Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3052, Australia
- The University of Melbourne, Parkville, VIC, 3052, Australia
| | - L A Mielke
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - J M Mariadason
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Chang-Hao Tsao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - Y Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - V K Yadav
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - S Vodala
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, USA
| | - R L Anderson
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - D Merino
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - A Behren
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - B Yeo
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - A T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - B Pal
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
3
|
Venturi F, Magnaterra E, Scotti B, Ferracin M, Dika E. Predictive Factors for Sentinel Lymph Node Positivity in Melanoma Patients-The Role of Liquid Biopsy, MicroRNA and Gene Expression Profile Panels. Cancers (Basel) 2025; 17:1281. [PMID: 40282456 PMCID: PMC12025810 DOI: 10.3390/cancers17081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The identification of predictive factors for sentinel lymph node (SLN) positivity in melanoma patients is crucial for accurate staging, prognosis, and personalized therapeutic decisions. This review synthesizes recent advancements in molecular and clinicopathological predictors, with a particular focus on liquid biopsy and gene expression profiling (GEP) tools. Emerging evidence highlights the significant role of miRNAs in melanoma progression, metastatic potential, and lymphatic spread. Clinicopathological factors such as Breslow thickness, ulceration, and mitotic rate remain critical, while GEP provides additional precision by uncovering tumor-specific molecular pathways. By integrating these tools, clinicians can improve risk stratification, reduce unnecessary procedures, and personalize management strategies.
Collapse
Affiliation(s)
- Federico Venturi
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (B.S.); (E.D.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Elisabetta Magnaterra
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (B.S.); (E.D.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Biagio Scotti
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (B.S.); (E.D.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Emi Dika
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (B.S.); (E.D.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Rhodin KE, O'Connor MH, Therien A, Hollander S, Geron V, Nair U, Rakestraw E, Salama AK, Shah R, Tyler DS, Beasley GM. Circulating Tumor DNA in High-Risk Stage II/III Cutaneous Melanoma: A Feasibility Study. Ann Surg Oncol 2025:10.1245/s10434-025-17194-z. [PMID: 40146490 DOI: 10.1245/s10434-025-17194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/25/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Adjuvant therapies reduce recurrence in patients with clinical stage IIB/IIC/III melanoma; however, better risk stratification and patient selection are needed. Circulating tumor DNA (ctDNA) as a marker of micrometastatic residual disease is being explored for such purposes in other malignancies. We aimed to explore the feasibility of serial ctDNA monitoring in patients with stage II/III melanoma, as well as the association of ctDNA elevation with disease burden and outcomes. METHODS A single-institution prospective study was conducted on patients with clinical stage IIB/IIC/III melanoma. Primary tumor was sent to Natera for generation of a tumor-informed mPCR-NGS assay (Signatera™). Peripheral blood was collected for analysis at pre-specified timepoints. Patients were stratified by ctDNA elevations both pre- and postoperatively to compare tumor characteristics and recurrence-free survival (RFS). RESULTS Overall, 30 patients were enrolled. The median Breslow depth was 4.4 mm and 70% were ulcerated. Signatera™ assays were successfully created for all 30 patients. Median follow-up from the time of surgery was 16 months and 13 patients recurred with median RFS of 19 months. Eight of these 13 patients (62%) had detectable ctDNA levels predating their clinical or radiographic recurrence. Elevated ctDNA at the first post-operative timepoint was associated with worse RFS. CONCLUSIONS ctDNA monitoring is feasible for patients with high-risk cutaneous melanoma. Our findings suggest that detectable ctDNA post-operatively may be associated with worse outcomes. Elevations during surveillance may predict subsequent clinical recurrence; however, the role of ctDNA in adjuvant therapy decision-making and surveillance is not yet ready for broad application.
Collapse
Affiliation(s)
| | | | - Aaron Therien
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Viviana Geron
- Department of Surgery, Duke University, Durham, NC, USA
| | - Uma Nair
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - April K Salama
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Reschke R, Enk AH, Hassel JC. Prognostic Biomarkers in Evolving Melanoma Immunotherapy. Am J Clin Dermatol 2025; 26:213-223. [PMID: 39707058 PMCID: PMC11850490 DOI: 10.1007/s40257-024-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
Melanoma, a highly aggressive form of skin cancer, has seen significant advancements in treatment through the introduction of immunotherapy. However, the variability in patient responses underscores the need for reliable biomarkers to guide treatment decisions. This article reviews key biomarkers in melanoma immunotherapy, such as PD-L1 expression, tumor mutational burden (TMB), and gene expression profiles (GEPs). It also explores emerging biomarkers, including LAG-3 expression, immune cell phenotyping in tissue and blood, gut microbiota, and circulating tumor DNA (ctDNA). Notably, ctDNA may offer valuable insights into the efficacy of T cell-engaging bispecific molecules, such as tebentafusp. The review provides a comprehensive overview of the evolving landscape of melanoma biomarkers, their role in personalizing treatment, and future research directions, including neoadjuvant immune checkpoint inhibition.
