1
|
Ma K, Han H, Bao Y, Chen R, Yang Y, Shao W. The Function of B and T Lymphocyte Attenuator and Its Role in Transplantation. APMIS 2025; 133:e70012. [PMID: 40040475 DOI: 10.1111/apm.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Immune checkpoints are important molecules that regulate the immune response, preventing its overactivation from causing tissue damage and autoimmune diseases. B and T lymphocyte attenuator (BTLA) plays an important role in regulating the activation and suppression of the immune response as part of a bidirectional signaling complex. The BTLA and its ligand herpesvirus entry mediator (HVEM) interaction transmits inhibitory signals that suppress the biological activity of T cells, B cells, and DCs. In addition, BTLA-HVEM can affect the induction of Treg cells, further suggesting its important role in immune regulation. Organ transplantation is the ultimate treatment option for many patients with end-stage organ failure. Transplant rejection can cause damage to the transplanted organ, which seriously affects the prognosis of patients. Therefore, we would like to explore the potential application value of the BTLA-HVEM interaction to exert an immunosuppressive function and thus attenuate transplant rejection. We first reviewed the structure and function of BTLA and HVEM, then summarized their research progress in organ transplantation, and further explored the directions of potential future applications and the challenges of current BTLA-HVEM applications.
Collapse
MESH Headings
- Humans
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Organ Transplantation
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Animals
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Kai Ma
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Heqiao Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Yuchen Bao
- Medical School of Tianjin University, Tianjin, China
| | - Rongtao Chen
- Medical School of Tianjin University, Tianjin, China
| | - Yixuan Yang
- Medical School of Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
- Medical School of Tianjin University, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Wang Y, Zhang D, Huang X, Wu G, Wang C, Li J, Wang S, Xian X, Fu B, Li K. From heterogeneity to prognosis: understanding the complexity of tertiary lymphoid structures in tumors. Mol Biol Rep 2025; 52:197. [PMID: 39903372 DOI: 10.1007/s11033-025-10319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Tertiary lymphoid structures (TLSs) are aberrant lymphoid tissues found in persistent inflammatory settings, including malignancies, autoimmune disorders, and transplanted organs. The organization and architecture of TLS closely resemble that of secondary lymphoid organs (SLOs). The formation of TLS is an ongoing process, with varying structural features observed at different stages of maturation. The tumor microenvironment (TME) is a multifaceted milieu comprising cells, molecules, and extracellular matrix components in close proximity to the neoplasm. TLS within the TME have the capacity to actively elicit anti-tumor immune responses. TLSs exhibit tumor-specific and individual-specific characteristics, leading to varying immune responses towards tumor immunity based on their distinct cellular components, maturity levels, and spatial distribution. Cell interaction is the foundational elements of tumor immunity. Despite differences in the cellular composition of TLS, B cells and T cells are the main components of tumor-associated TLS。Recent research has highlighted the significance of diverse subtypes of B cells and T cells within TLSs in influencing the therapeutic outcomes and prognostic indicators of individual tumors. This review elucidates the diversity of TLS in terms of cellular composition, developmental stage, anatomical location, and the influence of cytokines on their initiation and progression. Furthermore, the article examines the involvement of B and T cells within TLS and the significance of TLS in relation to tumor prognosis.
Collapse
Affiliation(s)
- Yingying Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Dongyan Zhang
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Xueping Huang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Guohao Wu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Chuanbao Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Jun Li
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Song Wang
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Xinmiao Xian
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Keyi Li
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, Shandong, 252000, PR China.
| |
Collapse
|
3
|
Kherrour I, Mobarki M, Péoc'h M, Karpathiou G. High endothelial venules in the pleura: MECA-79 expression in mesothelioma, pleural metastasis and pleuritis. Pathol Res Pract 2024; 263:155661. [PMID: 39418778 DOI: 10.1016/j.prp.2024.155661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION High endothelial venules (HEVs) are vessels specialized in the extravasation of lymphocytes from the blood to the tissue implicated in the immune microenvironment of several tumors. Their presence has been never studied in the pleural tissue. MATERIAL AND METHODS We retrospectively studied 149 surgical pleural biopsies by immunohistochemistry for MECA-79 expression, a marker specifically recognizing HEVs. The tissues included 44 (44 %) inflammatory and 105 (56 %) neoplastic diseases. The latter corresponded to 34 (22.8 %) mesotheliomas and 71 (47.7 %) metastases from lung (n=50) or breast (n=21) primaries. RESULTS HEVs were present in 102 (68 %) of all pleural specimens with a mean number of foci containing HEVs of 13.33 (±20.64). Neoplastic pleural pathologies harbored HEVs in 73.3 % of the cases compared to the non-neoplastic pathologies which harbored HEVs in 56.8 % of the cases (p=0.048). Their presence did not differ between pulmonary or mammary metastasis (p=0.7). CONCLUSION We show for the first time that HEVs are present in the pleural cavity probably participating in the immune microenvironment of inflammatory and neoplastic pleural disease.