Collapse
Affiliation(s)
- Robin Reschke
- Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), Heidelberg University, NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120, Heidelberg, Germany.
| | - Alexander H Enk
- Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), Heidelberg University, NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), Heidelberg University, NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Brochez L, Del Marmol V, Dréno B, Eggermont AMM, Fargnoli MC, Forsea AM, Höller C, Kaufmann R, Kelleners-Smeets N, Lallas A, Lebbé C, Leiter U, Longo C, Malvehy J, Moreno-Ramirez D, Nathan P, Pellacani G, Saiag P, Stockfleth E, Stratigos AJ, Van Akkooi ACJ, Vieira R, Zalaudek I, Lorigan P, Mandala M. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics - Update 2024. Eur J Cancer 2025; 215:115152. [PMID: 39700658 DOI: 10.1016/j.ejca.2024.115152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
This guideline was developed in close collaboration with multidisciplinary experts from the European Association of Dermato-Oncology (EADO), the European Dermatology Forum (EDF) and the European Organization for Research and Treatment of Cancer (EORTC). Recommendations for the diagnosis and treatment of melanoma were developed on the basis of systematic literature research and consensus conferences. Cutaneous melanoma (CM) is the most dangerous form of skin tumor and accounts for 90 % of skin cancer mortality. The diagnosis of melanoma can be made clinically and must always be confirmed by dermoscopy. If melanoma is suspected, a histopathological examination is always required. Sequential digital dermoscopy and whole-body photography can be used in high-risk patients to improve the detection of early-stage melanoma. If available, confocal reflectance microscopy can also improve the clinical diagnosis in special cases. Melanoma is classified according to the 8th version of the American Joint Committee on Cancer classification. For thin melanomas up to a tumor thickness of 0.8 mm, no further diagnostic imaging is required. From stage IB, lymph node sonography is recommended, but no further imaging examinations. From stage IIB/C, whole-body examinations with computed tomography or positron emission tomography CT in combination with magnetic resonance imaging of the brain are recommended. From stage IIB/C and higher, a mutation test is recommended, especially for the BRAF V600 mutation. It is important to perform a structured follow-up to detect relapses and secondary primary melanomas as early as possible. A stage-based follow-up regimen is proposed, which in the experience of the guideline group covers the optimal requirements, although further studies may be considered. This guideline is valid until the end of 2026.
Collapse
Affiliation(s)
- Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany.
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Ketty Peris
- Institute of Dermatology, Università Cattolica, Rome, and Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicole Basset-Seguin
- Université Paris Cite, AP-HP department of Dermatology INSERM U 976 Hôpital Saint Louis Paris France
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Denmark
| | - Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, School of Basic & Medical Biosciences, King's College London, London SE1 7EH, UK
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Veronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Brigitte Dréno
- Nantes Université, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, F-44000 Nantes, France
| | - Alexander M M Eggermont
- University Medical Center Utrecht & Princess Maxima Center, Utrecht, the Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximilians University, Munich, Germany
| | | | - Ana-Maria Forsea
- Dermatology Department, Elias University Hospital, Carol Davila University of Medicine and Pharmacy Bucharest, Romania
| | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, Austria
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany
| | - Nicole Kelleners-Smeets
- Department of Dermatology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Celeste Lebbé
- Université Paris Cite, AP-HP department of Dermatology INSERM U 976 Hôpital Saint Louis Paris France
| | - Ulrike Leiter
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, and Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Skin Cancer Centre, Reggio Emilia, Italy
| | - Josep Malvehy
- Melanoma Unit, Department of Dermatology, Hospital Clinic, IDIBAPS, Barcelona, Spain; University of Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - David Moreno-Ramirez
- Medical-&-Surgical Dermatology Service. Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Paul Nathan
- Mount Vernon Cancer Centre, Northwood United Kingdom
| | | | - Philippe Saiag
- University Department of Dermatology, Université de Versailles-Saint Quentin en Yvelines, APHP, Boulogne, France
| | - Eggert Stockfleth
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Alexander J Stratigos
- 1st Department of Dermatology, National and Kapodistrian University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Alexander C J Van Akkooi
- Melanoma Institute Australia, The University of Sydney, and Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ricardo Vieira
- Department of Dermatology and Venereology, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Paul Lorigan
- The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Mario Mandala
- University of Perugia, Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
7
|
Hitchen N, Shahnam A, Tie J. Circulating Tumor DNA: A Pan-Cancer Biomarker in Solid Tumors with Prognostic and Predictive Value. Annu Rev Med 2025; 76:207-223. [PMID: 39570664 DOI: 10.1146/annurev-med-100223-090016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Circulating tumor DNA (ctDNA), often referred to as a liquid biopsy, represents a promising biomarker in the management of both localized and advanced solid tumors. It has garnered significant attention due to its potential to inform prognosis and guide therapeutic decisions. The clinical utility of ctDNA spans early cancer detection, minimal residual disease identification, recurrence surveillance, treatment monitoring, and precision oncology treatment decision-making in the advanced setting. Unlike conventional radiological assessments, the short half-life of ctDNA allows for more timely insights into disease dynamics. Several technological approaches are available to measure ctDNA, including next-generation sequencing and droplet digital polymerase chain reaction, although their clinical accuracy depends on multiple biological and technical factors. This review evaluates current evidence surrounding ctDNA's utility in early and advanced solid tumors.
Collapse
Affiliation(s)
- Nadia Hitchen
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia;
| | - Adel Shahnam
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia;
| | - Jeanne Tie
- Division of Personalised Oncology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia;
| |
Collapse
|
8
|
De Simoni E, Spagnolo F, Gandini S, Gaeta A, Rizzetto G, Molinelli E, Simonetti O, Offidani A, Queirolo P. Circulating tumor DNA-based assessment of molecular residual disease in non-metastatic melanoma. Cancer Treat Rev 2024; 129:102788. [PMID: 38908229 DOI: 10.1016/j.ctrv.2024.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
In patients with resected non-metastatic melanoma, the liquid biopsy for the assessment of molecular residual disease (MRD) by circulating tumour DNA (ctDNA) represents a promising tool to stratify the risk and to monitor tumour evolution. However, its validation requires the demonstration of analytical validity, clinical validity and utility. Indeed, the development of sensitive and specific assays can optimize prognostication and eventually help clinicians to modulate adjuvant treatments, in order to improve clinical outcomes. Data about ctDNA-guided prognosis stratification is emerging, but clinical trials assessing ctDNA-guided therapeutic decisions are still ongoing. This review aims to depict the role of ctDNA-based MRD assessment in patients with non-metastatic melanoma and to provide a roadmap to face challenges for its introduction into clinical practice.
Collapse
Affiliation(s)
- Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Spagnolo
- Skin Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery Division, University of Genova, Genova, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Aurora Gaeta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
9
|
Smithy JW, Kalvin HL, Ehrich FD, Shah R, Adamow M, Raber V, Maher CA, Kleman J, McIntyre DAG, Shoushtari AN, Betof Warner A, Callahan MK, Momtaz P, Eton O, Nair S, Wolchok JD, Chapman PB, Berger MF, Panageas KS, Postow MA. Early On-Treatment Assessment of T Cells, Cytokines, and Tumor DNA with Adaptively Dosed Nivolumab + Ipilimumab: Final Results from the Phase 2 ADAPT-IT Study. Clin Cancer Res 2024; 30:3407-3415. [PMID: 38767650 PMCID: PMC11357703 DOI: 10.1158/1078-0432.ccr-23-3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE The Adaptively Dosed ImmunoTherapy Trial (ADAPT-IT;NCT03122522) investigated adaptive ipilimumab discontinuation in melanoma based on early radiographic assessment. Initial findings indicated similar effectiveness compared with conventional nivolumab-ipilimumab (nivo-ipi). Exploratory biomarker analyses and final clinical results are now reported. PATIENTS AND METHODS Patients with unresectable melanoma received two doses of nivo-ipi. Radiographic assessment at Week 6 informed continuation of ipilimumab before nivolumab maintenance. The primary endpoint was overall response rate at Week 12. Plasma was assayed for circulating tumor DNA and 10 cytokines using a multiplex immunoassay. Flow cytometry of peripheral blood mononuclear cells was performed with an 11-color panel. RESULTS Among the treated patients, expansion of proliferating T-cell populations was observed in responders and nonresponders. Baseline IL6 levels were low in patients achieving an objective radiographic response (median 1.30 vs. 2.86 pg/mL; P = 0.025). High baseline IL6 levels were associated with short progression-free survival [PFS; HR = 1.24, 95% confidence interval (CI), 1.01-1.52; P = 0.041]. At Week 6, patients with response had lower average tumor variant allele fractions than nonresponders (median 0.000 vs. 0.019; P = 0.014). Greater increases in average variant allele fractions from baseline to Week 6 correlated with short PFS (HR = 1.11, 95% CI, 1.01-1.21; P = 0.023). Week 12 overall response rate was 47% (95% CI, 35%-59%) with a median follow-up of 34 months among survivors. Median PFS was 21 months (95% CI, 10-not reached); 76% of responses (95% CI, 64%-91%) persisted at 36 months. CONCLUSIONS Adaptively dosed nivo-ipi responses are durable and resemble historical data for conventional nivo-ipi. Baseline IL6 and circulating tumor DNA changes during treatment warrant further study as biomarkers of nivo-ipi response.
Collapse
Affiliation(s)
- James W Smithy
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Fiona D Ehrich
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronak Shah
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew Adamow
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Collen A Maher
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jenna Kleman
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Alexander N Shoushtari
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Allison Betof Warner
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Margaret K Callahan
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Parisa Momtaz
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Omar Eton
- Hartford HealthCare Cancer Institute, Hartford, Connecticut
| | - Suresh Nair
- Lehigh Valley Health Network, Allentown, Pennsylvania
| | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Paul B Chapman
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | | | | | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
10
|
Alsaab HO, Alzahrani MS, Bahauddin AA, Almutairy B. Circulating tumor DNA (ctDNA) application in investigation of cancer: Bench to bedside. Arch Biochem Biophys 2024; 758:110066. [PMID: 38906310 DOI: 10.1016/j.abb.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Now, genomics forms the core of the precision medicine concept. Comprehensive investigations of tumor genomes have made it possible to characterize tumors at the molecular level and, specifically, to identify the fundamental processes that cause condition. A variety of kinds of tumors have seen better outcomes for patients as a result of the development of novel medicines to tackle these genetic-driving processes. Since therapy may exert selective pressure on cancers, non-invasive methods such as liquid biopsies can provide the opportunity for rich reservoirs of crucial and real-time genetic data. Liquid biopsies depend on the identification of circulating cells from tumors, circulating tumor DNA (ctDNA), RNA, proteins, lipids, and metabolites found in patient biofluids, as well as cell-free DNA (cfDNA), which exists in those with cancer. Although it is theoretically possible to examine biological fluids other than plasma, such as pleural fluid, urine, saliva, stool, cerebrospinal fluid, and ascites, we will limit our discussion to blood and solely cfDNA here for the sake of conciseness. Yet, the pace of wider clinical acceptance has been gradual, partly due to the increased difficulty of choosing the best analysis for the given clinical issue, interpreting the findings, and delaying proof of value from clinical trials. Our goal in this review is to discuss the current clinical value of ctDNA in cancers and how clinical oncology systems might incorporate procedures for ctDNA testing.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Ammar A Bahauddin
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina Al-Munawarah, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
11
|
Vetto JT. Clinical and Imaging Follow-Up for High-Risk Cutaneous Melanoma: Current Evidence and Guidelines. Cancers (Basel) 2024; 16:2572. [PMID: 39061211 PMCID: PMC11274402 DOI: 10.3390/cancers16142572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The most recent (eighth) edition of the American Joint Committee on Cancer (AJCC) staging system divides invasive cutaneous melanoma into two broad groups: "low-risk" (stage IA-IIA) and "high-risk" (stage IIB-IV). While surveillance imaging for high-risk melanoma patients makes intuitive sense, supporting data are limited in that they are mostly respective and used varying methods, schedules, and endpoints. As a result, there is a lack of uniformity across different dermatologic and oncologic organizations regarding recommendations for follow-up, especially regarding imaging. That said, the bulk of retrospective and prospective data support imaging follow-up for high-risk patients. Currently, it seems that either positron emission tomography (PET) or whole-body computerized tomography (CT) are reasonable options for follow-up, with brain magnetic resonance imaging (MRI) preferred for the detection of brain metastases in patients who can undergo it. The current era of effective systemic therapies (ESTs), which can improve disease-free survival (DFS) and overall survival (OS) beyond lead-time bias, has emphasized the role of imaging in detecting various patterns of EST response and treatment relapse, as well as the importance of radiologic tumor burden.