Collapse
Affiliation(s)
- Ikram Kherrour
- Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Mousa Mobarki
- Department of Basic Medical Sciences (Pathology), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Michel Péoc'h
- Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Georgia Karpathiou
- Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
4
|
Wang L, Fan J, Wu S, Cheng S, Zhao J, Fan F, Gao C, Qiao R, Sheng Q, Hu Y, Zhang Y, Liu P, Jiao Z, Wei T, Lei J, Chen Y, Qin H. LTBR acts as a novel immune checkpoint of tumor-associated macrophages for cancer immunotherapy. IMETA 2024; 3:e233. [PMID: 39429877 PMCID: PMC11487550 DOI: 10.1002/imt2.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 10/22/2024]
Abstract
Tumor-associated macrophages (TAMs) greatly contribute to immune checkpoint inhibitor (ICI) resistance of cancer. However, its underlying mechanisms and whether TAMs can be promising targets to overcome ICI resistance remain to be unveiled. Through integrative analysis of immune multiomics data and single-cell RNA-seq data (iMOS) in lung adenocarcinoma (LUAD), lymphotoxin β receptor (LTBR) is identified as a potential immune checkpoint of TAMs, whose high expression, duplication, and low methylation are correlated with unfavorable prognosis. Immunofluorescence staining shows that the infiltration of LTBR+ TAMs is associated with LUAD stages, immunotherapy failure, and poor prognosis. Mechanistically, LTΒR maintains immunosuppressive activity and M2 phenotype of TAMs by noncanonical nuclear factor kappa B and Wnt/β-catenin signaling pathways. Macrophage-specific knockout of LTBR hinders tumor growth and prolongs survival time via blocking TAM immunosuppressive activity and M2 phenotype. Moreover, TAM-targeted delivery of LTΒR small interfering RNA improves the therapeutic effect of ICI via reversing TAM-mediated immunosuppression, such as boosting cytotoxic CD8+ T cells and inhibiting granulocytic myeloid-derived suppressor cells infiltration. Taken together, we bring forth an immune checkpoint discovery pipeline iMOS, identify LTBR as a novel immune checkpoint of TAMs, and propose a new immunotherapy strategy by targeting LTBR+ TAMs.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Jieyi Fan
- Department of Aerospace MedicineFourth Military Medical UniversityXi'anChina
| | - Sifan Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Shilin Cheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Junlong Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Fan Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Chunchen Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Rong Qiao
- Department of Clinical Oncology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Qiqi Sheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Yiyang Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Pengjun Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Zhe Jiao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Tiaoxia Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Yan Chen
- Department of Clinical Oncology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Hongyan Qin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
5
|
Shuptrine CW, Chen Y, Miriyala J, Lenz K, Moffett D, Nguyen TA, Michaux J, Campbell K, Smith C, Morra M, Rivera-Molina Y, Murr N, Cooper S, McGuire A, Makani V, Oien N, Zugates JT, de Silva S, Schreiber TH, de Picciotto S, Fromm G. Lipid-Encapsulated mRNAs Encoding Complex Fusion Proteins Potentiate Antitumor Immune Responses. Cancer Res 2024; 84:1550-1559. [PMID: 38381555 PMCID: PMC11094416 DOI: 10.1158/0008-5472.can-23-2875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Lipid nanoparticle (LNP)-encapsulated mRNA has been used for in vivo production of several secreted protein classes, such as IgG, and has enabled the development of personalized vaccines in oncology. Establishing the feasibility of delivering complex multispecific modalities that require higher-order structures important for their function could help expand the use of mRNA/LNP biologic formulations. Here, we evaluated whether in vivo administration of mRNA/LNP formulations of SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT could achieve oligomerization and extend exposure, on-target activity, and antitumor responses comparable with that of the corresponding recombinant fusion proteins. Intravenous infusion of the formulated LNP-encapsulated mRNAs led to rapid and sustained production of functional hexameric proteins in vivo, which increased the overall exposure relative to the recombinant protein controls by ∼28 to 140 fold over 96 hours. High concentrations of the mRNA-encoded proteins were also observed in secondary lymphoid organs and within implanted tumors, with protein concentrations in tumors up to 134-fold greater than with the recombinant protein controls 24 hours after treatment. In addition, SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT mRNAs induced a greater increase in antigen-specific CD8+ T cells in the tumors. These mRNA/LNP formulations were well tolerated and led to a rapid increase in serum and intratumoral IL2, delayed tumor growth, extended survival, and outperformed the activities of benchmark mAb controls. Furthermore, the mRNA/LNPs demonstrated improved efficacy in combination with anti-PD-L1 relative to the recombinant fusion proteins. These data support the delivery of complex oligomeric biologics as mRNA/LNP formulations, where high therapeutic expression and exposure could translate into improved patient outcomes. SIGNIFICANCE Lipid nanoparticle-encapsulated mRNA can efficiently encode complex fusion proteins encompassing immune checkpoint blockers and costimulators that functionally oligomerize in vivo with extended pharmacokinetics and durable exposure to induce potent antitumor immunity.