Collapse
Affiliation(s)
- John T. Vetto
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University, Portland, OR 97239, USA; ; Tel.: +1-503-494-5501
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Fischer RA, Ryan I, De La Torre K, Barnett C, Sehgal VS, Levy JB, Luke JJ, Poklepovic AS, Hurlbert MS. US physician perspective on the use of biomarker and ctDNA testing in patients with melanoma. Crit Rev Oncol Hematol 2024; 196:104289. [PMID: 38341119 DOI: 10.1016/j.critrevonc.2024.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
New treatments have increased survival of patients with melanoma, and methods to monitor patients throughout the disease process are needed. Circulating tumor DNA (ctDNA) is a predictive and prognostic biomarker that may allow routine, real-time monitoring of disease status. We surveyed 44 US physicians to understand their preferences and practice patterns for biomarker and ctDNA testing in their patients with melanoma. Tumor biomarker testing was often ordered in stage IIIA-IV patients. Barriers to biomarker testing include insufficient tissue (60%) and lack of insurance coverage (54%). ctDNA testing was ordered by 16-18% of physicians for stages II-IV. Reasons for not using ctDNA testing included lack of prospective data (41%), ctDNA testing used for research only (18%), and others. Physicians (≥74%) believed that ctDNA assays could help with monitoring and treatment selection throughout the disease process. Physicians consider ctDNA testing potentially valuable for clinical decision-making but cited concerns that should be addressed.
Collapse
Affiliation(s)
- Rachel A Fischer
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Isabel Ryan
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | | | - Cody Barnett
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Viren S Sehgal
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Joan B Levy
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Jason J Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Andrew S Poklepovic
- Virginia Commonwealth University Health System Massey Cancer Center, 401 College Street, Richmond, VA 23298-0037, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA.
| |
Collapse
|
13
|
Egger ME, Alexander E, Van Meter T, Kong M, Maung AA, Valdes R, Hall MB, Linder MW. Corresponding ctDNA and tumor burden dynamics in metastatic melanoma patients on systemic treatment. Transl Oncol 2024; 42:101883. [PMID: 38306914 PMCID: PMC10850110 DOI: 10.1016/j.tranon.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R2= 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R2 = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) (p = 0.012); this difference was independent of total tumor burden (p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R2= 0.88, p<0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden.
Collapse
Affiliation(s)
- Michael E Egger
- Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evan Alexander
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Tracy Van Meter
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maiying Kong
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, Louisville, KY, USA; Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Aye Aye Maung
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, Louisville, KY, USA; Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Roland Valdes
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa Barousse Hall
- UofL Health Brown Cancer Center, Louisville, KY, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA; UofL Health Brown Cancer Center, Louisville, KY, USA.
| |
Collapse
|
14
|
Liu LP, Zong SY, Zhang AL, Ren YY, Qi BQ, Chang LX, Yang WY, Chen XJ, Chen YM, Zhang L, Zou Y, Guo Y, Zhang YC, Ruan M, Zhu XF. Early Detection of Molecular Residual Disease and Risk Stratification for Children with Acute Myeloid Leukemia via Circulating Tumor DNA. Clin Cancer Res 2024; 30:1143-1151. [PMID: 38170574 DOI: 10.1158/1078-0432.ccr-23-2589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Patient-tailored minimal residual disease (MRD) monitoring based on circulating tumor DNA (ctDNA) sequencing of leukemia-specific mutations enables early detection of relapse for pre-emptive treatment, but its utilization in pediatric acute myelogenous leukemia (AML) is scarce. Thus, we aim to examine the role of ctDNA as a prognostic biomarker in monitoring response to the treatment of pediatric AML. EXPERIMENTAL DESIGN A prospective longitudinal study with 50 children with AML was launched, and sequential bone marrow (BM) and matched plasma samples were collected. The concordance of mutations by next-generation sequencing-based BM-DNA and ctDNA was evaluated. In addition, progression-free survival (PFS) and overall survival (OS) were estimated. RESULTS In 195 sample pairs from 50 patients, the concordance of leukemia-specific mutations between ctDNA and BM-DNA was 92.8%. Patients with undetectable ctDNA were linked to improved OS and PFS versus detectable ctDNA in the last sampling (both P < 0.001). Patients who cleared their ctDNA post three cycles of treatment had similar PFS compared with persistently negative ctDNA (P = 0.728). In addition, patients with >3 log reduction but without clearance in ctDNA were associated with an improved PFS as were patients with ctDNA clearance (P = 0.564). CONCLUSIONS Thus, ctDNA-based MRD monitoring appears to be a promising option to complement the overall assessment of pediatric patients with AML, wherein patients with continuous ctDNA negativity have the option for treatment de-escalation in subsequent therapy. Importantly, patients with >3 log reduction but without clearance in ctDNA may not require an aggressive treatment plan due to improved survival, but this needs further study to delineate.
Collapse
Affiliation(s)
- Li-Peng Liu
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Su-Yu Zong
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ao-Li Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan-Yuan Ren
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ben-Quan Qi
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li-Xian Chang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wen-Yu Yang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Juan Chen
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yu-Mei Chen
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yao Zou
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ye Guo
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying-Chi Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Min Ruan
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Fan Zhu
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
15
|
Sun J, Karasaki KM, Farma JM. The Use of Gene Expression Profiling and Biomarkers in Melanoma Diagnosis and Predicting Recurrence: Implications for Surveillance and Treatment. Cancers (Basel) 2024; 16:583. [PMID: 38339333 PMCID: PMC10854922 DOI: 10.3390/cancers16030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Cutaneous melanoma is becoming more prevalent in the United States and has the highest mortality among cutaneous malignancies. The majority of melanomas are diagnosed at an early stage and, as such, survival is generally favorable. However, there remains prognostic uncertainty among subsets of early- and intermediate-stage melanoma patients, some of whom go on to develop advanced disease while others remain disease-free. Melanoma gene expression profiling (GEP) has evolved with the notion to help bridge this gap and identify higher- or lower-risk patients to better tailor treatment and surveillance protocols. These tests seek to prognosticate melanomas independently of established AJCC 8 cancer staging and clinicopathologic features (sex, age, primary tumor location, thickness, ulceration, mitotic rate, lymphovascular invasion, microsatellites, and/or SLNB status). While there is a significant opportunity to improve the accuracy of melanoma prognostication and diagnosis, it is equally important to understand the current landscape of molecular profiling for melanoma treatment. Society guidelines currently do not recommend molecular testing outside of clinical trials for melanoma clinical decision making, citing insufficient high-quality evidence guiding indications for the testing and interpretation of results. The goal of this chapter is to review the available literature for GEP testing for melanoma diagnosis and prognostication and understand their place in current treatment paradigms.
Collapse
Affiliation(s)
- James Sun
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19002, USA;
| | | | - Jeffrey M. Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19002, USA;
| |
Collapse
|
16
|
Crucitta S, Pasqualetti F, Gonnelli A, Ruglioni M, Luculli GI, Cantarella M, Ortenzi V, Scatena C, Paiar F, Naccarato AG, Danesi R, Del Re M. IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients. BMC Cancer 2024; 24:31. [PMID: 38172718 PMCID: PMC10763009 DOI: 10.1186/s12885-023-11726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA, liquid biopsy) is a powerful tool to detect molecular alterations. However, depending on tumor characteristics, biology and anatomic localization, cfDNA detection and analysis may be challenging. Gliomas are enclosed into an anatomic sanctuary, which obstacles the release of cfDNA into the peripheral blood. Therefore, the advantages of using liquid biopsy for brain tumors is still to be confirmed. The present study evaluates the ability of liquid biopsy to detect IDH1 mutations and its correlation with survival and clinical characteristics of glioma patients. METHODS Blood samples obtained from glioma patients were collected after surgery prior to the adjuvant therapy. cfDNA was extracted from plasma and IDH1 p.R132H mutation analysis was performed on a digital droplet PCR. χ2-test and Cohen k were used to assess the correlation between plasma and tissue IDH1 status, while Kaplan Meier curve and Cox regression analysis were applied to survival analysis. Statistical calculations were performed by MedCalc and GraphPad Prism software. RESULTS A total of 67 samples were collected. A concordance between IDH1 status in tissue and in plasma was found (p = 0.0024), and the presence of the IDH1 mutation both in tissue (138.8 months vs 24.4, p < 0.0001) and cfDNA (116.3 months vs 35.8, p = 0.016) was associated with longer median OS. A significant association between IDH1 mutation both in tissue and cfDNA, age, tumor grade and OS was demonstrated by univariate Cox regression analysis. No statistically significant association between IDH1 mutation and tumor grade was found (p = 0.10). CONCLUSIONS The present study demonstrates that liquid biopsy may be used in brain tumors to detect IDH1 mutation which represents an important prognostic biomarker in patients with different types of gliomas, being associated to OS.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandra Gonnelli
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Cantarella
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Valerio Ortenzi
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Department of Oncology and Hemato-Oncology, University of Milano, Via Festa del Perdono, 7, Milano, 20122, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Kozyra P, Pitucha M. Revisiting the Role of B-RAF Kinase as a Therapeutic Target in Melanoma. Curr Med Chem 2024; 31:2003-2020. [PMID: 37855341 DOI: 10.2174/0109298673258495231011065225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 10/20/2023]