Collapse
|
6
|
Rocha GIY, Gomes JEM, Leite ML, da Cunha NB, Costa FF. Epigenome-Driven Strategies for Personalized Cancer Immunotherapy. Cancer Manag Res 2023; 15:1351-1367. [PMID: 38058537 PMCID: PMC10697012 DOI: 10.2147/cmar.s272031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Fighting cancer remains one of the greatest challenges for science in the 21st century. Advances in immunotherapy against different types of cancer have greatly contributed to the treatment, remission, and cure of patients. In this context, knowledge of epigenetic phenomena, their relationship with tumor cells and how the immune system can be epigenetically modulated represent some of the greatest advances in the development of anticancer therapies. Epigenetics is a rapidly growing field that studies how environmental factors can affect gene expression without altering DNA sequence. Epigenomic changes include DNA methylation, histone modifications, and non-coding RNA regulation, which impact cellular function. Epigenetics has shown promise in developing cancer therapies, such as immunotherapy, which aims to stimulate the immune system to attack cancer cells. For example, PD-1 and PD-L1 are biomarkers that regulate the immune response to cancer cells and recent studies have shown that epigenetic modifications can affect their expression, potentially influencing the efficacy of immunotherapy. New therapies targeting epigenetic modifications, such as histone deacetylases and DNA methyltransferases, are being developed for cancer treatment, and some have shown promise in preclinical studies and clinical trials. With growing understanding of epigenetic regulation, we can expect more personalized and effective cancer immunotherapies in the future. This review highlights key advances in the use of epigenetic and epigenomic tools and modern immuno-oncology strategies to treat several types of tumors.
Collapse
Affiliation(s)
| | | | - Michel Lopes Leite
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Nicolau B da Cunha
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Faculty of Agronomy and Veterinary Medicine (FAV), Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
- Graduate Program in Agronomy, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Fabricio F Costa
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Cancer Biology and Epigenomics Program, Northwestern University’s Feinberg School of Medicine, Chicago, IL, USA
- Genomic Enterprise, San FranciscoCA, USA
| |
Collapse
|
7
|
Fromm G, de Silva S, Schreiber TH. Reconciling intrinsic properties of activating TNF receptors by native ligands versus synthetic agonists. Front Immunol 2023; 14:1236332. [PMID: 37795079 PMCID: PMC10546206 DOI: 10.3389/fimmu.2023.1236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
The extracellular domain of tumor necrosis factor receptors (TNFR) generally require assembly into a homotrimeric quaternary structure as a prerequisite for initiation of signaling via the cytoplasmic domains. TNF receptor homotrimers are natively activated by similarly homo-trimerized TNF ligands, but can also be activated by synthetic agonists including engineered antibodies and Fc-ligand fusion proteins. A large body of literature from pre-clinical models supports the hypothesis that synthetic agonists targeting a diverse range of TNF receptors (including 4-1BB, CD40, OX40, GITR, DR5, TNFRSF25, HVEM, LTβR, CD27, and CD30) could amplify immune responses to provide clinical benefit in patients with infectious diseases or cancer. Unfortunately, however, the pre-clinical attributes of synthetic TNF receptor agonists have not translated well in human clinical studies, and have instead raised fundamental questions regarding the intrinsic biology of TNF receptors. Clinical observations of bell-shaped dose response curves have led some to hypothesize that TNF receptor overstimulation is possible and can lead to anergy and/or activation induced cell death of target cells. Safety issues including liver toxicity and cytokine release syndrome have also been observed in humans, raising questions as to whether those toxicities are driven by overstimulation of the targeted TNF receptor, a non-TNF receptor related attribute of the synthetic agonist, or both. Together, these clinical findings have limited the development of many TNF receptor agonists, and may have prevented generation of clinical data which reflects the full potential of TNF receptor agonism. A number of recent studies have provided structural insights into how different TNF receptor agonists bind and cluster TNF receptors, and these insights aid in deconvoluting the intrinsic biology of TNF receptors with the mechanistic underpinnings of synthetic TNF receptor agonist therapeutics.
Collapse
|