Abstract
Malignant melanoma is the rarest but most aggressive and deadly skin cancer. Melanoma is the result of a malignant transformation of melanocytes, which leads to their uncontrolled proliferation. Mutations in the mitogen-activated protein kinase (MAPK) pathway, which are crucial for the control of cellular processes, such as apoptosis, division, growth, differentiation, and migration, are one of its most common causes. BRAF kinase, as one of the known targets of this pathway, has been known for many years as a prominent molecular target in melanoma therapy, and the following mini-review outlines the state-of-the-art knowledge regarding its structure, mutations and mechanisms.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL, 20093, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL-20093, Poland
| |
Collapse
|
18
|
Spiliopoulou P, Holanda Lopes CD, Spreafico A. Promising and Minimally Invasive Biomarkers: Targeting Melanoma. Cells 2023; 13:19. [PMID: 38201222 PMCID: PMC10777980 DOI: 10.3390/cells13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The therapeutic landscape of malignant melanoma has been radically reformed in recent years, with novel treatments emerging in both the field of cancer immunotherapy and signalling pathway inhibition. Large-scale tumour genomic characterization has accurately classified malignant melanoma into four different genomic subtypes so far. Despite this, only somatic mutations in BRAF oncogene, as assessed in tumour biopsies, has so far become a validated predictive biomarker of treatment with small molecule inhibitors. The biology of tumour evolution and heterogeneity has uncovered the current limitations associated with decoding genomic drivers based only on a single-site tumour biopsy. There is an urgent need to develop minimally invasive biomarkers that accurately reflect the real-time evolution of melanoma and that allow for streamlined collection, analysis, and interpretation. These will enable us to face challenges with tumour tissue attainment and process and will fulfil the vision of utilizing "liquid biopsy" to guide clinical decisions, in a manner akin to how it is used in the management of haematological malignancies. In this review, we will summarize the most recent published evidence on the role of minimally invasive biomarkers in melanoma, commenting on their future potential to lead to practice-changing discoveries.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| |
Collapse
|
19
|
Chatziioannou E, Roßner J, Aung TN, Rimm DL, Niessner H, Keim U, Serna-Higuita LM, Bonzheim I, Kuhn Cuellar L, Westphal D, Steininger J, Meier F, Pop OT, Forchhammer S, Flatz L, Eigentler T, Garbe C, Röcken M, Amaral T, Sinnberg T. Deep learning-based scoring of tumour-infiltrating lymphocytes is prognostic in primary melanoma and predictive to PD-1 checkpoint inhibition in melanoma metastases. EBioMedicine 2023; 93:104644. [PMID: 37295047 PMCID: PMC10363450 DOI: 10.1016/j.ebiom.2023.104644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Recent advances in digital pathology have enabled accurate and standardised enumeration of tumour-infiltrating lymphocytes (TILs). Here, we aim to evaluate TILs as a percentage electronic TIL score (eTILs) and investigate its prognostic and predictive relevance in cutaneous melanoma. METHODS We included stage I to IV cutaneous melanoma patients and used hematoxylin-eosin-stained slides for TIL analysis. We assessed eTILs as a continuous and categorical variable using the published cut-off of 16.6% and applied Cox regression models to evaluate associations of eTILs with relapse-free, distant metastasis-free, and overall survival. We compared eTILs of the primaries with matched metastasis. Moreover, we assessed the predictive relevance of eTILs in therapy-naïve metastases according to the first-line therapy. FINDINGS We analysed 321 primary cutaneous melanomas and 191 metastatic samples. In simple Cox regression, tumour thickness (p < 0.0001), presence of ulceration (p = 0.0001) and eTILs ≤16.6% (p = 0.0012) were found to be significant unfavourable prognostic factors for RFS. In multiple Cox regression, eTILs ≤16.6% (p = 0.0161) remained significant and downgraded the current staging. Lower eTILs in the primary tissue was associated with unfavourable relapse-free (p = 0.0014) and distant metastasis-free survival (p = 0.0056). In multiple Cox regression adjusted for tumour thickness and ulceration, eTILs as continuous remained significant (p = 0.019). When comparing TILs in primary tissue and corresponding metastasis of the same patient, eTILs in metastases was lower than in primary melanomas (p < 0.0001). In therapy-naïve metastases, an eTILs >12.2% was associated with longer progression-free survival (p = 0.037) and melanoma-specific survival (p = 0.0038) in patients treated with anti-PD-1-based immunotherapy. In multiple Cox regression, lactate dehydrogenase (p < 0.0001) and eTILs ≤12.2% (p = 0.0130) were significantly associated with unfavourable melanoma-specific survival. INTERPRETATION Assessment of TILs is prognostic in primary melanoma samples, and the eTILs complements staging. In therapy-naïve metastases, eTILs ≤12.2% is predictive of unfavourable survival outcomes in patients receiving anti-PD-1-based therapy. FUNDING See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.
Collapse
Affiliation(s)
- Eftychia Chatziioannou
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Jana Roßner
- Department of Dermatology, University of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Thazin New Aung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Heike Niessner
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Ulrike Keim
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany
| | - Lina Maria Serna-Higuita
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Luis Kuhn Cuellar
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases, Technical University Dresden, 01307 Dresden, Germany
| | - Julian Steininger
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases, Technical University Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases, Technical University Dresden, 01307 Dresden, Germany
| | - Oltin Tiberiu Pop
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Stephan Forchhammer
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Thomas Eigentler
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Claus Garbe
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany
| | - Martin Röcken
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
20
|
Gaißler A, Bochem J, Spreuer J, Ottmann S, Martens A, Amaral T, Wagner NB, Claassen M, Meier F, Terheyden P, Garbe C, Eigentler T, Weide B, Pawelec G, Wistuba-Hamprecht K. Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma. J Immunother Cancer 2023; 11:e006802. [PMID: 37286306 PMCID: PMC10254874 DOI: 10.1136/jitc-2023-006802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND The need for reliable clinical biomarkers to predict which patients with melanoma will benefit from immune checkpoint blockade (ICB) remains unmet. Several different parameters have been considered in the past, including routine differential blood counts, T cell subset distribution patterns and quantification of peripheral myeloid-derived suppressor cells (MDSC), but none has yet achieved sufficient accuracy for clinical utility. METHODS Here, we investigated potential cellular biomarkers from clinical routine blood counts as well as several myeloid and T cell subsets, using flow cytometry, in two independent cohorts of a total of 141 patients with stage IV M1c melanoma before and during ICB. RESULTS Elevated baseline frequencies of monocytic MDSCs (M-MDSC) in the blood were confirmed to predict shorter overall survival (OS) (HR 2.086, p=0.030) and progression-free survival (HR 2.425, p=0.001) in the whole patient cohort. However, we identified a subgroup of patients with highly elevated baseline M-MDSC frequencies that fell below a defined cut-off during therapy and found that these patients had a longer OS that was similar to that of patients with low baseline M-MDSC frequencies. Importantly, patients with high M-MDSC frequencies exhibited a skewed baseline distribution of certain other immune cells but these did not influence patient survival, illustrating the paramount utility of MDSC assessment. CONCLUSION We confirmed that in general, highly elevated frequencies of peripheral M-MDSC are associated with poorer outcomes of ICB in metastatic melanoma. However, one reason for an imperfect correlation between high baseline MDSCs and outcome for individual patients may be the subgroup of patients identified here, with rapidly decreasing M-MDSCs on therapy, in whom the negative effect of high M-MDSC frequencies was lost. These findings might contribute to developing more reliable predictors of late-stage melanoma response to ICB at the individual patient level. A multifactorial model seeking such markers yielded only MDSC behavior and serum lactate dehydrogenase as predictors of treatment outcome.
Collapse
Affiliation(s)
- Andrea Gaißler
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonas Bochem
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Janine Spreuer
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Shannon Ottmann
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander Martens
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Nikolaus Benjamin Wagner
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Dermatology, Venereology and Allergology, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Manfred Claassen
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden; Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Claus Garbe
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Thomas Eigentler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Benjamin Weide
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Eroglu Z, Krinshpun S, Kalashnikova E, Sudhaman S, Ozturk Topcu T, Nichols M, Martin J, Bui KM, Palsuledesai CC, Malhotra M, Olshan P, Markowitz J, Khushalani NI, Tarhini AA, Messina JL, Aleshin A. Circulating tumor DNA-based molecular residual disease detection for treatment monitoring in advanced melanoma patients. Cancer 2023; 129:1723-1734. [PMID: 36869646 DOI: 10.1002/cncr.34716] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 03/05/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have substantially improved overall survival in patients with advanced melanoma; however, the lack of biomarkers to monitor treatment response and relapse remains an important clinical challenge. Thus, a reliable biomarker is needed that can risk-stratify patients for disease recurrence and predict response to treatment. METHODS A retrospective analysis using a personalized, tumor-informed circulating tumor DNA (ctDNA) assay on prospectively collected plasma samples (n = 555) from 69 patients with advanced melanoma was performed. Patients were divided into three cohorts: cohort A (N = 30), stage III patients receiving adjuvant ICI/observation; cohort B (N = 29), unresectable stage III/IV patients receiving ICI therapy; and cohort C (N = 10), stage III/IV patients on surveillance after planned completion of ICI therapy for metastatic disease. RESULTS In cohort A, compared to molecular residual disease (MRD)-negative patients, MRD-positivity was associated with significantly shorter distant metastasis-free survival (DMFS; hazard ratio [HR], 10.77; p = .01). Increasing ctDNA levels from the post-surgical or pre-treatment time point to after 6 weeks of ICI were predictive of shorter DMFS in cohort A (HR, 34.54; p < .0001) and shorter progression-free survival (PFS) in cohort B (HR, 22; p = .006). In cohort C, all ctDNA-negative patients remained progression-free for a median follow-up of 14.67 months, whereas ctDNA-positive patients experienced disease progression. CONCLUSION Personalized and tumor-informed longitudinal ctDNA monitoring is a valuable prognostic and predictive tool that may be used throughout the clinical course of patients with advanced melanoma.
Collapse
Affiliation(s)
- Zeynep Eroglu
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | | | | | - Turkan Ozturk Topcu
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Matt Nichols
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Justin Martin
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Katherine M Bui
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | | | | | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Nikhil I Khushalani
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ahmad A Tarhini
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jane L Messina
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | | |
Collapse
|
22
|
Spiliopoulou P, Vornicova O, Genta S, Spreafico A. Shaping the Future of Immunotherapy Targets and Biomarkers in Melanoma and Non-Melanoma Cutaneous Cancers. Int J Mol Sci 2023; 24:1294. [PMID: 36674809 PMCID: PMC9862040 DOI: 10.3390/ijms24021294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in treating cutaneous melanoma have resulted in impressive patient survival gains. Refinement of disease staging and accurate patient risk classification have significantly improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the most important step towards optimizing patient outcomes has been the advent of cancer immunotherapy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal role in the management of both early and late-stage melanoma. Through leveraging outcomes in melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review, we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed light on future research directions.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Olga Vornicova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada
| | - Sofia Genta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
23
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
24
|
Bai X, Quek C. Unravelling Tumour Microenvironment in Melanoma at Single-Cell Level and Challenges to Checkpoint Immunotherapy. Genes (Basel) 2022; 13:genes13101757. [PMID: 36292642 PMCID: PMC9601741 DOI: 10.3390/genes13101757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is known as one of the most immunogenic tumours and is often characterised by high mutation burden, neoantigen load and immune infiltrate. The application of immunotherapies has led to impressive improvements in the clinical outcomes of advanced stage melanoma patients. The standard of care immunotherapies leverage the host immunological influence on tumour cells, which entail complex interactions among the tumour, stroma, and immune cells at the tumour microenvironmental level. However, not all cancer patients can achieve a long-term durable response to immunotherapy, and a significant proportion of patients develops resistance and still die from their disease. Owing to the multi-faceted problems of tumour and microenvironmental heterogeneity, identifying the key factors underlying tumour progression and immunotherapy resistance poses a great challenge. In this review, we outline the main challenges to current cancer immunotherapy research posed by tumour heterogeneity and microenvironment complexities including genomic and transcriptomic variability, selective outgrowth of tumour subpopulations, spatial and temporal tumour heterogeneity and the dynamic state of host immunity and microenvironment orchestration. We also highlight the opportunities to dissect tumour heterogeneity using single-cell sequencing and spatial platforms. Integrative analyses of large-scale datasets will enable in-depth exploration of biological questions, which facilitates the clinical application of translational research.
Collapse
|
25
|
The Prognostic Value of a Single, Randomly Timed Circulating Tumor DNA Measurement in Patients with Metastatic Melanoma. Cancers (Basel) 2022; 14:cancers14174158. [PMID: 36077695 PMCID: PMC9455041 DOI: 10.3390/cancers14174158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary In this study, we investigated the associations of circulating tumor DNA (ctDNA), measured at a random time point during the patient’s treatment, with tumor progression and routine blood markers (protein S100, lactate dehydrogenase (LDH), and C-reactive protein (CRP)) in a cohort of patients with metastatic melanoma. Detectable ctDNA was associated with the presence of extracerebral disease, tumor progression, and poorer overall survival (OS). Elevated S100 and CRP was correlated with detectable ctDNA, whereas LDH was not. Our results further support the use of ctDNA in the clinical management of patients with metastatic melanoma. Abstract Melanoma currently lacks validated blood-based biomarkers for monitoring and predicting treatment efficacy. Circulating tumor DNA (ctDNA), originating from tumor cells and detectable in plasma, has emerged as a possible biomarker in patients with metastatic melanoma. In this retrospective, single-center study, we collected 129 plasma samples from 79 patients with stage IIIB–IV melanoma as determined by the American Joint Committee on Cancer (AJCC, 8th edition). For the determination of ctDNA levels, we used eight different assays of droplet digital polymerase chain reaction (ddPCR) to detect the most common hotspot mutations in the BRAF and NRAS genes. The aim of the study was to investigate the association of the detectability of ctDNA at a non-prespecified time point in a patient’s treatment with tumor progression, and to correlate ctDNA with commonly used biomarkers (protein S100, LDH, and CRP). Patients with detectable ctDNA progressed more frequently in PET-CT within 12 months than those without detectable ctDNA. Detectability of ctDNA was associated with shorter OS in univariate and multivariate analyses. ctDNA was detectable in a statistically significantly larger proportion of patients with distant metastases (79%) than in patients with no distant metastases or only intracranial metastases (32%). Elevated protein S100 and CRP correlated better with detectable ctDNA than LDH. This study supports the potential of ctDNA as a prognostic biomarker in patients with metastatic melanoma. However, additional prospective longitudinal studies with quantitative assessments of ctDNA are necessary to investigate the limitations and strengths of ctDNA as a biomarker.
Collapse
|
26
|
Mizuno Y, Shibata S, Miyagaki T, Ito Y, Taira H, Omori I, Hisamoto T, Oka K, Matsuda KM, Boki H, Takahashi-Shishido N, Sugaya M, Sato S. Serum cell-free DNA as a new biomarker in cutaneous T-cell lymphoma. J Dermatol 2022; 49:1124-1130. [PMID: 35821652 DOI: 10.1111/1346-8138.16520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
In recent years, circulating cell-free DNA (cfDNA) has received a great attention as a biomarker for various cancers. Many reports have shown that serum cfDNA levels are elevated in cancer patients and their levels correlate with prognosis and disease activity. The aim of this study was to measure serum cfDNA levels in patients with cutaneous T-cell lymphoma (CTCL) and to evaluate their correlations with hematological and clinical findings. Serum cfDNA levels in CTCL patients were significantly higher than those in healthy controls, and their levels gradually increased with the progression of the disease stage. Positive correlations were detected between serum cfDNA levels and those of lactate dehydrogenase, thymus and activation-regulated chemokine and soluble IL-2 receptor as well as neutrophil and eosinophil count in peripheral blood and neutrophil-to-lymphocyte ratio. Furthermore, CTCL patients with higher serum cfDNA levels exhibited a significantly worse prognosis. Taken together, these results suggest the potential of cfDNA as a new biomarker reflecting prognosis and disease activity in CTCL. CfDNA levels may serve as an indicator for considering the intensity and timing of subsequent therapeutic intervention.
Collapse
Affiliation(s)
- Yuka Mizuno
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Sayaka Shibata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yukiko Ito
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Haruka Taira
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Issei Omori
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kenta Oka
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuki M Matsuda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hikari Boki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | - Makoto Sugaya
- Department of Dermatology, International University of Health and Welfare, Chiba, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|